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The | con Project
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Goul d Si npson Bui | di ng
The University of Arizona
Tucson, Arizona 85721

Dear |con Anal yst,

This letter is in response to your articles on
t he I con Random Nunber Generator in nunbers 28 and 29, and in
particular, to your request for an explanation of the regularities
shown i n nunber 29 of the Anal yst.

1. A ditch.

Wen | first saw the “Rolling Your Owm” section of the article in
nunber 28 (p.6) | was struck by the fact that the procedure

rand _int (i) has been given a scale factor of ]/(231—1).

Wien & andomis equal to its maxi mumvalue of 2%-1its scaled
value will be 1.0 (provided floating point arithnetic is conducted
to sufficient accuracy). Thus the value returned by rand_int(i)
will beinteger(i * 1.0) + 1 wihichisi + 1. Thus ?2 could

evaluate to 3, for exanple. To test this hypothesis, | ran the
foll ow ng program

procedure nai n()
& andom: = 1276559117 #Seed that precedes 231 - 1
wites(?2, "/")
wite(&andom- (2731 - 1))

end

The output of this programwas not 3/0 as | expected, but 2/0. The
zero neans that & andomwas 2* -1 at the point where scaling
occurred, and yet the overflow did not occur as predicted. Perhaps
the scaling algorithmin icon was not the same as rand _int(i)? To
test this hypothesis, | ran the foll ow ng program

l'i nk anal yst #he routines in "Rolling Your Gan"
procedure nai n()
& andom: = random: = 1276559117
wites(?2, "/")
wites(&andom- (2*31 - 1), ",")
wites(rand int(2), "/")
wites(random- (2"31 - 1))



The output of this programwas 2/0,3/0 as expected. Thus
rand_int(2) can return 3. The fol | owing program detects the source
of the trouble in the true icon random nunber generator.

procedure nai n()
& andom: = 1276559117
wite(?0)

This program should wite out 1.0 if scaling is occurring as
stated, but in fact the output on ny inplenentation is |ess than
one—~0. 99999999672599

Exam nation of the icon source file rnmacros. h shows that RandScal e
is defined to be 4.65661286e-10 with a comment that this is equal

to 1/(2-1). However, this is not correct! It is more like 1/(2%+6)
The last digit should be an 8 at the accuracy given. Furthernore,
in order that RandScal e give 1.0 or nore when multiplied by 2%-1,

but not when nultiplied by 2*-2, nore decinmal places need to be
specified. On ny inplenmentation of icon, it is necessary to

specify RandScal e to el even places for this to be true.

VWhat t he above shows, however, is that :I/(231—1) is not the correct

scale factor anyway, as it can lead to ?i evaluating toi + 1,

albeit with very small probability. A better scale factor is 2.
Changi ng the scale factor slightly does not nake a great deal of
difference for practical purposes. (N B. The sequence of val ues

that & andomtakes on renai ns unchanged.) Examination of the
algorithmfor conputing ?i reveals why.

The al gorithm conputes ?i by placing equal |y spaced boundaries in
the real interval [0,1) giving i sub-intervals that we can nunber
inorder from1 to iI. These sub-intervals are closed on the |eft
and open on the right (because of the way that the icon i nteger
function works). Then a new val ue of & andomis conputed, and
scaled to the interval [0,1). The nunber of the sub-interval this
new value falls into is the result of evaluating ?i.

Most of the time the scal ed value of & andomdoes not fall near an
i nterval boundary, provided that | is nuch smaller than the nunber
of different values that & andomcan take on. Thus a small change

in the scale factor will not nove the scal ed val ue across a sub-
i nterval boundary nost of the tine.

This intuitive argunment can easily be quantified. Consider the
case of changing RandScale fromits present value in the icon

source to an accurate representation of 2% (The deci mal expansi on
of 2% is exactly 4.656612873077392578125x107°). For I < 32, the



3

probability of choosing & andomso that ?I woul d have a different
val ue were RandScal e changed is | ess than 107.

2. “CQuriosity or Problen®?”

Hereafter, we assune that the scale factor is exactly 2. The
modul us m=2* so that this neans the scale factor is exactly 1/m.
This is inportant for the follow ng construction to work properly.

The random nunber algorithmis nore intuitively stated by using a
circle rather than the interval [0,1), because a circle reflects
the nodul ar arithnetic naturally in its geonetry.

Informal |y, we regard the sequence of val ues taken on by & andom
as scaled into the interval [0,1), which is stretched in |length by
a factor of 2m and bent nose to tail to become the unit circle.
(Yet another reason why the value 1.0 should not be present.)

This transformation is properly done using conpl ex exponential s.
If r is a possible value of & andom then the correspondi ng poi nt
P(r) on the unit circle in the conplex plane is exp(2mir/m). Here

B(r)=2mr/m is the angle (in radians) illustrated in the follow ng
di agram

P(r)

a(r)

This is the same as taking the unit circle, and placing 2* equally
spaced points around its circunference beginning on the positive x

axis, corresponding in order to the values 0..2"-1 for & andom

Addition is naturally nmodulo m=2*, and corresponds to adding the
angl es of the two nunbers, i.e. e((r1+r2)modm):e(r1)+9(r2). (This is
al so the same as multiplying the correspondi ng conpl ex nunbers
i.e. P((r,+r,)modm)=P(r,)P(r,). )

Now | et’s take a geonetrical view of the “Curiosity or Problen?”
from nunber 29 of the Icon Analyst, page 6. W know that the

val ues of & andomare iterated using the followi ng relation.



i =(ar, +c)modm

A =1103515245
where []
[]c = 453816694

Interpreting these val ues as angl es as above (and converting to
degrees), we have 0(a)=185° (and 6(c)=76°=75°). This value interl ocks

with 360° in a coincidental way that we will show |l eads to the
pattern in the first colum of the output of the “Curiosity or
Probl enf program (The conversion factor frominteger values to

angl es is now (360°m) rather than (2rym).)

Now to convert the recurrence relation to operations on angles, we
apply the function 6 to both sides, and use the rule for applying
B to a sum (gi ven above).

O(rer) = 9((ark +c)mod m) = 6((ark) mod m) +6(c)

It remains to sinplify the terminvolving the application of 6 to
a product, nodulo m. Since 9(x)z(360° m)x (nmodul o 360 degrees) we

have 9((ark)modm):9(a)rk (nmodul o 360 degrees). This just says that

you add the angle 6(a) around the circle r, times—t’s repeated
addition for angles. So here’ s the outcone.

6(ry.1) =0(a)r, +6(c) =r,185° + 75°

Now, what happens if we start with & andom=r, =0, 2, 4, ... as
in the given progranf? Sone of the inportance of r, being even is
now apparent. It means that r,185° is just a little over a nultiple
of 360° i.e. r,18° is a “smallish” angle. In fact r,185° increases
by about 10° each time r, is increased by 2. Thus 6(r,) takes on

roughly the val ues 75°85°95°105°115°... Note that 6(c) is

uni nportant here: it just noves the regularity around so that it
starts in a different place.

These nunbers are sonewhat simlar: (“nearly” constant), so we
mght informally refer to themas having “approxi mate period 1".
Simlarly, the nunbers in colum 8 of the output of the given
program have “approxi mate period 4".

The program conputes ?20, so that the unit circle is partitioned

like a dartboard into 20 equal segnents of 18°, nunbered (unlike a
dart board) in order 1 through 20. Thus the first colum of the

output is “explained” by the observation that 6(a) is very close to
180°.

The above argunent relied upon there being one application of a
| i near congruential function to a sequence of seed values with
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constant small differences. (The seed val ues thensel ves nay be
large.) After the first iteration, the new seed sequence i S no
| onger of this form and the argunent cannot be repeat ed.

However, the conposition of a linear congruential function with
anot her |inear congruential function is once again a |inear
congruential function. Thus, for exanple, colum 8 of the out put

can be conputed fromthe seedsr, = 0, 2, 4, 6, ... as follows:
rgz(%rm+%)modnn for some constants a and c. (This function is
the |inear congruential function corresponding to the usual |inear

congruential function conposed with itself eight tines.)

As the output in colum 8 has “approximate period 4”7, no doubt we
will find that 6(a) is near to 45°, so that increasing r, by 2

noves the result through near to 90°% increasing r, by 2 four times
noves the result approximately to the sane val ue.

The relations (if any) between the colums in the output of the
“Quriosity or ProblenP” programremnai n unexpl ained at this point.
W need a nore global viewto understand this feature.

3. Reqularities in General.

Suppose we choose a general |inear congruential random nunber
generator, given by the recurrence r,,, =(ar,+c)modm, where random
nunbers in the range 1 to n are extracted by the function
h(n,r,)=mr,/m3+1, and m=2. (i.e. until further notice, acm=2
are perfectly general.)

It is not difficult to see that the solution to this recurrence is
r.=a‘r,+c, where q:@ZEﬁj(aH using nmodulo m arithnetic).
Therefore, colum k of the output of an analog of the “Curiosity

or Problemf program using the above general random nunber
generator would be determned fromthe initial seeds r, =0, 1, 2,

3, ... by multiplying by a*modm, adding c_and applying h(n, ).

So to understand colum k in general, we need to know what
possi bl e val ues GG#rnodno can take on. (Once again, as in the

previous section, the val ue of 6@%) is uninportant, since it nerely
rotates any regularities.)

To understand a*modm, where m=2/, we need a little nunber theory.
W will assune that =3, and that a satisfies the criterion
amod8=5 (which is criterion 3 in nunber 28 of the Icon Anal yst,
page 5). W need the followi ng fact about modulo 2' arithnetic.

If Smod4=1 then S=5mod2' for some 0<l|<272,




What this anobunts to is that exactly half of the odd nunbers ( S=1,
5 9, 13, 17, ..., 2/-3), have a discrete logarithm | in the base
5. These logarithms will add nmodul o 272, when the corresponding
nunbers are multiplied modulo 2'. Furthernore, amod8=5 inplies
that amod4=1, so that any valid choice of a will have such a

| ogarithm

To conpute this logarithm | constructed the foll ow ng procedures.
The procedure power (X, K, n) conputes x*modm by “repeat ed
squaring”. It is called by the procedure | 0g5(S, j) that conputes
t he uni que value 0<1<2'"? such that S=5 mod2’.

procedure pover (X, k, m
iIf k=0thenreturn 1
iIf k %2 =0 then return pover(x, k/2, m”"2 %m
else return x * power(x, k-1, m %m
end

procedure | og5(S )
if S%4 ~=1| ) <3thenfail

L:=0
m:=4
every 1toj - 2 do
{
m*.= 2
If power(5 L m ~=S%mthen L +=nmni8
return L

end

The procedure | 0g5(S, j) conputes the logarithmbit by bit. At
each step, the nodulus is doubled, and the old val ue of the
logarithmis tested to see if it is correct with the new nodul us.
| f so then the new uppernost bit of the |ogarithmnust be a zero.
If not then it nust be a one, and an appropriate power of two is
added on to correct the logarithmfor the new nodul us.

I f amod8=5 then the bottombit of the logarithmof a wll be a
one, i.e. the logarithmw |l be odd. Consequently, it will always

have a nultiplicative inverse nodul o 272,

Let o be this inverse. W have a:5"mod2j, where | is the
logarithm and is odd, and 1=lamod2'™®. Raising both sides of

a=5mod2' to the power o gives a*mod2' =5, and since 5 can be
expressed as a power of a, then any nunber S satisfying Smod4=1



can be expressed as a power of a. In other words, ais a
legitimate base for logarithnms, just |ike 5.

Let S satisfy Smod4=1 and let o=logs(Sj). Then S=5"mod2’. But
a"mod2' =5, so S=a*mod2’. In other words, log,(S j)=alog(S j)mod2'~?

where o =(logsa)” mod2!~2.

A concrete calculation will illustrate this nmechanics for
a=1103515245, the usual icon random nunber generator constant. A
cal | of 10g5(1103515245, 31) returns 290333047, show ng that
a=1103515245 is in fact 5% mod2*®. A calculation with the

ext ended Euclidean al gorithm shows that (290333047)" mod2% =171903047.
This may easily be verified because 171903047 x 290333047mod2® =1. So,
5=1103515245"""" mod2*, and 100,060 (S 31) =171903047 log, (S 31) mod2”.

What we’ ve shown above is that any a satisfying amod8=5 w ||
suffice as a base for logarithns (and we’ ve given a neans of

cal cul ating Ioga(Sj) for any S satisfying Smod4=1). This neans

that a*mod?2' nay take on any value S satisfying Smod4=1._ sinply
by varying K.

Specifically, we can choose a value S (satisfying Smod4=1) that
has 6(S) very close to a “coincidental” angle (e.g. 180°, 45° or

60°). Then there always exists k=log,(Sj) such that a‘mod2’ =S.

Thus, the k™ colum of output of a “Curiosity or Problen?” type
programwoul d then (in principle) exhibit striking near
periodicity of alnmost any kind desired.

O course k could be rather |arge. But what we have established is
that the kinds of colums output by the “Curiosity or Probl enf”
program are by no neans untypical, and are not specific to the
choi ce of constants nade by the icon random nunber generator, but
are i nherent whenever the nodulus is a power of 2.

As an exanple, let's choose 6(S)=90° with the standard icon random

nunber generator. Then S=2*+1 is very close, and satisfies
Smod4=1. Acall of 10g5(2"29 + 1, 31) gives 402653184. From four
par agr aphs back, we have 100,500 (S31)=171903047 logy(S,31)mod2®, and

substituting, we have 100,50 (S31)=134217728. Thus, in col um

134217728 we shoul d have approximate periodicity 4 (wth mnescul e
drift fromexact periodicity), as in the follow ng program

procedure nai n()
k :=134217728; i .= 1000
every & andom:=0to 19 do {
every 1tok - 1do?1
wite(?)



end

The output fromthis programon ny systemis as follows. (It took
an overnight run to collect these nunbers.)

125
375

JRIABIARB

S
3

SEIERELS

876

4. Concl usi on.

W have shown that the regularities in the colums of output from
the “Curiosity or Problen?” programare an instance of a general
phenonenon of colum regularity. There is an enornous anount of
regularity in the output of the icon random nunber generator, so
it’s not surprising that sone of it wound up in the first few
colums. One may choose any period, with smaller or |arger anounts
of “drift”, and by the procedure exenplified above, find a col um
exhibiting that behavior. Furthernore, this is inherent to al

i near congruential random nunber generators using a nodul us that
is a power of two.

One possibility that you mght wish to consider, is of having two
random nunber generators in icon with a keyword vari able as a
switch. Then you could keep the original generator (the default),
and provide a nore sophisticated source if required. (Perhaps the
sophi sti cated source could al so be seeded by the clock at the
point it was switched to? If this feature was not required, it

coul d al ways be avoi ded by assigning to & andom)

O course the problemof finding a “good” source of pseudo-random
nunbers is notorious for its apparent trade-off between *goodness”
and conputational effort. An aggressive definition of “good” is
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roughly that no polynom al-tine algorithmcan distinguish the
source froma truly random source.

This statenent can be made precise, and is the standard of
randommess used in theoretical studies of cryptography. W do not
need such a drastic definition, but it’s worth |ooking at the
consequences intuitively, to see that the idea of “high degree”
(see below) is inportant.

The exi stence of such a source is an open question, and is

equi valent to the existence of (a natural class of) one-way
functions. In fact it is one these one way functions that woul d be
used in place of the linear congruential function in such a
pseudo-random source. An exi stence proof would inplyP#NP and

much nore.

One-way functions (if they exist) are functions of “high degree”
(this has a proper definition, but take it intuitively), and
consequently are rmuch nore painful to conpute than a |inear
congruential function.

However, a “high degree” function (chosen carefully) is |ikely not
to possess any sinple (or “sinple-ish”) algebraic properties
(unlike | ow degree functions), that give rise to patterns when
iterated. And if there is a proof that iterating such a function
eventual ly cycles through all the values in range, then it my
wel | suffice for practical purposes provided that there is a
reasonably efficient way to conpute it.

If you are interested in installing such a random nunber
generator, | have a candidate that is fairly easy to conpute, for
whi ch | have sonme confidence of being able to prove sone nice
properties. Alittle testing may be in order too.

| hope |I’ve comunicated at the right level inthis letter. If you
want to use any of the ideas or material in this letter in an
article in the Icon Anal yst, then go ahead.

Si ncerely,

Carl Sturtivant.
(carl @s. um. edu)



