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Preface 9

Preface

Program visualization is an emerging software engineering discipline in which program execution monitors are used

to improve human beings’ understanding of program run-time behavior. Program visualization tools are used in a

variety of important applications such as debugging, performance tuning, and the study of algorithms. Unfortunately,

progress in this area of systems software has been slow due to the difficulty of the task of writing execution monitors.

In high-level programming languages the task of writing execution monitors is made more complex by features

such as non-traditional control flow and complex semantics. Additionally, in many languages such as Visual Ba-

sic, Java, REXX, Perl, or the Icon programming language, a significant part of the execution behavior that various

monitors need to observe occurs in the language run-time system code rather than the source code of the monitored

program.

This book presents a framework for monitoring Icon programs that allows rapid development of execution moni-

tors in the Icon language itself. Monitors have full source-level access to the target program with which to gather and

process execution information, without intrusive modification to the target executable. In addition, the framework

supports the monitoring of implicit run-time system behavior crucial to program understanding.

In order to demonstrate its practicality, the framework has been used to implement a collection of program visual-

ization tools. Program visualization provides graphical feedback about program execution that allows human beings

to deal with volumes of data more effectively than textual techniques. Ideally, the user specifies program execution

controls in such tools directly in the graphics used to visualize execution, employing the same visual language that

is used to render the output. Some monitors that exhibit this characteristic are presented.

This book is organized into four parts. Part 1 is an overview of execution monitoring and program visualiza-

tion and a survey of the state of the art in the field. Part 2 presents the ALAMO execution monitoring framework;

ALAMO was developed in order to facilitate the construction of visualization tools. Part 3 demonstrates the utility

of the framework with code and screen images for a series of example visualization tools that observe many kinds

of execution behavior. Part 4 discusses the use of program visualization tools in a practical programming environ-

ment; relevant issues include tool integration as well as the performance of collections of monitors executing on real

programs.
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Chapter 1

Introduction

This book presents a framework for monitoring the execution of programs written in the Icon programming language

[Gris90c]. The motivation for this research is a need for better tools to aid in the understanding of dynamic aspects

of program behavior during various phases of the software life cycle, including debugging, performance tuning, and

maintenance.

This chapter describes these tasks and defines a class of programs called execution monitors that aid human be-

ings’ understanding of program behavior. The chapter concludes with an overview of the rest of the book and its

contribution to the field of execution monitoring.

1.1 Understanding program behavior

Program understanding is a very general topic. Some program understanding systems convey very specific infor-

mation about a small portion of a program, such as the workings of a single algorithm. Others are concerned with

explaining the role that a program or a collection of programs play within a larger computational system. This book

addresses a common problem in between these two extremes: understanding the workings of a single (possibly large)

program.

Persons who are confronted by a need to understand a program usually have only two alternatives: studying the

source code, or running the program to see what it does. Ideally, a program would be understandable using one or the

other of these methods; in practice, reading source code is impractically cumbersome for many programs, and con-

struction of test cases to explain program behavior is often a tedious and speculative undertaking. These difficulties

motivate the development of special programs that are used to help explain the behavior of other programs.

Program understanding systems are used in a variety of applications. The most common motive for program un-

derstanding is debugging. Programs that produce incorrect output or fail to complete their execution due to bugs are

prime candidates for tools that assist program developers and maintainers in program understanding tasks. A debug-

ger is a program designed specifically to help with the debugging process. General-purpose program understanding

tools are also used to assist in debugging.

A second major application of program understanding systems is performance tuning or performance debugging.

A correct, working program may be of limited usefulness if its performance is poor. Frequently a program’s authors

or maintainers can improve execution speed by using different programming techniques or modifying the program’s

algorithms and data structures. By providing an accounting of what resources the program is using and which sections

of code are primarily responsible, performance tuning systems can direct programmers’ efforts to where they are most

needed.
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A third application of program understanding is software instruction and orientation. The internal workings of a

program may be of special interest to students learning important algorithms, data structures, or programming tech-

niques; this situation frequently arises when learning a new language. Persons assigned to maintain or improve a

program written by someone else similarly need to orient themselves as to its general operation. In both of these

cases the persons involved may be entirely unfamiliar with the program source code, and can benefit from informa-

tion provided by program understanding tools before consulting source code, or without referring to it at all.

In addition to these established uses for program understanding systems, program understanding tools can provide

language implementors with valuable assistance in the task of language implementation tuning. Program understand-

ing tools that provide information about the execution of programs also directly or indirectly provide information

about the language’s implementation. This information can be used to improve performance or address problems in

the implementation.

1.2 Types of program understanding tools

Programs that provide information about other programs can be separated into two main categories based on the kind

of information they provide. Static analysis tools examine the program text and, in conjunction with knowledge of the

language, provide information about a program that is true for all executions of that program independent of its input

[Dunn84]. Compiler code optimizers, pretty printers, and syntax-directed editors frequently employ static analysis

techniques.

In general, static information cannot explain program behavior because behavior depends on input data in addition

to the program text. For example, the number of times through a loop may depend on the size of an input file, or the

execution path through a conditional statement may depend on interactive user-input from a keyboard or mouse.

Dynamic analysis tools provide information about a specific program execution on a specific set of input data

[Dunn84]. Since dynamic analysis involves extracting information from a running program rather than its source

code, these tools pose implementation problems that are very different from those found in static analysis tools. An-

other name for a dynamic analysis tool is a program execution monitor; a program execution monitor is a program

that monitors the execution of another program [Plat81]. Program execution monitors complement static analysis

tools and provide execution information that static tools cannot, such as details about the program’s control flow, in-

termediate results that are computed, or depictions of internal data structures as the program runs. On the other hand,

static aspects of a program such as variable names often provide context crucial to the understanding of execution

behavior. Good dynamic analysis tools incorporate static information in support of dynamic information. Execution

monitors include the source-level debuggers and profilers commonly bundled with compilers and available on many

operating systems.

An execution monitor may either present information to the user as the program executes (immediate or run-time

analysis), or it may present information at some later time such as after execution completes (post-mortem analysis).

Run-time analyzers provide immediate feedback and allow user direction of the kind and level of detail of the informa-

tion monitored. In contrast, post-mortem analyzers may perform extensive computations to condense the execution

information and present it in a useful way. The two methods are not mutually exclusive.

Run-time analysis tools can further be categorized as passive or interactive. In a passive system, the tool presents

information to the user, but the user has little control over the activity. In an interactive system, the user may have

external control over what information is displayed, or even may be able to modify the computation being observed

or the data being processed.
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1.3 Scope of this research

This book presents a framework that facilitates the development of superior execution monitors, particularly interac-

tive run-time analysis tools for very high-level sequential languages. It is not concerned with monitoring techniques

for parallel, distributed, or real-time computing systems, although the monitoring of such systems does require effec-

tive sequential monitoring techniques.

This book discusses execution monitors within a well-defined context: the Icon programming language. Icon is a

high-level procedural language that descends primarily from SNOBOL4 and SL5. A large array of language features,

documented extensively elsewhere [Gris90c], make Icon very attractive for a variety of general-purpose application

areas, notably text processing and rapid prototyping. Some of these features are

� a familiar syntax reminiscent of Pascal and C,

� generators, goal-directed evaluation, and backtracking,

� a rich set of built-in data structures and operations,

� advanced string scanning and text processing facilities,

� run-time type checking and coercion,

� automatic storage management, and

� invocation mechanisms that include variable number of arguments, and argument defaults for built-in func-

tions.

Icon does not contain the concept of a statement found in most procedural languages. Instead, constructs such

as assignments and if-then-else’s that are statements in other languages are expressions that can produce values for a

surrounding expression in Icon; for this reason conventional statement-level program monitoring is not well-defined

in Icon, and statement-oriented linguistic mechanisms are inadequate in common monitoring situations.

Similarly, the manner in which a program uses Icon’s built-in structured data types, scanning facilities, and run-

time type coercion has a fundamental effect on program execution behavior [Gris92a]. These language features moti-

vate an orientation in execution monitoring that is more directed towards observing the language’s built-in “primitive”

operations and run-time system behavior than would be appropriate for a lower-level conventional procedural lan-

guage; some of the techniques used for Icon are general, while others are not. For example, while the technique of

monitoring program behavior by instrumenting standard library calls is applicable to any language, in C or Pascal

there is no incentive to monitor activity during an addition operator to see what it does. In Icon, integer overflow

during addition results in the creation of an arbitrary precision value that is allocated from the heap and might go

undetected by a programmer reading the source code.

Within the context of the Icon language, this research addresses several problems that are common to any exe-

cution monitoring system. The primary tasks of an execution monitor are to collect information about a program’s

execution and present that information to the user in an understandable way. In addition to the inherent complexity

of these tasks, the main problems posed by execution monitoring in very high level languages are:

Volume — the large amount of data to be processed by the monitor code entails performance problems both in the

gathering of information and in the presentation of that information. Efficient gathering of information involves

selecting the relevant information from the huge pool of available program behavior data. Efficient presentation

of information includes making effective use of the visual medium to communicate with the user, as well as

understanding the user’s powers of perception. Even if it is gathered and presented efficiently, the large amount

of information inherent in monitoring tends to obscure items of interest.
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Intrusion — all monitoring systems alter the execution environment of the program under study; when the act of

monitoring a program changes the behavior under observation, it is called intrusion [Aral88, Henr90]. Henry

defines control intrusive and data intrusive methods of adding instrumentation to a program in order to moni-

tor its execution [Henr90]. Control intrusive instrumentation takes the form of code (such as a procedure call

to a monitor routine) embedded within the program. Data intrusion arises in object-oriented systems in which

instrumentation is added by subclassing a class to be instrumented and overriding its access methods with ad-

ditional code calls monitor code in addition to calling the superclass method(s) to perform the normal com-

putation. The term intrusion has also been used to refer to the execution slowdown imposed by monitoring

[Aral88]; in real-time and concurrent systems this can render monitoring useless. Since Icon’s application do-

main does not include real-time or concurrent programs, this form of intrusion is not considered in this work.

The effect of monitoring on execution speed is considered only so far as to establish framework viability on

“real” Icon programs.

Access — execution monitors often require extensive access to the variables and structures in the program being

monitored. If the monitor and program being monitored are distinct programs, operating system constraints

may restrict this access, or create performance problems in this area, or both. From the point of view of the

execution monitor author, the access problem may also be reflected by low-level or cumbersome notations used

to read or write target program data. A good example of access is the traversal of pointers in data structures: if

it requires operating system intervention or a notation other than that used in the target program source code,

the monitor has poor access to the target program and the task of writing monitors is made difficult. Solutions

to the access problem, such as adding monitor code directly to the program being monitored, often aggravate

the intrusion problem.

These problems are universal in execution monitoring and appear repeatedly in the literature. While no general

solution for these problems exists, improved monitoring techniques may lessen their severity or solve them for prac-

tical purposes on real programs. Traditionally the implementation of execution monitors has been very difficult be-

cause the programmers implementing a new monitor necessarily spent a considerable effort addressing these three

problems. The difficulty of implementing monitors in turn limits or effectively prevents efforts to improve monitor

technology by experimental means.

1.4 Contributions

The goal of this research is to reduce the difficulty of constructing execution monitors by developing a practical frame-

work in which monitor construction is relatively easy. The problems of volume, intrusion, and access motivate the

chosen solutions. The central thesis advocated in this research is the following.

Source-language support for obtaining and presenting execution information is instrumental in the de-

velopment of exploratory monitoring capabilities in very high-level languages.

The framework developed in this research consists of source-language support for the central act of gathering

execution information. It addresses the problems of volume, intrusion, and access in the following ways.

Volume — Built-in language features for the central act of gathering execution information provide the performance

that is necessary for effective monitors written in the source language, despite the generally slower speed of very

high-level languages. Dynamic control over the information flow from the program to the monitor is essential

for performance.
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Intrusion — Language support that gathers execution information from the run-time system eliminates the need for

code intrusion. Provision of separate memory allocation areas for the monitor and target program avoids data

intrusion.

Access — Source language support allows the execution of the monitor and target program in a shared interpeter

and provides full source-level access of the monitor to the target program. The framework uses a synchronous

coroutine execution model within a shared address space, offering significant advantages without restricting

the kinds of monitors that the system supports.

In addition to these features that address core execution monitoring tasks, the framework provides full separation

of the program and the various monitors that observe it. Taking the form of dynamic loading and a virtual monitoring

interface, this separation provides the ease of use that is necessary in order to provide exploratory programming ca-

pabilities. The separation allows multiple monitors to observe a program at the same time, and allows new monitors

to augment or enhance the capabilities provided by existing monitors.

The intent of the framework is to provide exploratory programming capabilities not just for expert monitor de-

velopers, but also for applications programmers who are trying to understand their programs. Given this framework

and appropriate library support procedures, writing an execution monitor is no more difficult than writing other ap-

plications that involve communication between programs, and often is simpler than writing such applications.

This research is applicable to other high-level languages: It is relevant to most functional, logic, and object-

oriented languages. A good first test of the applicability of the techniques presented in this book to another language

is whether the language provides automatic storage management; if it does, the run-time system probably supports

other high-level features and makes up a large portion of both the language implementation and the behavior to be

monitored. The results presented suggest that designers of such languages should consider integral support for mon-

itoring, rather than adding it on as an afterthought.

1.5 Overview of this book

The next two chapters describe prior work in the areas of execution monitoring and fundamental principles of program

visualization. Following that, the primary objectives of the framework are presented in Chapter 4. Chapter 5 and

Chapter 6 present the underlying mechanism developed to support Icon execution monitoring, and the monitoring

instrumentation.

Chapter 7 through Chapter 11 give examples of fundamental monitoring techniques used by many execution mon-

itors, including data collection, presentation and user interaction techniques. These examples, while simple, demon-

strate that the framework makes it possible to develop useful monitors in an exploratory fashion. Chapter 12 discusses

monitor communication and gives an example of a coordinator program that allows independently-writtenmonitors to

be run simultaneously. Chapter 13 includes timing measures that establish the practicality of the framework’s perfor-

mance. Chapter 14 summarizes the work and discusses future research areas. Appendices include larger source-code

examples.
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Chapter 2

Related Work

This book is related to existing research in two major domains: program execution monitoring, and program visu-

alization. The research being presented contributes to the first category, but it is designed to enable new research in

the latter category. Consequently, this chapter presents related work in both areas, with a primary emphasis and or-

ganization revolving around the execution monitoring aspects of the respective systems. Like this work, a number

of earlier systems contribute to both fields; such systems have been called graphical debuggers [Dewa86]. Existing

systems are characterized in terms of three aspects that contribute to usability:

information sources and access methods by which monitors observe program behavior,

execution models that describe the relationship between the monitor and the program being monitored, and

user-interaction features such as the information the monitor provides to the user, how information is presented,

and the extent to which the user controls and directs monitor activity.

Several aspects of these issues are presented first, followed by discussions of existing systems.

2.1 Information sources and access methods

Several methods are used to obtain information about program behavior during execution. Information sources and

access methods determine the quality and quantity of the monitoring that can be performed, and are thus a primary

design factor in monitoring systems. The method used to obtain information is limited by and often motivates the ex-

ecution model adopted by a monitoring system. The most common methods are run-time instrumentation [Lint90],

manual instrumentation [Brow84, Stas90], interpreter instrumentation [Bock86, Dewa86, Masn90], and instrument-

ing compilers [Henr90]. In addition to various methods of instrumentation, some systems provide additional access

to program variables and other execution information. This access, if it is present, often makes it possible to monitor

behavior not explicitly addressed by the instrumentation.

Run-time instrumentation refers to the modification of the monitored program code immediately prior to or during

execution. Modifications often consist of overwriting an instruction of interest with a jump instruction or operating

system trap. In either case, control temporarily transfers to code that sends information to the monitor and/or allows

the monitor to query the program for information. The code is typically modified in selective areas of interest, and

execution proceeds at full speed in other areas.

Manual instrumentation is the insertion of arbitrary monitoring code by hand into the program being monitored.

This method is labor intensive, and requires an instrumentation effort for each program that must be monitored, and

additional effort when an instrumented program is modified.

19



20 CHAPTER 2. RELATED WORK

Interpreter instrumentation is the insertion of monitoring code into the language interpreter instead of the program

being monitored. The instrumentation can then provide information about the behavior of any program executed by

the interpeter.

Instrumenting compilers include preprocessors and code generators that add instrumentation to the code as they

produce output. These systems have the potential of automatically instrumenting any program in the language that

the compiler recognizes. The code they produce is usually much larger than the non-instrumented code and is usually

intended solely for use within the monitoring system.

2.2 Execution Models

Of the many models of the relationship between the monitor and the program being monitored used in existing sys-

tems, three are primary: the one-process model [Brow84, Lond85], the two-process model [Lint90, Sosi92], and the

thread model [Aral88]. In the one-process model, the monitor consists of a library of procedures linked to the program

being monitored or integrated into the run-time system. This is the simplest, highest-performance arrangement, and it

has the advantage that the monitor has convenient access to the program being monitored. The one-process model is

code intrusive, and errors in the target program or monitor code can affect each other in critical ways. In addition, the

control flow logic within the monitor is somewhat inside-out, since the monitor is activated strictly through callbacks.

In the two-process model, the monitor is a separate process from the program being monitored. This reduces

or eliminates the problems of code and data intrusion, at the expense of greatly complicating monitor access to the

state of the program being monitored. This access problem makes monitor construction more difficult, and frequently

entails serious performance problems.

In the thread model, the monitor is a separate thread in a shared address space occupied by the program and pos-

sibly other monitors. This provides many of the benefits as well as some of the drawbacks of both the one-process

model and the two-process model, including the one-process model’s risk that program errors in the target program

or monitor may affect each other and compromise the monitoring results. The thread model’s potential concurrency

provides dramatically improved performance for monitoring on shared memory multiprocessors for those forms of

monitoring that do not preclude it, such as profilers.

2.3 User-interaction facilities

A primary distinguishing characteristic in existing systems is whether they present material as text, or employ graph-

ics to present information. A second distinguishing characteristic is whether a system updates information continu-

ously during execution, or provides information during pauses in execution.

User-input facilities also vary in existing systems, from controls that can only start and stop execution to entire

languages that can be used to query about execution information during execution or while the monitored program

is stopped.

In addition to its uses in controlling the rate of execution and in query facilities, user input in some systems allows

the user to modify the program being monitored. This capability is useful in debugging sessions in which an error

may be repaired or an alternative value may be substituted.

An important class of execution monitors are those that employ program visualization techniques to provide in-

formation to the user. Program visualization refers to the use of graphics to depict program control and/or data at a

particular instant, or to continuously update (animate) a graphic display to show dynamic behavior as program exe-

cution commences. Examples of such tools are the MemMon system for dynamic storage visualization [Gris89] and

the Incense data structure visualization tool [Myer83].
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The best-known area of program visualization is the field of algorithm animation. Some of the most famous exam-

ples are Ronald Baecker’s motion picture, “Sorting Out Sorting” [Baec81], Marc Brown’s research systems BALSA

[Brow84] and ZEUS [Brow91], and John Stasko’s Tango [Stas90]. The original motivation for algorithm animation

was to explain an algorithm to an audience for educational purposes. Since then it has been applied to a number of

tasks including algorithm research. Within these contexts, existing systems have been successful in producing high-

quality animations of specific algorithms.

2.4 Run-time instrumentation systems

Representative run-time instrumentation systems include standard source-level debuggers as well as more general

profiling and monitoring systems that modify the code at run-time.

2.4.1 Dbx

Dbx is representative of conventional source level debuggers, the most common form of execution monitor [Lint90].

Source-level debuggers vary widely in their capabilities, but the features of dbx are illustrative of this class of mon-

itors:

� The basic interface is textual in nature. The user specifies both queries and execution controls in a textual

command language.

� Execution proceeds, in the default case, just as if the target program were not under the control of the debugger.

Ideally, the debugger does not perturb the execution at all. Compiling with “debugging support” or turning off

compiler optimizations in order to debug often perturbs the execution.

� Source code can be displayed as it is executed, in a single-step mode.

� Execution can be directed to proceed until a particular point in the source code is reached. Such a point is called

a breakpoint.

� Breakpoints can be made conditional, testing a predicate (usually expressed in a subset of the source language)

in order to determine whether the debugger should be invoked. Unfortunately, conditional breakpoints are “so

slow that using this capability is often not practical” [Lint90].

� Program variables can be displayed along with their values; in the case of structures, elements can be displayed

and traversed.

� The procedure call chain can be displayed, including parameters passed at each level.

Dbx provides interactive control over program execution at a desirable level—the source language. However,

because of language features such as loops and recursion, execution behavior is not proportional to the size of the

program source code. The program execution space defined by so-called “hand-simulation” of a running program is

orders of magnitude larger than the program source code space. For this reason source-level techniques do not scale

well as program size increases. There is simply too much data to monitor, even for common programs of modest size

and execution time.
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2.4.2 Dalek

Of the many source-level debugging systems, one that deserves further mention in comparison with this book is the

Dalek system [Olss90, Olss91], an extension of the GDB debugger [Stal92]. Dalek is significant in offering both a

special-purpose programming language with which to specify debugging operations and a coarse-grained dataflow

approach for recognizing higher abstractions of execution behavior. This combination of features provides a very

powerful mechanism for characterizing program behavior of interest. This flexibility is limited primarily by the low

performance of the underlying UNIX operating system feature that supports debugging; the ptrace interface requires

two context switch operations for every word of data obtained by the monitor from the program being debugged

[ptr83].

2.4.3 Parasight

The Parasight system [Aral88, Aral89] uses a shared-memory thread model for execution profiling of parallel pro-

grams written in conventional languages such as C. In Parasight the profiler runs on a separate processor and thus

has a minimal impact on the execution speed of the program being observed. The thread model provides monitors

with complete access to program state. Parasight’s user interface includes a C interpreter. The system provides for

insertion of additional monitoring instrumentation at run-time by allowing code patching to be applied at any source

line number.

2.4.4 FIELD

The FIELD programming environment developed at Brown University includes an in-process monitoring facility in

which instrumentation is added by code patching [Reis90a, Reis90b]. FIELD provides monitoring in the context of

a general message-based programming environment in which a central message server forwards messages to multi-

ple tools using a selective broadcast model. Monitoring instrumentation is bound to application code at link time.

During execution, instrumentation code sends messages to the message server; the message server in turn forwards

the messages to those tools that have specified an interest in that type of message. Tools specify which kinds of mes-

sages they are interested in when they start executing; this configuration allows the message server to implement the

selective broadcast mechanism.

Reiss notes that this general model has significant advantages in easing the integration of new tools into the en-

vironment. In addition to the benefits this provides during tool development, the generality of the model offers the

advantage that execution monitoring tools coexist with other programming tools geared towards different parts of the

program development cycle, such as compilers and cross-referencing tools. Since the message model is based solely

on strings, communication of data structures is problematic and creates serious performance problems.

The Forest system employs a generalization of FIELD’s selective broadcast paradigm [Garl90]. In Forest, the

central message server maintains dynamic lists of policies regarding which tools should receive various events. Dis-

patching an event requires evaluation of the policies associated with that event. This adds flexibility but places greater

computational requirements on the message server.

2.5 Manual instrumentation systems

Manual instrumentation is frequently employed in systems for algorithm animation. Although tedious, manual in-

strumentation also is employed during debugging when other debugging tools are ineffective or unavailable.
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2.5.1 BALSA

In the BALSA system an animator (often the program’s author) augments a well-understood program by inserting

calls to the animation library at significant points in the algorithm to convey key aspects to some audience [Brow88].

This code-intrusive approach is suitable for many applications, but Brown notes that if the desired granularity is very

detailed it may involve line-by-line annotations. In addition, the applicability of an algorithm animation system also

is limited if the system does not provide access to program state such as the values of variables, as in the case of

BALSA.

2.5.2 Smalltalk

London and Duisberg developed a kit for algorithm animation of Smalltalk programs [Lond85]. They emphasize

detailed views of smaller program examples, for use in industrial prototyping and simulation.

Although instrumentation is manual, in Smalltalk instrumentation can be added by subclassing existing classes

and adding monitoring code to various operations in a location that is textually distinct from the original program

code. Monitoring instrumentation can also be added by modifying the implementation of various operations along

the inheritance hierarchy used by the objects being monitored.

London and Duisberg’s animation kit is quite suitable for the algorithm animations it was designed to support, and

more generally for understanding tasks that are concerned solely with correctness and not performance. Although in-

strumentation need not obfuscate the program source text, the technique is data-intrusive, since it significantly mod-

ifies program behavior in the memory heap. This reduces the system’s usability in performance tuning applications,

since understanding memory heap behavior is often crucial to understanding performance.

2.5.3 Tango

The Tango algorithm animation system, developed at Brown University, emphasizes support for smooth transitions

between states in the visualization in order to improve the quality of the animations and reduce the difficulty with

which animations are programmed [Stas90]. Tango introduces a path-transition paradigm based on locations, images,

paths, and transitions. In addition to smooth transition support, Tango also employs dynamic loading to simplify

animation design and shorten the time required to modify an animation.

Tango’s goal of supporting exploratory development of algorithm animations is noteworthy. Like BALSA, it em-

ploys manual instrumentation of the algorithms being animated; while it is easy to create many animated views of an

algorithm in order to choose one that is useful, visualizing new algorithms and larger programs is a major undertaking

requiring an understanding of the algorithm to be animated.

2.6 Interpreter instrumentation

Interpreter instrumentation is common for high-level languages, and it is used occasionally in debuggers for lower-

level languages. Instrumented interpreters vary widely in the range of features that are instrumented and the nature

of the monitoring facilities they provide.

2.6.1 SNOBOL4

The SITBOL implementation of SNOBOL4 was extended to include an event association facility [Hans78] by which

built-in or user-defined functions were associated with significant program events. The program events available for

association consisted of variable references, statement executions, program interruptions, function calls and returns,
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and run-time errors. The SNOBOL4 event association facility is an early example in which monitoring capabilities

were implemented in the source-language, yet debugging code could be written separately and compiled in with pro-

grams when debugging was needed.

2.6.2 PECAN

PECAN is an integrated programming environment for an extended dialect of Pascal [Reis84]. It employs multiple

views of the static aspects of the program from a single underlying abstract syntax tree. PECAN also includes execu-

tion monitoring facilities and can display the current line being executed highlighted in a view of the program source

code. PECAN’s data visualization capabilities include graphical views of program data structures at break points.

Reiss mentions plans to combine PECAN and BALSA to enable program animations.

2.6.3 KAESTLE and FooScape

KAESTLE and FooScape provide a visualization system for the Lisp environment that includes tools for both data

and control visualization and provides both static and dynamic views [Bock86]. Their implementation is based upon

the FranzLISP tracing system that provides for calls to a monitoring system upon function entry and exit. This system

does not allow monitoring of behavior internal to a function, nor can it visualize implicit behavior such as garbage

collection. The homogeneous nature of LISP with its simpler control structures and data types mitigates these limi-

tations.

2.6.4 Dewlap

Dewar and Cleary developed a Prolog debugger called Dewlap (debugger with logical applications) that featured

graphical displays of the Prolog execution tree [Dewa86]. They note that the simplicity of Prolog execution was

obscured in earlier Prolog debuggers that employed textual traces of execution. The debugger is written in Prolog,

and includes user-definable views of data. The authors observed that Dewlap is too slow to use as a production tool

given the speed of their hardware and the interpretive Prolog implementation they used.

2.6.5 SeePS

In SeePS, Masnavi animated the internal workings of a NeWS PostScript interpreter by generating Display PostScript

windows that reflect the state of various internal operations [Masn90]. The size and complexity of the program being

animated (an entire language interpreter with hundreds of built-in primitives) take this project well beyond the realm

of algorithm animation.

SeePS was not designed with construction of new visualizations in mind; it was designed to animate the workings

of the language interpreter itself rather than the execution of the PostScript program being interpreted. This goal is

ambitious as it stands, and since NeWS has sophisticated event handling and lightweight processes, it represents a

challenge to visualization.

The initial approach in SeePS was similar to the one taken in this book: NeWS source code was augmented to

include interesting events; lightweight processes written in NeWS could then receive such events and generate visu-

alizations for them. Masnavi cites the benefits of being able to write the visualizations in a higher-level language and

not have to recompile the interpreter in order to modify a visualization.

In Masnavi’s case, this approach was abandoned because it prevented the use of future, improved versions of the

NeWS interpreter, and because SeePS could not be distributed in such a form. For these reasons, Masnavi rewrote

SeePS entirely in NeWS. This prevents SeePS from visualizing implicit run-time system events; further, Masnavi

notes SeePS suffers from efficiency problems.
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2.6.6 Dynascope

Dynascope is a tool for directing the execution of C language programs using event streams [Sosi92]. Event streams

are not at the source-level, but rather at the level of the machine instruction for an hypothetical processor 1. Events

are produced during the interpretation of code by a virtual machine. Dynascope supports execution of mixed virtual-

machine and native-code programs and only the parts of a program under observation must be interpreted. In effect

the monitoring instrumentation and virtual-machine interpreter are linked into the program as an extensive addition

to the run-time library.

Dynascope directors are arbitrary programs written independently from the hypothetical processor interpreter;

they run in a separate UNIX process connected using stream-based interprocess communication. This has the distinct

advantage of allowing various directors to be attached to and detached from the system dynamically. On the other

hand, it means that access to the full program state of the executing program is limited or non-existent.

2.7 Instrumenting compilers

Another alternative to instrumenting a program by hand or instrumenting an interpreter is to modify the translation

process to automatically instrument the generated code to include execution monitor calls.

2.7.1 Voyeur

Voyeur is a system for visualizing the execution of parallel programs [Soch89]. It is noteworthy in that its authors

designed it explicitly to simplify the task of learning how to build views in the system. Voyeur presumes that each new

parallel program may require a new visualization, and therefore the system should be easy enough for programmers to

construct new views without the aid of an animator-specialist as is generally required in BALSA and ZEUS. In their

section on future work the authors note that Voyeur needs access to the program state, support for multiple views, and

easier interface construction.

2.7.2 UW Illustrating compiler

The UW illustrating compiler (UWPI) visualizes the execution of programs for a subset of Pascal [Henr90]. It is

intended for an educational audience. It is not intended as a framework for exploratory visualization development,

but rather, it provides a few fixed views of execution. View selection is performed automatically by static analysis of

the program, rather than being user-driven.

UWPI illustrations are driven by calls that are automatically inserted into the code during compilation. Since

insertion is automatic, UWPI contrasts with manually code-intrusive systems such as PECAN and BALSA. On the

other hand, since the code after analysis includes calls to the illustration system, UWPI can be said to be implicitly

code intrusive. First of all, a program must be specially processed before it can be viewed. Second, after it has been

so treated, the result does not run outside the illustration environment. Third, since illustration is driven by explicit

calls in the code, the system cannot illustrate implicit run-time behavior, except that which is ascertained by the static

analysis component that inserts the illustrator calls.

2.7.3 SMLD

The debugger for standard ML, SMLD, is based upon extensive, automatic instrumentation of the program code dur-

ing compilation [Tolm92]. Compiler optimizations reduce the slowdown and code size blowup implied by the in-
1This processor is not a high-level virtual machine such as those used by Smalltalk, Prolog, or Icon, but rather it is a low-level architecture

typical of current RISC chips.
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strumenting compiler technique. The instrumentation supports relatively standard debugging features such as setting

breakpoints and inspecting the values of variables, but not altering program execution by modifying variables. An

extension of SMLD supports reverse execution by means of checkpointing.

2.8 Features in existing systems that facilitate monitor development

No existing system provides comprehensive support for exploratory execution monitor programming, but if several

existing techniques are combined carefully a suitable framework emerges. The key is to select information sources

and access methods, an execution model, and user interaction features that provide ease of programming with accept-

able performance. Icon’s execution monitoring framework can be viewed as one such configuration of monitoring

characteristics.

An instrumented interpreter such as SeePS, or an instrumenting compiler such as Voyeur is potentially an ideal,

fully-automated information source. An instrumented interpreter is easier to implement, but more importantly re-

moves the requirement that a program be recompiled in order for it to be monitored. Instrumentation must be exten-

sive or the monitoring capabilities provided will be limited, but extensive instrumentation poses its own performance

and intrusion problems. Programming constructs to minimize the impact of extensive instrumentation are essential

in dealing with the volume problem in a general-purpose framework.

A thread execution model such as that of Parasight provides crucial access and performance features. Since some

monitors modify the program being monitored, ease of programming implies that synchronous execution should be

the default or at least be easy to specify. Additionally, support for multiple monitors, such as the selective broadcast

model developed in FIELD, allows monitors to specialize on specific aspects of program behavior and makes them

easier to write. If multiple monitors are to be easily selected and used, the thread model must also include dynamic

loading capabilities.

In the area of user-interaction facilities, an ideal environment would support advanced graphics and user-interface

capabilities, including animation support such as that provided by Tango. This topic is almost unrelated to execution

monitoring, but is very necessary in order to provide exploratory programming of state-of-the-art tools. One obser-

vation is that interactive user-input is expensive in a highly animated monitor, and specific support in the framework

can mitigate this cost by integrating the user-input stream with the stream of information coming from the monitored

program.



Chapter 3

Program Visualization Principles

Note: This chapter is under construction.

The previous chapter described many existing systems, including many that include visualization, but the primary

emphasis was on the execution monitoring models and techniques used to obtain information regarding execution

behavior. This chapter provides a brief overview of the ideas that go into good program visualization efforts.

Visualization as a discipline evolved from the field of graphic design when computer screens became capable

of replacing printed paper. Scientific visualization is usually a process of producing a data map by superimposing a

complex data set onto a tangible real-world frame of reference. Program visualization is more abstract, since pro-

gram behavior above the hardware level does not map onto to real-world geometries. Instead, program visualization

evolved from the hand-written diagrams and notations used by programmers and computer scientists to describe their

structures prior to the advent of automated visual tools.

Graphic Design

The principles of graphic design form a basis for selection and evaluation of all visualization techniques. It is not

worth implementing elaborate graphics if the graphic design does not convey information clearly. Some of these

principles may be self-evident, such as abstracting away irrelevant detail; other principles are only learned through

experience. Some of the best references on graphic design are by Tufte [Tuft83] [Tuft90] and Bertin [Bert83].

Tufte’s observations concerning graphic excellence are summed up by the following:

Graphical excellence is that which gives to the viewer the greatest number of ideas in the shortest time

with the least ink in the smallest space.

To achieve such excellence in designs, Tufte advocates five principles:

� Above all else, show the data

� Maximize the data-ink ratio

� Erase non-data-ink

� Erase redundant data-ink

� Revise and edit

The reader is encouraged to go to Tufte’s work for numerous examples of these principles in practice.
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The starting point for most visualization efforts is to adapt a well-known design technique from printed graphics.

Visualization must include sound graphic design, but often has additional constraints. Some of the simplest graphic

designs are effective, easy to implement, and are familiar to users. Time series graphs, bar charts and pie charts, and

scatterplots are all examples of graphic designs that are easily programmed but may need adaptation for visualization

purposes. Part 3 of this book includes many examples of such adaptation.

Visualization

Although program visualization plays by the same graphical design rules as other information presentation tasks, vi-

sualization of dynamic execution behavior is different from visualization of a large, relatively static data set in several

key ways. These differences motivate the techniques presented in the rest of the book. They may be summarized in

the following basic principles:

animation - the ability to depict temporal relationships by animating dynamic behavior is a crucial tool. There are

trade-offs between visual sophistication and the associated computational cost. The most widely-applicable

techniques are ones that can be animated on low-cost hardware.

metaphors - a familiar or readily-inferred visual metaphor for the behavior being presented can lower the cognitive

load imposed on the user and increase the rate of comprehension. Although some metaphors are drawn natu-

rally from a specific application domain or a notation in common use among programmers, others are drawn

from nature or from nontechnical symbols found in daily life.

interconnection - understanding a complex piece of software entails an understanding of a variety of distinct be-

haviors and the relationships between them. For example, control flow, data structures, memory allocation

behavior, and input/output all have distinct but interrelated patterns in program execution. Visualizations that

consume most or all of the screen do not allow for simultaneous display of other forms of execution behavior.

interaction - visualizations are more effective when the user can steer them in appropriate directions. A graphic

design used in visualization should allow for natural interactive controls, an issue not addressed in designs

based in print media.

dynamic scale - the scale imposed in the depiction of dense information on a computer sceen is extreme, but in addi-

tion, the scales are highly dynamic. If the scale does not change dynamically, a visualization wastes space and

loses detail over a large part of the execution being observed. On the other hand, changing scale too frequently

is both computationally expensive and disorienting. Logarithmic scales are one answer to this problem, but

they are not always appropriate and typically need to be tuned to the size of the dataset involved.

static backdrop - dynamic analysis tools are often best interpreted when superimposed upon a context consisting of

information acquired by static analysis; the static information can provide a map that programmers are familiar

with. Examples of static backdrops are a program’s call-graph, or even its source code.



Part II

An Execution Monitoring Framework

29





Chapter 4

Overview of the Framework

This chapter presents an overview of the execution monitoring framework that has been added to the Icon program-

ming language. The framework allows the user to execute a given Icon program under the observation of one or more

monitoring programs, also written in Icon. Since the models used and capabilities of execution monitoring systems

vary widely, this chapter serves to position this research with respect to existing systems.

The overview begins with a brief inventory of the framework components, followed by an user’s-eye-view of the

system in the form of a standard execution monitoring scenario. The purpose of the scenario is to characterize the

execution monitoring process that is supported and to motivate some of the features and limitations of the system.

Following the execution monitoring scenario, the functional characteristics of each of the primary components of

the execution monitoring framework are described. Details of the use of these components and their implementation

are presented in subsequent chapters.

4.1 Framework inventory

Icon’s execution monitoring framework consists of the following components. These additions are characterized in

terms of their relationship to pre-existing Icon features. Several of these components are general-purpose language

features that are useful independent of execution monitoring; such features, when already present in other languages,

may require modification if they were not designed to support execution monitoring.

Dynamic loading — The ability to load multiple programs into a shared execution environment is provided in order

to adequately support monitor access to target program data. Prior to this work, Icon had no concept of dynamic

loading. Dynamic linking is not desirable in the context of execution monitoring, since the names in the monitor

are distinct from those in the target program.

Synchronous execution — The monitor and target program execute independently, but not concurrently. This al-

lows the monitor to control target program execution using a simple programming model. Icon already has a

language mechanism and data type that support synchronous execution of independent threads of execution;

the mechanism is slightly extended to support the relationship between monitor and target program.

Run-time system instrumentation — Extensive information about execution is available to the monitor from lo-

cations in the language run-time system that are coded to report significant events. This obviates the need for

control-intrusive techniques of obtaining information from the target program. It also offers higher perfor-

mance than target program instrumentation. The run-time system instrumentation is an extension and gen-
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eralization of an earlier special-purpose monitoring facility oriented around dynamic memory allocation and

reclamation [Gris89]. It also supercedes the language’s built-in procedure tracing mechanism [Gris90c].

Event masks — Monitor control over target program execution is coupled with the concept of filtering [Elsh89]

in a language mechanism called an event mask. Event masks provide a simple, dynamic model of execution

control that adequately meets performance requirements in processing the high volume of execution informa-

tion. Events that are of no interest to the execution monitor are never reported and do not impose unreasonable

execution cost. Event masking uses a set abstraction to describe the execution behavior that is of interest to

the monitor; an existing Icon type that supports high-performance set operations is employed to provide event

masking in a manner that is familiar to Icon programmers.

4.2 Standard execution monitoring scenario

Understanding the framework begins with a description of the monitoring activities that it supports. This scenario

presents the relationship between the execution monitor and target program in its simplest form; more sophisticated

relationships between the monitor and target program are discussed later in this chapter and in Chapter 12.

Preliminary definitions

tp.icn target program (TP) – the Icon program under study, a translated Icon executable file.

Monitoring does not require that the TP be recompiled, nor that the TP’s Icon source code

be available, although some monitors make use of program text to present information.

em.icn
execution monitor (EM) – an Icon program that collects and presents information from

an execution of a TP.

program behavior – the results of executing the TP. Behavior is meant in a general sense

that includes program output, execution time, and the precise sequence of actions that take

place during execution.

user – a human user, capable of understanding the TP’s execution behavior. The user must

know Icon in order to make good use of many EMs or to write a new EM. In general, the

user need not necessarily be familiar with the TP’s source code.

Sources of relevant execution behavior

Execution monitoring begins with a user who has questions about the behavior of a TP (Figure 4.1).

Answers to important questions often may be found by following the execution as it proceeds through source-

language constructs, but in high-level languages the behavior in question often depends upon the language semantics

as implemented by the language run-time system (Figure 4.2; iconx.c denotes the aggregate of files that comprise

the Icon language run-time system). For this reason, many forms of execution monitoring provide useful information

even if the TP’s source code is not available. Figure 4.2 could be further elaborated to include behavioral dependencies

on the platform on which Icon is implemented and run. Such dependencies are outside the scope of this book.
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???
tp.icn

Figure 4.1: Monitoring starts with a user, a program, and questions

???
tp.icn

iconx.c

Figure 4.2: Behavior depends on the language, not just the program

Selecting or developing appropriate monitors

Rather than focusing on one monolithic EM that attempts to accomodate all monitoring tasks, the framework advo-

cates development of a suite of specialized EMs that observe and present particular aspects of a TP’s behavior. The

user is responsible for selecting an appropriate EM or set of EMs that address the user’s concerns.

If no available EM can provide the needed information, the user can modify an existing EM or write a new one.

This end-user development of execution monitors also is useful when an existing EM provides the needed information

but it is obscured by other information; existing EMs can be customized to a particular problem.

Running the target program

The user runs the TP one or more times, monitored by a selection of EMs (Figure 4.3). General-purpose EM’s provide

an overall impression of program behavior.

Obtaining more specific information frequently requires that the user interact with the EMs to control the TP’s

execution, either to increase the amount of information presented during specific portions of execution or to stop

execution in order to examine details. In order to provide this interactive control, EMs must present execution infor-

mation as it happens during the TP’s execution, rather than during a post-mortem analysis phase.
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???

EM

em.icn tp.icn iconx.c

Figure 4.3: EMs can answer questions about TP behavior

4.3 Framework characteristics

The preceding scenario depends on support for exploratory programming in several areas: controlling a program’s ex-

ecution, obtaining execution information, and interacting with the user. In order to support these tasks, the framework

provides synchronous shared-address multi-tasking and an event-driven execution control model. These features are

provided by extensions to the Icon language.

Multi-tasking

The first and most basic characteristic of the framework is an execution model in which an EM is a separate program

from the TP — a multi-tasking model. In this model the EM views the TP as a separately loaded coroutine [Marl80].

The coroutine relationship is the primary means by which EMs control TP execution and coroutine transfers of control

are the primary source of execution information from a TP (Figure 4.4). The precise nature of the interaction between

the EM and TP (the arrows in Figure 4.4) is a major contribution of this research and is discussed further in Section

4.3.2 in this chapter and in Chapter 6.

EM TP

transfer of control

Figure 4.4: EM and TP are separately loaded coroutines

Multi-tasking is provided by a set of facilities collectively named MT Icon. MT Icon has the following benefits

in an exploratory programming environment: the EM and TP are independent programs, the EM has full access to

the TP, and the mechanism accomodates multiple EMs. These benefits are described in more detail below.
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Independence

Because the EM and TP are separate programs, the TP need not be modified or even recompiled in order to be mon-

itored by an EM; neither does an EM need modification or recompilation in order to be used on different target pro-

grams. The separation of EMs and TPs also simplifies the writing of EMs because an EM need not be implemented

as a set of callback functions — it has its own control flow. By definition, execution of tasks such as EMs and TPs is

synchronous in MT Icon. The TP is not running when an EM is running, and vice-versa. This synchronous execution

allows EMs and TPs to be independent without introducing the complexity inherent in concurrent programming.

Another degree of EM and TP independence is afforded by separate memory regions; EMs and TPs allocate mem-

ory from separate heaps. For this reason memory allocation in the EM does not affect the allocation and garbage

collection patterns in the TP. Because Icon is a type-safe language with run-time type checking and no pointer data

types, EMs and TPs cannot corrupt each others’ memory by accident; only code that contains explicit references to

another program’s variables and data can modify that program’s behavior.

Access

An address space is a mapping from machine addresses to computer memory. Within an address space, access to

program variables and data are direct, efficient operations such as single machine instructions. Accessing program

variables and data from outside the address space is slower and requires operating system assistance.

In MT Icon, programs such as the EM and TP reside within the same address space. This allows EMs to treat TP

data values in the same way as their own: EMs can access TP structures using regular Icon operations, compare TP

strings with their own, and so forth.

Because of the shared address space, the task switching operation needed to transfer execution between EMs and

TPs is a fast, “lightweight” operation. This is important because monitoring requires an extremely large number of

task switches compared to typical multi-tasking applications.

Multiple monitors and monitor coordinators

MT Icon’s dynamic loading capabilities allow simultaneous execution of not just a single EM and a single TP, but

potentially many EMs, TPs, and other Icon programs in arbitrary configurations. Although uses for many such con-

figurations can be found, one configuration merits special attention when many specialized EMs are available: the

execution of multiple monitors on a single TP (Figure 4.5).

EM EM EM

TP

Figure 4.5: Multiple EMs

The difficulty posed by multiple monitors is not in loading the programs, but in coordinating and transferring
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control among several EMs and providing each EM with the TP execution information it requires. Since EMs are

easier to write if they need not be aware of each other, this motivates construction of monitor coordinators (MCs),

special EMs that monitor a TP and provide monitoring services to one or more additional EMs (Figure 4.6). EMs

receiving an MC’s services need not be aware of the presence of an MC any more than a TP need be aware of the

presence of an EM.

EM EM EM

TPTP

MC

Figure 4.6: An Execution Monitor Coordinator

Execution control

The primary task of an EM is to collect data from a TP’s execution. This task poses difficult coding problems and

is frequently a performance bottleneck. The nature of the data collection facilities available in a monitoring system

also define and limit the kinds of monitors that can be implemented.

Figure 4.7 depicts the system layers present in running an Icon program under the Icon interpreter. The TP code

is executed by a virtual machine interpreter written in C, which in turn calls C language run-time support code to

perform various language operations [Gris86].

Hardware

Runtime System (C)

Icon Virtual Machine

Icon Program

Figure 4.7: Layers in the Icon implementation

Of these layers, the TP code, the virtual machine (VM), and the run-time support code are responsible for as-

pects of program behavior within the scope of this research. The VM and the run-time system have been extensively

instrumented to produce this information for EMs at the Icon level without requiring instrumentation of the TP code.
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EM TP

event report E

explicit
transfer
of control

implicit
transfer
from
runtime
system

event request

Figure 4.8: Event-driven control of TP

While the behavior observable from instrumentation of the VM is specific to the Icon interpreter and is of interest

primarily to language implementors, run-time system behavior is more general and of interest to normal Icon pro-

grammers. This book is primarily concerned with monitors of run-time system behavior. Most of this behavior takes

place even in compiled versions of the TP, with the exception of behavioral aspects such as run-time type checks that

an Icon compiler can avoid when static analysis determines that they are unnecessary.

This instrumentation consists of locations within the run-time system at which control can be transferred and

information reported to the EM. When execution proceeds through one of these points in the run-time system, an

event occurs. Many events take place during even the simplest of Icon operations. When an EM resumes execution

of the TP, it explicitly specifies what kinds of events are to be reported; other kinds of events are not reported. The

kinds of events to be reported can be changed dynamically each time the TP’s execution is resumed (Figure 4.8). The

processing of an event includes a test of whether the TP should transfer control to the EM and code to perform the

transfer only if the test succeeds.

Those events at which control is transferred produce event reports. When an event is reported the TP’s execution

is suspended and execution commences in the program that loaded the TP — an EM. Event reporting supports data

collection in two ways: An event report contains some information associated with the event itself, and in addition,

when the EM gains control it can interrogate the TP’s variables and keywords for further information. When an EM

requests another event report, the EM suspends execution and the TP’s execution resumes where it left off.

4.4 Comparison with earlier systems

Several specific comparisons between the Icon monitoring framework and existing systems are useful. Icon’s moni-

toring framework integrates ideas found in several previous systems. In addition, it contributes dynamic event mask-

ing to control the volume of information generated and adds support for user input in animated tools. The end result

is a simplicity in obtaining execution information that achieves the framework goal of supporting exploratory pro-

gramming.

MT Icon’s thread model is synchronous and differs from that of Parasight in that it is designed to simplify the pro-

gramming task required of monitor writers, rather than to take advantage of shared-memory multiprocessor hardware.

Parasight is best suited for passive profiling tasks where the target program and monitor code can run asynchronously.

Dalek [Olss90] provides a programming language with which to write customized monitors; Dalek’s language

is special-purpose and must be learned while the Icon monitoring framework provides the target program’s entire

source language, including sophisticated data presentation facilities. Dalek suffers from performance problems when
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accessing target program state due to its two-process model. If Dalek’s implementation were modified to employ

shared memory, and it were coupled with some automated instrumentation system, it could provide support similar

to that provided by Icon’s monitoring framework.

FIELD supports multiple, independent tools that can simultaneously observe program behavior [Reis90b]. For-

est extends FIELD’s selective broadcast model, adding flexibility comparable to that provided by this framework

[Garl90]. The message server employed by FIELD and Forest is geared toward building programming environments

that make use of existing tools such as compilers and editors. This mandates a separate process model and is ill-suited

to accomodating the volume of events generated by extensive instrumentation. MT Icon does not attempt to integrate

existing tools, but instead facilitates the development of new monitors that can take advantage of MT Icon’s execution

model to provide better information about target program behavior.

Novel features within Icon, the language under study, provided extra motivation for a general approach to ex-

perimental monitor development that may not be present in other languages. On the other hand, all programming

systems can benefit from improved execution monitor support and therefore stand to gain from new ideas that re-

sult from experimental monitor development undertaken in the context of Icon, the exploration made possible by this

framework.

The execution monitoring framework introduced in this chapter simplifies development of execution monitors in

several ways, while avoiding common pitfalls associated with monitoring. EMs developed in this system tend to be

very short compared with those in other languages, because they are developed in the source language rather than the

implementation language, because they have full access to TP’s program variables, and because EMs can specialize

on particular program behaviors of interest.

Shorter EMs are in turn easier to understand, to write correctly, and to enhance. Execution monitoring may not

be a simple task, but using this system, execution monitors are no more difficult to develop than other programs with

substantial inter-program communication requirements. The next two chapters present the Icon language extensions

that comprise the execution monitoring framework.



Chapter 5

A Multi-Tasking Icon Interpreter

5.1 Introduction

As mentioned in the preceding chapter, MT (Multi-Tasking) Icon is an Icon interpreter that allows multiple Icon pro-

grams to be loaded and run simultaneously within a shared address space. MT Icon is not a concurrent programming

language nor does it include special support for multiprocessor hardware. Instead, MT Icon provides a task model

that supports both cooperative and preemptive multi-tasking without mandating a particular scheduling policy or al-

gorithm. MT Icon’s domain is that of high-level language support for programs that benefit from or require a tighter

coupling than that provided by inter-process communication; that is, programs that require extensive access to each

other’s state.

MT Icon’s task model is based on Icon’s co-expression facility. This chapter starts with a summary of co-

expressions, followed by sections that describe MT Icon language extensions and common applications. In addition

to its general multi-tasking execution model, MT Icon has features specific to the control and monitoring of loaded

programs by the program that loads them. The following chapter describes MT Icon’s monitoring features in detail.

5.2 Co-expressions

A co-expression in Icon is a first-class value that encapsulates the execution state of an expression [Gris90c]. Co-

expressions are the expression-level equivalent of the coroutine facility found in other languages [Marl80]. A corou-

tine is a process, specified in terms of a procedure call in which the values of local variables are retained even when

control is not within that process, and in which execution upon entry continues from the point where control last left

that process. Co-expressions generalize coroutines to allow independent threads of control to be created for arbitrary

expressions, not just procedure calls.

In addition to their role of providing coroutine semantics at a fine granularity of control, co-expressions were

developed as a control mechanism necessary to fully utilize the capabilities of Icon’s generators [Wamp81]. In Icon,

a generator is an expression whose evaluation may produce more than one result. This feature is extremely useful and

permeates the language, but a generator’s results are produced only at the generator’s lexical location. Co-expressions

liberate generators from their lexical site by placing the expression in a value from which results can be extracted one

at a time.

Creating co-expressions

A co-expression value is created by the Icon control structure
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create expr

When a create expression is executed, expr is not evaluated; instead its evaluation is encapsulated as a first-class

data object that can be assigned to a variable, passed as a parameter, and so forth. In addition to explicitly created

co-expressions, a single co-expression is created implicitly when program execution starts; it is equivalent to the

expression create main(). Program execution begins in this implicit co-expression.

Co-expression transfers of control

Results are obtained from a co-expression by activating it using the operation

[expr ] @ coexpr

Activation transfers control from the current co-expression to the referenced co-expression; control remains in that co-

expression until it produces a result. If the referenced co-expression is subsequently activated, its execution continues

from where it last produced a result.

If the expr is present in the activation expression, it is evaluated and its result is transmitted to the co-expression

as control is transferred. If expr is omitted, a null value is transmitted.

When each co-expression transfers control only by activating co-expressions it has created or by implicitly pro-

ducing results for its parent, the control graph formed by co-expressions and their transfers of control is a tree. Explicit

transfers of control by co-expression activation may result in an arbitrary control graph, generalizing co-expressions

to full coroutine semantics.

Co-expression keywords

In Icon, keywords are named global objects that may have special semantics associated with various control struc-

tures. Three built-in co-expression values are available to Icon programs in the form of keywords.

&main is the co-expression for the invocation of the main procedure that initiates program execution.

&current is the co-expression in which execution is currently taking place.

&source is the co-expression that activated the currently executing co-expression.

These keywords and their use are further documented in [Gris90c].

5.3 MT Icon preliminary terminology

Before describing the MT Icon task model, a few definitions are needed. These definitions pertain to regions of mem-

ory referenced by programs during execution.

Name spaces

A name space is a mapping from a set of program source-code identifiers to a set of associated memory locations

[Abel85]. Icon programs have a global name space shared across the entire program and various name spaces as-

sociated with procedures. Procedures each have a static name space consisting of memory locations shared by all

invocations of the procedure and local name spaces private to each individual invocation of the procedure.

When a co-expression is created, a new local name space is allocated for the currently executing procedure, and

the current values of the local variables are copied into the new name space for subsequent use by the co-expression.



5.4. TASKS: AN EXTENDED CO-EXPRESSION MODEL 41

Program and co-expression state

An Icon program has an associated program state consisting of the memory associated with global and static name

spaces, keywords, and dynamic memory regions. Similarly, a co-expression has an associated co-expression state

consisting of an evaluation stack that contains the memory used to implement one or more local name spaces. Co-

expressions in an Icon program share access to the program state and can use it to communicate.

5.4 Tasks: an extended co-expression model

The central concept in MT Icon is the task; a task is the execution state of a program within the Icon virtual machine

[Gris86]. A single task called the root is created when the interpreter starts execution. Additional tasks can be created

dynamically as needed.

A task consists of a main co-expression and zero or more child co-expressions that share a program state. At

the source-language level, tasks are loaded, referenced, and activated solely in terms of one of their member co-

expressions; the task itself is implicit.

This definition of tasks is related to the concept of the same name commonly used in operating systems and con-

current programming languages. It differs, however, in certain fundamental respects. Icon is a sequential language;

co-expressions in Icon provide a synchronous coroutine execution model, not a concurrent execution model with

implicit task switching and scheduling. Another way to view this is that unlike other languages such as Ada, MT

Icon provides the task model as a mechanism for multi-tasking, but does not predefine the policy; matters such as the

scheduling algorithm used and whether multi-tasking is co-operative or pre-emptive are programmable at the user

level.

Another useful comparison can be made between Icon tasks and Smalltalk processes. Both provide pseudo-

concurrency within the context of a sequential virtual machine. Since Icon tasks have their own dynamic memory

regions, their presence affects each other less than Smalltalk processes affect each other. For example, if one task is

exhibiting thrashing heap behavior in which garbage collections are frequent, the other tasks in the system can ex-

ecute at full speed during the portion of time in which they are running, since they do not allocate memory out of

the thrashing task’s (full) heap. This minimal effect of tasks on each others’ behavior is especially important in the

domain of execution monitoring.

5.5 Task creation

In MT Icon, a task can create other tasks. The MT Icon function

load(s, L)

loads an icode file [Gris86] specified by the file name s, creates a task for it and returns a co-expression corresponding

to the invocation of the procedure main(L) in the loaded icode file. L defaults to the empty list. Unlike conventional

Icon command-line argument lists, the argument list passed to load() can contain values of any type, such as proce-

dures, lists, and tables in the calling task.

The task being loaded is termed the child task, while the task calling load() is termed the parent. The collection

of all tasks forms a tree of parent-child relationships.

5.6 Running other programs

A co-expression created by load() is activated like any other co-expression. When activated with the @ operator,

the child task begins executing its main procedure. Unless it suspends or activates &source, the child task runs to
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completion, after which control is returned to the parent. Chapter 5 presents an alternative means of executing a child

with which the parent retains control over the child as it executes.

An example

This default behavior is illustrated by the program seqload, which loads and executes each of its arguments (string

names of executable Icon programs) in turn. In this program the variable arguments is a list of strings passed into the

Icon program from the operating system. Each of these strings (extracted from the list using the element-generation

operator, !) is passed in turn to load(). load() reads the code for each argument and creates a task in which to execute

the loaded program; the tasks are then executed one-by-one by the co-expression activation operator, @. This is

ordinary Icon code; there is nothing special about this example except the semantics of the load() function and the

independent execution environment (separate global variables, heaps, and so forth), that load() provides to each task.

# seqload.icn
procedure main(arguments)

every @load(!arguments)
end

For example, if three Icon programs whose executable files are named translate, assemble, and link are to be
run in succession, the command

seqload translate assemble link

executes the three programs without reloading the interpreter for each program.

5.7 Data access

Although tasks have separate sets of global variables and keywords, they reside in the same address space and can

share data. This data access applies to all first-class data objects in Icon, such as procedures and co-expressions.

Values can be transmitted from task to task through main()’s argument list, by means of explicit inter-task access

functions, or by use of event monitoring facilities described in the next chapter.

Access through task argument lists

The following program takes its first argument to be an Icon program to load and execute as a child, sorts its remaining

arguments, and supplies them to the child program as its command line arguments (pop() and sort() are Icon built-in

functions that extract the first list element and sort elements, respectively):

procedure main(arguments)
@load(pop(arguments), sort(arguments))

end

Argument lists allow more sophisticated data transfers; the seqload example presented earlier can be extended

to transmit arbitrary structures between programs using argument lists in the following manner. As in seqload, each

string naming an executable Icon program is passed into load() and the resulting task is activated to execute the pro-

gram. In this case, however, any result that is returned by one of the programs is assigned to local variable L and

passed to the next program in the list via the second argument to load().
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globalnames(C) generates the names of C’s global variables.

keyword(s, C) produces keyword s in C.

localnames(C) generates the names of C’s local variables.

paramnames(C) generates the names of C’s parameters.

staticnames(C) generates the names of C’s static variables.

structure(C) generates the Icon values in C’s block region (heap). These values are

of various types such as lists and tables.

Figure 5.1: MT Icon inter-program access functions

# seqload2.icn
procedure main(arguments)

every program := !arguments do
L := @load(program, L)

end

The net effect of seqload2.icn is similar to a UNIX pipe, with an important difference: Arbitrary Icon values

can be passed from program to program through the argument lists. This capability is more interesting in substantial

multi-pass tools such as compilers, where full data structures can be passed along from tool to tool instead of writing

out text encodings of the structures to a file.

Inter-task access functions

Several of Icon’s built-in functions are enhanced under MT Icon to provide inter-task access to program data. For

example, the variable() function in MT Icon takes a co-expression value as an optional second argument denoting

the task from which to fetch the named variable. When called with this second argument, variable() is useful for

assigning to or simply reading values from another task’s variables. In this modified version of the seqload example,

the parent task initializes each child task’s Parent global variable (if there is one) to refer to the parent’s &main
co-expression. A child task can then use this variable to determine whether it is being run stand-alone or under a

parent task. Inter-program access through the variable() function also is useful in inspecting values, especially at

intermediate points during the monitored execution of a TP as described in the next chapter.

# seqload3.icn
procedure main(arguments)

every arg := !arguments do f
Task := load(arg)
variable(”Parent”, Task) := &main
@Task
g

end

In addition to MT’s extensions of existing functions, several new functions have been added. These facilities are

useful in execution monitoring and are used in examples in Chapters 7 through 12. Some of the inter-task access

functions used in examples are listed in Figure 5.1. In these functions parameter C refers to a co-expression that may

be from a task other than the one being executed. Functions that generate can produce more than one result from a

given call.

There are other inter-task access functions; [Jeff90] serves as a reference for MT Icon programming.
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Chapter 6

Execution Monitoring in MT Icon

MT Icon allows the execution of multiple Icon programs in almost any configuration, including execution monitoring.

As motivated in Chapter 4, MT Icon characterizes monitoring as a special case of multi-tasking execution in which

the nature and extent of inter-program communication warrants additional language support. This chapter describes

additional MT Icon facilities specifically added to support monitoring. After some relevant definitions, a descrip-

tion of the programming interface and underlying interpreter instrumentation are given. Additional programmer’s

reference material is available for these facilities [Gris92c].

6.1 Terminology

The terminology used in discussing execution monitoring relates to events and the linguistic features associated with

them. These terms are used throughout the rest of the book.

Events

The primary linguistic concept added in order to support execution monitoring is an event. An event is the small-

est unit of execution behavior that is observable by a monitor. In practice, an event is the execution of a section of

instrumentation code that is capable of transfering control to the monitor.

This definition limits events to those aspects of program behavior that are instrumented in the language run-time

system or the program itself. The event model is only as useful or general as is the instrumentation that extracts pro-

gram information. If instrumentation does not exist for an aspect of program behavior of interest, it often is possible

to monitor the desired behavior by means of other events. In the present implementation, for example, no instrumen-

tation exists for file input and output. If an EM wishes to monitor I/O behavior, it can monitor function and operator

events and act on those functions and operators that relate to input and output. A similar example involving the mon-

itoring of Icon’s built-in string scanning functions is presented in Chapter 10.

The MT Icon definition of event also differs from that of many monitoring systems, in which the term event refers

to the basic unit of information received by the monitor [Bate89]. The distinction is that in the MT Icon definition,

events occur whether they are monitored or not, and each event may or may not be observed by any particular monitor.

This definition is useful in the MT Icon environment, in which EMs are not coupled with the instrumentation and

multiple EMs can observe a TP’s execution.
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Event codes and values

From the monitor’s perspective an event has two components: an event code and an event value. The code is gener-

ally a one-character string describing what type of event has taken place. For example, the event code C denotes a

procedure call event. Event codes all have associated symbolic constants used in program source code. For exam-

ple the mnemonic for a procedure call event is E Pcall. These constants are available to programmers as part of a

standard event monitoring library described below.

The event value is an Icon value associated with the event. The nature of an event value depends on the corre-

sponding event code. For example, the event value for a procedure call event is an Icon value designating the pro-

cedure being called, the event value for a list creation event is the list that was created, the event value for a source

location change event is the new source location, and so forth. Event values can be arbitrary Icon structures with

pointer semantics; the EM accesses them just like any other source-language value.

Event reporting and masking

The number of events that occurs during a program execution is extremely large — large enough to create serious

performance problems in an interactive system. Most EMs function effectively on a small fraction of the available

events; the events that an EM uses are said to be reported to the EM. An event report results in a transfer of control

from the TP to the EM. Efficient support for the selection of appropriate events to report and the minimization of the

number of event reports are primary concerns.

MT Icon supports dynamic event masking based on event codes, a dynamic variation of the filter concept found

in most event-based monitoring systems [Bate89, Elsh89]. Event masking allows the monitor to specify what events

are to be reported and to change the specification at run-time. When the program being monitored starts execution,

the monitor selects a subset of possible event codes from which to receive its first report. The program executes until

an event occurs with a selected code, at which time the event is reported. After the monitor has finished processing

the report, it transfers control back to the program, again specifying an event mask. Dynamic event masking enables

the monitor to change the event mask in between event reports.

The use of one-character strings as event codes has a more practical value than its mnemonic merit: It allows

sets of codes to be efficiently and easily manipulated at the Icon level by the cset (character set) data type. Csets are

represented internally by bit vectors, so a cset membership test is very efficient compared to Icon’s more generic set

data type, whose membership test is a hash table lookup.

When an event report transfers control from TP to EM, the two components of the event are supplied in the Icon

keywords &eventcode and &eventvalue respectively 1. The monitor then can act upon the event based on its code,

display or manipulate its value, etc.

6.2 Obtaining events

A standard library is available for use by EMs in order to provide a means of obtaining events. The library is described

more completely in [Gris92c]. Programs wishing to use the standard library include a link declaration such as link
evinit.

1Those not familiar with Icon may view these keywords as special global variables that are given their values by the Icon interpreter rather

than by explicit user assignment. Keywords may be associated with a particular control structure (as in this case), and they may also be subject to

constraints not imposed on regular global variables, such as the constraint that &subject, the string scanning subject, must always be a string.
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Setting up an event stream

An EM first sets up a source of events; the act of monitoring then consists of a loop that requests and processes events

from the TP. Execution monitoring is initialized by the procedure EvInit(x). If x is a string, it is used as an icode file

name in a call to the MT Icon function load(). If x is a list, its first argument is taken as the icode file name and the

rest of the list is passed into the loaded function as the arguments to its main procedure.

The typical EM, and all of the EMs presented as examples in this book, follow the general outline:

link evinit
procedure main(arguments)

EvInit(arguments) j stop(”can’t initialize monitor”)
# ... initialization code, open the EM window
# ... event processing loop (described below)
EvTerm()

end

This template is generally omitted from program examples for the sake of brevity.

EvGet()

Events are requested by an EM using the function EvGet(mask). EvGet() activates the co-expression value of the

keyword &eventsource to obtain an event. The TP executes until an event report takes place; the resulting code and

value are assigned to the keywords &eventcode and &eventvalue. EvGet() fails when execution terminates in TP.

The mask parameter is a cset used for event selection.

Selection of virtual machine instruction subsets

Requesting an event report for the execution of the next virtual machine instruction is performed through the usual

EvGet() cset using the mask E Opcode. VM instructions occur extremely frequently; dozens of them can occur as a

result of the execution of a single line of source code. Consequently, performance is severely affected by the selection

of all VM instruction events; the extent of this impact on performance is presented in Chapter 13.

However, a particular VM instruction or small subset of instructions may be of interest to a monitor. In that case,

the EM need not receive reports for all instructions. The function opmask(cs, P) allows EM to select a subset of

virtual machine instructions given by cs in P’s task. Subsequent calls to EvGet() in which E Opcode is selected

reports events only for the VM instructions designated by cs.

6.3 Instrumentation in the Icon interpreter

This section describes the instrumentation used by MT Icon to produce events at various points in the run-time system.

Significant points in interpreter execution where transfer of control might be warranted are explicitly coded into the

run-time system with tests that result in transfer of control to an EM when they succeed. When execution reaches

one of these points, an event occurs. Events affect the execution time of the TP; execution is either slowed by a test

and branch instruction (if the event is not of interest to the EM) or stopped while the event is reported to the EM and

it processes information. Minimizing the slowdown incurred due to the presence of monitoring instrumentation has

been a focus of the implementation; inherent costs and framework performance are presented in Chapter 13.

There are several major classes of events that have been instrumented in the MT Icon intepreter. Most of these

events correspond to explicit elements within the source code; others designate actions performed implicitly by the
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run-time system that the programmer may be unaware of. A third class of event that has been instrumented supports

user interaction with the EM rather than TP behavior.

Explicit source-related execution events include:

� Program location changes in terms of line numbers and columns.

� Procedure activity including calls, returns, failures, suspensions, and resumptions. In addition to these explicit

forms of procedure activity, events occur for implicit removals of procedure frames.

� Built-in functions and operations including structure accesses and assignments. Like procedures, events are

produced for function and operator calls, returns, suspensions, resumptions, and removals.

� String-scanning activity including scanning environment creation, entry, change in position, and exit.

Implicit run-time system events include:

� Memory allocations from the heap string and block regions, including size and type information. This instru-

mentation is based on earlier instrumentation added to Icon for a memory monitoring and visualization system

[Gris89].

� Garbage collections including the storage region being collected (Icon has separate regions for strings and

data structures), the memory layout after compaction, and the completion of garbage collection.

� Type conversions performed on parameters to functions and operators. Information is available for conver-

sions attempted, failed, succeeded, and found to be unnecessary.

� Virtual machine instructions executed by the Icon virtual machine [Gris86]. The program can receive events

for all virtual machine instructions, or an arbitrary subset.

� Clock ticks for the passage of CPU time.

Most EMs, except completely passive visualizations and profiling tools, provide the user with some degree of

control over the monitoring activity and must take user interaction into account. For example, the amount of detail or

the rate at which the monitor information is updated may be variables under user control. Since an EM’s user input

occurs only as often as the user presses keys or moves the mouse, user interaction is typically far less frequent than

events in TP. Even if no user input occurs, polling for user input may impose a significant overhead on the EM because

it adds code to the central event processing loop.

In order to avoid this overhead, the event monitoring instrumentation includes support for reporting user activ-

ity in the EM window as part of the TP’s event stream. Monitor interaction events are requested by the event code

E MXevent. An example of the use of monitor interaction events is presented further in this chapter in the section

entitled “Handling user input”. A complete list of event codes is presented in Appendix C in order to indicate the

extent of the instrumentation.

6.4 Artificial events

As described above, the MT Icon co-expression model allows interprogram communication via explicit co-expression

activation or implicit event reporting within the run-time system. Artificial events are events produced by explicit Icon

code; they can be viewed at the language level as co-expression activations that follow the same protocol as implicit

events, assigning to the keyword variables &eventcode and &eventvalue in the co-expression being activated.
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There are two general categories of artificial events, virtual events meant to be indistinguishable from implicit

events and pseudo events that convey control messages to an EM. Virtual events are generally used either to produce

event reports from manually instrumented locations in the source program, to simulate event reports, or to pass on a

real event from the primary EM that received it to one or more secondary EMs. Pseudo events, on the other hand, are

used for more general inter-tool communications during the course of monitoring, independent of the TP’s execution

behavior.

Virtual events using event()

The MT Icon function event(code, value, recipient) sends a virtual event report to the co-expression recipient,
which defaults to the &main co-expression in the parent of the current task, the same destination to which implicit

events are reported.

There are times when a primary EM wants to pass on its events to a secondary EM. An example would be an

event transducer that sits in between the EM and TP, and uses its own logic to determine which events are reported to

EM with more precision than is provided by the masking mechanism. A transducer might just as easily report extra

events with additional information it computes, in addition to those received from TP. A more substantial application

of virtual events is a monitor coordinator, an EM that coordinates and produces events for other monitors. Such a

tool is presented in Chapter 12.

Pseudo events for tool communication

EMs generally have an event-processing loop as their central control flow mechanism. The logical way to commu-

nicate with such a tool is to send it an event. In order to distinguish a message from a regular event report, the event

code must be distinguishable. In the monitoring framework this is achieved simply by using an event code other than

a one-letter string, such as an integer. Since not all EMs handle such events, they are not delivered to an EM unless

it passes a second argument to EvGet(), such as EvGet(mask, 1).

The framework defines a minimal set of standard pseudo events, which well-behaved EMs should handle cor-

rectly; these pseudo events are described in Chapter 12. Beyond this minimal set, pseudo events allow the execution

monitor writer to explore communication between EMs as another facility to ease programming tasks within the mon-

itoring framework.

6.5 Monitoring Techniques

The next few chapters demonstrate the potential of MT Icon’s execution monitoring facilities with examples of a

variety of monitoring techniques. The examples are actual program fragments (rather than pseudocode) that show

how to program various forms of monitoring in MT Icon. The purpose of this demonstration is to present MT Icon as

a practical language in which to develop exploratory monitors. The examples all follow a common outline and use a

common set of facilities, which are described below.

Anatomy of an execution monitor

The execution monitoring interface presented in this chapter uses a form of event-driven programming: the central

control flow of EM is a loop that executes the TP for some amount of time, and then returns control to EM with

information in the form of an event report. The central loop of an EM typically looks like:
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while EvGet(eventmask) do
case &eventcode of f

# a case clause for each code in the event mask
g

Event-driven programming is more commonly found in programs that employ a graphical user-interface, where

user activity dominates control flow. Because monitoring employs a programming paradigm that has been heavily

studied, many coding techniques developed for graphical user interface programming, such as the use of callbacks

[Clar85], are applicable to monitors. Several of the example EMs in subsequent chapters use a callback model to take

advantage of a higher-level monitoring abstraction available by means of a library procedure.

Handling user input

An EM that handles user input could do so by polling the window system after each event in the main loop:

while EvGet(eventmask) do f
case &eventcode of f

# a case clause for each code in the event mask
g

# poll the window system for user input
g

If the events being requested from the TP are relatively infrequent, this causes no great problem. However, the more

frequent the event reports are, the more overhead is incurred by this approach relative to the execution in TP. In typical

EMs polling for user events may slow execution from imperceptibly to as much as 15%. Chapter 13 provides figures

on the relative frequency of various types of events.

Since the slowdown is a function of the frequency of the event reports and not just the cost of the polling opera-

tion itself, techniques such as maintaining a counter and only polling every n event reports still impose a significant

overhead. In addition such techniques reduce the responsiveness of the tool to user input and therefore reduce the

user’s control over execution.

Monitor interaction events, presented earlier in this chapter, address this performance issue by allowing user input

to be supplied via the standard event stream produced by EvGet(). Since the E MXevent event normally occurs far

less frequently than other events, it makes sense to place it last in the case expression that is used to select actions

based on the event code. Using this feature the main loop becomes:

while EvGet() do
case &eventcode of f

# other cases update image to reflect the event
E MXevent: f

# process user event
g

g

EvGet() reports pending user activity immediately when it is available; the control over execution it provides is

comparable to polling for user input on each event.

Querying the target program for more information

After each event report, EMs can use MT Icon’s inter-task data access functions to query TP for additional informa-

tion, such as the values of program variables and keywords. The access functions can be used in several ways, such

as
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� applying a predicate to each event report to make monitoring more specific,

� sampling execution behavior not reported by events by polling the TP for information unrelated to the event

reports [Ogle90], or

� to present detailed information to the user, such as the contents of variables.

Visualization techniques

Program visualization employs the high-bandwidth processing capabilities of the human visual system in order to

mitigate the volume problem inherent in execution monitoring. Because of the amount of information most EMs

need to present, support for development of new visualization techniques is essential to support the claim that EMs

developed in an exploratory manner can be useful and practical.

The fundamental issues in visualization are concerned primarily with effective use of the screen, maximizing the

amount of information displayed, its understandability, and the rate at which it is updated. Thorough treatment of

these topics is beyond the scope of this book; they are briefly mentioned here because they motivate many of the

examples to follow.

Mapping to a geometry – Visualizations map the information to be presented onto a geometry for presentation on

the screen. In program visualization this often is difficult because the information described has no natural

geometry. The artificial geometry that is constructed may be unintuitive or even misleading to the viewer. In

order to avoid this, many EMs employ familiar visual metaphors.

Space limitations – Screen space limits the amount of detail that can be portrayed. If several views are presented

simultaneously, screen space in any one view may be limited to a few square inches. Given limited space,

scaling and miniaturization are important, but careful graphic design is just as important.

Animation – Smooth transitions between the states presented by the visual display are important for user orientation.

Animation implies real-time updates as the program is executing. The performance of the underlying window

system software limits the kind and quality of the views that can be animated.

There are trade-offs inherent in these issues. For example, the more complex the geometric mapping or scal-

ing/miniaturization technique, the less satisfactory the animation may be.

6.6 Icon graphics capabilities

Icon is best known as a string and list processing language, but it also includes graphics facilities [Jeff91, Jeff93].

Visualization tools written in Icon present their output using the type window. This section describes aspects of Icon’s

window system facilities that are used in subsequent chapters. It presents only a small subset; see the reference manual

[Jeff93] for a complete description of Icon’s graphics facilities.

Windows allow both text and graphic input/output to be freely mixed. While on-screen, windows may be moved,

resized, and iconified by the user or the Icon program. Window exposure (also known as “redraw” or “paint”) events

are handled automatically and do not have to be handled by the programmer; the window contents are retained un-

til the window closes. If the keyword &window has a window value, it serves as a default window for all graphic

functions. The remaining examples in this chapter assume &window is the window of interest.

Icon’s window interface uses a raster graphics model based on that of Xlib, the X Window System C language

interface [Gett88]. In this model, a window is a two-dimensional array of points, also called picture elements (pixels)

in the x- and y-coordinates starting from the pixel (0,0) in the upper-left corner and moving positive to the right and
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down the window. Several functions take pixel coordinates and draw geometric figures on the window. Pixels are

drawn with a window’s current foreground color.

Some useful functions are given in Figure 6.1; other graphics functions are described as they are used in examples.

EraseArea() clears a rectangular area

DrawArc() draws an arc

DrawPoint() draws a point

DrawLine() draws a line

DrawRectangle() draws a rectangle

DrawString() draws a string

Event() returns the next user event

Fg() sets the color used in subsequent drawing

FillArc() draws a filled arc

FillRectangle() draws a filled rectangle

GotoRC() moves text cursor position

Pending() returns a list with user events awaiting processing

Figure 6.1: Some useful Icon graphics functions

Many visualization tools make extensive use of color in graphics operations to encode information about related

data types or program operations. Such tools could change the output drawing color by repeated calls to Fg(), but it

is much faster to ask the window system to set up several window values that draw with different colors. The call

XBind(&window, ”fg=” jj s) creates a window value that draws on the window using foreground color s. All graphics

functions may be prefixed with such a window argument w to draw with a non-default color, for example

w red := XBind(&window, ”fg=red”)
DrawPoint(w red, x, y)

draws a red point at (x, y).
When an encoding of colors is used in a visualization tool, a table is typically used to store a mapping from a

source domain such as string type names to window bindings with various colors.

6.7 Some useful library procedures

As mentioned in Section 6.3.1, several library procedures are useful in EMs. This section presents those library pro-

cedures that are used in the examples in the rest of this book; the rest are described in the evinit library reference

[Gris92c].

Location decoding and encoding procedures are useful in processing location change event values, but they are

also useful in other monitors in which two-dimensional screen coordinates must be manipulated. Besides program

text line and columns, the technique can variously be applied to individual pixels, to screen line and columns, or to

screen grid locations in other application-specific units.

In addition, various EMs use utility procedures. Figure 6.2 lists the library procedures that are used in this book.
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location() encodes a two-dimensional location in an integer

vertical() returns the y/line/row component of a location

horizontal() returns the x/column component of a location

prog len() returns the number of lines in the source code for TP

procedure name() returns the name of a procedure

WColumns() returns the window width in text columns

WHeight() returns the window height in pixels

WRows() returns the window height in text rows

WWidth() returns the window width in pixels

Figure 6.2: Library procedures used in this book
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Part III

Writing Visualization Tools
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Chapter 7

Following the Locus of Execution

Perhaps the most basic monitoring act is following along in the source code as execution progresses. Locus of execu-

tion information is used in various tools such as source-code viewers and profilers. Frequently, location information

is used in combination with other execution information to inform the user of the specific source code line and column

responsible for some behavior of interest.

This chapter presents simple example EMs that monitor location information and present it graphically. The first

set of tools shows recent line number changes. These tools are primarily useful in detecting irregular control flow

patterns that merit investigation, and in detecting major phases in program execution. Following the line number

activity monitors, a graphical location profiler that displays cumulative location information is presented. Profilers

are primarily useful in performance tuning.

The examples in this and the next several chapters are intended to demonstrate the broad capabilities of the moni-

toring framework. Actual source code is given in order to demonstrate useful techniques and affirm the claim that the

framework supports an exploratory programming style. While the examples are often suggestive of monitors which

are useful in their own right, they are necessarily kept simple for exposition. The development of more sophisticated

monitors is an open-ended research domain for future work that this framework was designed to facilitate.

7.1 Location events

An event report with the code E Loc occurs whenever the source line or column changes. Tracking the execution

locus minimally involves selecting this event code in the event mask that is passed to EvGet() along with any others

that may be of interest.

The value associated with a change in location is a 32-bit integer encoding of the line and column numbers. The

line number is given in the least-significant 16 bits, and the column number in the most-significant 16-bits.

7.2 A simple line-number monitor

The code segment that follows outlines a simple line-number monitor that presents the sequence of source-code lines

on a strip chart. The y coordinate is used to denote the line number; successive line numbers are plotted adjacently

along the x axis. Line numbers are scaled to fit the available screen space. A sample screen image is shown in Figure

7.1. The tool is animated, showing the last n line number changes, where n is the width of the monitor window. As the

animation progresses, ordinary sequential execution of successive expressions appears in the window as a downward-

sloping line. Periodic repetitions of patterns in the window indicate the execution of loops.
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Figure 7.1: A simple line-number monitor

The EM starts by initializing the event monitoring system and opening a window on which to display its output.

Local variables x and y refer to screen coordinates; scale is used to adjust the y coordinate to fit within the bounds

of the window. Real numbers are used in the scaling arithmetic in order to use all of the available window space.

&window := open(”LineMon”, ”g”, ”height=250”, ”width=250”) j
stop(”can’t open window”)

scale := real(WHeight()) / prog len()
x := 0

The program’s main loop reads a location event with a call to EvGet(), computes and scales the line number to

the window height, and plots it in the window with a call to DrawPoint(). After the point is plotted, x is advanced to

plot the next line number in the next pixel column to the right. When the plot reaches the right edge of the window,

the EM wraps around to the left edge. Because pixel columns are reused, a rectangle one pixel wide is erased at each

iteration (EraseArea()’s height argument defaults to the entire window).

while EvGet(E Loc) do f
y := vertical(&eventvalue) * scale
DrawPoint(x, y)
x := (x + 1) % WWidth() # advance x, wrapping from right to left
EraseArea(x, 0, 1) # clear pixel column for subsequent plot
g

Variations on the line number monitor are presented in Figure 7.2 and Figure 7.3. Figure 7.2 draws a segment

between the current source line and the preceding source line at each step. The effect emphasizes large jumps in pro-

gram location that otherwise might not be noticed due to extremely short visits to certain locations. This phenomenon

occurs more frequently in procedures that generate multiple results from a single expression than it does in ordinary

procedural code. Figure 7.3 plots all the lines that execute in a single CPU clock tick (a hardware-dependent value;

typically 4-20 milliseconds) in a single column. This view compresses much more location information onto a single

screen, but loses the ordering between specific location events within a clock tick.

7.3 A location profile scatterplot

Another location-monitoring example, presented below, renders a continuously updated animated scatterplot of pro-

gram activity by source program line and column number. A sample screen image is presented in Figure 7.4. The
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Figure 7.2: Monitoring adjacent pairs of lines

Figure 7.3: Mapping CPU clock ticks to pixel columns

tool’s animation does not employ motion, but rather changes in color as execution commences. The colors are ren-

dered as grayscales for publication.

This EM maps source code columns and lines onto the x- and y- dimensions, one line or column per pixel. This

mapping may be useful or already familiar to the user because it is a miniaturized view of the program text itself. Each

source location at which the TP executes is highlighted, with the number of times that location has been executed

given by a color progression on a logarithmic scale, from gray and blue through green and yellow and on to orange

and red for locations that have executed many times.

The EM starts with standard initialization code and then creates a list of bindings with the various colors. A table,

counts, maintains the number of times execution has occurred at each location.



60 CHAPTER 7. FOLLOWING THE LOCUS OF EXECUTION

Figure 7.4: A location profile scatterplot

&window := open(”locus”, ”g”, ”bg=white”, ”width=80”, ”height=500”) j
stop(”can’t open window”)

Color := [ ]
every put(Color,

XBind(&window, ”fg=”jj(”gray”j”blue”j”green”j”yellow”j”orange”j”red”)))
counts := table(0)

With initialization completed, the main loop requests a location event, decodes its line and column, and increments

the execution count for the location, stored in the table as counts[&eventvalue]. A point is then drawn in the window

with a color encoding the log of the location’s execution count. If the window height is not large enough to map the

source file lines onto pixels, a bar is drawn at the bottom of the window to indicate it has been clipped. A more

sophisticated version of this program scales the mapping from lines to pixels.

while EvGet(E Loc) do f
y := vertical(&eventvalue)
x := horizontal(&eventvalue)
counts[&eventvalue] +:= 1
value := integer(log(counts[&eventvalue], 6)) + 1
if Context := Color[ value ] then

DrawPoint(Context, x � 1, y � 1)
if y > WHeight() then

FillRectangle(0, WHeight() � 4, 80, 4)
g



Chapter 8

Monitoring Procedure and Generator
Activity

Procedure activity is a major aspect of control flow, and it is especially significant in Icon because procedures can

generate more than one result. This chapter describes the monitoring of procedure activity in detail. The techniques

presented are important because they also apply to the monitoring of Icon’s built-in functions and operators as well

as string scanning environments. The examples given are intended to illustrate the framework’s capabilities and are

by no means the best or only way in which procedure activity may be portrayed.

In order to model the semantics of generators, most EMs maintain trees of suspended procedure activations that

may be resumed. After presenting techniques to maintain these trees, the chapter describes an EM that draws an

animated scatterplot of the number of results that each procedure produces; it quickly shows which procedures are

generators, and shows when the number of results a procedure is producing changes significantly. Knowing which

procedures are generators can be important for students and program maintainers that are unfamiliar with a program.

For programmers that are familiar with the target program, knowing the number of results being produced per call to

a given procedure can be valuable during debugging; it can confirm expected behavior and/or point out anomalies.

The chapter concludes with an EM that gives an abstract view of the actual tree of active and suspended proce-

dures; it is useful for understanding the path that control flow took to get to the current place of execution. This EM is

generalized to include string scanning operations in Chapter 10, and source code for a version that also allows moni-

toring of built-in functions and operators is presented in Appendix A as an example of a more sophisticated monitor.

As mentioned in Chapter 6, events take place at procedure calls, suspensions, resumptions, returns, failures, and

implicit removals. The constant ProcMask contains a cset for all the event codes related to procedures; similar con-

stants FncMask, OperMask, and ScanMask are used for other types of expression activity.

8.1 Activation Trees

The event value for calls and resumptions gives the procedure being activated, but other procedure events such as

suspension and return give the Icon value being produced. In order to track the currently active procedure, the monitor

must maintain a model of the program’s procedure activation tree (Figure 8.1).

The procedure evaltree() described in this section maintains a simple model of procedure activation trees using

records for tree nodes. Each record corresponds to an activation of a procedure. The record contains the procedure,

the parent activation record from which the procedure was called, and a list of any children (including suspended

ones) that this activation of the procedure has called:
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main
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Figure 8.1: An activation tree

record activation(value, parent, children)

When used in an EM, the record type may have additional fields to maintain other information about the procedure

activation, such as the number of results it has produced. Figure 8.2 shows the Icon structures formed by evaltree()
to model the activation tree in Figure 8.1. The source code for evaltree() is presented in Appendix A.

evaltree() maintains the complete activation tree as well as the current activation with the following monitor-

event loop. It is called with an event mask parameter and two procedure parameters. The event mask parameter

gives all the events needed by the EM. The procedure parameters consist of a callback procedure used to inform the

monitor of changes in the tree, and a record constructor for a record type that has at least the fields declared above.

The callback procedure is called with the activation record being entered as well as the activation record being exited.

procedure evaltree(mask, callback, activation record)
# ... compute codes for each branch of the case clause from mask
while EvGet(mask) do

case &eventcode of f
# ... clauses maintain the activation tree and call client callback procedure
g

end

In order to operate properly with any combination of procedure, function, operator, and scanning environment

events, evaltree() examines its event mask and builds up lists of codes related to each of the six tree-modifying

events. It stores these lists in the global variables CallCodes, SuspendCodes, ResumeCodes, ReturnCodes,

FailCodes, and RemoveCodes. In addition, evaltree() creates a dummy root activation on which to build the ac-

tivation tree.

The branches of evaltree()’s case clause perform the actual tree manipulations and then call the client callback

procedure, supplying it with both the activation being entered and the activation being exited. For each call event,

a new node is created and inserted as the right-most child of the current node. The new node becomes the currently

executing node.
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Figure 8.2: An Icon representation of an activation tree

!CallCodes: f
entered := activation record()
entered.node := &eventvalue
entered.parent := current
entered.children := [ ]
put(current.children, entered)
current := entered
callback(current, current.parent)
g

Return and fail events result in the inverse of a call event: The current node is removed from the activation tree,

and the parent of the current node becomes active. When an Icon return expression is executed, the instrumentation

produces removal events for all descendants of the returning node preceding the resulting return event.

!ReturnCodes j !FailCodes: f
exited := pull(current.parent.children)
current := current.parent
callback(current, exited)
g

Suspend and resume events do not change the structure of the tree. For suspend events, the parent becomes the

current (active) node; for resume events the right-most suspended child is resumed and becomes the current node.

After the current node is updated, the client callback procedure is called.
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!SuspendCodes: f
current := current.parent
callback(current, current.children[�1])
g

!ResumeCodes: f
current := current.children[�1]
callback(current, current.parent)
g

Removal events denote the implicit exit of a node in the activation tree as a result of control flow. Typically a

removal event precedes the current node’s return or failure and denotes the destruction of the current node’s right-most

child. If the current node has no children, removal indicates an implicit destruction of the current node, indicating

that it will not be used in the surrounding expression evaluation context.

!RemoveCodes: f
if exited := pull(current.children) then f

while put(current.children, pop(child.children))
callback(current, exited)
g

else f
exited := pull(current.parent,children)
current := current.parent
callback(current, exited)
g

g

The default clause in this case expression simply calls the client callback procedure. The activation tree is not

modified. This clause is useful because execution monitors that use evaltree() may be interested in other types of

events besides those that involve the activation tree.

default: callback(current, current)

8.2 An animated call-result scatterplot

To illustrate the use of evaltree(), the following example plots the number of times each procedure has been called

along the x axis, while the number of results it has produced is plotted along the y axis. Points are moved when-

ever either a call or a resumption occurs. Red is used for user-define procedures, while green indicates activity for

less-expensive built-in functions. If the user presses a mouse button on one of the plotted points, the names of any

procedures plotted at that point are listed. An example screen image from this program is given in Figure 8.3; the

name GenMoves in the lower right corner is the name of the procedure plotted at the last location on which the

mouse was clicked. The image does not convey the nature of the animation, in which plotted points start in the upper

left corner and migrate down and to the right at varying speeds and directions.

A call-result scatterplot serves several purposes. It serves as a basic procedure call profiler, revealing which proce-

dures are used the most and are therefore most important in overall performance. Since this information is presented

while the program is executing, it provides quicker feedback than profilers that present information only after exe-

cution has run to completion. Feedback during execution also shows temporal changes associated with major phases

in the program. These uses are language-independent. The call-result scatterplot also serves two language-specific

purposes: It shows the user which procedures are generators, and how many results the procedures are producing per

call.
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Figure 8.3: A scatterplot with motion

When a procedure consistently produces no results, it moves horizontally along the top edge. On the other hand, if

a procedure generates results, it moves vertically straight down. If a procedure consistently returns with one result, it

moves diagonally down and across. The slope of a line from the origin to a given procedure’s point on this graph gives

the average number of results that procedure has produced per call. If the motion of a point plotted for a procedure

changes its direction substantially it may indicate unusual behavior that is worth further examination.

Two global tables, calls and results, store the dimensions’ counts for each TP procedure. The global table

loc2procs maintains a set of procedures plotted at each point on the graph; loc2procs is keyed by the integer-encoded

locations introduced in the preceding chapter and is discussed in more detail later.

global loc2procs, # table of sets of procedures at a given location
calls, # table of call counts
results # table of result counts

Procedure main() performs initialization and calls evaltree(), which in turn obtains events, builds the activation

tree, and calls scat callback() for each event report. main() passes scat callback() to evaltree() as a parameter, in

addition to the event mask to use and the record type to use for activations. The event mask includes procedure events

selected by the symbol ProcMask and monitor interaction events, indicated by the symbol E MXevent. Monitor

interaction events, described in Chapter 6, provide a convenient means of incorporating user input such as mouse

clicks and button presses into EMs without a need for separately polling the EM window for activity.
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# ... from procedure main()
&window := open(”scat”,”g”,”width=150”,”height=180”) j

stop(”can’t open window”)
calls := table(0)
results := table(0)
loc2procs := table()
evaltree(ProcMask ++ E MXevent, scat callback, activation)

scat callback() updates the plotted location of a procedure whenever it is called or produces a result, calling

plot() to increase the appropriate procedure’s x- or y-coordinate, respectively. If the event is a call, the point corre-

sponding to parameter new (the activation being entered) is updated, while if the event is a suspend or a return, the

point corresponding to parameter old (the activation being exited) is updated.

If the event indicates user activity, a code indicating the user input is supplied in &eventvalue, and the keywords

&x and &y are updated to indicate the mouse location. If the user presses the escape character ”ne”, monitoring is

terminated; if the user presses a mouse button, write names() is called to write the names of procedures plotted

where the mouse indicates.

procedure scat callback(new, old)
case &eventcode of f

E Pcall: plot(new.node, 1, 0)
E Psusp j E Pret: plot(old.node, 0, 1)
E MXevent: f

case &eventvalue of f
”ne”: stop(”execution halted”)
&lpress: repeat f

write names()
if Event() === &lrelease then break
g

g
g

g
end

The procedure plot() takes a procedure and updates the tables to reflect its new position. If the procedure is the

only occupant of the screen coordinate it is leaving, the point is erased there; similarly if the new position is not already

occupied, a point is drawn. “Points” are plotted two pixels wide and two pixels high because individual pixels provide

poor visibility on some displays. An even larger size might improve visibility further at a cost of screen space. plot()
uses a logarithmic scale in order to keep the screen size required by this application reasonable for large programs.

A logarithmic scale is chosen over a linear scale because any linear scale would either plot the most important often-

called procedures off the edge of the chart or else plot all the less frequently called functions together in one corner

of the chart. The scaling process uses the distance of the point from the origin in order to preserve the ratio of calls

to results in the scaled point; this is discussed in more detail below.
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procedure plot(who, iscall, isrslt)
loc := scaled location(calls[who], results[who])
if *delete(nloc2procs[loc], who) = 0 then

EraseArea(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
calls[who] +:= iscall
results[who] +:= isrslt
loc := scaled location(calls[who], results[who])
/loc2procs[loc] := set()
if *insert(loc2procs[loc], who) = 1 then

FillRectangle(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
end

scaled location(x, y) scales its arguments and produces an integer encoding of the point (x, y) with the x-

coordinate in the most significant 16 bits and the y-coordinate in the least-significant 16 bits. scaled location() also

computes the distance from the origin for a point using the Pythagorean theorem; it is used during scaling.

procedure scaled location(x, y)
length := sqrt(x ^ 2 + y ^ 2)
return location(scale(y, length), scale(x, length))

end

The procedure scale(coord, len) applies a logarithmic scaling factor to a coordinate. If logarithmic scales were

applied separately to the x- and y- coordinates, the proportions of calls to results would not be preserved and the

resulting points would be plotted artificially close to the central diagonal of slope 1. Instead, the logarithmic scale is

applied to the distance from the origin. The coordinate is multiplied by the ratio of the scaled length to the original

length. When both coordinates are so scaled, the scaled point forms a similar triangle to the original unscaled point;

the slope of calls to results is preserved from the unscaled point.

procedure scale(coord, length)
if length < 1 then return 0 # avoid divide by 0 error
return integer(coord * log(length, 1.25) / length)

end

Procedure write names() prints the names of all procedures plotted near a mouse click. It builds a list L of

the names of all procedures in the loc2procs table located within one pixel of the current mouse location. When

write names() has built the list of procedures, it erases the last name list, and writes the new list of names in the

lower left corner of the window.

procedure write names()
static maxrows, maxcolumns
&x /:= 2
&y /:= 2
# build a list of names of procedures
L := [ ]
every i := �1 to 1 do

every j := �1 to 1 do f
loc := location(&y + j, &x + i)
every put(L, procedure name(!nloc2procs[loc]))
g

# compute the geometry needed to erase last name list
if max := *L[1] then f

every max <:= *!L
maxcolumns <:= max
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g
maxrows <:= *L
&col := WColumns() � maxcolumns
&row := WRows() � maxrows � 1
EraseArea(&x, &y)
if *L > 0 then

every i := 1 to *L do f
GotoRC(WRows() � *L + i, WColumns() � max)
writes(&window, L[i])
g

e := Event()
end

The scat program could be generalized in several ways; for instance, it is trivial to extend scat to accomodate

Icon’s built-in function and operator repertoire. If this information were cross-referenced with static knowledge of

which functions and operators were generators, scat could show whether they are being used generatively, or only

used to obtain single results as in conventional programming. Another useful way to extend scat would be to allow

the user to specify lines (slopes) to indicate a procedure’s expected result/call ratio; if the number of results were too

low or too high, the user might want to stop execution and inspect the situation in closer detail.

8.3 Algae

A program named Algae illustrates one approach to displaying procedure and generation activity in a more connected

fashion. Algae displays an animated representation of the activation tree for procedures, built-in functions, and/or

string scanning environments as the TP executes, and serves as a basis for other more sophisticated EMs that are

presented in later chapters.

Figure 8.4: Algae

Algae is designed to use little screen space and does not require rearrangement of nodes as the tree changes, like

conventional approaches to tree layout do. This attempt to save screen space and animation time produces an approx-

imation of the activation tree that sacrifices the details of parent-child relationships in the tree. The Algae metaphor
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is meant to complement more conventional layouts, not to replace them. The idea behind Algae is to present enough

of the expression activity so that common goal-directed evaluation patterns in TP are identified and strange behavior

can be noticed as an unfamiliar pattern in the animation.

Algae geometry

The Algae window uses a simple two-dimensional grid of cells; the vertical dimension depicts expression nesting

depth, such as calls and returns from procedures. The horizontal dimension depicts generator suspension width, such

as procedure, function/operator, and scanning environment suspension. Whenever a computation is suspended, new

computations at the same level start in the next cell column to the right, indicating the possibility of backtracking

into the suspended computation. A sample image of Algae is shown in Figure 8.4. The target program being moni-

tored is a recursive descent parser. Magenta (depicted as dark gray) cells represent suspended Icon procedures for the

nonterminals of a parse that is being attempted. A yellow (light gray) cell in the bottom-right is the currently active

procedure. Light blue (medium gray) is used to fill in cells when they are vacated; coloring these cells provides a

“high water mark” for the computation up to any given point and gives it an overall characteristic shape.

In order to support the two-dimensional geometry, Algae’s activation tree records have fields for the row and the

column of the cell assigned for each activation:

record algae activation(value, parent, children, row, column, color)

Since screen space is limited, each activation is depicted as a small hexagon in the window, color-coded by the kind

of activation (procedure, function, operator, or string scanning environment). The size of the hexagons is scalable.

Given this geometry it would be easier to plot Algae using rectangular points. Hexagons are used primarily for their

visual effect – they provide a smoother animation as the tree grows and shrinks. Position changes in Algae are often

diagonal, and in a square mapping, these changes appear to be a farther distance than horizontal or vertical position

changes. A collection of Icon procedures totalling roughly 160 lines were written to manipulate hexagons; they are

omitted here for the sake of brevity. In the code below, the procedure spot() fills a hexagon at a given location with

a particular color.

Because screen space is limited and the activation tree is constantly changing, Algae does not lay out the tree in a

way that spreads out nodes throughout the available screen space. Instead, Algae lays out tree nodes from the leftmost

edge of the window, being careful to maintain the correct depth and breadth of the tree, and making sure that no two

nodes occupy the same cell. When a new node is created, it is a assigned a cell with a row given by its level; the

column is computed by inspecting the existing tree and finding the first position to the right of both the parent node

and any nodes at the new node’s level.

Since expression trees grow and shrink along their rightmost edge, the tree search to assign a column is a pre-

order depth-first right-to-left search. An important special case is if the node’s parent already has a child, in which

case the newly-created node can immediately be assigned a column adjacent to its older sibling; this case is handled

directly in algae callback() for efficiency and often allows the tree search to be avoided entirely.

The code to compute the column is:

procedure computeCol(parent)
node := parent
while node.row > 1 do node := nnode.parent # find root
if node === parent then return parent.column
if col := subcompute(node, parent.row + 1) then

return max(col, parent.column)
else

return parent.column
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end
procedure subcompute(node, row)

# check this level for correct depth
if nnode.row = row then return node.column + 1
# search children from right to left
return subcompute(node.children[*node.children to 1 by �1], row)

end

Using evaltree() to incrementally update the display

Algae makes extensive use of colors to indicate the kind of activation, such as whether it is a procedure, function, or

string scanning environment. In main(), several bindings are created with different foreground colors, as described

in Chapter 6. The colors used are arbitrary and the user can determine the contents of the node by clicking on it if the

color is not familiar.

After initialization, Algae calls evaltree() and passes it a reference to the procedure algae callback(). The event

mask used is variable and depends on command-line arguments. The body of algae callback() performs the incre-

mental animation of the tree. Each event that modifies the activation tree entails the updating of two display cells:

a cell that is entered is drawn in yellow to mark it as the active cell, and a cell that is exited is either drawn in the

color associated with the activation (if it is suspended) or in a background gray color (if the associated activation has

returned or failed and no longer exists).

case &eventcode of f
!CallCodes: f

new.column := (old.children[�2].column + 1 j computeCol(old))
new.row := old.row + 1
new.color := Color[&eventcode]
spot(nold.color, old.row, old.column)
g

!RetCodes j !FailCodes: spot(background, old.row, old.column)
!SuspCodes j !ResumCodes: spot(old.color, old.row, old.column)
!RemCodes: f

spot(black, old.row, old.column)
WFlush(black)
delay(100)
spot(background, old.row, old.column)
g

E MXevent: user event(&eventvalue, new)
g

spot(yellow, new.row, new.column)

Algae controls

User control of Algae consists of marking specific hexagons (using the left mouse button) or entire rows and columns

(using the middle button) to pause execution. Pressing the right button atop an hexagon marked active or suspended

prints the name of the associated procedure or function, or the subject of the associated string scanning environment.

The input handling is performed by do event() in response to an E MXevent.

Each call to algae callback() checks to see whether the cell being entered is one selected by the user to pause

execution, and if it is, the callback procedure loops reading user events until the user indicates that execution should

continue. algae callback() concludes with the code for this test:
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loc := location(new.row, new.column)
if nstep j (new.column >= nmaxcolumn) j

(new.row >= nmaxrow) j n hotspots[loc] then f
step := &null
XWindowLabel(”Algae stopped: (s)tep (c)ont ( )clear ”)
while e := Event() do

if user event(e, new) then break
XWindowLabel(”Algae”)
g

The procedure user event() returns if execution should proceed, but fails if execution is still paused and another

user event should be obtained. The code for user event() is somewhat lengthy and is included in the complete text

of Algae in Appendix A.

The techniques presented here apply not only to Icon’s built-in functions, operators, and scanning environments

— the evaltree() procedure can accomodate all of these kinds of events simultaneously and maintain one large ex-

pression activation tree. Some differences between the different kinds of activations exist; an obvious one is that

function and operator events are so frequent that monitoring them in an EM like Algae vastly reduces the tool’s ef-

fectiveness in monitoring the less-frequent procedure activity. It would be useful to explore variants of evaltree()
that allow certain subtrees to be ignored, or do not plot activity at all unless interesting behavior such as generation

or backtracking takes place.
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Chapter 9

Monitoring Memory Usage

Memory usage is an important aspect of program behavior that is not directly evident from source code examination.

The execution monitoring instrumentation produces events on every memory allocation with an event code that indi-

cates the type allocated and a corresponding event value giving the size of the allocation in bytes. In addition, events

occur at garbage collections, including the types and sizes of objects that survive reclamation. Allocation events are

selected with the evinit symbol AllocMask.

This chapter presents a variety of EMs that portray aspects of memory usage. First, EMs are given that plot each

individual allocation in relation to other recent allocations; they are useful in observing localized program behavior

such as allocations of unusual size or changes in the major phases of execution. Later in the chapter, EMs that portray

cumulative memory usage behavior are discussed; they provide a useful profiling service and a general understand-

ing of the TP’s use of memory. These simple examples illustrate only a few of many visual metaphors that have been

developed for memory usage, ranging from literal views of the heap to completely abstract animations whose pat-

terns reflect a program’s memory allocations. Some of the other tools that portray memory activity are described in

a separate document [Gris92b].

9.1 Allocation by type

Many visual metaphors can be used to depict allocation types or sizes, or both. Two allocation monitors are pre-

sented in this section. The first emphasizes frequencies and patterns of types in allocated memory, while the second

emphasizes allocation size information. These examples also exhibit a clean separation of the data collection and

graphics rendering tasks, enabling the visual metaphors to be used in other tools that monitor types of events other

than memory allocations.

9.1.1 Pinwheel

The pinwheel metaphor presents a sequence of values, in this case the event codes associated with allocation event

reports, encoded as colors or textures drawn in sectors around a circle. The n sectors of the circle represent a history

of the last n allocation events in the TP’s execution. A screen image from a program using this metaphor to present

memory allocation patterns is given in Figure 9.1. In this example, event codes for Icon’s allocated types are mapped

onto colors. The view is updated on each allocation; the animation rate gives an indication of the frequency with

which memory allocations occur.

Pinwheel and many other visual metaphors have been encapsulated in procedures for use by execution monitors.

By using a common set of conventions, the metaphors can be applied interchangeably and to different types of data.

73
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Figure 9.1: Pinwheel

The procedure pinwheel(), called with no arguments, starts with local variable declarations and then initializes sev-

eral variables that scale the mapping.

procedure pinwheel()
local clear, xorg, yorg, radius, radians
local angle, arc, sector units, fullcircle, blank, max, xratio, yratio

max := real((WWidth() < WHeight()) j WWidth())
xratio := WWidth() / max
yratio := WHeight() / max
fullcircle := 2 * &pi
radians := 0
sector units := fullcircle / Sectors # amount to advance
blank := 2 * sector units # amount to blank
xorg := WWidth() / 2
yorg := WHeight() / 2
radius := max / 2
while NextEvent() do f

FillArc(Background, 0, 0, WWidth(), WHeight(), radians + sector units, blank)
FillArc(Binding, 0, 0, WWidth(), WHeight(), radians, sector units)
DrawLine(Background, xorg, yorg, xratio * radius * cos(radians) +

xorg, yratio * radius * sin(radians) + yorg)
radians +:= advance
g

end

Pinwheel’s main loop reads a monitoring event, draws a filled arc in a binding that uses a color associated with the

event, and erases the next slice of the pinwheel to mark the edge of motion. The local variable angle, the front edge

of the pinwheel motion, is advanced at each iteration. The procedure NextEvent() encapsulates the task of reading a

program event and selecting an appropriate color (or texture) to portray it so that the type of data being processed and

the color used to draw the pinwheel are independent of the task of drawing the pinwheel itself. NextEvent() assigns

the global variable Binding a window value with an appropriate foreground color for use in drawing the sector.
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9.1.2 Nova

The nova metaphor is another example of a radial mapping of a sequence of event reports. Each allocation event

report is plotted as a line segment from the center of the window in polar coordinates, with a radius given by the size

of the allocation (&eventvalue), at a regular angular offset from the preceding value. Like pinwheel, the graphic is

drawn in a color that indicates the allocation type, based on the event code, and the display is animated at the rate at

which memory allocations take place. An example screen image from nova is shown in Figure 9.2.

Figure 9.2: Nova

Like pinwheel, nova begins with an initialization section, followed by a loop that reads an event (again using

NextEvent()) and draws a line at the appropriate angle and of the appropriate length.

procedure nova()
local clear, xorg, yorg, radius, radians
local arc, sector units, fullcircle, erase, oldvalue
initial gclear := 1
erase := list(Sectors)
fullcircle := 2 * &pi
radians := 0
sector units := fullcircle / Sectors # amount to advance
xorg := WWidth() / 2
yorg := WHeight() / 2
radius := ((WHeight() < WWidth()) j WHeight()) / 2.0
while NextEvent() do f

put(erase, Value)
oldvalue := get(erase)
DrawLine(Background, xorg, yorg, noldvalue * cos(radians) + xorg,

oldvalue * sin(radians) + yorg)
DrawLine(Binding, xorg, yorg, Value * cos(radians) +

xorg, Value * sin(radians) + yorg)
radians +:= advance
g

end

The following example demonstrates how memory allocation monitors may be of practical use. A poetry-

scrambling program submitted by a user produced the visual signature given in Figure 9.3 (left) when run under a

tool using the nova metaphor (the wedge shaped gap in Figure 9.3 (left) is present simply because the nova’s sweep
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has not completed its first revolution). The program builds up very long lists by repeated concatenation, resulting in

the frequent very large allocations shown in the figure. After changing two lines of code to replace a list concatena-

tion with calls to Icon’s put() function, the visual signature became “normal” and program execution speed doubled

(Figure 9.3, right).

Figure 9.3: Frequent large allocations suggest a problem (left); the program runs twice as fast after a two-line change

9.2 Cumulative allocation by type

Visualizing individual allocation events is useful for understanding local phenomena, but an overall summary of

memory allocation is also useful in understanding program behavior. The following code segment totals the amount

of memory allocated in the program by data type, building a table of sums that is keyed by the allocation event codes

for each type. The sums are cumulative, that is, garbage collections are not taken into consideration.

t := table(0)
while EvGet(AllocMask) do

t[&eventcode] +:= &eventvalue

9.2.1 Animating a bar graph

The following procedure renders a list of non-negative numbers in a window as a bar graph. Each bar in the graph is

given a string name in a list called labels and is drawn using a color from a list of color contexts named colors; the

indices of labels and colors match those of the list of numbers.

procedure bar graph(L, labels, colors, scale)
local height, x, y, i
EraseArea()
height := WHeight()
bar width := real(WWidth()) / *L
WAttrib(”label=Bar Graph, scale ” jj left(scale, 6))
every i := 1 to *L do f

x := (i � 1) * bar width
y := L[i] * scale
FillRectangle(colors[i], x, height � y + 1, bar width � 2, y)
DrawString(x, 15, labels[i])
g

end
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If bar graph is called frequently, such as every time an event occurs in an execution monitoring setting, the fre-

quent window updates create a distracting amount of screen flicker. In such an animation, an incremental approach

is more appropriate.

The following program updates a bar graph incrementally. The bar graph presents cumulative memory allocation

by type. An example screen image from this animated bar chart is given in Figure 9.5.

Figure 9.4: An animated bar graph

The cumulative allocations are stored in list bars, in the order they appear on the screen. A parallel list of labels

for each bar is maintained in labels; it is built from a table evs that maps event codes to their string names. The table

is constructed by the standard evinit library procedure evsyms(). The mapping from event codes to screen position

is maintained by the table typecode2bar. The animated bar graph scales itself as cumulative allocations increase.

&window := open(”barmem”,”g”) j stop(”can’t open window”)
height := WHeight()
evs := evsyms()
typecode2bar := table()
bars := [ ]
labels := [ ]
scale := 4.0

The main loop requests an allocation event and calls procedure bar() to update the size of the bar that corresponds

to the event. A new bar is created when a type’s first allocation takes place. No screen space is devoted to types for

which no allocation occurs. As each bar’s label is obtained from the event names table evs, the event’s E prefix is

stripped by the string subscript [3:0].

while EvGet(AllocMask) do f
if /event2bar[&eventcode] := *put(bars,0) then f

put(labels, evs[&eventcode][3:0] j ”?”)
put(Colors, contexts[&eventcode])
g

extent := (bars[event2bar[&eventcode]] +:= &eventvalue) * scale
if extent > height � 20 then

bar graph(bars, labels, Colors, scale /:= 2)
else

bar(extent, Colors[t[&eventcode]], event2bar[&eventcode])
g

The procedure bar() simply fills in a rectangle for the added space.
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procedure bar(extent, Color, i)
x := (i � 1) * bar width
y := height � extent + 1
FillRectangle(Color, x, y, bar width � 2 , &eventvalue * scale + 1)

end

9.2.2 Pie charts

The following procedure draws a pie chart from a table shares in which each portion of the pie represents a key and

their relative size is the key’s table value. A parallel table colors of window bindings contains the color, grayscale,

or texture that is used to distinguish each of the parts.

procedure draw pie(shares, colors, sum, x, y, width, height)
local start, fraction, k, path
start := 0
fraction := 360 * 64.0 / sum
every k := key(shares) do f

path := fraction * shares[k]
FillArc(colors[k], x, y, width, height, start, path)
start +:= path
g

end

Unless the update rate is high, a visualization tool using this procedure can be animated by brute-force by redraw-

ing the entire image each time rather than incrementally. If the update rate is high, the chart might only be redrawn

when a constituent’s size changes by a significant amount, such as more than one percent of the total. A sample screen

image from such a program is given in Figure 9.6.

Figure 9.5: A pie chart

9.3 Running allocation by type

In order to take garbage collections into account, the program must select E Collect and E EndCollect events. The

E Collect event is produced prior to a garbage collection. The E EndCollect event occurs after a garbage collection,

and if it is selected, the monitoring instrumentation also produces (re)allocation events in between the E Collect and

E EndCollect for the objects that survived the collection.
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codes := AllocMask ++ E Collect ++ E EndCollect
t := table(0)
while EvGet(codes) do

if &eventcode === E Collect then t := table(0)
else t[&eventcode] +:= &eventvalue

A more complex example of monitoring allocation by type is the following strip chart. It uses the approach as the

preceding example, but portrays a continuous animation in a window. In the following example, the y axis is used to

show the proportions of memory used by all types. An example screen image from this program is given in Figure

9.7.

Figure 9.6: A memory allocation strip chart

The program monitors all memory allocation and garbage collection information, maintains a table of running

sums of memory by type, and draws each vertical line in the graph as a set of segments that are color coded by type and

whose length corresponds to the proportion of memory used by that type. An external library procedure, typebind(),
is linked and used to provide the color encoding. typebind() returns a table whose keys are type allocation event codes

and whose values are window bindings with foregrounds set to various colors; the table is stored in global variable

Colors. Since colors vary from device to device, several palettes are available from typebind(), depending on the

output device to be used. The global variable tallies refers to a table of sums of allocations keyed by type. Global

variable heapsize stores the total amount of available memory. The event processing loop in procedure main() calls

redraw() to update the window on each allocation and clears the window on garbage collection.

tallies := table(0.0)
heapsize := 0
every heapsize +:= keyword(”regions”, Monitored)
&window := open(”MemoryType”, ”g”)
Colors := typebind(&window, AllocMask)
mask := AllocMask ++ E Collect
while EvGet(mask) do

case &eventcode of f
E Collect: f

EraseArea()
tallies := table(0.0)
g

default: f
tallies[&eventcode] +:= &eventvalue
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redraw()
g

g

The procedure redraw() updates the display when needed. Real arithmetic is used to minimize numeric errors in the

mapping.

procedure redraw()
static x
initial x := 0
start := 0
every k := key(t) do f

segment := WHeight() * real(tallies[k]) / heapsize)
FillRectangle(Colors[k], x, start, 1, segment)
start +:= segment
g

x := x + 1 % WWidth()
EraseArea(x + 1, 0, 1)

end

It is possible to substantially improve on this trivial example; redundant calls and type conversions can be avoided,

and many variations on the mapping from the problem space onto the image geometry are possible. In particular it

may be worth avoiding screen updates when the change to be reported is very small.

9.4 Survival rates across collections

If a garbage collection reclaims only a small amount of storage, the TP may quickly run out of free memory and

collect again. As the frequency of collections rises, overall system performance declines rapidly. This information

can be obtained by selecting E Collect and E EndCollect events and reading TP’s &storage keyword.

while EvGet(E Collect) do f
L := [ ]
every put(L, keyword(”storage”, Monitored))
EvGet(E EndCollect)
L2 := [ ]
every put(L2, keyword(”storage”, Monitored))
write(”reclaimed ”,integer(real(L[2] � L2[2]) / L[2] * 100),

” percent of the string region”)
write(”reclaimed ”,integer(real(L[3] � L2[3]) / L[3] * 100),

” percent of the block region”)
g



Chapter 10

Monitoring String Scanning

As a descendant of SNOBOL4, Icon has a natural orientation towards text processing and includes a control structure

devoted to that task. This chapter presents a brief overview of Icon’s string scanning facilities and then gives exam-

ple execution monitors that portray the target program’s use of this control structure. The examples are themselves

relatively simple, but demonstrate the framework’s capabilities in this area and are suggestive of more advanced pos-

sibilities to be explored in this domain using the framework. Techniques for monitoring string scanning can be built

by extending the techniques presented for monitoring procedure and operator activity in Chapter 7.

10.1 Overview of string scanning

Icon’s string scanning facility provides high-level text processing capabilities that free the programmer to think in

terms of patterns in the text instead of character-by-character handling of indices and subscripts. String scanning

operations work within the context of a string being scanned, the subject, and a current position of interest within

that subject. Together, the subject and position form a scanning environment (Figure 10.1).

subject       "the yellow brick road"

position

Figure 10.1: A string scanning environment

The Icon expression

s ? expr

evaluates expr in a scanning environment that consists of subject s and an initial position of 1 (the beginning of the

string). Scanning environments remain in effect inside any procedure calls within expr. Scanning environments may

be nested; the outer scanning environment is saved and restored when the inner environment is entered and exited.

Operations on scanning environments include absolute and relative movement of the position as well as various

forms of string and character set matching and searching. Relatively sophisticated parsing is performed by using

these operators in conjunction with goal-directed evaluation and backtracking. In particular, the functions that change

position within an environment, move() and tab(), undo their effects if they are resumed by backtracking.

81
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10.2 String scanning events

Since a TP may suspend from and later resume a scanning environment, string scanning instrumentation includes a set

of events for environment creation, suspension, resumption, failure, and removal, analogous to the events that occur

as a result of procedure activity. Monitoring string scanning may entail the maintenance of a scanning environment

tree using code similar to the procedure activity tree presented in Chapter 7.

In addition to these events, string scanning position changes result in the occurrence of E Spos events. If the

scanning position is restored by move() or tab() during backtracking, a second E Spos event occurs.

Scanning environment activity including position change events can be selected by an EM using the library sym-

bol ScanMask as the argument to EvGet(). In addition to ScanMask events, a string scanning monitor may be

interested in calls to the built-in string-scanning functions that comprise Icon’s pattern matching primitives, such as

find() and upto().

10.3 Absolute and relative position changes

This section gives two simple EMs that present position change information with different emphases: (1) a view that

portrays absolute position, and (2) a view that emphasizes relative position changes.

Visualizing absolute positions within the subject

String scanning operations move the position of interest within the subject forward or backward. Moving the position

forward is common; moving the position backward is less common and usually is triggered by backtracking during

goal-directed evaluation. It is useful to be able to observe when the position moves forward or backward and how

large the changes in position are relative to the size of the string.

The following program displays an animated strip chart with subject lengths and position change information. For

each position change event, the length of the subject is drawn down from the top and filled with two or three colors:

a red segment indicates the current position or the number of characters already processed, while a white segment

indicates the remainder of the string not yet processed. If backtracking has occurred, a gray segment in between the

red and the white indicates the furthest forward that the scanning position has reached or the extent of the backtracking.

A sample screen image is given in Figure 10.2.

Figure 10.2: Absolute string position

The program starts with standard initialization code, including the creation of window bindings for drawing seg-

ments in red and gray. The width of each bar is determined by variable barwidth, and the number of pixels drawn

per character in the various segments is specified in the variable scale.
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The program’s main loop requests position change events, and plots a segment on the window for each change.

DrawRectangle() draws a black outline to indicate the size of the scanned subject; calls to FillRectangle() plot the

red and gray segments. A variable max holds the furthest position reached during scanning of a particular subject

string; the gray segment is only drawn if backtracking has moved the position backwards into parts of the subject that

have already been scanned.

while EvGet(E Spos) do f
s := keyword(”subject”, Monitored)
position := &eventvalue
if s == s old then max <:= position
else max := 1
if *s > 0 then f

DrawRectangle(x, 0, barwidth, scale * *s)
FillRectangle(red, x, 0, barwidth, scale * (position � 1))
if max > position then

FillRectangle(gray, x, scale * (position � 1),
barwidth, scale * (max � position))

g
x := (x + barwidth + 1) % WWidth()
EraseArea((x + barwidth + 6) % WWidth(), 0, barwidth + 6)
s old := s
g

This simple EM does not scale its output to fit the window; in the event a very long subject is scanned, output is

clipped to window boundaries. An additional limitation is that backtracking information is not saved and restored for

nested scanning environments.

Visualizing relative position changes

By tracking relative position changes, backward motion is highlighted and large position changes are emphasized.

The following EM plots relative position change as distance from the middle of the window, with forward position

change going below the midpoint and backward position change going up from the midpoint. A sample screen image

is shown in Figure 10.3.

Figure 10.3: Relative string position

After initialization, the main loop reads E Spos events and uses the keyword() function to obtain the correspond-

ing subject. If the subject is unchanged since the last event, the relative position change is noted. Like the previous

example, this tool would provide more accurate information if it saved and restored the subject for nested scanning

environments. The next section provides a method for doing so.
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barwidth := 3
&window := open(”pos”, ”g”) j stop(”can’t open window”)
x := 0
while EvGet(E Spos) do f

s := keyword(”subject”, Monitored)
p := &eventvalue
FillRectangle(x, WHeight() / 2, barwidth, 1)
if s === s old then

if p > p old then
FillRectangle(x, WHeight() / 2, barwidth, p � p old)

else if p old > p then
FillRectangle(x, WHeight() / 2 � (p old � p), barwidth, p old � p)

x := (x + barwidth + 1) % WWidth()
EraseArea((x + barwidth + 6) % WWidth(), 0, barwidth + 6)
s old := s
p old := p
g

10.4 Scanning operations and the environment tree

Since scanning environments may be nested in much the same way as procedures, functions, and operators, it makes

sense to use a tool similar to the Algae tool presented in Chapter 8 to portray nested scanning environments. One

way to make use of such a tool is to display scanning activity such as calls and results of string scanning functions

and operators as graphical manipulations inside the hexagon allocated by Algae to the active scanning environment.

A modified version of Algae that displays string functions and operators encoded as colors is shown in Figure

10.4. The program uses the pinwheel metaphor from Chapter 9 to animate the sequence of operations independently

within each scanning environment. Around the pinwheels’ outside borders, circles are drawn in red, white, and gray

segments to show current position and positional backtracking, similar to the absolute string positions example given

earlier. The border around the pinwheel in the second column of Figure 10.4 is almost entirely dark (the grayscale

depiction of red), indicating that the scanning position is almost to the end of the string, while the border around

the pinwheel in the fourth column is only slightly dark above the three o’clock position, showing that the scanning

position is still near the front of the scanned string.

In order to add this kind of detailed information about string scanning environments, extra fields are added to

Algae’s activation record type for the current scanning position, the farthest scanning position reached in the scanning

environment, and the environment’s pinwheel angle (expressed in units of 1/64th of a degree).

record activation(node, parent, children, row, column, color, pos, maxpos, angle)

Updating position in the current scanning environment

Position change events are added to the event mask passed to evaltree(). The case expression of the callback pro-

cedure for E Spos events updates the current scanning environments position fields, and draws red and gray arcs

around the outside of the hexagon to show position information. Global variables HexWidth and HexHeight are

used to determine the region inside the hexagon that is available for drawing.

Note that a callback static variable, scanenv, is used rather than the current activation (new), which can be a

procedure, function, or operator called within the current scanning environment. scanenv is maintained by code

added to the case expression branches of Algae’s evaltree() callback procedure, described below.
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Figure 10.4: Scanning environment trees and operations

case &eventvalue of f
# ... other Algae case branches as given in Chapter 8
E Spos: f

scanenv.pos := &eventvalue
scanenv.maxpos <:= &eventvalue
unit := fullcircle / *scanenv.node
DrawArc(red, hexcolumn x(scanenv.col) + 5,

hexrow y(scanenv.row, scanenv.col) + 5,
HexWidth � 10, HexHeight � 10, 0, (&eventvalue � 1) * unit)

if scanenv.maxpos ¿ scanenv.pos then
DrawArc(gray, hexcolumn x(scanenv.col) + 5,

hexrow y(scanenv.row, scanenv.col) + 5,
HexWidth � 10, HexHeight � 10,
(&eventvalue � 1) * unit, (scanenv.maxpos � scanenv.pos) * unit)

DrawArc(wwhite, hexcolumn x(scanenv.col) + 5,
hexrow y(scanenv.row, scanenv.col) + 5,
HexWidth � 10, HexHeight � 10,
(scanenv.maxpos � 1) * unit, fullcircle � (scanenv.maxpos � 1) * unit)

g
g

Drawing pinwheel sectors for string scanning functions

The global table of colors is extended to map important string scanning functions onto window bindings with fore-

ground colors that indicate which function is being performed. Activity that involves these functions is captured by

adding code to the callback procedure’s case expressions. The code for suspension events is shown here; similar code

is added to the other cases.

!SuspCodes: f
pinwheel(scanenv, nColors[new.node])
# ... rest of code for suspension events
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g

Maintaining pinwheels for nested scanning environments

The added fields of an activation record are initialized whenever a new scanning environment event is received. The

modified code looks like:

!CallCodes: f
# ... code as given in Chapter 8
if &eventcode === E Snew then f

new.pos := new.maxpos := 1
new.angle := 0
g

g

The pinwheel drawing procedure from Chapter 9 is revised to take an activation record and a window binding

with a foreground color to encode the string operation being performed, and draw a single sector in that foreground

each time it is called.

procedure pinwheel(arecord, win)
static full circle, sector units
initial f

full circle := 360 * 64
sector units := full circle / 16 # 16 sectors in the circle
g

radians := �dtor(arecord.angle / 64)
x := hexcolumn x(arecord.col) + 6
y := hexrow y(arecord.row, arecord.col) + 6
width := HexWidth � 12
height := HexHeight � 12
center x := x + width / 2
center y := y + height / 2
FillArc(arecord.color, x, y, width, height, arecord.angle + sector units, blank)
FillArc(win, x, y, width, height, arecord.angle, sector units)
DrawLine(arecord.color, center x, center y,

radius * cos(radians) + center x, radius * sin(radians) + center y)
arecord.angle +:= sector units
arecord.angle %:= full circle

end

10.5 Conclusions

String scanning is an important feature in Icon. In order to monitor it correctly, an EM must not only handle posi-

tion changes, but also handle nested and suspended scanning environments. The extra attention required to monitor

scanning correctly parallels the effort required to implement scanning correctly in the language.

Although string scanning is important, most programs use string scanning in extremely simple ways. Although

detailed views will always be useful in debugging situations, in more general program-understanding efforts the in-

formation provided by literal text-oriented views of string scanning may be less useful than might be expected. A

better approach may be to view string scanning within a larger context of program operation, such as the modified

Algae example. It is not clear how to best monitor and visualize string scanning; this is still an open area for research.



Chapter 11

Monitoring Data Structures and Variable
Usage

Previous chapters have demonstrated techniques for monitoring various aspects of program control and memory us-

age. Although some aspects of TP data usage are observable by means of memory allocation and garbage collection

events, key aspects of program behavior are often characterized in terms of operations on program data, such as ma-

nipulations of program data structures or variable references.

This chapter presents techniques for monitoring data from both program-wide and narrower, variable-oriented

viewpoints. Example EMs include list access monitors that show usage of Icon’s built-in list data type on a program-

wide scale, and variable reference monitors that show activity within individual procedure activations. There are

many other ways to present data structure activity and this is an open area of research. The examples in this chapter

illustrate the capabilities and possible uses of the framework in this domain.

11.1 List Accesses

On a program-wide scale, a tool that visualizes list activity is representative of techniques needed to monitor Icon’s

list, table, record, and set data types. Icon’s list data type is used for a variety of purposes. Some programs use a few

large lists, while other programs may use hundreds or thousands of small lists. Lists can change in size dynamically

using both queue and stack operations, and they can also be accessed randomly similar to arrays in other languages.

The following EM portrays an overall view of list behavior in a TP. TP’s lists are presented as a sequence of

vertical bars, with each bar’s length proportional to the size of the corresponding list. Vertical segments of the bars

are color-coded by the types of the lists’ elements. If all of a list’s elements are of the same type, this forms a solid bar

of that type’s color; if a list is heterogeneous, its appearance is “candy-striped” with the various colors of its elements’

types. The horizontal position of a list’s bar on the display is given by the list’s serial number. A serial number is an

integer associated with each list when it is created. Using serial numbers to determine screen position orders the lists

from left to right by time of creation.

Queue, stack, and array-style random accesses are portrayed by changing the size of the bar (in the case of queue

and stack accesses) or briefly painting a segment of the bar black and then redrawing it (in the case of random ac-

cesses). An example image from this program is given in Figure 11.1. Empty columns in this view indicate serial

numbers at which no list has yet been created (on the far right) or lists that are empty or have been garbage collected

(in the middle of the figure).

One of the key features of this program is a high degree of scalability necessary in order to accomodate programs
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Figure 11.1: A list access monitor

with very large numbers of lists and yet present as much detail as screen space allows. In particular, if the number of

lists is too large to fit in the window, the window is split into two rows and the number of vertical pixels per element is

halved; this generalizes to n rows of as few as one vertical pixel per list element. Figure 11.2 depicts a view in which

the number of lists has caused a split into two rows. Figure 11.3 depicts a scaled image for a larger number (around

400) of lists requiring eight rows. Spaces in the figures again generally indicate empty or garbage-collected lists.

Figure 11.2: A moderate number of lists

This scalability is achieved by maintaining a number of interdependent variables to describe the screen geometry.

The window is divided into a matrix of size rows by cols corresponding to individual lists; each element of the matrix

is in turn divided into vertical segments of height elem height.

global
rows, # number of rows of entire lists
cols, # number of lists displayed per row
elem height # height of an individual list element

In addition to this basic screen geometry, a count of the number of lists in TP is kept in number active, and the

mapping from lists to window (row,column) coordinates is maintained in table list locations. The mapping from

lists to window coordinates uses list serial numbers as keys, rather than list values themselves. If the EM retained

references to the TP lists instead of their serial numbers, none of the TP lists could be reclaimed by garbage collection.

Procedure redraw() draws an entire picture of all the lists in the program. It uses the MT Icon function structure()
to generate all the allocated structures in the program, and assigns each list a row and column. Each element of each
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Figure 11.3: A large number of lists

list is then drawn by FillRectangle() in a color determined by the element’s type by a call to objcolor().

procedure redraw()
EraseArea()
column width := WWidth() / cols
row height := WHeight() / rows
every i := 1 to rows � 1 do DrawLine(0, i * row height, WWidth(), i * row height)
number active := 0
list locations := table()
every type(L := structure(Monitored)) == ”list” do f # for every list in the heap...

number active +:= 1
row := 1 + number active / cols
col := number active % cols
list locations[serial(L)] := location(row, col)
every index := 1 to *L do

FillRectangle(objcolor(L[index]), col * column width, (row � 1) * row height +
(index � 1) * elem height + 1, column width, elem height)

g
end
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Procedure redraw() is called whenever the scaling must be changed. The view it establishes can be updated in-

crementally for ordinary list construction and access by drawing one or more individual list elements with procedure

plot(). plot() draws a rectangle, first with a black rectangle to highlight the access, and then with a rectangle of a

specified color.

procedure plot(w, row, col, index, del)
/del := 40
x := col * column width
y := (row � 1) * row height + (index � 1) * elem height + 1
if del > 0 then f

FillRectangle(vblack, x, y, column width, elem height)
WFlush(vblack)
delay(del)
g

FillRectangle(w, x, y, column width, elem height)
end

The main loop fetches list events and updates by calling plot(). redraw() is called when the screen becomes full

or the window size changes. One significant detail of list access monitoring is that a list access results in two events,

one with the list itself for an event value, and a second event with an integer event value that gives the index accessed

within the list. EM saves the list value in the first event and uses it when the second is reported. Since the events

come in pairs, TP does not do anything in between the two events, but after the second event, EM must use and then

destroy its reference to the list or it might spuriously prevent the list from being garbage collected.

while EvGet(ListMask) do
case &eventcode of f

E Lref : L := &eventvalue
E Lsub : f

index := &eventvalue
if index < 0 then

index +:= *L + 1
loc := list locations[serial(L)]
plot(objcolor(L[index]), vertical(loc), horizontal(loc), index)
L := &null
g

# ... other events handled similarly
g

Although this example uses some sophistication to scale well to larger numbers of lists, it can be enhanced in

various ways. For example, relaxing the direct mapping from serial number to screen location would allow screen-

space to be reclaimed whenever a list was garbage collected. Another improvement would be to portray list operations

in a visually distinct way instead of simply maintaining an accurate representation of the lists’ contents.

11.2 Monitoring variable references

Monitoring structure accesses with techniques such as those described in the previous section is useful, but in many

EMs, notably debuggers, data monitoring is driven from the variables used in the program. We consider two exam-

ples of variable monitoring, one that visualizes all variables and one that identifies references to specific variables of

interest.
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11.2.1 Assignment events

One of the most common monitoring techniques is the observation of assignments, where the user is informed or

monitoring code is executed whenever an assignment to a particular variable or set of variables is made. The instru-

mentation reports an E Assign event on each assignment. E Assign has a string event value equivalent to calling

name(v) on the assigned variable, suffixed by a scope code. The scope codes are

Code Scope

”+” global

”:” static

”-” local

”ˆ” parameter

Statics, locals, and parameters are followed by the name of the procedure in which they are defined. For example, a

local variable i in proceduremain() would produce an E Assign event value ”i-main”. Variable references to structure

elements have no scope code.

For assignments to named variables and keywords, the name and scope are sufficient to perform reference detec-

tion; the name and scope may be augmented by procedure activity information in order to provide finer detail for local

(and especially recursive local) variables. For assignments to structure elements, the event value cannot produce the

name. A given structure element might be assigned by means of any of several variables that reference the structure.

For this reason, reference detection techniques are different for named variables and for structure-element variables.

11.2.2 Monitoring variables by name

Figure 11.4 shows a window image of a tool that displays the names and types of variables associated with procedure

activations; the names are written in multiple columns in the case of a procedure with a larger number of variables.

As its appearance indicates, the tool is an enlarged version of the Algae program from Chapter 8. The names of

procedure parameters and local variables are displayed within each activation, drawn in a color that indicates the

type of the variable. Colors are updated after each assignment. One useful extension to this tool is to show the values

of integers. This is useful because integers are common, because they do not require much space, and because they

are not heap-allocated and therefore do not appear in other data-oriented monitors.

The required modifications to Algae source code are omitted here for the sake of brevity; they are comparable to

the extensions for string scanning given in the preceding chapter. The technique used is the monitoring of assignment

events, considering only those events whose scope code indicates either a local variable or parameter assignment.

The use of source-text names creates serious spatial problems. Another reasonable way to extend this EM would

be to modify it to use smaller rectangles for each variable and omit the names. Specific variables’ names could be

shown when the user clicks the mouse atop a particular variable.

11.2.3 Monitoring individual variables

A named variable is identified by its name and scope, or by its instantiating procedure activation if recursively created

local variables are considered distinct. For such variables, reference detection is implemented using the E Assign
event values and some additional logic. Two examples below illustrate cases where (1) the EM acts on any assignment

to a variable defined within a given procedure, and (2) the EM acts on assignments only within a specific activation

record.
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Figure 11.4: Monitoring variables in active procedures

In the non-recursive case, variables can be identified by their name and scope. A collection of variable names of

interest might be stored in an Icon set (“trapped variables” in the code below). Variable traps require selection of

assignment events and maintenance of current procedure information using the evaltree() procedure as described in

Chapter 8 on following procedure activity. The correct invocation of evaltree() is:

evaltree(ProcMask ++ E Assign, trap callback, activation record)

Procedure trap callback() detects variable references with a set membership test.

procedure trap callback(current proc)
if &eventcode === E Assign then

if member(trapped variables, &eventvalue) then f
# perform trap
g

end

In some EM’s, the handling of recursive procedure calls requires a more sophisticated form of variable trapping

in which each individual local variable within each procedure activation record is treated as a distinct entity and can
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be trapped separately. This is relevant in recursive procedure calls. This form of trapping can be implemented by

adding a field to the structure maintained for activation records:

record trapped activation(p, parent, children, trapped variables)

The variable reference detection is performed using this record type in an evaltree() invocation of the form:

evaltree(ProcMask ++ E Assign, trap callback, activation record)

and replacing the line

if member(trapped variables, &eventvalue) then f

in trap callback() with the line

if member(new.trapped variables, &eventvalue) then f

11.2.4 Detecting structure variable references

Icon structures have pointer semantics. Consequently, if two variables refer to the same structure, a trap on the name

of an element of one of the variables will not catch an assignment using the other variable name. In the code

L1 := list(2)
L2 := L1
L2[1] := ”foo”

a trap on variable L1[1] will not catch the assignment even though assignment is made to it. In order to trap structure

elements, the information provided in assignment events need to be mapped down to the underlying structure.

Unfortunately, name(v) for a structure variable produces only a type code letter and a string image of the sub-

scripting element. Without resorting to data intrusive techniques such as altering the internal representation of Icon

structures, monitors cannot tell from an assignment to an element which structure the element is in. Instead monitors

use the framework’s extensive access to the program state.

Given the information E Assign events provide about structure assignments, one way to trap structure elements

is to check if a structure assignment might be a variable trap, and then compare all structures that might have been

changed, after the assignment has been performed. In general, non-intrusive techniques for monitoring assignment

are inefficient: this particular approach imposes a cost on structure variable assignment proportional to the number of

trapped structure variables of the same type and index; if a large number of variables are to be trapped, data intrusive

techniques may be needed for performance reasons. An appropriate trapped variable technique has been developed

for SNOBOL4 [Hans78].

For every trapped structure variable, a triple consisting of the structure, the index or key, and the old value is

maintained.

record trapped structvar(struct, index, value)

These records are stored in a table, indexed by the string name that is reported by E Assign when the variable is

assigned.

Structure variable traps use not only E Assign events, but also the E Value events that are produced following

the assignment. If the structure indexed by the key does not still equal the old value, the assignment has taken place.

This technique is not capable of detecting assignments of the same value replacing itself in structures. The code is
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codes := E Assign ++ E Value
while EvGet(codes) do

case &eventcode of f
E Assign : f

if match(”T[” — ”L[” — ”R.”, &eventvalue) then
struct asgn := trapped structs[ &eventvalue ]

else struct asgn := &null
g

E Value : f
every tv := !nstruct asgn do

if tv.struct [ tv.index ] �=== tv.value then f
# the trapped structure element has been assigned
g

g
g

This technique works directly for tables and lists. It also works for record fields as long as the field is translated into

its corresponding index for insertion into the trapped structvar record.
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Chapter 12

Monitor Coordination and Communication

As illustrated in the preceding chapters, MT Icon and its execution monitoring interface make it easy to develop new

EMs. In this model, monitors are free to specialize in particular aspects of program execution, and the user selects

the aspects to monitor in a given execution. When multiple EMs come into play, the selection of which EMs to use,

the execution of those EMs, and their communication interface are the responsibility of a program called a monitor

coordinator (MC).

This chapter presents monitor coordination as another domain within the scope of the exploratory program devel-

opment features provided by the execution monitoring framework. After a general discussion of monitor coordina-

tors, an example monitor coordinator is presented that implements a generalization of the selective broadcast com-

munication paradigm advocated by Reiss [Reis90a]. Other paradigms of monitor coordination are possible within

the framework. In addition, other generalizations of selective broadcast proposed in the literature may prove com-

plementary to the one presented in this chapter [Garl90].

12.1 Some monitoring configurations

MT Icon execution events are always reported to the parent program that loaded the TP being monitored. This means

that the normal event reporting mechanism handles simple relationships such as monitoring a monitor or monitoring

multiple TPs (Figure 12.1).

EM EM

TP

TP TP
EM/TP

event request

event report

Figure 12.1: Monitoring a monitor; monitoring multiple TPs

97



98 CHAPTER 12. MONITOR COORDINATION AND COMMUNICATION

On the other hand, the parental event report relationship means that if more than one EM is to monitor a TP, the

TP’s parent must provide other EMs with artificial copies of the TP events; MT Icon’s event() function provides this

service. Figure 12.2 depicts a parent EM that forwards TP events to an assisting EM.

EM

EM

TP

event request
event report

artificial event

Figure 12.2: Forwarding events to an assistant

Monitor coordinators are specialized EMs whose primary function is to forward events to other client EMs. A

monitor coordinator is an event monitoring kernel that integrates and coordinates the operation of multiple stand-alone

tools. By analogy to operating systems, the alternative to a kernel design would be a monolithic program execution

monitor that integrates all operations into a single program.

Figure 12.3 depicts some relationships among MCs. Figure 12.3(a) is similar to Figure 12.2 and shows that a MC

is just an execution monitor that forwards events. Figure 12.3(b) shows the main purpose for MCs, the execution of

multiple EM’s on a single TP. Figure 12.3(c) shows a MC monitoring a MC.

MC configurations and logic generally are limited to and revolve around parent-child relationships. For example,

it is impossible to monitor events in a TP loaded and being monitored by another EM or MC unless that parent is

configured to forward such events.

TP EM TP

MC MC

MCEM

EM TP

event
report

(a) (b) (c)

EM EM

MC event
request

artificial
event

Figure 12.3: Monitor coordinators

Since event reports also transfer control, MCs also are schedulers for EMs, relinquishing the CPU to them by for-

warding events to them. In the simplest case the MC forwards an event and waits for the EM to request another event

before continuing; this scheduling is a form of cooperative multi-tasking. If the MC is the parent that loaded the EM in

question, it can request event reports (such as clock ticks) from the EM in order to preempt its execution. Since MCs

are special-purpose EMs, development of efficient MC designs falls within the scope of exploratory programming
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support provided by MT Icon.

12.2 Advantages and disadvantages of the MC approach

The three primary advantages of monitor coordinators are:

Modularity With a MC, monitors can be developed independently of one another and of the MC itself; they can run

as stand-alone monitors, directly loading and executing the program to be monitored. This allows monitors to

be debugged separately and puts “fire-walls” between monitors when they monitor the same program at the

same time.

Specialization Support for multiple monitors allows EMs to be written to observe very specific program behavior

and still be used in a more general setting. This in turn reduces the burden of generality placed on EM authors.

Specialization also simplifies the task of presenting information, since each EM uses its own window and the

user decides how much attention and screen space to devote to each EM.

Extensibility Extensibility refers to the ease with which new tools are added to the visualization environment.

Adding a new tool to run under a MC does not require recompiling or even relinking the MC or any of the

other visualization tools.

Monitor coordinators do have disadvantages. The implementation of MCs poses serious performance problems

that require careful consideration. Although unsuitable for exploratory monitor development and experimental work,

a single monolithic EM provides better performance than a MC that loads multiple EMs.

The primary problem with MCs is the number of context switches among tasks; on some architectures, notably

RISC architectures such as the Sun SPARC, switching between coroutines is an expensive operation. Minimizing the

number of switches required must be a goal of most MC designs.

12.3 Eve, an execution monitor coordinator

Eve is an example of a MC that allows the user to execute one or more EMs selected from a list and forwards TP

events to those EMs that the user selects. The communication provided by Eve represents a generalization of the se-

lective broadcast communications paradigm, because EMs may change the set of events at any time during execution;

in Reiss’s FIELD system, tools can specify the set of events they are interested in only when they are started. Unlike

Forest’s generalization of selective broadcast in which dynamic control is achieved by placing a greater computa-

tional load on the coordinating message server, Eve maintains an extremely simple message dispatch mechanism and

passes policy changes on to the TP by recomputing the TP’s event mask whenever needed. By suppressing events as

early as possible, the higher performance required for execution monitoring is attained. This technique of continually

minimizing the set of events reported by the TP could be used in conjunction with a Forest-style policy mechanism

in the monitor coordinator if that were desired.

Eve is a cooperative multi-tasking scheduler. Figure 12.4 shows an image of Eve’s control window. On the left-

hand side are buttons that pause and terminate TP execution and a slider that controls execution speed. The main

area of the window consists of a configurable list of EMs, and for each EM a set of buttons allow the tool to be

controlled during TP execution. In the figure, two EMs are loaded and enabled. The source code for Eve is presented

in Appendix B.
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Figure 12.4: Eve’s control window

12.4 Writing EMs to run under Eve

Eve supplies events to client EMs using the standard EvGet() interface [Gris90b]. This section describes a few dif-

ferences between the stand-alone interface and the Eve environment. Note that programs written for the Eve envi-

ronment run without change or recompilation as stand-alone tools.

Client environment

After each EM is loaded, Eve initializes it with references to its event source (the Eve program itself) and the TP. The

former is necessary so that EMs yield control to Eve to obtain each event. The latter is provided so that the state of

the TP may be examined or modified directly by all EMs. These references in the form of co-expression values are

assigned to the keyword &eventsource and the global variable Monitored, respectively; the global variable Moni-
tored is declared in each EM when it links to the evinit event monitoring library.

Since under Eve &eventsource is not the TP, EMs should always use Monitored to inspect program state. For

example, to inspect the name of the current source file in the executing program an EM should call keyword(”file”,
Monitored) rather than keyword(”file”, &eventsource).

Aside from the fact that &eventsource is not Monitored under Eve, from a programmer’s standpoint, Eve’s

operation is implicit. Just as monitoring does not inherently affect TP behavior (other than slowing execution), within

the various EMs Eve’s presence normally is not visible; the EM can call EvGet() as usual.

General-purpose artificial events

Eve sends certain artificial events when directed by the user (in the Eve control window). These include the disable

and enable events discussed above, E Disable and E Enable. A tool can pass a second parameter to EvGet() in

order to receive these pseudo-events, for example EvGet(mask, 1). When an E Disable event is received, a tool is

requested to disable itself. Tools that do not maintain any state between events can simply shut off their event stream

by calling EvGet(’ ’, 1):

case &eventcode of f
# ... more frequent events come first
E Disable: while EvGet(’ ’, 1) �=== E Enable
g

Tools that require events in order to maintain internal consistency might at least skip their window output op-

erations while they are disabled. An E Enable event informs the tool that it should resume operation, updating its

display first if necessary.
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Monitor communication example

In addition to the use of artificial events for communication between Eve and other EMs, artificial events can be used

by EMs to communicate with each other, using Eve as an intermediary. For example, a line-number monitor such as

the one shown in Figure 7.1 is more useful if the user can inquire about a section of interest in the line-number graph

and see the corresponding source text. This functionality can be built into the line-number monitor, but since many

visualization tools can make use of such a service, it makes more sense to construct an EM to display source lines,

and use virtual events to communicate requests for source code display from other EMs.

Communication using Eve starts with the definition of an artificial event code for use by the communicating EMs.

Some of these codes such as E Disable are defined in the standard library, but in general EMs can use any artificial

event codes that they agree upon. In this case, an event code, E ALoc, is defined for artificial location display events.

Communicating EMs also agree on the type and meaning of the associated event value. In this case the associated

event value is an integer encoding of a source line and column number, similar to that produced by E Loc events.

The source-code display EM is similar to other EMs, except that it is not interested in TP events, but only in

E ALoc events. Its main loop is

while EvGet(’ ’, 1) do
if &eventcode === E ALoc then f

# process requests for source code display
g

Any EM that wishes to request source location display services sends an E ALoc event to Eve. Eve then broad-

casts this event to those tools that requested artificial event reports. The code to send a location request event to Eve

from within an EM is

loc := location(line, column)
event(E ALoc, loc, &eventsource)

12.5 Eve in operation

This section describes the primary techniques employed in Eve to obtain good performance. The key ideas are to

filter events at the source and to precompute the set of EMs to which each event code is distributed.

Different EMs require different kinds of events. After obtaining a list of client EMs to execute, Eve loads each

client. It then activates each EM for the first time; when the EM completes its initialization, it calls EvGet(), passing

Eve an event mask.

12.5.1 Computation of the minimal event set

Each time an EM requests its next event report from Eve, it transmits a cset event mask indicating what events it is

interested in. Eve could simply request all events from the TP, and forward event reports to each EM based on its

current mask. The interpreter run-time system is instrumented with so many events that this brute-force approach is

too slow in practice. In order to minimize the cost of monitoring, Eve asks the TP for the least set of events required

to satisfy the EMs.

From the event masks of all EMs, Eve computes the union and uses this cset to specify events from the TP. The

code for this union calculation is

unioncset := ’ ’
every monitor := !clients do

if monitor.enabled === E Enable then
unioncset ++:= monitor.mask
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Although every EM can potentially change its event mask every time it requests an event, constant recomputation

of the union mask would be unacceptably expensive. Fortunately, most tools call EvGet() with the same event mask

cset over and over again. Eve does not recompute the union event mask unless an EM’s event mask changes from

the EM’s preceding event request.

12.5.2 The event code table

The minimal event set described above greatly reduces the number of events actually reported from the TP. When

an event report is received from the TP, Eve dispatches the report to those EMs that requested events of that type.

The larger the number of EMs running, and the more specialized the EMs are, the smaller the percentage of EMs that

typically are interested in any given event.

Eve could simply test the event code with each EM’s cset mask with a call any(mask, &eventcode). This test

is fast, but performing the test for each EM is inefficient when the number of EMs is large and the percentage of EMs

interested in most events is small. Instead, the list of EMs interested in each event code is precomputed as the union

mask is constructed. These lists are stored in a table indexed by the event code. Then, after each event is received, a

single table lookup suffices to supply the list of interested EMs. For each enabled monitor, the code for union mask

computation is augmented with:

every c := !monitor.mask do f
/EventCodeTable[c] := [ ]
put(EventCodeTable[c], monitor)
g

12.5.3 Event handling

Eve requests three types of events whether or not any client EM has requested them: E Tick, E MXevent, and

E Error. Eve uses these events to provide basic services while execution is taking place; since these events occur

relatively infrequently they do not impose a great deal of overhead.

E Tick events allow Eve to maintain a simple execution clock on the control panel. E MXevent events allow Eve

to receive user input (such as a change in the slider that controls the rate of execution) in its control panel. E Error
events allow Eve to handle run-time errors in the TP and notify the user when they occur, allowing errors to be con-

verted to expression failure at the user’s discretion.

12.5.4 Eve’s main loop

Eve’s main loop activates the TP to obtain an event report, and then dispatches the report to each EM whose mask

includes the event code. Since this loop is central to the performance of the overall system, it is coded carefully.

Event dispatching to client EMs costs one table lookup plus a number of operations performed for each EM that is

interested in the event – EMs for whom an event is of no interest do not add processing time for that event. The code

for Eve’s main loop is:

while EvGet(unioncset) do f
#
# Call Eve’s own handler for this event, if there is one.
#
(n EveHandlers[&eventcode]) ()
#
# Forward the event to those EM’s that want it.
#
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every monitor := !EventCodeTable[&eventcode] do
if C := event( , , monitor.prog) then f

if C �=== monitor.mask then f
while type(C) �== ”cset” do f

#
# The EM has raised a signal; pass it on, then
# return to the client to get his next event request.
#
broadcast(C, monitor)
if not (C := event( , , monitor.prog)) then f

unschedule(monitor)
break next
g

g
if monitor.mask �===:= C then

computeUnionMask()
g

g
else

unschedule(monitor)
# if the slider is not zero, insert delay time

g

12.6 Interactive error conversion

Normally execution terminates when a run-time error occurs. Icon supports a feature called error conversion that al-

lows errors to be converted into expression failure. Error conversion can be turned on and off by the source program

by assigning an integer to the keyword &error. &error indicates the number of errors to convert to failure before ter-

minating the program; on each error the value of &error is decremented and if it reaches zero the program terminates.

A program can effectively specify that all errors should be converted by setting &error to a small negative integer.

The mechanism is limited in that it does not allow the user or the program to inspect the situation and determine

whether error conversion is appropriate: error conversion is either on or it is off.

Eve catches run-time errors in the TP and allows the user to decide whether to terminate execution, or convert the

error into expression failure and continue execution (Figure 12.5).

Figure 12.5: Eve’s interactive error converter

An E Error event occurs upon a run-time error. A monitor that requests E Error events is given control before

the error is resolved. Eve requests these events, presents the user with the error, and asks for an appropriate action.
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The code in Eve that does interactive error conversion is:

procedure eveError()
win := open(”Run-time error ” —— &eventvalue, ”g”)
write(win, ”Run-time error ”, &eventvalue)
write(win, ”File ”, keyword(”file”, Monitored), ”; line ”, keyword(”line”, Monitored))
write(win, keyword(”errortext”, Monitored))
writes(win, ”Convert to failure? ”)
if read(win)==”y” then

keyword(”error”, Monitored) := 1
close(win)

end
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Performance

In the absence of specialized hardware support, monitoring imposes significant performance overhead on TP execu-

tion. In practice, the user of the system usually is unable to observe execution behavior in any detail at the rate at

which it is generated by the monitoring system, and must frequently stop or slow down execution in order to inspect

details. Similarly, the more sophisticated the execution monitor’s analysis of execution behavior, the more overall

execution speed directly relates to time spent in the monitor. In light of these facts, performance considerations for

the monitoring framework are not as important as the quality and utility of the information provided by EMs.

Nevertheless, many of the systems discussed in Chapter 2 are reported to experience performance problems, espe-

cially tied to the rate at which information is extracted from the target program. Execution monitoring is useful only

if the performance of the implementation is fast enough so that the system can be applied successfully to medium and

large programs and solve real-world problems. Empirically, the framework developed for monitoring Icon programs

meets this criterion.

The purpose of this chapter is to measure the performance overhead associated with monitoring in MT Icon. Since

the general execution model may be relevant to the monitoring of other high-level languages, costs are provided for

separable components such as the implementation of multi-tasking and the interpreter instrumentation. The eval-

uation is concerned primarily with time measures, rather than space requirements; space has not been an issue in

practice.

The performance results provided in this chapter start with baseline measurements of the cost of multi-tasking

support and instrumentation, followed by measurements of the relative costs of monitoring different types of language

events. The chapter concludes with a note on the effect of CPU type upon the cost of monitoring, and a discussion

of the costs incurred by monitor coordinators.

13.1 Costs of multi-tasking and of interpreter instrumentation

The reference point for measurements presented in this chapter is the Version 8.10 Icon interpreter, which can be con-

ditionally compiled with no tasking or monitoring support, with multi-tasking, or with multi-tasking and monitoring

support.

The first cost to be considered is that of the multi-tasking implementation employed by MT Icon. The implemen-

tation is optimized for detailed monitoring in which many event reports take place and task switching is therefore

extremely frequent. In order to minimize the cost of the task switch, an extra memory reference is imposed when

accessing task-specific global variables in the run-time system. The overhead on these extra memory references is

insignificant compared with overall interpreter execution costs.

105
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Timings for the Icon benchmark suite [Gris90a] run on a Sun Sparcstation IPX under the Icon interpreter compiled

without and then with multi-tasking support are shown in the two leftmost columns of Figure 13.1 (the remaining

columns are discussed below). Generally the benchmarks’ execution differences under Icon and MT Icon are small

enough to fall within the margins of error in the measurements due to variations in machine load.

TP Icon MT Icon MT Icon with events ... with VM

concord 5.5 5.7 8.9 10.2

deal 6.6 6.6 8.0 9.1

ipxref 1.3 1.4 2.1 2.2

queens 8.1 8.2 12.4 13.2

rsg 8.2 8.1 11.5 12.8

Figure 13.1: MT Icon benchmark timings (seconds)

In addition to multi-tasking, execution monitoring depends on the presence of instrumentation added in-line to

the interpreter and run-time system code under conditional compilation. When compiled with instrumentation, the

interpreter performs tests to determine whether to report each event, even if monitoring is not being performed. The

column of Figure 13.1 labeled “MT Icon with events” gives Icon benchmark suite timings using an interpreter built

with monitoring instrumentation. Since instrumentation of virtual machine instructions imposes a significant cost all

by itself, the figures in the rightmost column show timings with virtual machine instructions included. Generally, the

presence of pervasive instrumentation increases execution time thirty to fifty percent even when it is not used.

This measure is independent of the co-expression model and the use of independently written and translated Icon

programs as monitors; it would be incurred due to the presence of the instrumentation even if entire execution mon-

itoring system including visualizations were tightly integrated into the Icon interpeter itself.

13.2 Relative costs of monitoring different language features

Some classes of events are much more costly to monitor than others. This is roughly proportional to the frequency

with which an event occurs. For example, garbage collection events occur very seldomly, so it costs very little to

monitor garbage collection events. Line number changes are far more frequent; virtual machine instructions are the

most common of all. The classes of events covered are memory allocations, assignments, type conversions, structure

accesses, procedure activity, built-in function activity, operator activity, string scanning activity, program source code

location changes, and virtual machine instruction execution.

Figure 13.2 gives benchmark suite event counts in the leftmost column, followed by percentages for each of the

major categories of events, and Figure 13.3 gives execution times for monitors that request those events but do no

computation of their own. The timings are generally proportional to the amount of work actually performed by the

computation, and not a direct function of any particular class of events. Generally, however, the more events moni-

tored the greater the slowdown imposed by monitoring. Comparison of Figures 13.1 and 13.3 shows that on a Sparc,

monitoring typically imposes an overhead of one order of magnitude for infrequent event categories, or two orders

of magnitude for virtual machine instructions, compared with execution under the standard Icon interpreter. Compu-

tations performed by the EM or EMs as they process events further slow TP execution.

With the exception of garbage collections, there are 1.18 events per virtual machine instruction on average, typ-

ically ranging from one (the virtual machine instruction event itself) to around twelve. The number of events that

occur per virtual machine instruction is not strictly bounded, since a garbage collection can result in a number of

events proportional to the number of data objects that survive collection in the block region.
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total # alloc assign conv struct proc func op scan loc VM instr

concord 3782971 1.7 4.9 20.5 0.2 0.2 9.1 8.8 1.8 8.2 44.6

deal 1963019 3.2 5.7 26.5 1.4 1.1 2.1 12.8 0 7.9 34.7

ipxref 1044476 0.6 1.7 21.1 3.4 0.5 1.3 18.9 0 8.7 43.8

queens 6835489 0.1 4.0 29.9 4.3 0.2 0 18.0 0 8.0 35.3

rsg 5367792 0.9 2.7 4.0 3.7 0 3.7 13.5 0 10.0 61.5

Figure 13.2: Total event counts and percent of events in each category

alloc assign conv struct proc func op scan loc VM instr

concord 33.2 72.4 225.3 14.6 14.5 107.1 107.8 34.7 114.7 386.2

deal 52.2 47.8 153.3 17.9 16.3 21.6 80.6 10.0 71.8 184.1

ipxref 4.5 8.1 63.4 12.4 4.2 6.5 56.1 2.6 41.4 102.6

queens 19.2 108.7 584.8 101.4 21.5 16.1 362.4 16.0 208.7 534.8

rsg 29.8 59.8 74.7 71.9 16.0 72.9 205.1 15.5 214.5 761.7

Figure 13.3: Execution times for no-op monitors by category (seconds)

For each virtual machine instruction in the TP, an EM potentially receives several event reports resulting in arbi-

trarily lengthy computations on its part. Since event reporting is built around the Icon co-expression context switch,

the CPU-dependent speed of the context switch operation compared with normal program activities is important in

determining the cost of using a multi-tasking model of execution monitoring instead of a one-process model. Fig-

ure 13.4. compares timings of ordinary operations, context switches, and event reporting on the Sun Sparcstation

IPX and an Intel 486 processor. The figures are the average from one million executions of each operation. The first

three columns give timings for the null operation, integer addition, and procedure call. The fourth column times the

Icon co-expression context switch, while the fifth column times the event reporting mechanism including its context

switch.

The first and third rows report timings taken using Icon’s built-in timing mechanism, while the second and fourth

rows give times observed by the UNIX shell time command. Although the Sparcstation performs almost twice as

fast as the i486 on normal computations, its advantage is greatly reduced for execution monitoring because its context

switch is very slow — the context switch executes a software trap that flushes register windows to memory. When

this system time is taken into account (adding the two figures given in each column of the second and fourth rows) the

i486 outperforms the Sparc by a factor of 4 for the co-expression context switch, and by roughly 50 per cent on the

event reporting mechanism. Of course, the Sparc’s performance advantage on the rest of the TP and EM execution

translates into faster execution overall.

CPU no-op i + j p(x) @x event()...EvGet()

Sparc (&time) 10.4 38.8 33.6 97.5 277.8

Sparc (u+s time) 10.2+0.1 39.4+0.4 33.6+0.2 79.5+93.5 222.0+113.0

i486/33 (&time) 19.5 63.8 58.5 78.0 363.7

i486/33 (u+s time) 11.7+0.2 38.2+0.2 34.9+0.1 46.5+0.1 235.2+1.6

Figure 13.4: Costs of various operations (microseconds, average)
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13.3 Limitations of graphics hardware and software

Experience has shown that in many program visualization applications, the window system software is not able to

perform window output at the rate at which it is produced by an EM; this is observed when monitors written using

asynchronous window system calls complete execution noticeably before animation stops in the monitor window.

For such applications, writing EMs in Icon instead of a lower-level language does not cost as much in terms of per-

formance as might be expected. In contrast, MT Icon is least suitable for EMs with complex graphics requiring sig-

nificant numeric computation, because such applications’ performance is less likely to be limited by window system

capabilities and because Icon is not oriented towards numeric applications.

13.4 Cost incurred by monitor coordinators

Although MC’s offer great flexibility, the use of a MC to execute multiple EMs instead of writing a single monolithic

EM imposes additional overhead, primarily increasing the number of task switches required. The MC Eve can be

used to illustrate this cost.

In the worst case, all EMs request a report for every event. Under Eve, if there are N tools then there are 2 * N +

2 task switches per event report. A monolithic EM would incur only two switches per event report, from TP to EM,

and from EM to TP. Eve therefore imposes 2 * N additional switches in the worst case.

In the best case, the event masks are disjoint and only one EM is interested in any event to be reported. In this

case Eve incurs four task switches per event report – twice as many as in the monolithic case. Since users typically

employ multiple EMs to provide information about a variety of aspects of program behavior, the expected normal

case is closer to this best case behavior than the worst case in which the EMs are all observing the same events.
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Conclusions and Future Work

MT Icon and its instrumentation provide a framework in which it is possible to take a program monitoring idea from

conception to implementation in a short period of time. The primary contribution in this framework is the exploitation

of coroutines and dynamic loading to provide EMs with program state information at the source level instead of at

the machine level.

14.1 Successes of the framework

The framework demonstrates the viability of:

� exploratory development of execution monitors, given suitable language support,

� a synchronous task model for the monitoring of programs written in high-level languages,

� application of monitors developed under the framework to obtain useful performance tuning information.

MT Icon’s execution monitoring interface has proven simple enough to be programmed even by novice Icon pro-

grammers. In one semester, students with no prior Icon programming experience were able to the framework in a uni-

versity course to construct sophisticated program visualization tools. Expert users can construct experimental EMs

in hours instead of days.

Exploratory monitor programming is of limited usefulness if it does not scale up to accomodate the development

of larger full-featured monitoring services. MT Icon allows the execution of multiple EMs on a single TP using a

monitor coordinator as an attractive alternative to monolithic all-encompassing tools such as traditional debuggers

and profilers. Performance degrades gracefully as tools are added.

Dynamic loading and synchronous, shared-address space tasks have proven to be a robust model in which TP

and EMs can co-exist. Task switching between TPs and EMs provides acceptable performance while minimizing the

impact of monitoring upon the behavior of the TP.

The implementation of dynamic loading and multi-tasking in MT Icon builds upon Icon’s implementation of co-

expressions. The execution monitoring framework is therefore portable to most of the platforms that Icon runs on

with the exception of personal computers with small memory sizes. The system has been run on a variety of UNIX

platforms as well as OS/2 2.0. Many of the more powerful EMs make extensive use of Icon’s graphics facilities; use

of graphics is a greater portability limitation than MT Icon and the execution monitoring interface.

The execution monitoring framework has been used to implement a variety of profiling tools for tuning perfor-

mance, such as tools that count the number times a given line or given procedure has been executed. Of particular

interest are language-specific tools that profile behavior that is not related directly to the program source code, but
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rather takes place in the run-time system, such as garbage collection or type-conversion. Such costs may not be read-

ily apparent to a programmer writing or reading the code.

One such profiler simply indicates in a small window whenever a garbage collection takes place. For normal

programs this monitor imposes little overhead and is unobtrusive, while programs that are exhibiting thrashing heap

behavior flash repeatedly, drawing attention to the problem. Upon observing such behavior, the user may be able to

adjust heap size parameters so that thrashing does not occur in future executions.

A more sophisticated profiler cross-references type-conversion information with program source locations and

applies simple heuristics to select locations where frequent conversions are likely to be unnecessary or redundant.

The user then can manually inspect the locations found to determine whether a simple modification can eliminate

the conversions. The redundant conversions profiler has resulted in speedups of 0-15 percent on real programs, with

useful results on programs written both by novice and expert users.

In addition to profiling tools, program tuning often results from the observation of behavior presented by more

general EMs. For example, inefficient structure manipulations can frequently be inferred by observing allocation

patterns or structure access activity, as in the nova tool example in Chapter 9.

Success in target program tuning suggests the related issue of language implementation tuning. MT Icon’s exe-

cution monitoring framework was not built with the objective of providing information for improving the implemen-

tation. Nevertheless, prior research in the monitoring and visualization of memory usage led to improved allocation

heuristics [Gris89], and observation of EMs under MT Icon also suggested improvements to the implementation. For

example, monitoring of list-creation events led to a change in list concatenation with the result that it is faster and al-

locates less space than before.

Instrumentation also can find problems in the implementation. Modifications to the implementation during the

construction of the Icon compiler at one point introduced a bug into the implementation of the built-in string analysis

function many(). The bug allowed many() to produce string indices beyond the bounds of the subject string. The

bug was observed in a string scanning EM, where position events appeared past the end of the subject string.

14.2 Limitations of the framework

Although the framework addresses the construction of monitors for a broad spectrum of program behavior, the tech-

niques it uses are of limited applicability to other languages, and the ability to monitor implementation behavior does

not extend into the realm of observing activity during garbage collection. In addition, there are inherent limitations in

the use of non-intrusive monitoring techniques: some kinds of debugging require intrusion into the target program,

and the framework is not oriented towards intrusive techniques.

The approach to execution monitoring presented here is not applicable to programming languages and systems

in which the implementor of the execution monitoring facilities does not “own” the implementation of the language.

Beyond access to source code, instrumentation of a language run-time system generally requires intimate knowledge

of the implementation and represents a major investment of effort. Because instrumentation is spread throughout the

code, it poses added maintenance problems in the implementation and must be added to the primary source if it is to

remain functional in future language updates and versions.

The technique of capturing program behavior via run-time system instrumentation is not appropriate for low-level

compiled languages, where instrumentation is more appropriately embedded in generated code via a preprocessor or

compiler modifications. Instrumentation of an interpreter is generally simpler and easier than modifying a compiler

code generator.

MT Icon’s dynamically loaded coroutines do not have ready equivalents in most other languages and would have

to be added, as they were to Icon, before the exploratory execution monitor development provided by MT Icon can

be realized. The implementation of a portable dynamic loading mechanism was much simpler for an interpreter than
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would be the case for a compiled language. In some cases, notably SmallTalk, the language has the requisite features

but the implementation may require added features such as separately-collected heap spaces before EMs can execute

without interfering with TP behavior.

Another limitation of the framework is in the area of garbage collection monitoring. The MemMon system is

able to provide very detailed information about Icon’s marking and compaction algorithms through a file-based event

stream [Gris89]. This information has proven useful in practice, but there is no way to safely report events during a

garbage collection in MT Icon. An event report causes transfer of control and execution in an EM. During a garbage

collection, TP data may not be in a valid format and if an EM were free to inspect it, system failure would result.

This is one inherent penalty in the one-process and thread models in which EMs directly access TP data through

pointers. Since this limits the monitoring of implementation behavior, rather than TP behavior, it is not an unaccept-

able loss. If the garbage collection algorithm is under study, a two-process model or file-based monitoring system

should be employed rather than the MT Icon task model.

14.3 Enhancements and future directions

The execution monitoring framework for Icon was motivated by a desire to explore new types of execution monitors,

particularly program visualization tools. The framework is an enabling technology and its success should result in the

development of various experimental monitoring tools. In addition, some general problems in execution monitoring

have been observed that further work may mitigate or solve. A third future direction is the application of concepts

from this work to the monitoring of other languages. A fourth future direction consists of further tuning the framework

and integrating it with Icon compiler technology.

Update variation in simultaneous animations

As detailed in the chapter on system performance, some events occur very frequently compared with others. Since

graphic output is often a bottleneck in the present system, animations based on frequent events such as location

changes reduce or preclude the effectiveness of animations based on less frequent events.

Mitigating the effects of this problem is an open area for research. Clearly, the faster the overall execution is, the

faster the slowest animation in a group runs, but then faster animations’ motion will be too fast to be useful. One

possible way for monitors of frequent kinds of events to coexist with monitors of infrequent events is if the monitors

of frequent events sample their events at some rate determined by the less frequently updated monitors. For EMs that

do not maintain a model of TP state this may work; for EMs such as Algae that do maintain a model, it will not. The

best such EMs can hope to do is implement a reduced output mode in order to improve slower EMs’ animation rates

by improving overall execution speed.

Concurrency among monitors

Our monitoring framework is interactive and allows full debugging unlike most event-based monitoring and debug-

ging systems. This degree of interaction means that by design, the TP cannot continue its execution concurrently

while an EM is processing an event and/or user input.

On the other hand, EMs are typically independent of one another and if MT Icon were extended to allow true

concurrency on multiprocessor hardware, all the EMs interested in any given event could run concurrently. As more

and better EMs are developed, the growing motivation to run more EMs more of the time will create an interest in

shared-memory multiprocessors.
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Integrating monitors into coordinators

Our framework allows EMs to be compiled and executed separately, or in conjunction with one another using an

MC. Under an MC, a large number of task switches may take place with each event. Although this has not been

prohibitive in practice, the possibility of merging commonly used EM functionality directly into the MC and avoiding

the task switching overhead is attractive. For example, the interactive run-time error conversion and elapsed CPU

time features of Eve were first implemented as stand-alone EMs and later added to Eve.

Less commonly-used EMs can remain stand-alone and be loaded separately. The ability to add EM functionality

into an MC is also attractive in light of Icon compiler technology discussed below, in which the MC performance may

be substantially increased. Merging functionality could be accomplished relatively easily for EMs that use callbacks.

EMs that utilize their own flow of control to change states from event to event would require more effort to integrate.

Integrating the Icon interpreter and compiler

The MT Icon facilities are specific to the Icon interpreter and are not supported by the Icon compiler [Walk91]. On

the other hand, the Icon compiler offers significant performance improvements over the interpreter. The two systems

share the same run-time code and data representation, and there is no fundamental reason why an EM cannot be

compiled by the Icon compiler and linked with interpreter code so that it is able to load and execute interpreted Icon

programs. Since the vast majority of time spent in most monitoring situations is spent in the EM, the ability to execute

EMs at compiled speeds would dramatically improve monitoring performance. This improvement could apply to

monitor coordinators such as Eve without losing the flexibility of the current system, in which dynamically-loaded

EMs can be selected from a menu and run together under an MC.

More execution monitors

The purpose of the research presented in this book was to facilitate the development of new EMs. The collection of

EMs implemented so far in testing the framework is in no way exhaustive. Now that the framework is implemented

and has been proven useful, more EMs should be developed. As of yet relatively few EMs provide user-control over

the details of the information presented. Existing EMs are oriented towards general program understanding (and

particularly visualization) tasks. The development of exploratory execution monitors using this framework still has

large unexplored potential. EMs that provide more specific debugging facilities have yet to be written, and have

obvious utility. In addition, EMs have application areas in special contexts that have not been treated, such as the

education of novice programmers.

More types of events; finer selection controls

The event monitoring instrumentation in the present system is extensive, but in a language with as much built-in

behavior as Icon, it will almost always be possible to add more types of events. For example, no instrumentation is

currently available to monitor certain control structures such as alternation and limitation, to monitor the dynamic

hash table activity used in Icon’s built-in set and table data types, or to monitor I/O such as file and window activity.

The existing system has certain events that would benefit from further subdivision into different event codes.

Conversion events might usefully be coded by destination type the way allocation events are, for example. There are

other events for which finer selections than the event mask mechanism may be appropriate, similar to the selection

of virtual machine instructions of interest via opmask(). Generally these are just performance enhancements, and

the current system performs satisfactorily. Nevertheless, events for which this finer selection might be useful include

location events and operator and function events.
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Language support for trapped variables

The non-intrusive techniques for the monitoring of individual variables that are presented in Chapter 11 do not scale

well when large numbers of variables need to be monitored. For such applications, data intrusive language support

for trapped variables would provide a better alternative.

There are two primary operations on variables that are of interest: assignments and dereferencing operations. A

variable trap mechanism might insert a layer of indirection into a trapped variable reference; the intermediate block

inserted between the variable descriptor and its value would cause a side-effect such as an event to occur when the

variable was assigned or dereferenced. Trapped variables are data intrusive, but not problematically so, since the

intermediate block might be allocated in the EM rather than the TP.

The concept of a trapped variable is old [Gris72], and underlies such mechanisms as the SNOBOL4 variable

association facility [Hans78]. Adding trapped variable support to Icon is non-trivial but not impractical. Since the

technique is complementary to the approaches presented in this book, adding it would improve the overall capabilities

of the framework.

Preemptive scheduling monitor coordinators

No event mask is used when Eve sends an event report to an EM; the EM runs until it requests its next event. Under

some circumstances an MC may want to regain control from an EM that consumes excessive resources by monitoring

the EM, requesting event reports for clock ticks, for example. This would enable a MC to give priority to some EMs

over others, or ensure that all EMs receive regular CPU time in order to handle user interaction promptly.

14.4 Final thoughts

It is illustrative of the neglect of execution monitoring in the literature that no major programming language has been

designed with explicit linguistic support (as opposed to library packages and other extra-linguistic forms of support)

for monitoring; such support has at best come after the fact and is more often entirely missing. Without such support,

the literature is filled with articles on how to implement crude forms of monitoring using low-level techniques and

nonportable operating system and machine architecture capabilities and articles that present high-level abstractions

of monitoring with no demonstration of their application to practical problems.

MT Icon represents a successful grafting of support for execution monitoring onto an existing language. Being

an afterthought, its design and implementation are naturally somewhat constrained. The question arises: In a new

high-level language language, if linguistic support for execution monitoring is an explicit design goal, what language

features should be present? MT Icon suggests some of them (dynamic loading, synchronous tasks), but it may be

possible to conceive of better services than MT Icon provides, and a better execution model with which to perform

monitoring.
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Appendix A: Algae

This appendix presents the Icon source code for Algae, the example execution monitor introduced in Chapter 8 and

enhanced in Chapters 10 and 11.

#########################################################################

#

# File: algae.icn

#

# Subject: Program to show expression evaluation as “algae”

#

# Author: Clinton Jeffery

#

# Date: 5/1/92

#

#########################################################################

#

# Press ESC or q to quit

# Left mouse assigns specific (row,column) break ”points”

# Middle mouse assigns absolute depth and width break lines

# Right button erases assigned break ”points”

#

# When paused due to a break, you can:

#

# c to continue

# s to single step

# C to clear one point and continue

# ” ” to clear everything and continue

#

$include ”evheader.icn”

link evinit

link evutils

link options

link optwindw

link hexlib

link evaltree

global scale, # cell (hexagon or square) size

step, # single step mode

numrows, # number of cell rows

numcols, # number of cell columns

spot, # cell�fill procedure (hex or square)

mouse, # cell�mouse�locator procedure

Visualization, # the window

wHexOutline, # binding for drawing cell outlines

depthbound, # call�depth on which to break

breadthbound, # suspension�width on which to break

hotspots # table of individual cells on which to break
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record algae activation(node, row, column, parent, children, color)

#

# main() � program entry point. The main loop is in evaltree().

#

procedure main(av)

local codes, algaeoptions

#

# pull off algae options (don’t consume child’s options in this call

# to options()).

#

algaeoptions := [ ]

while av[1][1] == ”�” do f

put(algaeoptions, pop(av))

if algaeoptions[�1] == ”�f” then put(algaeoptions, pop(av))

g

EvInit(av) j stop(”Can’t EvInit ”,av[1])

codes := algae init(algaeoptions)

evaltree(codes, algae callback, algae activation)

WAttrib(”windowlabel=Algae: finished”)

EvTerm(&window)

end

#

# algae init() � initialization and command�line processing.

# This procedure supplies default behavior and handles options.

#

procedure algae init(algaeoptions)

local t, position, geo, codes, i, cb, coord, e, s, x, y, m, row, column

t := options(algaeoptions,

winoptions() jj ”P:S:�geo:�square!�func!�scan!�op!�noproc!”)

/t[”L”] := ”Algae”

/t[”B”] := ”cyan”

scale := nt[”S”] j 12

if nt[”square”] then f

spot := square spot

mouse := square mouse

g

else f

scale /:= 4

spot := hex spot

mouse := hex mouse

g

codes := cset(E MXevent)

if /t[”noproc”] then codes ++:= ProcMask

if nt[”scan”] then codes ++:= ScanMask

if nt[”func”] then codes ++:= FncMask

if nt[”op”] then codes ++:= OperMask
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hotspots := table()

&window := Visualization := optwindow(t) j stop(”no window”)

numrows := (XHeight() / (scale * 4))

numcols := (XWidth() / (scale * 4))

wHexOutline := Color(”white”) # used by the hexagon library

if /t[”square”] then starthex(Color(”black”))

return codes

end

#

# algae callback() � evaltree callback procedure for algae.

# Called for each event, it updates the screen to correspond

# to the change in the activation tree.

#

procedure algae callback(new, old)

local coord, e

initial f

old.row := old.parent.row := 0; old.column := old.parent.column := 1

g

case &eventcode of f

!CallCodes: f

new.column := (old.children[�2].column + 1 j computeCol(old)) j stop(”eh?”)

new.row := old.row + 1

new.color := Color(&eventcode)

spot(nold.color, old.row, old.column)

g

!ReturnCodes j

!FailCodes: spot(Color(”light blue”), old.row, old.column)

!SuspendCodes j

!ResumeCodes: spot(old.color, old.row, old.column)

!RemoveCodes: f

spot(Color(”black”), old.row, old.column)

WFlush(Color(”black”))

delay(100)

spot(Color(”light blue”), old.row, old.column)

g

E MXevent: do1event(&eventvalue, new)

g

spot(Color(”yellow”), new.row, new.column)

coord := location(new.column, new.row)

if nstep j (nbreadthbound<= new.column) j (ndepthbound<= new.row) j

n hotspots[coord] then f

step := &null

WAttrib(”windowlabel=Algae stopped: (s)tep (c)ont ( )clear ”)

while e := Event() do

if do1event(e, new) then break

WAttrib(”windowlabel=Algae”)

if n hotspots[coord] then spot(Color(”light blue”), new.row, new.column)

g
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end

#

# procedures for the ”�square” option, display Algae using squares

# instead of hexagons.

#

# Draw a square at (row, column)

procedure square spot(w, row, column)

FillRectangle(w, (column � 1) * scale, (row � 1) * scale, scale, scale)

end

# encode a location value (base 1) for a given x and y pixel

procedure square mouse(y, x)

return location(x / scale + 1, y / scale + 1)

end

#

# clearspot() removes a ”breakpoint” at (x,y)

#

procedure clearspot(spot)

local s2, x2, y2

hotspots[spot] := &null

y := vertical(spot)

x := horizontal(spot)

every s2 := n!hotspots do f

x2 := horizontal(s2)

y2 := vertical(s2)

g

spot(Visualization, y, x)

end

#

# setspot() sets a breakpoint at (x,y) and marks it orange

#

procedure setspot(loc)

hotspots[loc] := loc

y := vertical(loc)

x := horizontal(loc)

spot(Color(”orange”), y, x)

end

#

# do1event() processes a single user input event.

#

procedure do1event(e, new)

local m, xbound, ybound, row, column, x, y, s
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case e of f

”q” j

”ne”: stop(”Program execution terminated by user request”)

”s”: f # execute a single step

step := 1

return

g

”C”: f # clear a single break point

clearspot(location(new.column, new.row))

return

g

” ”: f # space character: clear all break points

if ndepthbound then f

every y := 1 to numcols do f

if not who is at(depthbound, y, new) then

spot(Visualization, depthbound, y)

g

g

if nbreadthbound then f

every x := 1 to numrows do f

if not who is at(x, breadthbound, new) then

spot(Visualization, x, breadthbound)

g

g

every s := n!hotspots do f

x := horizontal(s)

y := vertical(s)

spot(Visualization, y, x)

g

hotspots := table()

depthbound := breadthbound := &null

return

g

&mpress j &mdrag: f # middle button: set bound box break lines

if m := mouse(&y, &x) then f

row := vertical(m)

column := horizontal(m)

if ndepthbound then f # erase previous bounding box, if any

every spot(Visualization, depthbound, 1 to breadthbound)

every spot(Visualization, 1 to depthbound, breadthbound)

g

depthbound := row

breadthbound := column

#

# draw new bounding box

#

every x := 1 to breadthbound do f

if not who is at(depthbound, x, new) then

spot(Color(”orange”), depthbound, x)
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g

every y := 1 to depthbound � 1 do f

if not who is at(y, breadthbound, new) then

spot(Color(”orange”), y, breadthbound)

g

g

g

&lpress j &ldrag: f # left button: toggle single cell breakpoint

if m := mouse(&y, &x) then f

xbound := horizontal(m)

ybound := vertical(m)

if hotspots[m] === m then

clearspot(m)

else

setspot(m)

g

g

&rpress j &rdrag: f # right button: report node at mouse location

if m := mouse(&y, &x) then f

column := horizontal(m)

row := vertical(m)

if p := who is at(row, column, new) then

WAttrib(”windowlabel=Algae ” jj image(p.node))

g

g

g

end

#

# who is at() � find the activation tree node at a given (row, column) location

#

procedure who is at(row, col, node)

while node.row> 1 & nnode.parent do

node := node.parent

return sub who(row, col, node) # search children

end

#

# sub who() � recursive search for the tree node at (row, column)

#

procedure sub who(row, column, p)

local k

if p.column === column & p.row === row then return p

else f

every k := !p.children do

if q := sub who(row, column, k) then return q

g

end
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#

# computeCol() � determine the correct column for a new child of a node.

#

procedure computeCol(parent)

local col, x, node

node := parent

while nnode.row> 1 do # find root

node := nnode.parent

if node === parent then return parent.column

if col := subcompute(node, parent.row + 1) then f

return max(col, parent.column)

g

else return parent.column

end

#

# subcompute() � recursive search for the leftmost tree node at depth row

#

procedure subcompute(node, row)

# check this level for correct depth

if nnode.row = row then return node.column + 1

# search children from right to left

return subcompute(node.children[*node.children to 1 by �1], row)

end

#

# Color(s) � return a binding of &window with foreground color s;

# allocate at most one binding per color.

#

procedure Color(s)

static t, magenta

initial f

magenta := Clone(&window, ”fg=magenta”) j stop(”no magenta”)

t := table()

/t[E Fcall] := Clone(&window, ”fg=red”) j stop(”no red”)

/t[E Ocall] := Clone(&window, ”fg=chocolate”) j stop(”no chocolate”)

/t[E Snew] := Clone(&window, ”fg=purple”) j stop(”no purple”)

g

if *s > 1 then

/ t[s] := Clone(&window, ”fg=” jj s) j stop(”no ”,image(s))

else

/ t[s] := magenta

return t[s]

end

procedure max(x,y)

if x < y then return y else return x

end
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#########################################################################

#

# Name: evaltree.icn

#

# Title: Maintain activation tree

#

# Author: Clinton Jeffery

#

# Date: July 28, 1992

#

#########################################################################

#

# Usage: evaltree(cset, procedure, record constructor)

#

# Requires: MT Icon and event monitoring.

# the record type must have fields node, parent, children

#

#########################################################################

#

$include ”evheader.icn”

record evaltree node(node,parent,children)

global CallCodes,

SuspendCodes,

ResumeCodes,

ReturnCodes,

FailCodes,

RemoveCodes

procedure evaltree(mask, callback, activation record)

local c, current, child, p

/activation record := evaltree node

CallCodes := string(mask ** cset(E Pcall jj E Fcall jj E Ocall jj E Snew))

SuspendCodes := string(mask ** cset(E Psusp jj E Fsusp jj E Osusp jj E Ssusp))

ResumeCodes := string(mask ** cset(E Presum jj E Fresum jj E Oresum jj E Sresum))

ReturnCodes := string(mask ** cset(E Pret jj E Fret jj E Oret))

FailCodes := string(mask ** cset(E Pfail jj E Ffail jj E Ofail jj E Sfail))

RemoveCodes := string(mask ** cset(E Prem jj E Frem jj E Orem jj E Srem))

current := activation record()

current.parent := activation record()

current.children := [ ]

current.parent.children := [ ]

while EvGet(mask) do f

case &eventcode of f

!CallCodes: f
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c := activation record()

c.node := &eventvalue

c.parent := current

c.children := [ ]

put(current.children, c)

current := c

callback(current, current.parent)

g

!ReturnCodes j !FailCodes: f

p := pull(current.parent.children)

current := current.parent

callback(current, p)

g

!SuspendCodes: f

current := current.parent

callback(current, current.children[�1])

g

!ResumeCodes: f

current := current.children[�1]

callback(current, current.parent)

g

!RemoveCodes: f

if child := pull(current.children) then f

while put(current.children, pop(child.children))

callback(current, child)

g

else f

if current === current.parent.children[�1] then f

p := pull(current.parent.children)

current := current.parent

callback(current, p)

next

g

else stop(”evaltree: unknown removal”)

g

g

default: f

callback(current, current)

g

g

g

end
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Appendix B: Eve

This appendix presents the Icon source code for Eve, the example monitor coordinator presented in Chapter 12.

#########################################################################

#

# File: eve.icn

#

# Subject: Program to control multiple execution monitors

#

# Author: Clinton Jeffery

#

# Date: November 17, 1992

#

##########################################################################

#

# Version: 3.2

#

##########################################################################

#

# An execution monitor coordinator

#

$include ”evheader.icn”

link evutils

link options

link optwindw

link vidgets

link vbuttons

link vslider

link vstyle

link vtext

link vtools

link vstopsgn

global

cmd, # target program file name

clients, # list of client objects

unioncset, # union of client’s csets

root, # root of the widget tree

msg, # main message widget

enabled, # list of checkbox widgets

stopSign, # state of the stop sign widget

stopstate, # state of the stop sign widget

EventCodeTable, # table of EM’s to call for each event

loaded, # list of checkbox widgets

delayval, # amount of slowdown to insert per event

verbose, # switch to make Eve explain itself

candidates, # list of potential EM’s to run

ticksum, # number of clock ticks elapsed in TP
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EveHandlers, # Eve’s procedures for each event

EveBroadcastQueue # queue used for EM � EM communication

#

# main() � initializes TP, EM’s, Eve’s own tables, then enters the main loop

#

procedure main(av)

local optable, all, i, monitor,

arglist, C, eveoptions

optable := initializeTP(av)

if nverbose then write(”Eve: Monitoring ”, cmd, ” (”, image(&eventsource), ”)”)

all := optable[”all”]

initializeEMs(optable)

initializeEve()

if nverbose then write(”Eve: executing monitored program”)

mainLoop()

end

#

# mainLoop() � Eve’s main loop

#

procedure mainLoop()

local monitor, C

while EvGet(unioncset) do f

#

# Call Eve’s own handler for this event, if there is one.

#

(n EveHandlers[&eventcode]) ()

#

# Forward the event to those EM’s that want it.

#

every monitor := !EventCodeTable[&eventcode] do

if C := event( , , monitor.prog) then f

if C �=== monitor.mask then f

while type(C) �== ”cset” do f

#

# The EM has raised a signal; pass it on, then

# return to the client to get his next event request.

#

broadcast(C, monitor)

if not (C := event( , , monitor.prog)) then f

write(”unschedule #1”)

unschedule(monitor)

break next
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g

g

if monitor.mask �===:= C then

computeUnionMask()

g

g

else f

write(”unschedule #2”)

unschedule(monitor)

g

delay(6 < delayval)

g

set Vstrset coupler(stopstate, , ”done”)

stopsigndone(stopSign)

drawtime()

eveQuit()

end

#

# initializeTP() � initialize the target program

#

procedure initializeTP(av)

local optable, eveoptions

# EvGlobals()

delayval := 0

*av>0 j stop(”usage: eve [�f eveconfig] [�s] [�all] icon�command�line”)

#

# pull off eve options (don’t consume child’s options in this call

# to options()).

#

eveoptions := [ ]

while av[1][1] == ”�” do f

put(eveoptions, pop(av))

if eveoptions[�1] == ”�f” then put(eveoptions, pop(av))

g

optable := options(eveoptions, ”P:V!�geo:f:s�all!”)

/optable[”P”] := ”0,0”

/optable[”f”] := getenv(”HOME”) jj ”/.eve”

/optable[”L”] := ”Eve”

/optable[”T”] := ”helvetica,bold,17”

/optable[”H”] := 100

/optable[”W”] := 100

verbose := optable[”V”]

cmd := pop(av) j stop(”Eve: Icon program command�line argument is missing!”)

&eventsource := load(cmd, av) j stop(”can’t load ”, image(cmd))

return optable

end
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#

# intializeEMs � initialize the execution monitors

#

procedure initializeEMs(optable)

local all, i, titles, title, wantheight, maxwidth, arglist

all := optable[”all”]

candidates := getClientList(optable[”f”], all)

titles := getTitles()

&window := optwindow(optable) j stop(”no &window”)

maxwidth := calcWidth(titles)

wantheight := WAttrib(”fheight”) * (*candidates + 1) + WAttrib(”ascent”)

wantheight<:= 80

WAttrib(”width=” jj (maxwidth + 101 + TextWidth(”loadiconifyenable”) + 16))

WAttrib(”height=” jj wantheight)

wantheight<:= 240

# build buttons and sliders on Eve’s window

root := Vroot frame(&window)

attachClientControls(titles, maxwidth, all)

VResize(root)

# allow user to select EMs

while(pop(Pending()))

until stopstate.value �=== ”startup” do

run()

if wantheight �= WAttrib(”height”) then WAttrib(”height=”jjwantheight)

attachSlider()

while(pop(Pending()))

clients := [ ]

every i := 1 to * candidates do

if nall j nloaded[i].callback.value then f

arglist := titledparse(candidates[i])

put(clients, client(pop(arglist), arglist, i))

g

# the first time through we activate the clients with no useful value

if nverbose then write(”Eve: initializing ”, *clients, ” clients”)

every i := 1 to *clients do

clients[i].mask := @ clients[i].prog

end

#

# initializeEve() � initialize Eve’s own state variables

#

procedure initializeEve()

ticksum := 0

EveHandlers := table()

EveHandlers[E Tick] := eveTick

EveHandlers[E MXevent] := eveEvent

EveHandlers[E Error] := eveError

computeUnionMask()



128 Appendices

end

#

# calcWidth() � compute the width needed for Eve window, in pixels

#

procedure calcWidth(titles)

local maxwidth

maxwidth := 0

every maxwidth <:= TextWidth(!titles)

maxwidth <:= TextWidth(”Executing program ” jj cmd) + 4

maxwidth +:= TextWidth(”..”)

return maxwidth

end

#

# getTitles() � from a list of candidates, build a list of titles

#

procedure getTitles()

local titles, i

titles := list(*candidates)

every i := 1 to *candidates do

if candidates[i][1] == ”n”” then

candidates[i] ? f

move(1)

titles[i] := tab(find(”n””))

g

else

titles[i] := candidates[i]

return titles

end

#

# attachClientControls() � attach controls for each possible EM,

# as well as Eve’s stopsign and exit button

#

procedure attachClientControls(titles,maxwidth,all)

local fheight, y, dotwidth, descent, i, title, aborter

fheight := WAttrib(”fheight”)

descent := WAttrib(”descent”)

dotwidth := TextWidth(”.”)

loaded := list(*candidates)

enabled := list(*candidates)

every i := 1 to *candidates do f

y := i * fheight + descent

title := left(titles[i], maxwidth / dotwidth, ”.”)

while TextWidth(title)> maxwidth do title := left(title, *title � 1)

Vmessage(root, 101, y, &window, title)

loaded[i] :=

FixedCheckbox(all, root, 101 + maxwidth, y,
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&window, loadedChange, i, fheight)

FixedCheckbox(&null, root, 101 + maxwidth + TextWidth(”load”) + 8,

y, &window, iconicChange, i, fheight)

enabled[i] :=

FixedCheckbox(all, root, 101 + maxwidth + TextWidth(”loadiconify”) + 16,

y, &window, enableChange, i, fheight)

g

stopstate := Vstrset coupler(if /all then ”startup” else ”running”,,,,,,

[”startup”,”running”,”stopped”,”done”])

stopSign := stopsign(&window, stopstate)

aborter := stopsign(&window, Vstrset coupler(”abort”,,,,,,[”abort”]))

insert(Vrecset, ”stopsign rec”)

VInsert(root, stopSign, 10, 0, 80, 80)

msg := Vmessage(root, 101, 0, &window, ”Select client monitors”)

VInsert(root, Vline(&window, 101, fheight,

101 + TextWidth(”Select client monitors”), fheight))

Vmessage(root, 101 + maxwidth, 0, &window, ”load”)

Vmessage(root, 101 + maxwidth + TextWidth(”load”) + 8, 0, &window, ”iconify”)

Vmessage(root, 101 + maxwidth + TextWidth(”loadiconify”) + 16, 0,

&window, ”enable”)

VInsert(root, aborter, 0, 80, 100, 70)

end

#

# attachSlider() � attach slider for execution speed control

#

procedure attachSlider()

VRemove(root, msg)

Vmessage(root, 101, 0, &window, ”Executing program ” jj cmd)

Vvert slider(root, 48, 180, &window, speed, , XHeight() � 190, 10, 0, 100, 0)

Vmessage(root, 10, 175, &window, ”slow”)

Vmessage(root, 10, XHeight() � 20, &window, ”fast”)

VResize(root)

end

#

# speed() � set the speed from the slider value. A vidget callback.

#

procedure speed(foo, newdelay)

delayval := integer(newdelay ^ 1.5)

end

#

# run() � vidget event handler; yields control after every event by suspending

#

procedure run(e, x, y)

local return value
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if ne then f

if return value := VEvent(root, e, x, y) then suspend return value

else suspend

g

repeat f

e := Event()

if return value := VEvent(root, e, &x, &y) then

suspend return value

else suspend

g

end

#

# titledparse() � parse command lines with an optional string title

# at the front. The syntax of .eve file lines is

# [”title”] cmd [options]

#

procedure titledparse(s)

if s[1] == ”n”” then

s ? f

move(1)

tab(find(”n””))

move(1)

tab(many(’ ’))

return parse(tab(0))

g

else return parse(s)

end

#

# Trivial command line (string) argument ��> list conversion.

#

procedure parse(s)

local l, s2

l := [ ]

s ? f

while s2 := tab(upto(’ ’)) do f put(l, s2) ; tab(many(’ ’)) g

if *(s2 := tab(0))>0 then put(l, s2)

g

return l

end

#

# unschedule(EM) � remove EM from those that are receiving events.

#

procedure unschedule(EM)

local newclients, monitor

newclients := [ ]
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every monitor := !clients do f

if monitor �=== EM then put(newclients, monitor)

else write(”unscheduled ”, image(EM.name))

g

clients := newclients

computeUnionMask()

end

#

# computeUnionMask() � determine the set of events required by the

# union of all EM’s �� including Eve’s tick, error and user input needs

#

procedure computeUnionMask()

static tickset

local monitor, c

initial tickset := cset(E Tick jj E MXevent jj E Error)

EventCodeTable := table()

EventCodeTable[”noop”] := ””

EventCodeTable[E Tick] := [ ]

EventCodeTable[E MXevent] := [ ]

EventCodeTable[E Error] := [ ]

unioncset := tickset

every monitor := !clients do

if monitor.enabled === E Enable then f

unioncset ++:= monitor.mask

every c := !monitor.mask do

if c �=== E MXevent then f

/EventCodeTable[c] := [ ]

put(EventCodeTable[c], monitor)

g

g

if nverbose then write(”Eve: union mask ”, image(unioncset))

end

#

# getClientList(s) � read the .eve file and return a list containing

# its contents.

#

procedure getClientList(s, all)

local fin, line, candidates

candidates := [ ]

if ns then fin := open(s) j stop(”can’t open ”, s)

else if not (fin := open(getenv(”HOME”) jj ”/.eve”)) then f

fin := &input

write(”Enter a list of client command lines. A blank line terminates”)

g

while *(line := read(fin))>0 do

put(candidates, line)
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if fin �=== &input then close(fin)

return candidates

end

#

# During execution, Eve’s knowledge about EMs is stored in a list of

# records of type ”client rec”.

#

record client rec(name, args, eveRow, prog, state, mask, enabled)

#

# client() � create and initialize a client rec.

#

procedure client(args[ ])

local self

self := client rec ! args

if /self.name then stop(”empty client?”)

self.prog := load(self.name, self.args) j stop(”can’t load ”, image(self.name))

variable(”&eventsource”, self.prog) := &current j stop(”no EventSource?”)

variable(”Monitored”, self.prog) := &eventsource j stop(”no Monitored?”)

/self.state := ”Running”

/self.mask := ”

/self.enabled := E Enable

return self

end

#

# eveEvent() � event handler for E MXevent user input event.

# If the user pressed the stop sign, the stop sign changes into a green light;

# wait until the user presses the green light before continuing.

#

procedure eveEvent()

run(&eventvalue, &x, &y)

while stopstate.value === ”stopped” do

run()

&eventcode := ”noop”

end

#

# eveTick() � event handler for E Tick clock tick event.

#

procedure eveTick()

drawtime(ticksum +:= &eventvalue)

end

#

# eveError() � event handler for E Error TP run�time error event.

#
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procedure eveError()

local w

if keyword(”error”, &eventsource) = 0 then

#

# this error would be fatal, handle it

#

if w := open(”Run�time error”, ”x”,

”font=helvetica,bold,24”, ”lines=10” ) then f

write(w, ”Run�time error ”, image(&eventvalue))

write(w, ”File ”, keyword(”file”, &eventsource),

”; line ”, keyword(”line”, &eventsource))

write(w, keyword(”errortext”, &eventsource))

write(w, ”offending value: ”, image(keyword(”errorvalue”, &eventsource)))

writes(w, ”Convert to failure? ”)

if Event(w)===(”y”j”Y”) then

variable(”&error”, &eventsource) := 1

g

end

#

# drawtime() � write the current elapsed TP clock time

#

procedure drawtime(val)

/val := ticksum

GotoXY(10, 84)

writes(&window, ”T: ”, val)

end

#

# loadedChange()� vidget callback for the ”loaded” buttons

#

procedure loadedChange(i, val)

local arglist

if stopstate.value === ”running” then f

if /val then f

# trying to turn off a load while running? Sorry...

loaded[i].callback.V.toggle(loaded[i].callback, i, 1)

g

else f

arglist := titledparse(candidates[i])

write(”arglist:”)

every write(!arglist)

put(clients, client(pop(arglist), arglist, i))

enabled[i].callback.V.toggle(enabled[i].callback, i, val)

if /enabled[i].callback.value then enabled[i].D.draw off(enabled[i])

else enabled[i].D.draw on(enabled[i])

write(image(enabled[i].callback.value), ”,”, clients[*clients].enabled)

clients[*clients].mask := @ clients[*clients].prog

computeUnionMask()
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g

g

else f

enabled[i].callback.V.toggle(enabled[i].callback, i, val)

if /enabled[i].callback.value then enabled[i].D.draw off(enabled[i])

else enabled[i].D.draw on(enabled[i])

g

end

#

# enableChange()� vidget callback for the ”enable” buttons.

# Update Eve’s state, and inform client of disable/enable.

#

procedure enableChange(i, val)

local C, monitor

if stopstate.value �== ”running” then fail

val := if val === &null then E Disable else E Enable

every monitor := !clients do f

if monitor.eveRow === i then f

monitor.enabled := val

(C := event(val, , monitor.prog)) j (write(”failing”) & fail)

if monitor.mask �===:= C then

computeUnionMask()

g

g

end

#

# iconicChange() � vidget callback for the ”icon” buttons.

#

procedure iconicChange(i, val)

local cl, v, v2

val := if val === &null then ”window” else ”icon”

every cl := !clients do

if cl.eveRow === i then f

if not (v := variable(”Visualization”, cl.prog)) then

write(”Visualization: failed”)

if find(”window”,image(v)) then WAttrib(v,”iconic=” jj val)

else if type(v) == ”list” then

every v2 := !v do WAttrib(v2,”iconic=” jj val)

else write(”Visualization: ”, type(variable(”Visualization”, cl.prog))j”failed”)

g

end

#

# eveQuit() � TP execution completion handler

#

procedure eveQuit()

local c
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if nverbose then write(”Eve: Monitored program has terminated execution”)

every c := (!clients).prog do

cofail(c)

GetEvents(root)

end

#

# broadcast() � sent event to interested EMs

#

procedure broadcast(x, except)

/EveBroadcastQueue := [ ]

put(EveBroadcastQueue, x)

put(EveBroadcastQueue, except)

flush broadcast queue()

end

#

# flush events produced during EM � EM communcation.

# This code appears similar to Eve’s main loop.

#

procedure flush broadcast queue()

local c, C, x, except, monitor

while *EveBroadcastQueue> 0 do f

x := pop(EveBroadcastQueue)

except := pop(EveBroadcastQueue) j stop(”malformed broadcast queue”)

if x === ”quit” then eveQuit()

every monitor := (except �=== !clients) do

if C := event( , , monitor.prog) then f

if C �=== monitor.mask then f

while type(C) �== ”cset” do f

#

# The EM has raised a signal.

# Pass it on to all the others except the client.

#

put(EveBroadcastQueue, C)

put(EveBroadcastQueue, monitor)

if not (C := event( , , monitor.prog)) then f

unschedule(monitor)

if nverbose then

write(”Eve warning: broadcast of ”,

image(&eventcode), ” aborted”)

g

break next

g

if monitor.mask �===:= C then

computeUnionMask()

g

g

else f
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unschedule(monitor)

if nverbose then

write(”Eve warning: broadcast of ”, image(&eventcode), ” aborted”)

break

g

g

end



Appendices 137

Appendix C: Event Codes

The following list of event codes is provided in order to give a general indication of the extent of instrumentation

discussed in Chapter 6. More information on these codes is presented in [Gris92c].

Classes of events

AllocMask Memory allocation events
AssignMask Assignment events
TypeMask Events related to Icon data types
ConvMask Type conversion events
ListMask List operation events
RecordMask Record operation events
ScanMask String scanning events
SetMask Set operation events
TableMask Table operation events
StructMask Structure operation events (lists, records, sets, and tables)
ProcMask Procedure activity events
FncMask (Built-in) Function activity events
OperMask Operator activity events

Individual events

E Record Record allocation
E Lrgint Large integer allocation
E Real Real number allocation
E Cset Cset allocation
E File File allocation
E Tvsubs Substring trapped variable allocation
E External External allocation
E List List allocation
E Lelem List element allocation
E Table Table allocation
E Telem Table element allocation
E Tvtbl Table element trapped variable allocation
E Set Set allocation
E Selem Set element allocation
E Slots Hash header allocation
E Coexpr Co-expression allocation
E Refresh Refresh allocation
E Alien Alien allocation
E Free Free region
E String String allocation
E Integer Integer value pseudo-event
E Null Null value value pseudo-event
E Proc Procedure value pseudo-event
E Kywdint Integer keyword value pseudo-event
E Kywdpos Position value pseudo-event
E Kywdsubj Subject value pseudo-event
E Pid Symbol name
E Sym Symbol table entry
E Tick Clock tick
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E Loc Location change
E Opcode Virtual-machine instruction
E Aconv Conversion attempt
E Tconv Conversion target
E Nconv Conversion not needed
E Sconv Conversion success
E Fconv Conversion failure
E Lsub List subscript
E Rsub Record subscript
E Snew Scanning environment creation
E Sfail Scanning failure
E Ssusp Scanning suspension
E Sresum Scanning resumption
E Srem Scanning environment removal
E Spos Scanning position
E Assign Assignment
E Intcall interpreter call
E Intret interpreter return
E Stack stack depth
E Ecall Call of operation
E Efail Failure from expression
E Eret Return from expression
E Bsusp Suspension from operation
E Esusp Suspension from alternation
E Lsusp Suspension from limitation
E Eresum Resumption of expression
E Erem Removal of a suspended generator
E Coact Co-expression activation
E Coret Co-expression return
E Cofail Co-expression failure
E Pcall Procedure call
E Pfail Procedure failure
E Pret Procedure return
E Psusp Procedure suspension
E Presum Procedure resumption
E Prem Suspended procedure removal
E Fcall Function call
E Ffail Function failure
E Fret Function return
E Fsusp Function suspension
E Fresum Function resumption
E Frem Function suspension removal
E Ocall Operator call
E Ofail Operator failure
E Oret Operator return
E Osusp Operator suspension
E Oresum Operator resumption
E Orem Operator suspension removal
E Collect Garbage collection
E EndCollect End of garbage collection
E TenureString Tenure a string region
E TenureBlock Tenure a block region
E Error Run-time error
E Exit Program exit
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E MXevent monitor input event
E Comment Comment
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