
80 Orlin Avenue SE
Minneapolis MN 55414

May 10th, 1995
The Icon Analyst

The Icon Project
Dept. of Computer Science
Gould Simpson Building
The University of Arizona
Tucson, Arizona 85721

Dear Icon Analyst,
This letter is in response to your articles on

the Icon Random Number Generator in numbers 28 and 29, and in
particular, to your request for an explanation of the regularities
shown in number 29 of the Analyst.

1.  A Glitch.

When I first saw the “Rolling Your Own” section of the article in
number 28 (p.6) I was struck by the fact that the procedure
rand_int(i) has been given a scale factor of 1 231 −1( ).

When &random is equal to its maximum value of 231 −1 its scaled
value will be 1.0 (provided floating point arithmetic is conducted
to sufficient accuracy). Thus the value returned by rand_int(i)
will be integer(i * 1.0) + 1 which is i + 1. Thus ?2 could
evaluate to 3, for example. To test this hypothesis, I ran the
following program.

procedure main()
&random := 1276559117  #Seed that precedes 2̂ 31 - 1
writes(?2, "/")
write(&random - (2̂ 31 - 1))

end

The output of this program was not 3/0 as I expected, but 2/0. The
zero means that &random was 231 −1 at the point where scaling
occurred, and yet the overflow did not occur as predicted. Perhaps
the scaling algorithm in icon was not the same as rand_int(i)? To
test this hypothesis, I ran the following program.

link analyst #the routines in "Rolling Your Own"
procedure main()

&random := random := 1276559117
writes(?2, "/")
writes(&random - (2̂ 31 - 1), ",")
writes(rand_int(2), "/")
writes(random - (2̂ 31 - 1))

end
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The output of this program was 2/0,3/0 as expected. Thus
rand_int(2) can return 3. The following program detects the source
of the trouble in the true icon random number generator.

procedure main()
&random := 1276559117
write(?0)

end

This program should write out 1.0 if scaling is occurring as
stated, but in fact the output on my implementation is less than
one——0.99999999672599

Examination of the icon source file rmacros.h shows that RandScale
is defined to be 4.65661286e-10 with a comment that this is equal
to 1 231 −1( ). However, this is not correct! It is more like 1 231 + 6( )
The last digit should be an 8 at the accuracy given. Furthermore,
in order that RandScale give 1.0 or more when multiplied by 231 −1,
but not when multiplied by 231 − 2, more decimal places need to be
specified. On my implementation of icon, it is necessary to
specify RandScale to eleven places for this to be true.

What the above shows, however, is that 1 231 −1( ) is not the correct
scale factor anyway, as it can lead to ?i evaluating to i + 1,
albeit with very small probability. A better scale factor is 2−31.
Changing the scale factor slightly does not make a great deal of
difference for practical purposes. (N.B. The sequence of values
that &random takes on remains unchanged.) Examination of the
algorithm for computing ?i reveals why.

The algorithm computes ?i by placing equally spaced boundaries in
the real interval [0,1) giving i sub-intervals that we can number
in order from 1 to i. These sub-intervals are closed on the left
and open on the right (because of the way that the icon integer
function works). Then a new value of &random is computed, and
scaled to the interval [0,1). The number of the sub-interval this
new value falls into is the result of evaluating ?i.

Most of the time the scaled value of &random does not fall near an
interval boundary, provided that i is much smaller than the number
of different values that &random can take on. Thus a small change
in the scale factor will not move the scaled value across a sub-
interval boundary most of the time.

This intuitive argument can easily be quantified. Consider the
case of changing RandScale from its present value in the icon
source to an accurate representation of 2−31 (The decimal expansion
of 2−31 is exactly 4.656612873077392578125 ×10−10). For i < 32, the
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probability of choosing &random so that ?i would have a different
value were RandScale changed is less than 10−7.

2.  “Curiosity or Problem?”

Hereafter, we assume that the scale factor is exactly 2−31. The
modulus m = 231 so that this means the scale factor is exactly 1 m.
This is important for the following construction to work properly.

The random number algorithm is more intuitively stated by using a
circle rather than the interval [0,1), because a circle reflects
the modular arithmetic naturally in its geometry.

Informally, we regard the sequence of values taken on by &random
as scaled into the interval [0,1), which is stretched in length by
a factor of 2π, and bent nose to tail to become the unit circle.
(Yet another reason why the value 1.0 should not be present.)

This transformation is properly done using complex exponentials.
If r is a possible value of &random, then the corresponding point
P r( ) on the unit circle in the complex plane is exp 2πir m( ). Here
θ r( ) = 2πr m is the angle (in radians) illustrated in the following
diagram.

x

y

P(r)

(r)θ

This is the same as taking the unit circle, and placing 231 equally
spaced points around its circumference beginning on the positive x
axis, corresponding in order to the values 0…231 −1 for &random.

Addition is naturally modulo m = 231, and corresponds to adding the

angles of the two numbers, i.e. θ r1 + r2( )mod m( ) = θ r1( ) + θ r2( ).(This is
also the same as multiplying the corresponding complex numbers

i.e. P r1 + r2( )mod m( ) = P r1( ) ⋅ P r2( ).)

Now let’s take a geometrical view of the “Curiosity or Problem?”
from number 29 of the Icon Analyst, page 6. We know that the
values of &random are iterated using the following relation.
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rk+1 = ark + c( )mod m

where 
a = 1103515245

c = 453816694




Interpreting these values as angles as above (and converting to
degrees), we have   θ a( ) ≈ 185o (and   θ c( ) ≈ 76o ≈ 75o). This value interlocks
with   360o in a coincidental way that we will show leads to the
pattern in the first column of the output of the “Curiosity or
Problem” program. (The conversion factor from integer values to
angles is now   360o m( ) rather than 2π m( ).)

Now to convert the recurrence relation to operations on angles, we
apply the function θ to both sides, and use the rule for applying
θ to a sum (given above).

θ rk+1( ) = θ ark + c( )mod m( ) = θ ark( )mod m( ) + θ c( )

It remains to simplify the term involving the application of θ to
a product, modulo m. Since   θ x( ) = 360o m( )x (modulo 360 degrees) we

have θ ark( )mod m( ) = θ a( )rk (modulo 360 degrees). This just says that

you add the angle θ a( ) around the circle rk times——it’s repeated
addition for angles. So here’s the outcome.

  θ rk+1( ) = θ a( )rk + θ c( ) ≈ rk 185o + 75o

Now, what happens if we start with &random = r0 = 0, 2, 4, ... as

in the given program? Some of the importance of r0 being even is

now apparent. It means that   r0 185o is just a little over a multiple

of   360o, i.e.   r0 185o is a “smallish” angle. In fact   r0 185o increases

by about   10o each time r0 is increased by 2. Thus θ r1( ) takes on
roughly the values   75o, 85o, 95o,105o,115o,…  Note that θ c( ) is
unimportant here: it just moves the regularity around so that it
starts in a different place.

These numbers are somewhat similar: (“nearly” constant), so we
might informally refer to them as having “approximate period 1”.
Similarly, the numbers in column 8 of the output of the given
program have “approximate period 4”.

The program computes ?20, so that the unit circle is partitioned
like a dartboard into 20 equal segments of   18o, numbered (unlike a
dart board) in order 1 through 20. Thus the first column of the
output is “explained” by the observation that θ a( ) is very close to
  180o.

The above argument relied upon there being one application of a
linear congruential function to a sequence of seed values with
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constant small differences. (The seed values themselves may be
large.) After the first iteration, the new seed sequence is no
longer of this form, and the argument cannot be repeated.

However, the composition of a linear congruential function with
another linear congruential function is once again a linear
congruential function. Thus, for example, column 8 of the output
can be computed from the seeds r0 = 0, 2, 4, 6, ... as follows:

r8 = a8 r0 + c8( )mod m, for some constants a8 and c8. (This function is

the linear congruential function corresponding to the usual linear
congruential function composed with itself eight times.)

As the output in column 8 has “approximate period 4”, no doubt we
will find that θ a8( ) is near to   45o, so that increasing r0 by 2

moves the result through near to   90o; increasing r0 by 2 four times
moves the result approximately to the same value.

The relations (if any) between the columns in the output of the
“Curiosity or Problem?” program remain unexplained at this point.
We need a more global view to understand this feature.

3.  Regularities in General.

Suppose we choose a general linear congruential random number
generator, given by the recurrence rk+1 = ark + c( )mod m, where random
numbers in the range 1 to n are extracted by the function
h n, rk( ) = nrk m  +1, and m = 2 j. (i.e. until further notice, a, c, m = 2 j

are perfectly general.)

It is not difficult to see that the solution to this recurrence is

rk = akr0 + ck where ck = c al

l=0

k−1∑( ) (all using modulo m arithmetic).

Therefore, column k of the output of an analog of the “Curiosity
or Problem” program using the above general random number
generator would be determined from the initial seeds r0 = 0, 1, 2,

3, ... by multiplying by ak mod m, adding ck and applying h(n, _ ).

So to understand column k in general, we need to know what
possible values θ ak mod m( ) can take on. (Once again, as in the
previous section, the value of θ ck( ) is unimportant, since it merely
rotates any regularities.)

To understand ak mod m, where m = 2 j, we need a little number theory.
We will assume that j ≥ 3, and that a satisfies the criterion
a mod8 = 5 (which is criterion 3 in number 28 of the Icon Analyst,
page 5). We need the following fact about modulo 2 j arithmetic.

If S mod 4 = 1 then S = 5l mod 2 j for some 0 ≤ l < 2 j−2.
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What this amounts to is that exactly half of the odd numbers ( S = 1,
5, 9, 13, 17, ..., 2 j − 3), have a discrete logarithm l in the base
5. These logarithms will add modulo 2 j−2, when the corresponding
numbers are multiplied modulo 2 j. Furthermore, a mod8 = 5 implies
that a mod 4 = 1, so that any valid choice of a will have such a
logarithm.

To compute this logarithm, I constructed the following procedures.
The procedure power(x, k, m) computes xk mod m by “repeated
squaring”. It is called by the procedure log5(S, j) that computes
the unique value 0 ≤ l < 2 j−2 such that S = 5l mod 2 j.

procedure power(x, k, m)
if k = 0 then return 1
if k % 2 = 0 then return power(x, k/2, m)̂ 2 % m

   else return x * power(x, k-1, m) % m
end

procedure log5(S, j)
if S % 4 ~= 1 | j < 3 then fail

L := 0
m := 4
every 1 to j - 2 do
 {

m *:= 2
if power(5, L, m) ~= S % m then L +:= m/8

  }
return L

end

The procedure log5(S, j) computes the logarithm bit by bit. At
each step, the modulus is doubled, and the old value of the
logarithm is tested to see if it is correct with the new modulus.
If so then the new uppermost bit of the logarithm must be a zero.
If not then it must be a one, and an appropriate power of two is
added on to correct the logarithm for the new modulus.

If a mod8 = 5 then the bottom bit of the logarithm of a will be a
one, i.e. the logarithm will be odd. Consequently, it will always
have a multiplicative inverse modulo 2 j−2.

Let α be this inverse. We have a = 5l mod 2 j, where l is the
logarithm, and is odd, and 1 = lα mod 2 j−2. Raising both sides of
a = 5l mod 2 j to the power α gives aα mod 2 j = 5, and since 5 can be
expressed as a power of a, then any number S satisfying S mod 4 = 1
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can be expressed as a power of a. In other words, a is a
legitimate base for logarithms, just like 5.

Let S satisfy S mod 4 = 1 and let σ = log5 S, j( ). Then S = 5σ mod 2 j. But

aα mod 2 j = 5, so S = aασ mod 2 j. In other words, loga S, j( ) = α log5 S, j( )mod 2 j−2

where α = log5 a( )−1
mod 2 j−2.

A concrete calculation will illustrate this mechanics for
a = 1103515245, the usual icon random number generator constant. A
call of log5(1103515245, 31) returns 290333047, showing that
a = 1103515245 is in fact 5290333047 mod 231. A calculation with the
extended Euclidean algorithm shows that 290333047( )−1 mod 229 = 171903047.
This may easily be verified because 171903047 × 290333047mod 229 = 1. So,
5 = 1103515245171903047 mod 231, and log1103515245 S,31( ) = 171903047 log5 S,31( )mod 229.

What we’ve shown above is that any a satisfying a mod8 = 5 will
suffice as a base for logarithms (and we’ve given a means of
calculating loga S, j( ) for any S satisfying S mod 4 = 1). This means

that ak mod 2 j may take on any value S satisfying S mod 4 = 1, simply
by varying k.

Specifically, we can choose a value S (satisfying S mod 4 = 1) that
has θ S( ) very close to a “coincidental” angle (e.g.   180o,   45o, or

  60o). Then there always exists k = loga S, j( ) such that ak mod 2 j = S.

Thus, the kth column of output of a “Curiosity or Problem?” type
program would then (in principle) exhibit striking near
periodicity of almost any kind desired.

Of course k could be rather large. But what we have established is
that the kinds of columns output by the “Curiosity or Problem?”
program are by no means untypical, and are not specific to the
choice of constants made by the icon random number generator, but
are inherent whenever the modulus is a power of 2.

As an example, let’s choose   θ S( ) ≈ 90o with the standard icon random

number generator. Then S = 229 +1 is very close, and satisfies
S mod 4 = 1. A call of log5(2^29 + 1, 31) gives 402653184. From four
paragraphs back, we have log1103515245 S,31( ) = 171903047 log5 S,31( )mod 229, and

substituting, we have log1103515245 S,31( ) = 134217728. Thus, in column
134217728 we should have approximate periodicity 4 (with minescule
drift from exact periodicity), as in the following program.

procedure main()
k := 134217728; i := 1000
every &random := 0 to 19 do {

every 1 to k - 1 do ?1
write(?i)

  }
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end

The output from this program on my system is as follows. (It took
an overnight run to collect these numbers.)

125
375
625
875
126
376
626
876
126
376
626
876
126
376
626
876
126
376
626
876

4.  Conclusion.

We have shown that the regularities in the columns of output from
the “Curiosity or Problem?” program are an instance of a general
phenomenon of column regularity. There is an enormous amount of
regularity in the output of the icon random number generator, so
it’s not surprising that some of it wound up in the first few
columns. One may choose any period, with smaller or larger amounts
of “drift”, and by the procedure exemplified above, find a column
exhibiting that behavior. Furthermore, this is inherent to all
linear congruential random number generators using a modulus that
is a power of two.

One possibility that you might wish to consider, is of having two
random number generators in icon with a keyword variable as a
switch. Then you could keep the original generator (the default),
and provide a more sophisticated source if required. (Perhaps the
sophisticated source could also be seeded by the clock at the
point it was switched to? If this feature was not required, it
could always be avoided by assigning to &random.)

Of course the problem of finding a “good” source of pseudo-random
numbers is notorious for its apparent trade-off between “goodness”
and computational effort. An aggressive definition of “good” is
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roughly that no polynomial-time algorithm can distinguish the
source from a truly random source.

This statement can be made precise, and is the standard of
randomness used in theoretical studies of cryptography.  We do not
need such a drastic definition, but it’s worth looking at the
consequences intuitively, to see that the idea of “high degree”
(see below) is important.

The existence of such a source is an open question, and is
equivalent to the existence of (a natural class of) one-way
functions. In fact it is one these one way functions that would be
used in place of the linear congruential function in such a
pseudo-random source. An existence proof would imply P ≠ NP and
much more.

One-way functions (if they exist) are functions of “high degree”
(this has a proper definition, but take it intuitively), and
consequently are much more painful to compute than a linear
congruential function.

However, a “high degree” function (chosen carefully) is likely not
to possess any simple (or “simple-ish”) algebraic properties
(unlike low degree functions), that give rise to patterns when
iterated. And if there is a proof that iterating such a function
eventually cycles through all the values in range, then it may
well suffice for practical purposes provided that there is a
reasonably efficient way to compute it.

If you are interested in installing such a random number
generator, I have a candidate that is fairly easy to compute, for
which I have some confidence of being able to prove some nice
properties. A little testing may be in order too.

I hope I’ve communicated at the right level in this letter. If you
want to use any of the ideas or material in this letter in an
article in the Icon Analyst, then go ahead.

Sincerely,

Carl Sturtivant.
(carl@cs.umn.edu)


