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Preface

Program visualization is an emerging software engineering discipline in which program execution monitors are used
to improve human beings understanding of program run-time behavior. Program visualization tools are used in a
variety of important applications such as debugging, performancetuning, and the study of algorithms. Unfortunately,
progressin thisareaof systems software has been slow due to the difficulty of the task of writing execution monitors.

In high-level programming languages the task of writing execution monitors is made more complex by features
such as non-traditional control flow and complex semantics. Additionally, in many languages such as Visual Ba-
sic, Java, REXX, Perl, or the Icon programming language, a significant part of the execution behavior that various
monitors need to observe occurs in the language run-time system code rather than the source code of the monitored
program.

Thisbook presents aframework for monitoring Icon programsthat all ows rapid devel opment of execution moni-
torsin thelconlanguageitself. Monitorshavefull source-level accessto thetarget program with which to gather and
process execution information, without intrusive modification to the target executable. In addition, the framework
supports the monitoring of implicit run-time system behavior crucial to program understanding.

In order to demonstrateits practicality, the framework has been used to implement a collection of program visual-
ization tools. Program visualization provides graphical feedback about program execution that allows human beings
to deal with volumes of data more effectively than textual techniques. Ideally, the user specifies program execution
controlsin such tools directly in the graphics used to visualize execution, employing the same visual language that
is used to render the output. Some monitorsthat exhibit this characteristic are presented.

This book is organized into four parts. Part 1 is an overview of execution monitoring and program visualiza-
tion and a survey of the state of the art in the field. Part 2 presents the ALAMO execution monitoring framework;
ALAMO was developed in order to facilitate the construction of visualization tools. Part 3 demonstrates the utility
of the framework with code and screen images for a series of example visualization tools that observe many kinds
of execution behavior. Part 4 discusses the use of program visualization tools in a practical programming environ-
ment; relevant issues include tool integration as well as the performance of collections of monitors executing on real
programs.
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Chapter 1

| ntroduction

Thisbook presentsaframework for monitoring the execution of programswritten in the [con programming language
[Gris90c]. The motivation for this research is aneed for better tools to aid in the understanding of dynamic aspects
of program behavior during various phases of the software life cycle, including debugging, performance tuning, and
mai ntenance.

This chapter describes these tasks and defines a class of programs called execution monitors that aid human be-
ings understanding of program behavior. The chapter concludes with an overview of the rest of the book and its
contribution to the field of execution monitoring.

1.1 Understanding program behavior

Program understanding is a very general topic. Some program understanding systems convey very specific infor-
mation about a small portion of a program, such as the workings of a single algorithm. Others are concerned with
explaining the role that a program or a collection of programs play within alarger computational system. This book
addressesa common problem in between these two extremes: understanding the workings of asingle (possibly large)
program.

Persons who are confronted by a need to understand a program usually have only two alternatives. studying the
source code, or running the programto see what it does. Ideally, a program would be understandable using one or the
other of these methods; in practice, reading source code is impractically cumbersome for many programs, and con-
struction of test cases to explain program behavior is often a tedious and speculative undertaking. These difficulties
motivate the development of special programsthat are used to help explain the behavior of other programs.

Program understanding systems are used in a variety of applications. The most common motive for program un-
derstanding is debugging. Programsthat produce incorrect output or fail to complete their execution dueto bugsare
prime candidatesfor tools that assist program devel opers and maintainersin program understanding tasks. A debug-
ger isaprogram designed specifically to help with the debugging process. General-purpose program understanding
tools are also used to assist in debugging.

A second major application of program understanding systemsis performancetuning or performance debugging.
A correct, working program may be of limited usefulnessif its performanceis poor. Frequently a program’s authors
or maintainers can improve execution speed by using different programming techniques or modifying the program’s
algorithmsand datastructures. By providing an accounting of what resourcesthe programis using and which sections
of codeare primarily responsible, performancetuning systems can direct programmers’ effortsto wherethey are most
needed.

13



14 CHAPTER 1. INTRODUCTION

A third application of program understanding is software instruction and orientation. The internal workingsof a
program may be of special interest to students learning important algorithms, data structures, or programming tech-
niques, this situation frequently arises when learning a new language. Persons assigned to maintain or improve a
program written by someone else similarly need to orient themselves as to its general operation. In both of these
cases the persons involved may be entirely unfamiliar with the program source code, and can benefit from informa-
tion provided by program understanding tools before consulting source code, or without referring to it at all.

In addition to these established usesfor program understanding systems, program understandingtoolscan provide
languageimplementorswith val uable assistance in thetask of languageimplementation tuning. Program understand-
ing tools that provide information about the execution of programs also directly or indirectly provide information
about the language’simplementation. This information can be used to improve performance or address problemsin
the implementation.

1.2 Typesof program understanding tools

Programsthat provideinformation about other programs can be separated into two main categories based on the kind
of informationthey provide. Satic analysistoolsexaminethe programtext and, in conjunctionwith knowledgeof the
language, provide information about a program that istrue for all executions of that program independent of itsinput
[Dunn84]. Compiler code optimizers, pretty printers, and syntax-directed editors frequently employ static analysis
techniques.

In general, staticinformation cannot explain program behavior because behavior dependson input datain addition
to the program text. For example, the number of times through aloop may depend on the size of an input file, or the
execution path through a conditional statement may depend on interactive user-input from a keyboard or mouse.

Dynamic analysis tools provide information about a specific program execution on a specific set of input data
[Dunn84]. Since dynamic analysis involves extracting information from a running program rather than its source
code, these tools pose implementation problemsthat are very different from those found in static analysistools. An-
other name for a dynamic analysis tool is a program execution monitor; a program execution monitor is a program
that monitors the execution of another program [Plat81]. Program execution monitors complement static analysis
tools and provide execution information that static tools cannot, such as details about the program’s control flow, in-
termediate results that are computed, or depictions of internal data structures as the program runs. On the other hand,
static aspects of a program such as variable names often provide context crucial to the understanding of execution
behavior. Good dynamic analysistoolsincorporate static information in support of dynamic information. Execution
monitorsinclude the source-level debuggersand profilers commonly bundled with compilers and available on many
operating systems.

An execution monitor may either present information to the user asthe program executes (immediate or run-time
analysis), or it may present information at some later time such as after execution completes (post-mortemanalysis).
Run-timeanalyzersprovideimmediatefeedback and allow user direction of thekind and level of detail of theinforma-
tion monitored. In contrast, post-mortem analyzers may perform extensive computationsto condense the execution
information and present it in a useful way. The two methods are not mutually exclusive.

Run-time analysistools can further be categorized as passive or interactive. In apassive system, thetool presents
information to the user, but the user has little control over the activity. In an interactive system, the user may have
external control over what information is displayed, or even may be able to modify the computation being observed
or the data being processed.
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1.3 Scope of thisresearch

Thisbook presents aframework that facilitates the devel opment of superior execution monitors, particularly interac-
tive run-time analysistoolsfor very high-level sequential languages. It is not concerned with monitoring techniques
for paralldl, distributed, or real-time computing systems, although the monitoring of such systems doesrequire effec-
tive sequential monitoring techniques.

Thisbook discusses execution monitorswithin awell-defined context: the |con programming language. Iconisa
high-level procedural languagethat descends primarily from SNOBOL4 and SL5. A largearray of languagefeatures,
documented extensively elsewhere [Gris90c], make I con very attractive for avariety of general-purpose application
areas, notably text processing and rapid prototyping. Some of these features are

e afamiliar syntax reminiscent of Pascal and C,

e generators, goal-directed evaluation, and backtracking,
e arich set of built-in data structures and operations,

e advanced string scanning and text processing facilities,
e run-timetype checking and coercion,

e automatic storage management, and

e invocation mechanisms that include variable number of arguments, and argument defaults for built-in func-
tions.

Icon does not contain the concept of a statement found in most procedural languages. Instead, constructs such
as assignments and if-then-else’s that are statementsin other languages are expressions that can producevaluesfor a
surrounding expression in | con; for this reason conventional statement-level program monitoring is not well-defined
in Icon, and statement-oriented linguistic mechanisms are inadequate in common monitoring situations.

Similarly, the manner in which a program uses Icon’s built-in structured data types, scanning facilities, and run-
timetype coercion hasafundamental effect on program execution behavior [Gris924]. Theselanguagefeatures moti-
vate an orientation in execution monitoring that is more directed towards observing the language’ sbuilt-in“ primitive”
operations and run-time system behavior than would be appropriate for a lower-level conventional procedural lan-
guage; some of the techniques used for Icon are general, while others are not. For example, while the technique of
monitoring program behavior by instrumenting standard library calls is applicable to any language, in C or Pascal
there is no incentive to monitor activity during an addition operator to see what it does. In Icon, integer overflow
during addition results in the creation of an arbitrary precision value that is allocated from the heap and might go
undetected by a programmer reading the source code.

Within the context of the Icon language, this research addresses several problems that are common to any exe-
cution monitoring system. The primary tasks of an execution monitor are to collect information about a program’s
execution and present that information to the user in an understandable way. In addition to the inherent complexity
of these tasks, the main problems posed by execution monitoring in very high level languages are:

Volume — the large amount of datato be processed by the monitor code entails performance problems both in the
gathering of information and in the presentation of that information. Efficient gathering of informationinvolves
selecting therelevant informati onfrom the huge pool of availableprogrambehavior data. Efficient presentation
of information includes making effective use of the visual medium to communicate with the user, as well as
understanding the user’s powers of perception. Evenif it isgathered and presented efficiently, the large amount
of information inherent in monitoring tends to obscure items of interest.
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Intrusion — all monitoring systems alter the execution environment of the program under study; when the act of
monitoring a program changes the behavior under observation, it is called intrusion [Aral88, Henr90]. Henry
defines control intrusive and data intrusive methods of adding instrumentation to a program in order to moni-
tor its execution [Henr90]. Control intrusive instrumentation takes the form of code (such as a procedure call
to amonitor routine) embedded within the program. Dataintrusion arisesin object-oriented systemsin which
instrumentation is added by subclassing a class to be instrumented and overriding its access methods with ad-
ditional code calls monitor code in addition to calling the superclass method(s) to perform the normal com-
putation. The term intrusion has also been used to refer to the execution slowdown imposed by monitoring
[Aral88]; in real-time and concurrent systems this can render monitoring useless. Since |con’s application do-
main does not include real-time or concurrent programs, this form of intrusion is not considered in this work.
The effect of monitoring on execution speed is considered only so far as to establish framework viability on
“real” lcon programs.

Access — execution monitors often require extensive access to the variables and structures in the program being
monitored. If the monitor and program being monitored are distinct programs, operating system constraints
may restrict this access, or create performance problemsin this area, or both. From the point of view of the
execution monitor author, the access problem may also be refl ected by low-level or cumbersome notationsused
toread or write target program data. A good example of accessisthetraversal of pointersin datastructures: if
it requires operating system intervention or a notation other than that used in the target program source code,
the monitor has poor access to the target program and the task of writing monitorsis made difficult. Solutions
to the access problem, such as adding monitor code directly to the program being monitored, often aggravate
the intrusion problem.

These problems are universal in execution monitoring and appear repeatedly in the literature. While no general
solution for these problems exists, improved monitoring techniques may lessen their severity or solve them for prac-
tical purposes on real programs. Traditionally the implementation of execution monitors has been very difficult be-
cause the programmers implementing a new monitor necessarily spent a considerable effort addressing these three
problems. The difficulty of implementing monitorsin turn limits or effectively prevents efforts to improve monitor
technology by experimental means.

1.4 Contributions

Thegoal of thisresearchisto reducethedifficulty of constructing execution monitorsby devel oping apractical frame-
work in which monitor construction is relatively easy. The problems of volume, intrusion, and access motivate the
chosen solutions. The central thesis advocated in thisresearch is the following.

Source-language support for obtaining and presenting execution information is instrumental in the de-
velopment of exploratory monitoring capabilitiesin very high-level languages.

The framework developed in this research consists of source-language support for the central act of gathering
execution information. It addresses the problems of volume, intrusion, and access in the following ways.

Volume — Built-inlanguagefeaturesfor the central act of gathering execution information provide the performance
that isnecessary for effectivemonitorswritten inthe sourcelanguage, despitethe generally s ower speed of very
high-level languages. Dynamic control over the information flow from the program to the monitor is essential
for performance.
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Intrusion — Language support that gathers execution information from the run-time system eliminates the need for
code intrusion. Provision of separate memory allocation areas for the monitor and target program avoids data
intrusion.

Access — Source language support alows the execution of the monitor and target program in a shared interpeter
and providesfull source-level access of the monitor to the target program. The framework uses a synchronous
coroutine execution model within a shared address space, offering significant advantages without restricting
the kinds of monitorsthat the system supports.

In addition to these features that address core execution monitoring tasks, the framework providesfull separation
of the program and the various monitorsthat observeit. Taking the form of dynamicloading and avirtual monitoring
interface, this separation provides the ease of use that is necessary in order to provide exploratory programming ca
pabilities. The separation allows multiple monitorsto observe a program at the same time, and allows new monitors
to augment or enhance the capabilities provided by existing monitors.

The intent of the framework is to provide exploratory programming capabilities not just for expert monitor de-
velopers, but also for applications programmerswho are trying to understand their programs. Given this framework
and appropriate library support procedures, writing an execution monitor is no more difficult than writing other ap-
plications that involve communication between programs, and often is simpler than writing such applications.

This research is applicable to other high-level languages: It is relevant to most functional, logic, and object-
oriented languages. A good first test of the applicability of the techniques presented in this book to another language
is whether the language provides automatic storage management; if it does, the run-time system probably supports
other high-level features and makes up alarge portion of both the language implementation and the behavior to be
monitored. Theresults presented suggest that designers of such languages should consider integral support for mon-
itoring, rather than adding it on as an afterthought.

1.5 Overview of this book

Thenext two chaptersdescribe prior work in the areas of execution monitoring and fundamental principlesof program
visualization. Following that, the primary objectives of the framework are presented in Chapter 4. Chapter 5 and
Chapter 6 present the underlying mechanism developed to support |con execution monitoring, and the monitoring
instrumentation.

Chapter 7 through Chapter 11 give examplesof fundamental monitoring techniquesused by many execution mon-
itors, including data collection, presentation and user interaction techniques. These examples, while simple, demon-
strate that the framework makesit possibleto develop useful monitorsin an exploratory fashion. Chapter 12 discusses
monitor communicationand givesan exampleof acoordinator programthat allowsindependently-writtenmonitorsto
be run simultaneously. Chapter 13 includestiming measuresthat establish the practicality of the framework’s perfor-
mance. Chapter 14 summarizesthe work and discusses future research areas. Appendicesincludelarger source-code
examples.
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Chapter 2

Related Work

This book is related to existing research in two major domains. program execution monitoring, and program visu-
alization. The research being presented contributesto the first category, but it is designed to enable new research in
the latter category. Consequently, this chapter presents related work in both areas, with a primary emphasis and or-
ganization revolving around the execution monitoring aspects of the respective systems. Like this work, a number
of earlier systems contribute to both fields; such systems have been called graphical debuggers[Dewa86]. Existing
systems are characterized in terms of three aspectsthat contribute to usability:

infor mation sour ces and access methods by which monitors observe program behavior,
execution models that describe the relationship between the monitor and the program being monitored, and

user-interaction features such as the information the monitor provides to the user, how information is presented,
and the extent to which the user controls and directs monitor activity.

Several aspects of these issues are presented first, followed by discussions of existing systems.

2.1 Information sources and access methods

Several methods are used to obtain information about program behavior during execution. Information sources and
access methods determine the quality and quantity of the monitoring that can be performed, and are thus a primary
design factor in monitoring systems. The method used to obtain informationislimited by and often motivatesthe ex-
ecution model adopted by a monitoring system. The most common methods are run-time instrumentation [Lint90],
manual instrumentation [Brow84, Stas90], interpreter instrumentation [Bock86, Dewa86, Masn90], and instrument-
ing compilers[Henr90]. In addition to various methods of instrumentation, some systems provide additional access
to program variables and other execution information. Thisaccess, if it is present, often makesit possible to monitor
behavior not explicitly addressed by the instrumentation.

Run-timeinstrumentation refersto the modifi cation of the monitored program codeimmediately prior to or during
execution. Modifications often consist of overwriting an instruction of interest with ajump instruction or operating
system trap. In either case, control temporarily transfers to code that sends information to the monitor and/or allows
the monitor to query the program for information. The code is typically modified in selective areas of interest, and
execution proceeds at full speed in other areas.

Manual instrumentation is the insertion of arbitrary monitoring code by hand into the program being monitored.
This method is labor intensive, and requires an instrumentation effort for each program that must be monitored, and
additional effort when an instrumented program is modified.

19
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Interpreter instrumentation istheinsertion of monitoring codeinto the languageinterpreter instead of the program
being monitored. The instrumentation can then provide information about the behavior of any program executed by
the interpeter.

Instrumenting compilersinclude preprocessors and code generators that add instrumentation to the code as they
produce output. These systems have the potential of automatically instrumenting any program in the language that
the compiler recognizes. The codethey produceisusually much larger than the non-instrumented code and is usually
intended solely for use within the monitoring system.

2.2 Execution Models

Of the many models of the relationship between the monitor and the program being monitored used in existing sys-
tems, three are primary: the one-process model [Brow84, Lond85], the two-process model [Lint90, Sosi92], and the
thread model [Aral88]. Inthe one-processmodel, the monitor consistsof alibrary of procedureslinked to the program
being monitored or integrated into the run-time system. Thisisthesimplest, highest-performancearrangement, and it
has the advantage that the monitor has convenient access to the program being monitored. The one-process model is
codeintrusive, and errorsin the target program or monitor code can affect each other in critical ways. In addition, the
control flow logic within the monitor is somewhat inside-out, since the monitor is activated strictly through callbacks.

In the two-process model, the monitor is a separate process from the program being monitored. This reduces
or eliminates the problems of code and data intrusion, at the expense of greatly complicating monitor access to the
state of the program being monitored. Thisaccess problem makes monitor construction more difficult, and frequently
entails serious performance problems.

In the thread model, the monitor is a separate thread in a shared address space occupied by the program and pos-
sibly other monitors. This provides many of the benefits as well as some of the drawbacks of both the one-process
model and the two-process model, including the one-process model’s risk that program errorsin the target program
or monitor may affect each other and compromise the monitoring results. The thread model’s potential concurrency
provides dramatically improved performance for monitoring on shared memory multiprocessors for those forms of
monitoring that do not precludeit, such as profilers.

2.3 User-interaction facilities

A primary distinguishing characteristic in existing systemsis whether they present material astext, or employ graph-
icsto present information. A second distinguishing characteristic is whether a system updates information continu-
oudly during execution, or provides information during pauses in execution.

User-input facilities also vary in existing systems, from controls that can only start and stop execution to entire
languages that can be used to query about execution information during execution or while the monitored program
is stopped.

Inadditiontoitsusesin controlling therate of execution and in query facilities, user input in some systemsallows
the user to modify the program being monitored. This capability is useful in debugging sessions in which an error
may be repaired or an alternative value may be substituted.

An important class of execution monitors are those that employ program visualization techniques to provide in-
formation to the user. Program visualization refers to the use of graphicsto depict program control and/or data at a
particular instant, or to continuously update (animate) a graphic display to show dynamic behavior as program exe-
cution commences. Examples of such tools are the MemMon system for dynamic storage visualization [ Gris389] and
the Incense data structure visualization tool [Myer83].
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Thebest-known areaof program visualizationisthefield of algorithm animation. Some of the most famousexam-
ples are Ronald Baecker’s motion picture, “ Sorting Out Sorting” [Baec81], Marc Brown'sresearch systems BALSA
[Brow84] and ZEUS [Brow91], and John Stasko’s Tango [Stas90]. The original motivation for algorithm animation
was to explain an algorithm to an audience for educational purposes. Since then it has been applied to a number of
tasks including algorithm research. Within these contexts, existing systems have been successful in producing high-
quality animations of specific algorithms.

24 Run-timeinstrumentation systems

Representative run-time instrumentation systems include standard source-level debuggers as well as more general
profiling and monitoring systems that modify the code at run-time.

241 Dbx

Dbx is representative of conventional sourcelevel debuggers, the most common form of execution monitor [Lint90].
Source-level debuggersvary widely in their capabilities, but the features of dbx areillustrative of this class of mon-
itors:

e The basic interface is textual in nature. The user specifies both queries and execution controlsin a textual
command language.

e Execution proceeds, in the default case, just asif the target program were not under the control of the debugger.
I deally, the debugger does not perturb the execution at all. Compiling with “ debugging support” or turning off
compiler optimizationsin order to debug often perturbs the execution.

e Source code can be displayed asiit is executed, in a single-step mode.

e Execution can bedirected to proceed until aparticular point in the source codeisreached. Suchapointiscalled
a breakpoint.

e Breakpoints can be made conditional, testing a predicate (usually expressed in a subset of the source language)
in order to determine whether the debugger should be invoked. Unfortunately, conditional breakpointsare“ so
slow that using this capability is often not practical” [Lint90].

e Program variablescan be displayed along with their values; in the case of structures, elements can be displayed
and traversed.

e The procedure call chain can be displayed, including parameters passed at each level.

Dbx provides interactive control over program execution at a desirable level—the source language. However,
because of language features such as loops and recursion, execution behavior is not proportiona to the size of the
program source code. The program execution space defined by so-called “hand-simulation” of arunning programis
orders of magnitude larger than the program source code space. For this reason source-level techniques do not scale
well as program sizeincreases. Thereis simply too much datato monitor, even for common programs of modest size
and execution time.
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242 Dalek

Of the many source-level debugging systems, one that deserves further mention in comparison with this book is the
Dalek system [0Olss90, Olss91], an extension of the GDB debugger [Stal92]. Dalek is significant in offering both a
special-purpose programming language with which to specify debugging operations and a coarse-grained dataflow
approach for recognizing higher abstractions of execution behavior. This combination of features provides a very
powerful mechanism for characterizing program behavior of interest. Thisflexibility islimited primarily by the low
performance of the underlying UNIX operating system feature that supports debugging; the ptrace interface requires
two context switch operations for every word of data obtained by the monitor from the program being debugged
[ptr83].

24.3 Parasight

The Parasight system [Aral88, Aral89] uses a shared-memory thread model for execution profiling of parallel pro-
grams written in conventional languages such as C. In Parasight the profiler runs on a separate processor and thus
has a minimal impact on the execution speed of the program being observed. The thread model provides monitors
with complete access to program state. Parasight’s user interface includes a C interpreter. The system provides for
insertion of additional monitoring instrumentation at run-time by allowing code patching to be applied at any source
line number.

244 FIELD

The FIELD programming environment developed at Brown University includes an in-process monitoring facility in
which instrumentation is added by code patching [Reis90a, Reis90b]. FIELD provides monitoring in the context of
a general message-based programming environment in which a central message server forwards messages to multi-
ple tools using a selective broadcast model. Monitoring instrumentation is bound to application code at link time.
During execution, instrumentation code sends messages to the message server; the message server in turn forwards
the messages to those tools that have specified an interest in that type of message. Tools specify which kinds of mes-
sagesthey are interested in when they start executing; this configuration allows the message server to implement the
selective broadcast mechanism.

Reiss notes that this general model has significant advantagesin easing the integration of new toolsinto the en-
vironment. In addition to the benefits this provides during tool development, the generality of the model offersthe
advantage that execution monitoring tools coexist with other programming tools geared towards different parts of the
program development cycle, such as compilersand cross-referencing tools. Since the message model is based solely
on strings, communication of data structures is problematic and creates serious performance problems.

The Forest system employs a generalization of FIELD’s selective broadcast paradigm [Garl90]. In Forest, the
central message server maintains dynamic lists of policies regarding which tools should receive various events. Dis-
patching an event requireseval uation of the policiesassociated with that event. Thisaddsflexibility but placesgreater
computational requirements on the message server.

2.5 Manual instrumentation systems

Manual instrumentation is frequently employed in systems for algorithm animation. Although tedious, manual in-
strumentation also is employed during debugging when other debugging tools are ineffective or unavailable.
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251 BALSA

In the BALSA system an animator (often the program’s author) augments a well-understood program by inserting
callsto theanimation library at significant pointsin the algorithm to convey key aspectsto some audience[Brow88].
This code-intrusive approachis suitable for many applications, but Brown notesthat if the desired granularity isvery
detailed it may involve line-by-line annotations. In addition, the applicability of an algorithm animation system also
is limited if the system does not provide access to program state such as the values of variables, as in the case of
BALSA.

2.5.2 Smalltalk

London and Duisherg developed a kit for algorithm animation of Smalltalk programs [Lond85]. They emphasize
detailed views of smaller program examples, for use in industrial prototyping and simulation.

Although instrumentation is manual, in Smalltalk instrumentation can be added by subclassing existing classes
and adding monitoring code to various operations in a location that is textually distinct from the original program
code. Monitoring instrumentation can also be added by modifying the implementation of various operations along
the inheritance hierarchy used by the objects being monitored.

Londonand Duisberg’sanimation kit is quite suitable for the algorithm animationsit was designed to support, and
more generally for understanding tasksthat are concerned solely with correctness and not performance. Althoughin-
strumentation need not obfuscate the program source text, the techniqueis data-intrusive, since it significantly mod-
ifies program behavior in the memory heap. This reducesthe system’s usability in performance tuning applications,
since understanding memory heap behavior is often crucial to understanding performance.

253 Tango

The Tango agorithm animation system, developed at Brown University, emphasizes support for smooth transitions
between states in the visualization in order to improve the quality of the animations and reduce the difficulty with
which animationsare programmed [ Stas90]. Tango i ntroducesa path-transition paradigm based on locations, images,
paths, and transitions. In addition to smooth transition support, Tango also employs dynamic loading to simplify
animation design and shorten the time required to modify an animation.

Tango'sgoal of supporting exploratory development of algorithm animationsis noteworthy. Like BALSA, it em-
ploys manual instrumentation of the algorithms being animated; whileit is easy to create many animated views of an
algorithmin order to choose onethat is useful, visualizing new algorithmsand larger programsisamajor undertaking
requiring an understanding of the algorithm to be animated.

2.6 Interpreter instrumentation

Interpreter instrumentation is common for high-level languages, and it is used occasionally in debuggersfor lower-
level languages. Instrumented interpreters vary widely in the range of featuresthat are instrumented and the nature
of the monitoring facilities they provide.

26.1 SNOBOL4

The SITBOL implementation of SNOBOL 4 was extended to include an event association facility [Hans78] by which
built-in or user-defined functions were associated with significant program events. The program events available for
association consisted of variable references, statement executions, program interruptions, function calls and returns,
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and run-time errors. The SNOBOL4 event association facility is an early example in which monitoring capabilities
were implemented in the source-language, yet debugging code could be written separately and compiled in with pro-
grams when debugging was needed.

26.2 PECAN

PECAN is an integrated programming environment for an extended dialect of Pascal [Reis84]. It employs multiple
views of the static aspects of the program from a single underlying abstract syntax tree. PECAN also includes execu-
tion monitoring facilities and can display the current line being executed highlighted in a view of the program source
code. PECAN's data visualization capabilities include graphical views of program data structures at break points.
Reiss mentions plans to combine PECAN and BAL SA to enable program animations.

2.6.3 KAESTLE and FooScape

KAESTLE and FooScape provide a visualization system for the Lisp environment that includes tools for both data
and control visualization and provides both static and dynamic views [Bock86]. Their implementation is based upon
the FranzL | SPtracing system that providesfor callsto amonitoring system upon function entry and exit. Thissystem
does not allow monitoring of behavior internal to a function, nor can it visualize implicit behavior such as garbage
collection. The homogeneous nature of LISP with its smpler control structures and data types mitigates these limi-
tations.

2.6.4 Dewlap

Dewar and Cleary developed a Prolog debugger called Dewlap (debugger with logical applications) that featured
graphical displays of the Prolog execution tree [Dewa36]. They note that the simplicity of Prolog execution was
obscured in earlier Prolog debuggers that employed textual traces of execution. The debugger is written in Prolog,
and includes user-definable views of data. The authors observed that Dewlap istoo slow to use as a production tool
given the speed of their hardware and the interpretive Prolog implementation they used.

265 SeePS

In SeePS, Masnavi animated theinternal workings of aNeW'S PostScript interpreter by generating Display PostScript
windowsthat reflect the state of variousinternal operations[Masn90]. The size and complexity of the program being
animated (an entire language interpreter with hundreds of built-in primitives) take this project well beyond the realm
of algorithm animation.

SeePSwas not designed with construction of new visualizationsin mind; it was designed to animate the workings
of the language interpreter itself rather than the execution of the PostScript program being interpreted. Thisgoal is
ambitious as it stands, and since NeWS has sophisticated event handling and lightweight processes, it represents a
challenge to visualization.

Theinitial approach in SeePS was similar to the one taken in this book: NeéWS source code was augmented to
includeinteresting events; lightweight processes written in NeWS could then receive such events and generate visu-
alizationsfor them. Masnavi citesthe benefits of being ableto write the visualizationsin a higher-level language and
not have to recompile the interpreter in order to modify a visualization.

In Masnavi’s case, this approach was abandoned because it prevented the use of future, improved versions of the
NeWS interpreter, and because SeePS could not be distributed in such aform. For these reasons, Masnavi rewrote
SeePS entirely in NeWS. This prevents SeePS from visualizing implicit run-time system events; further, Masnavi
notes SeePS suffers from efficiency problems.
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2.6.6 Dynascope

Dynascopeisatool for directing the execution of C language programsusing event streams [Sosi92]. Event streams
are not at the source-level, but rather at the level of the machine instruction for an hypothetical processor '. Events
are produced during the interpretation of code by avirtual machine. Dynascope supports execution of mixed virtual-
machine and native-code programs and only the parts of a program under observation must be interpreted. In effect
the monitoring instrumentation and virtual-machine interpreter are linked into the program as an extensive addition
to the run-timelibrary.

Dynascope directors are arbitrary programs written independently from the hypothetical processor interpreter;
they runin aseparate UNIX process connected using stream-based i nterprocess communication. Thishasthedistinct
advantage of allowing various directors to be attached to and detached from the system dynamically. On the other
hand, it means that access to the full program state of the executing program is limited or non-existent.

2.7 Instrumenting compilers

Another alternative to instrumenting a program by hand or instrumenting an interpreter is to modify the trandation
process to automatically instrument the generated code to include execution monitor calls.

2.7.1 Voyeur

Voyeur is a system for visualizing the execution of parallel programs [Soch89]. It is noteworthy in that its authors
designedit explicitly to simplify thetask of learning how to build viewsin the system. Voyeur presumesthat each new
parallel program may requireanew visualization, and theref orethe system should be easy enough for programmersto
construct new views without the aid of an animator-specialist asisgenerally required in BALSA and ZEUS. In their
section on futurework the authors note that VVoyeur needs accessto the program state, support for multiple views, and
easier interface construction.

2.7.2 UW lllustrating compiler

The UW illustrating compiler (UWPI) visualizes the execution of programs for a subset of Pascal [Henr9Q]. It is
intended for an educational audience. It is not intended as a framework for exploratory visualization devel opment,
but rather, it provides afew fixed views of execution. View selection is performed automatically by static analysis of
the program, rather than being user-driven.

UWPI illustrations are driven by calls that are automatically inserted into the code during compilation. Since
insertion is automatic, UWPI contrasts with manually code-intrusive systems such as PECAN and BALSA. On the
other hand, since the code after analysisincludes calls to the illustration system, UWPI can be said to be implicitly
codeintrusive. First of al, a program must be specially processed before it can be viewed. Second, after it has been
so treated, the result does not run outside theillustration environment. Third, sinceillustration is driven by explicit
callsinthe code, the system cannot illustrate implicit run-time behavior, except that which is ascertained by the static
analysis component that inserts the illustrator calls.

273 SMLD

The debugger for standard ML, SMLD, is based upon extensive, automatic instrumentation of the program code dur-
ing compilation [Tolm92]. Compiler optimizations reduce the slowdown and code size blowup implied by the in-

I This processor is not a high-level virtual machine such as those used by Smalltalk, Prolog, or Icon, but rather it is a low-level architecture
typical of current RISC chips.
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strumenting compiler technique. Theinstrumentation supportsrelatively standard debugging features such as setting
breakpoints and inspecting the values of variables, but not altering program execution by modifying variables. An
extension of SMLD supports reverse execution by means of checkpointing.

2.8 Featuresin existing systemsthat facilitate monitor development

No existing system provides comprehensive support for exploratory execution monitor programming, but if several
existing techniques are combined carefully a suitable framework emerges. The key is to select information sources
and access methods, an execution model, and user interaction featuresthat provide ease of programmingwith accept-
able performance. |con’s execution monitoring framework can be viewed as one such configuration of monitoring
characteristics.

An instrumented interpreter such as SeePS, or an instrumenting compiler such as Voyeur is potentially an ideal,
fully-automated information source. An instrumented interpreter is easier to implement, but more importantly re-
moves the requirement that a program be recompiled in order for it to be monitored. Instrumentation must be exten-
sive or the monitoring capabilities provided will be limited, but extensive instrumentation posesits own performance
and intrusion problems. Programming constructs to minimize the impact of extensive instrumentation are essential
in dealing with the volume problem in a general -purpose framework.

A thread execution model such asthat of Parasight providescrucial access and performancefeatures. Since some
monitors modify the program being monitored, ease of programming implies that synchronous execution should be
the default or at least be easy to specify. Additionally, support for multiple monitors, such as the selective broadcast
model developed in FIELD, allows monitorsto specialize on specific aspects of program behavior and makes them
easier to write. If multiple monitors are to be easily selected and used, the thread model must also include dynamic
loading capabilities.

Intheareaof user-interactionfacilities, anideal environment would support advanced graphicsand user-interface
capabilities, including animation support such asthat provided by Tango. Thistopic isamost unrelated to execution
monitoring, but is very necessary in order to provide exploratory programming of state-of-the-art tools. One obser-
vation isthat interactive user-input is expensivein a highly animated monitor, and specific support in the framework
can mitigate this cost by integrating the user-input stream with the stream of information coming from the monitored
program.



Chapter 3

Program Visualization Principles

Note: This chapter isunder construction.

The previous chapter described many existing systems, including many that include visualization, but the primary
emphasis was on the execution monitoring models and techniques used to obtain information regarding execution
behavior. This chapter provides a brief overview of the ideasthat go into good program visualization efforts.

Visualization as a discipline evolved from the field of graphic design when computer screens became capable
of replacing printed paper. Scientific visualization is usually a process of producing a data map by superimposing a
complex data set onto a tangible real-world frame of reference. Program visualization is more abstract, since pro-
gram behavior above the hardware level does not map onto to real-world geometries. Instead, program visualization
evolved from the hand-written diagramsand notations used by programmersand computer scientiststo describetheir
structures prior to the advent of automated visual tools.

Graphic Design

The principles of graphic design form a basis for selection and evaluation of all visualization techniques. It is not

worth implementing elaborate graphics if the graphic design does not convey information clearly. Some of these

principles may be self-evident, such as abstracting away irrelevant detail; other principles are only learned through

experience. Some of the best references on graphic design are by Tufte [Tuft83] [Tuft90] and Bertin [Bert83].
Tufte's observations concerning graphic excellence are summed up by the following:

Graphical excellence is that which givesto the viewer the greatest number of ideas in the shortest time
with the least ink in the smallest space.

To achieve such excellencein designs, Tufte advocates five principles:

e Aboveall else, show the data
e Maximizethe data-ink ratio
e Erase non-data-ink

e Erase redundant data-ink

¢ Revise and edit
The reader is encouraged to go to Tufte’'s work for numerous examples of these principlesin practice.
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The starting point for most visualization effortsis to adapt awell-known design technique from printed graphics.
Visualization must include sound graphic design, but often has additional constraints. Some of the simplest graphic
designs are effective, easy to implement, and are familiar to users. Time series graphs, bar charts and pie charts, and
scatterplotsare all examplesof graphic designsthat are easily programmed but may need adaptation for visualization
purposes. Part 3 of this book includes many examples of such adaptation.

Visualization

Although program visualization plays by the same graphical design rules as other information presentation tasks, vi-
sualization of dynamic execution behavior is different from visualization of alarge, relatively static dataset in several
key ways. These differences motivate the techniques presented in the rest of the book. They may be summarizedin
the following basic principles:

animation - the ability to depict temporal relationships by animating dynamic behavior isacrucia tool. There are
trade-offs between visual sophistication and the associated computational cost. The most widely-applicable
techniques are onesthat can be animated on low-cost hardware.

metaphors - afamiliar or readily-inferred visual metaphor for the behavior being presented can lower the cognitive
load imposed on the user and increase the rate of comprehension. Although some metaphors are drawn natu-
rally from a specific application domain or a notation in common use among programmers, others are drawn
from nature or from nontechnical symbolsfound in daily life.

interconnection - understanding a complex piece of software entails an understanding of a variety of distinct be-
haviors and the relationships between them. For example, control flow, data structures, memory allocation
behavior, and input/output all have distinct but interrelated patternsin program execution. Visualizations that
consume most or al of the screen do not allow for simultaneous display of other forms of execution behavior.

interaction - visualizations are more effective when the user can steer them in appropriate directions. A graphic
design used in visualization should alow for natural interactive controls, an issue not addressed in designs
based in print media.

dynamic scale - the scaleimposed in the depiction of denseinformation on acomputer sceenisextreme, but in addi-
tion, the scales are highly dynamic. If the scale does not change dynamically, a visualization wastes space and
loses detail over alarge part of the execution being observed. On the other hand, changing scale too frequently
is both computationally expensive and disorienting. Logarithmic scales are one answer to this problem, but
they are not always appropriate and typically need to be tuned to the size of the dataset involved.

static backdrop - dynamic analysistoolsare often best interpreted when superimposed upon a context consisting of
information acquired by static analysis; the static information can provideamap that programmersarefamiliar
with. Examples of static backdrops are a program’s call-graph, or even its source code.
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Chapter 4

Overview of the Framework

This chapter presents an overview of the execution monitoring framework that has been added to the Icon program-
ming language. Theframework allowsthe user to execute agiven | con program under the observation of one or more
monitoring programs, also written in Icon. Since the models used and capabilities of execution monitoring systems
vary widely, this chapter serves to position this research with respect to existing systems.

The overview beginswith abrief inventory of the framework components, followed by an user’s-eye-view of the
system in the form of a standard execution monitoring scenario. The purpose of the scenario is to characterize the
execution monitoring process that is supported and to motivate some of the features and limitations of the system.

Following the execution monitoring scenario, the functional characteristics of each of the primary components of
the execution monitoring framework are described. Details of the use of these components and their implementation
are presented in subsequent chapters.

4.1 Framework inventory

Icon’s execution monitoring framework consists of the following components. These additions are characterized in
terms of their relationship to pre-existing Icon features. Several of these components are general -purpose language
featuresthat are useful independent of execution monitoring; such features, when already present in other languages,
may require modification if they were not designed to support execution monitoring.

Dynamic loading — The ability to load multiple programsinto a shared execution environment is provided in order
to adequately support monitor accessto target program data. Prior to thiswork, |con had no concept of dynamic
loading. Dynamiclinking isnot desirablein the context of execution monitoring, since the namesin the monitor
are distinct from those in the target program.

Synchronous execution — The monitor and target program execute independently, but not concurrently. This al-
lows the monitor to control target program execution using a simple programming model. |Icon already has a
language mechanism and data type that support synchronous execution of independent threads of execution;
the mechanism is dightly extended to support the relationship between monitor and target program.

Run-time system instrumentation — Extensive information about execution is available to the monitor from lo-
cations in the language run-time system that are coded to report significant events. This obviatesthe need for
control-intrusive techniques of obtaining information from the target program. It also offers higher perfor-
mance than target program instrumentation. The run-time system instrumentation is an extension and gen-
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eralization of an earlier special-purpose monitoring facility oriented around dynamic memory alocation and
reclamation [Gris89]. It also supercedes the language’s built-in procedure tracing mechanism [ Gris90c].

Event masks — Monitor control over target program execution is coupled with the concept of filtering [ElIsh89]
in a language mechanism called an event mask. Event masks provide a simple, dynamic model of execution
control that adequately meets performance requirementsin processing the high volume of execution informa-
tion. Eventsthat are of no interest to the execution monitor are never reported and do not impose unreasonable
execution cost. Event masking uses a set abstraction to describe the execution behavior that is of interest to
the monitor; an existing |con type that supports high-performance set operationsis employed to provide event
masking in a manner that is familiar to Icon programmers.

4.2 Standard execution monitoring scenario

Understanding the framework begins with a description of the monitoring activities that it supports. This scenario
presents the rel ationship between the execution monitor and target program in its simplest form; more sophisticated
rel ationships between the monitor and target program are discussed later in this chapter and in Chapter 12.

Preliminary definitions

target program (TP) — the Icon program under study, a transated Icon executable file.
Monitoring does not requirethat the TP be recompiled, nor that the TP’'s | con source code
be available, although some monitors make use of program text to present information.

execution monitor (EM) —an Icon program that collects and presents information from
an execution of aTP.

\\\\\\

that includes program output, execution time, and the precise sequence of actionsthat take

@ place during execution.

- program behavior —theresults of executing the TP. Behavior is meant in ageneral sense

user —ahuman user, capable of understanding the TP's execution behavior. The user must

know Icon in order to make good use of many EMs or to write anew EM. In general, the
user need not necessarily be familiar with the TP’'s source code.

Sour ces of relevant execution behavior

Execution monitoring begins with a user who has questions about the behavior of a TP (Figure 4.1).

Answers to important questions often may be found by following the execution as it proceeds through source-
language constructs, but in high-level languagesthe behavior in question often depends upon the language semantics
as implemented by the language run-time system (Figure 4.2; iconx.c denotes the aggregate of files that comprise
the I con language run-time system). For thisreason, many forms of execution monitoring provide useful information
evenif the TP ssourcecodeisnot available. Figure4.2 could befurther elaborated toincludebehavioral dependencies
on the platform on which Icon is implemented and run. Such dependencies are outside the scope of this book.
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Figure 4.1: Monitoring starts with a user, a program, and questions
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Figure 4.2: Behavior depends on the language, not just the program

Selecting or developing appropriate monitors

Rather than focusing on one monolithic EM that attempts to accomodate all monitoring tasks, the framework advo-
cates development of a suite of specialized EMs that observe and present particular aspects of a TP's behavior. The
user isresponsible for selecting an appropriate EM or set of EMs that address the user’s concerns.

If no available EM can provide the needed information, the user can modify an existing EM or write a new one.

Thisend-user devel opment of execution monitorsalsoisuseful when an existing EM providesthe needed information
but it is obscured by other information; existing EMs can be customized to a particular problem.

Running thetarget program

Theuser runsthe TP one or moretimes, monitored by aselection of EM s (Figure4.3). Genera -purpose EM’s provide
an overall impression of program behavior.

Obtaining more specific information frequently requires that the user interact with the EMs to control the TP's

execution, either to increase the amount of information presented during specific portions of execution or to stop

execution in order to examine details. In order to provide thisinteractive control, EMs must present execution infor-
mation as it happens during the TP's execution, rather than during a post-mortem analysis phase.
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Figure 4.3: EMs can answer questions about TP behavior

4.3 Framework characteristics

The preceding scenario depends on support for exploratory programmingin several areas: controllingaprogram’sex-
ecution, obtai ning execution information, and interacting with the user. In order to support thesetasks, the framework

provides synchronous shared-address multi-tasking and an event-driven execution control model. Thesefeaturesare
provided by extensionsto the |con language.

Multi-tasking

Thefirst and most basic characteristic of the framework is an execution model in which an EM is a separate program
from the TP— amulti-tasking model. In thismodel the EM viewsthe TP as a separately loaded coroutine [Marl80].
Thecoroutinerelationshipisthe primary meansby which EMs control TP execution and coroutinetransfersof control
arethe primary source of executioninformationfroma TP (Figure4.4). The precise nature of theinteraction between

the EM and TP (the arrowsin Figure 4.4) isamajor contribution of this research and is discussed further in Section
4.3.2 in this chapter and in Chapter 6.

transfer of control

Figure 4.4: EM and TP are separately loaded coroutines

Multi-tasking is provided by a set of facilities collectively named MT Icon. MT Icon has the following benefits
in an exploratory programming environment: the EM and TP are independent programs, the EM has full access to
the TP, and the mechanism accomodates multiple EMs. These benefits are described in more detail below.
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Independence

Because the EM and TP are separate programs, the TP need not be modified or even recompiled in order to be mon-
itored by an EM; neither does an EM need modification or recompilation in order to be used on different target pro-
grams. The separation of EMs and TPs also simplifies the writing of EMs because an EM need not be implemented
asaset of callback functions— it hasits own control flow. By definition, execution of tasks such as EMsand TPsis
synchronousin MT Icon. The TPisnot runningwhen an EM isrunning, and vice-versa. This synchronousexecution
allows EMs and TPs to be independent without introducing the complexity inherent in concurrent programming.

Another degree of EM and TPindependenceis afforded by separate memory regions; EMsand TPsallocate mem-
ory from separate heaps. For this reason memory allocation in the EM does not affect the allocation and garbage
collection patterns in the TP. Because Icon is a type-safe language with run-time type checking and no pointer data
types, EMs and TPs cannot corrupt each others' memory by accident; only code that contains explicit referencesto
another program’s variables and data can modify that program’s behavior.

Access

An address space is a mapping from machine addresses to computer memory. Within an address space, access to
program variables and data are direct, efficient operations such as single machine instructions. Accessing program
variables and data from outside the address space is slower and requires operating system assistance.

InMT lcon, programs such asthe EM and TP reside within the same address space. Thisallows EMsto treat TP
data values in the same way as their own: EMs can access TP structures using regular Icon operations, compare TP
strings with their own, and so forth.

Because of the shared address space, the task switching operation needed to transfer execution between EMs and
TPsisafagt, “lightweight” operation. Thisisimportant because monitoring requires an extremely large number of
task switches compared to typical multi-tasking applications.

Multiple monitorsand monitor coordinators

MT lcon’s dynamic loading capabilities allow simultaneous execution of not just a single EM and a single TP, but
potentially many EMs, TPs, and other Icon programsin arbitrary configurations. Although uses for many such con-
figurations can be found, one configuration merits special attention when many specialized EMs are available: the
execution of multiple monitorson asingle TP (Figure 4.5).

Figure4.5: Multiple EMs

The difficulty posed by multiple monitors is not in loading the programs, but in coordinating and transferring
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control among several EMs and providing each EM with the TP execution information it requires. Since EMs are
easier to write if they need not be aware of each other, this motivates construction of monitor coordinators (MCs),
special EMs that monitor a TP and provide monitoring services to one or more additional EMs (Figure 4.6). EMs
receiving an MC's services need not be aware of the presence of an MC any more than a TP need be aware of the
presence of an EM.

© @
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Figure 4.6: An Execution Monitor Coordinator

Execution control

The primary task of an EM isto collect data from a TP's execution. This task poses difficult coding problems and
is frequently a performance bottleneck. The nature of the data collection facilities available in a monitoring system
also define and limit the kinds of monitorsthat can be implemented.

Figure 4.7 depicts the system layers present in running an |con program under the Icon interpreter. The TP code
is executed by a virtual machine interpreter written in C, which in turn calls C language run-time support code to
perform various language operations [Gris36].

Icon Program
Icon Virtual Machine

Runtime System (C)

Hardware

Figure 4.7: Layersin the Icon implementation

Of these layers, the TP code, the virtual machine (VM), and the run-time support code are responsible for as-
pects of program behavior within the scope of thisresearch. The VM and the run-time system have been extensively
instrumented to produce thisinformation for EMs at the | con level without requiring instrumentation of the TP code.
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Figure 4.8: Event-driven control of TP

While the behavior observable from instrumentation of the VM is specific to the Icon interpreter and is of interest
primarily to language implementors, run-time system behavior is more general and of interest to normal Icon pro-
grammers. Thisbook is primarily concerned with monitors of run-time system behavior. Most of this behavior takes
place even in compiled versions of the TP, with the exception of behavioral aspects such as run-timetype checksthat
an Icon compiler can avoid when static analysis determines that they are unnecessary.

This instrumentation consists of locations within the run-time system at which control can be transferred and
information reported to the EM. When execution proceeds through one of these points in the run-time system, an
event occurs. Many events take place during even the simplest of Icon operations. When an EM resumes execution
of the TR, it explicitly specifies what kinds of events are to be reported; other kinds of events are not reported. The
kinds of eventsto be reported can be changed dynamically each timethe TP’ sexecutionisresumed (Figure4.8). The
processing of an event includes a test of whether the TP should transfer control to the EM and code to perform the
transfer only if the test succeeds.

Those events at which control istransferred produce event reports. When an event is reported the TP's execution
is suspended and execution commencesin the program that |oaded the TP — an EM. Event reporting supports data
collectionin two ways. An event report contains some information associated with the event itself, and in addition,
when the EM gains control it can interrogate the TP's variables and keywords for further information. When an EM
reguests another event report, the EM suspends execution and the TP's execution resumes where it |eft off.

4.4 Comparison with earlier systems

Several specific comparisons between the Icon monitoring framework and existing systems are useful. [con’s moni-
toring framework integratesideasfound in several previoussystems. In addition, it contributes dynamic event mask-
ing to control the volume of information generated and adds support for user input in animated tools. The end result
isasimplicity in obtaining execution information that achieves the framework goal of supporting exploratory pro-
gramming.

MT Icon’sthread model is synchronousand differsfromthat of Parasight inthat it isdesigned to simplify the pro-
gramming task required of monitor writers, rather than to take advantage of shared-memory multiprocessor hardware.
Parasight isbest suited for passive profiling taskswhere the target program and monitor code can run asynchronously.

Dalek [Olss90] provides a programming language with which to write customized monitors; Dalek’s language
is special-purpose and must be learned while the Icon monitoring framework provides the target program'’s entire
sourcelanguage, including sophisticated data presentation facilities. Dalek suffersfrom performance problemswhen
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accessing target program state due to its two-process model. |f Dalek’s implementation were modified to employ
shared memory, and it were coupled with some automated instrumentation system, it could provide support similar
to that provided by Icon’s monitoring framework.

FIELD supports multiple, independent tools that can simultaneously observe program behavior [Reis90b]. For-
est extends FIELD’s selective broadcast model, adding flexibility comparable to that provided by this framework
[Garl90]. The message server employed by FIEL D and Forest is geared toward building programming environments
that make use of existing tools such as compilersand editors. Thismandates a separate processmodel andisill-suited
to accomodating the volume of events generated by extensiveinstrumentation. M T I con does not attempt to integrate
existing tools, but instead facilitates the devel opment of new monitorsthat can take advantageof M T |con’sexecution
model to provide better information about target program behavior.

Novel features within Icon, the language under study, provided extra motivation for a general approach to ex-
perimental monitor development that may not be present in other languages. On the other hand, all programming
systems can benefit from improved execution monitor support and therefore stand to gain from new ideas that re-
sult from experimental monitor devel opment undertaken in the context of 1con, the expl oration made possible by this
framework.

The execution monitoring framework introduced in this chapter simplifies devel opment of execution monitorsin
several ways, while avoiding common pitfalls associated with monitoring. EMs developed in this system tend to be
very short compared with those in other languages, because they are devel oped in the source language rather than the
implementation language, because they have full accessto TP's program variables, and because EMs can specialize
on particular program behaviors of interest.

Shorter EMs are in turn easier to understand, to write correctly, and to enhance. Execution monitoring may not
be asimple task, but using this system, execution monitors are no more difficult to devel op than other programswith
substantial inter-program communication requirements. The next two chapters present the Icon language extensions
that comprise the execution monitoring framework.



Chapter 5

A Multi-Tasking Icon Interpreter

5.1 Introduction

Asmentioned in the preceding chapter, MT (Multi-Tasking) Iconisan Icon interpreter that allows multiple Icon pro-
gramsto be loaded and run simultaneously within a shared address space. MT Icon is not aconcurrent programming
language nor does it include specia support for multiprocessor hardware. Instead, MT Icon provides a task model
that supports both cooperative and preemptive multi-tasking without mandating a particular scheduling policy or al-
gorithm. MT lcon’sdomain isthat of high-level language support for programsthat benefit from or require atighter
coupling than that provided by inter-process communication; that is, programs that require extensive access to each
other’'s state.

MT Icon’s task model is based on Icon’'s co-expression facility. This chapter starts with a summary of co-
expressions, followed by sections that describe M T Icon language extensions and common applications. In addition
to its general multi-tasking execution model, MT Icon has features specific to the control and monitoring of loaded
programs by the program that loads them. The following chapter describes M T Icon’s monitoring featuresin detail.

5.2 Co-expressions

A co-expression in Icon is a first-class value that encapsulates the execution state of an expression [Gris90c]. Co-
expressionsare the expression-level equivalent of the coroutine facility found in other languages[Marl80]. A corou-
tineis aprocess, specified in terms of a procedure call in which the values of local variables are retained even when
control is not within that process, and in which execution upon entry continues from the point where control last left
that process. Co-expressions generalize coroutinesto allow independent threads of control to be created for arbitrary
expressions, not just procedure calls.

In addition to their role of providing coroutine semantics at a fine granularity of control, co-expressions were
developed as a control mechanism necessary to fully utilize the capabilities of |con’s generators [Wamp81]. Inlcon,
agenerator isan expression whose eval uation may produce morethan oneresult. Thisfeatureisextremely useful and
permeatesthe language, but agenerator’ sresultsare produced only at thegenerator’slexical location. Co-expressions
liberate generatorsfrom their lexical site by placing the expression in avalue from which results can be extracted one
at atime.

Creating co-expressions

A co-expression valueis created by the Icon control structure

39
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create expr

When a create expression is executed, expr is not evaluated; instead its evaluation is encapsulated as a first-class
data object that can be assigned to a variable, passed as a parameter, and so forth. In addition to explicitly created
COo-expressions, a single co-expression is created implicitly when program execution starts; it is equivaent to the
expression create main(). Program execution beginsin thisimplicit co-expression.

Co-expression transfer s of control

Results are obtained from a co-expression by activating it using the operation
[expr] @ coexpr

Activationtransferscontrol fromthe current co-expressionto the referenced co-expression; control remainsin that co-
expression until it producesaresult. If thereferenced co-expressionis subsequently activated, its execution continues
fromwhereit last produced a result.

If the expr is present in the activation expression, it is evaluated and itsresult is transmitted to the co-expression
as control istransferred. If expr isomitted, anull vaueis transmitted.

When each co-expression transfers control only by activating co-expressionsit has created or by implicitly pro-
ducing resultsfor its parent, the control graph formed by co-expressionsandtheir transfersof control isatree. Explicit
transfers of control by co-expression activation may result in an arbitrary control graph, generalizing co-expressions
to full coroutine semantics.

Co-expression keywor ds

In Icon, keywords are named global objects that may have special semantics associated with various control struc-
tures. Three built-in co-expression values are available to Icon programsin the form of keywords.

&main isthe co-expression for the invocation of the main procedure that initiates program execution.
&current isthe co-expression in which execution is currently taking place.

&source isthe co-expression that activated the currently executing co-expression.

These keywords and their use are further documented in [Gris90c].

5.3 MT Icon preliminary terminology

Beforedescribingthe M T Icon task model, afew definitions are needed. These definitions pertain to regionsof mem-
ory referenced by programs during execution.

Name spaces

A name space is a mapping from a set of program source-code identifiers to a set of associated memory locations
[Abel85]. Icon programs have a global name space shared across the entire program and various name spaces as-
sociated with procedures. Procedures each have a static name space consisting of memory locations shared by all
invocations of the procedure and local name spaces private to each individual invocation of the procedure.

When a co-expression is created, anew local name space is allocated for the currently executing procedure, and
the current values of the local variables are copied into the new name space for subsequent use by the co-expression.
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Program and co-expression state

An lcon program has an associated program state consisting of the memory associated with global and static name
spaces, keywords, and dynamic memory regions. Similarly, a co-expression has an associated co-expression state
consisting of an evaluation stack that contains the memory used to implement one or more local name spaces. Co-
expressionsin an Icon program share access to the program state and can use it to communicate.

54 Tasks. an extended co-expression model

The central concept in MT Iconisthetask; atask is the execution state of a program within the Icon virtual machine
[Gris86]. A singletask called theroot is created when theinterpreter starts execution. Additional tasks can be created
dynamically as needed.

A task consists of a main co-expression and zero or more child co-expressions that share a program state. At
the source-language level, tasks are loaded, referenced, and activated solely in terms of one of their member co-
expressions, the task itself isimplicit.

This definition of tasksisrelated to the concept of the same name commonly used in operating systems and con-
current programming languages. It differs, however, in certain fundamental respects. Icon isa sequentia language;
co-expressions in Icon provide a synchronous coroutine execution model, not a concurrent execution model with
implicit task switching and scheduling. Another way to view this is that unlike other languages such as Ada, MT
Icon providesthe task model as a mechanism for multi-tasking, but does not predefine the policy; matters such asthe
scheduling algorithm used and whether multi-tasking is co-operative or pre-emptive are programmable at the user
level.

Another useful comparison can be made between Icon tasks and Smalltalk processes. Both provide pseudo-
concurrency within the context of a sequential virtual machine. Since Icon tasks have their own dynamic memory
regions, their presence affects each other less than Smalltalk processes affect each other. For example, if onetask is
exhibiting thrashing heap behavior in which garbage collections are frequent, the other tasks in the system can ex-
ecute at full speed during the portion of time in which they are running, since they do not allocate memory out of
the thrashing task’s (full) heap. This minimal effect of tasks on each others' behavior is especially important in the
domain of execution monitoring.

5.5 Task creation

In MT Icon, atask can create other tasks. The M T I con function
load(s, L)

loadsan icodefile [ Gris86] specified by thefile names, createsatask for it and returnsa co-expression corresponding
to the invocation of the procedure main(L) in the loaded icodefile. L defaultsto the empty list. Unlike conventional
Icon command-line argument lists, the argument list passed to load() can contain values of any type, such as proce-
dures, lists, and tablesin the calling task.

Thetask being loaded is termed the child task, while the task calling load() is termed the parent. The collection
of all tasks forms atree of parent-child relationships.

5.6 Running other programs

A co-expression created by load() is activated like any other co-expression. When activated with the @ operator,
the child task begins executing its main procedure. Unless it suspends or activates &source, the child task runsto
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completion, after which control isreturned to the parent. Chapter 5 presents an alternative means of executingachild
with which the parent retains control over the child as it executes.

An example

This default behavior isillustrated by the program seqload, which loads and executes each of its arguments (string
names of executablelcon programs) inturn. Inthisprogramthevariablearguments isalist of strings passed into the
Icon program from the operating system. Each of these strings (extracted from the list using the element-generation
operator, !) ispassed inturntoload(). load() readsthe code for each argument and creates atask in which to execute
the loaded program; the tasks are then executed one-by-one by the co-expression activation operator, @. Thisis
ordinary Icon code; there is nothing special about this example except the semantics of the load() function and the
independent execution environment (separate global variables, heaps, and so forth), that load() providesto each task.

# seqload.icn

procedure main(arguments)
every @load(larguments)

end

For example, if three Icon programs whose executable files are named translate, assemble, and link are to be
run in succession, the command

seqload translate assemble link

executes the three programs without reloading the interpreter for each program.

5.7 Data access

Although tasks have separate sets of global variables and keywords, they reside in the same address space and can
share data. This data access applies to all first-class data objects in Icon, such as procedures and co-expressions.
Values can be transmitted from task to task through main()’s argument list, by means of explicit inter-task access
functions, or by use of event monitoring facilities described in the next chapter.

Accessthrough task argument lists

Thefollowing programtakesitsfirst argument to bean I con programto load and execute asachild, sortsitsremaining
arguments, and supplies them to the child program asits command line arguments (pop() and sort() are Icon built-in
functionsthat extract the first list element and sort elements, respectively):

procedure main(arguments)
@load(pop(arguments), sort(arguments))
end

Argument lists allow more sophisticated data transfers; the segload example presented earlier can be extended
to transmit arbitrary structures between programs using argument lists in the following manner. Asin segload, each
string naming an executable |con program is passed into load() and the resulting task is activated to execute the pro-
gram. In this case, however, any result that is returned by one of the programs is assigned to local variable L and
passed to the next program in the list via the second argument to load().
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globalnames(C) generatesthe names of C’s global variables.

keyword(s, C) produceskeyword s in C.

localnames(C) generatesthe names of C’slocal variables.

paramnames(C) generatesthe names of C's parameters.

staticnames(C)  generatesthe names of C’s static variables.

structure(C) generatesthe Icon valuesin C’s block region (heap). These values are
of varioustypes such as lists and tables.

Figure5.1: MT lcon inter-program access functions

# seqload2.icn
procedure main(arguments)
every program := larguments do
L := @load(program, L)
end

The net effect of segload2.icn is similar to a UNIX pipe, with an important difference: Arbitrary Icon values
can be passed from program to program through the argument lists. This capability is moreinteresting in substantial
multi-passtools such as compilers, where full data structures can be passed along from toal to tool instead of writing
out text encodings of the structuresto afile.

Inter-task access functions

Several of Icon’s built-in functions are enhanced under MT Icon to provide inter-task access to program data. For
example, the variable() function in MT Icon takes a co-expression value as an optional second argument denoting
the task from which to fetch the named variable. When called with this second argument, variable() is useful for
assigning to or simply reading valuesfrom another task’s variables. Inthis modified version of the seqgload example,
the parent task initializes each child task’s Parent global variable (if there is one) to refer to the parent’s &main
co-expression. A child task can then use this variable to determine whether it is being run stand-alone or under a
parent task. Inter-program access through the variable() function also is useful in inspecting values, especially at
intermediate points during the monitored execution of a TP as described in the next chapter.

# seqload3.icn
procedure main(arguments)
every arg := larguments do {
Task := load(arg)
variable("Parent”, Task) := &main
@Task

}

end

In additionto MT’s extensions of existing functions, several new functions have been added. Thesefacilitiesare
useful in execution monitoring and are used in examples in Chapters 7 through 12. Some of the inter-task access
functionsused in examplesarelisted in Figure 5.1. In thesefunctions parameter C refersto a co-expression that may
be from atask other than the one being executed. Functions that generate can produce more than one result from a
given call.

There are other inter-task access functions; [Jeff90] serves as areferencefor MT Icon programming.
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Chapter 6

Execution Monitoringin MT Icon

MT Icon allowsthe execution of multiplelcon programsin almost any configuration, including execution monitoring.
As motivated in Chapter 4, MT Icon characterizes monitoring as a specia case of multi-tasking execution in which
the nature and extent of inter-program communication warrants additional language support. This chapter describes
additional M T Icon facilities specifically added to support monitoring. After some relevant definitions, a descrip-
tion of the programming interface and underlying interpreter instrumentation are given. Additional programmer’s
reference material is available for these facilities [Gris92c].

6.1 Terminology

Theterminology used in discussing execution monitoring relates to events and the linguistic features associated with
them. These terms are used throughout the rest of the book.

Events

The primary linguistic concept added in order to support execution monitoring is an event. An event is the small-
est unit of execution behavior that is observable by a monitor. In practice, an event is the execution of a section of
instrumentation code that is capable of transfering control to the monitor.

This definition limits events to those aspects of program behavior that are instrumented in the language run-time
system or the program itself. The event model is only as useful or general asisthe instrumentation that extracts pro-
graminformation. If instrumentation does not exist for an aspect of program behavior of interest, it often is possible
to monitor the desired behavior by means of other events. In the present implementation, for example, no instrumen-
tation exists for file input and output. If an EM wishes to monitor 1/0O behavior, it can monitor function and operator
events and act on those functions and operatorsthat relate to input and output. A similar example involving the mon-
itoring of Icon’sbuilt-in string scanning functionsis presented in Chapter 10.

TheMT Icon definition of event al so differsfrom that of many monitoring systems, in which theterm event refers
to the basic unit of information received by the monitor [Bate89]. The distinction isthat in the MT Icon definition,
eventsoccur whether they aremonitored or not, and each event may or may not be observed by any particular monitor.
This definition is useful in the MT Icon environment, in which EMs are not coupled with the instrumentation and
multiple EMs can observe a TP's execution.

45
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Event codes and values

From the monitor’s perspective an event has two components. an event code and an event value. The code is gener-
ally a one-character string describing what type of event has taken place. For example, the event code C denotesa
procedure call event. Event codes all have associated symbolic constants used in program source code. For exam-
ple the mnemonic for a procedure call event is E_Pcall. These constants are available to programmers as part of a
standard event monitoring library described below.

The event value is an | con value associated with the event. The nature of an event value depends on the corre-
sponding event code. For example, the event value for a procedure call event is an Icon value designating the pro-
cedure being called, the event value for alist creation event is the list that was created, the event value for a source
location change event is the new source location, and so forth. Event values can be arbitrary Icon structures with
pointer semantics; the EM accesses them just like any other source-language value.

Event reporting and masking

The number of events that occurs during a program execution is extremely large — large enough to create serious
performance problemsin an interactive system. Most EMs function effectively on a small fraction of the available
events; the eventsthat an EM uses are said to be reported to the EM. An event report resultsin atransfer of control
fromthe TP to the EM. Efficient support for the selection of appropriate eventsto report and the minimization of the
number of event reports are primary concerns.

MT Icon supports dynamic event masking based on event codes, a dynamic variation of the filter concept found
in most event-based monitoring systems [Bate89, Elsh89]. Event masking allows the monitor to specify what events
are to be reported and to change the specification at run-time. When the program being monitored starts execution,
the monitor selects a subset of possible event codesfrom which to receiveitsfirst report. The program executes until
an event occurs with a selected code, at which time the event is reported. After the monitor has finished processing
thereport, it transfers control back to the program, again specifying an event mask. Dynamic event masking enables
the monitor to change the event mask in between event reports.

The use of one-character strings as event codes has a more practical value than its mnemonic merit: It allows
sets of codes to be efficiently and easily manipulated at the Icon level by the cset (character set) datatype. Csets are
represented internally by bit vectors, so a cset membership test is very efficient compared to Icon’s more generic set
data type, whose membership test is a hash table lookup.

When an event report transfers control from TP to EM, the two components of the event are supplied in the Icon
keywords &eventcode and &eventvalue respectively 1. The monitor then can act upon the event based on its code,
display or manipulateits value, etc.

6.2 Obtaining events

A standardlibrary isavailablefor use by EMsin order to provideameansof obtaining events. Thelibrary isdescribed
more completely in [Gris92c]. Programs wishing to use the standard library include a link declaration such as link
evinit.

L Those not familiar with Icon may view these keywords as special global variables that are given their values by the Icon interpreter rather
than by explicit user assignment. Keywords may be associated with a particular control structure (asin this case), and they may also be subject to
constraints not imposed on regular global variables, such as the constraint that &subject, the string scanning subject, must always be a string.
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Setting up an event stream

An EM first sets up a source of events; the act of monitoring then consists of aloop that requests and processes events
from the TP. Execution monitoring isinitialized by the procedure Evinit(x). If x isastring, it isused asan icodefile
namein acall tothe MT Icon function load(). If x isaligt, itsfirst argument is taken as the icode file name and the
rest of thelist is passed into the loaded function as the argumentsto its main procedure.

Thetypica EM, and all of the EMs presented as examplesin this book, follow the general outline:

link evinit

procedure main(arguments)
Evinit(arguments) | stop("can’t initialize monitor”)
# ... initialization code, open the EM window
# ... event processing loop (described below)
EvTerm()

end

Thistemplate is generally omitted from program examplesfor the sake of brevity.

EvGet()

Events are requested by an EM using the function EvGet(mask). EvGet() activates the co-expression value of the
keyword &eventsource to obtain an event. The TP executes until an event report takes place; the resulting code and
value are assigned to the keywords &eventcode and &eventvalue. EvGet() failswhen execution terminatesin TP,
Themask parameter is a cset used for event selection.

Selection of virtual machine instruction subsets

Requesting an event report for the execution of the next virtual machine instruction is performed through the usual
EvGet() cset using the mask E_Opcode. VM instructionsoccur extremely frequently; dozens of them can occur asa
result of the execution of asingleline of source code. Consequently, performanceisseverely affected by the selection
of al VM instruction events; the extent of thisimpact on performanceis presented in Chapter 13.

However, aparticular VM instruction or small subset of instructions may be of interest to amonitor. In that case,
the EM need not receive reports for al instructions. The function opmask(cs, P) allows EM to select a subset of
virtual machine instructions given by cs in P’'stask. Subsequent callsto EvGet() in which E_Opcode is selected
reports events only for the VM instructions designated by cs.

6.3 Instrumentation in thelcon interpreter

Thissection describestheinstrumentationused by M T Iconto produceeventsat various pointsin the run-time system.
Significant pointsin interpreter execution where transfer of control might be warranted are explicitly coded into the
run-time system with tests that result in transfer of control to an EM when they succeed. When execution reaches
one of these points, an event occurs. Events affect the execution time of the TP, execution is either slowed by a test
and branch instruction (if the event is not of interest to the EM) or stopped while the event is reported to the EM and
it processes information. Minimizing the slowdown incurred due to the presence of monitoring instrumentation has
been a focus of the implementation; inherent costs and framework performance are presented in Chapter 13.

There are several major classes of events that have been instrumented in the MT Icon intepreter. Most of these
events correspond to explicit elements within the source code; others designate actions performed implicitly by the
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run-time system that the programmer may be unaware of. A third class of event that has been instrumented supports
user interaction with the EM rather than TP behavior.
Explicit source-related execution events include:

e Program location changesin terms of line numbers and columns.

e Procedureactivity including calls, returns, failures, suspensions, and resumptions. |nadditionto these explicit
forms of procedure activity, events occur for implicit removals of procedure frames.

¢ Built-in functions and oper ationsincluding structure accesses and assignments. Like procedures, eventsare
produced for function and operator calls, returns, suspensions, resumptions, and removals.

e String-scanning activity including scanning environment creation, entry, change in position, and exit.
Implicit run-time system events include:

¢ Memory allocationsfrom the heap string and block regions, including size and typeinformation. Thisinstru-
mentation is based on earlier instrumentation added to I con for amemory monitoring and visualization system
[Gris89].

¢ Garbage collections including the storage region being collected (Icon has separate regions for strings and
data structures), the memory layout after compaction, and the completion of garbage collection.

e Type conversions performed on parameters to functions and operators. Information is available for conver-
sions attempted, failed, succeeded, and found to be unnecessary.

¢ Virtual machineinstructions executed by the [con virtual machine[Gris86]. The program can receive events
for al virtual machineinstructions, or an arbitrary subset.

e Clock ticksfor the passage of CPU time.

Most EMs, except completely passive visuaizations and profiling tools, provide the user with some degree of
control over the monitoring activity and must take user interaction into account. For example, the amount of detail or
the rate at which the monitor information is updated may be variables under user control. Since an EM’s user input
occurs only as often as the user presses keys or moves the mouse, user interaction istypically far less frequent than
eventsin TP. Evenif no user input occurs, polling for user input may impose asignificant overhead on the EM because
it adds code to the central event processing loop.

In order to avoid this overhead, the event monitoring instrumentation includes support for reporting user activ-
ity in the EM window as part of the TP's event stream. Monitor interaction events are requested by the event code
E_MXevent. An example of the use of monitor interaction eventsis presented further in this chapter in the section
entitled “Handling user input”. A complete list of event codes is presented in Appendix C in order to indicate the
extent of the instrumentation.

6.4 Artificial events

Asdescribed above, theMT | con co-expression model allowsinterprogram communicationviaexplicit co-expression
activationor implicit event reporting withintherun-timesystem. Artificial eventsare events produced by explicit Icon
code; they can be viewed at the language level as co-expression activations that follow the same protocol as implicit
events, assigning to the keyword variables &eventcode and &eventvalue in the co-expression being activated.
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There are two general categories of artificial events, virtual events meant to be indistinguishable from implicit
events and pseudo eventsthat convey control messagesto an EM. Virtual eventsare generally used either to produce
event reports from manually instrumented locationsin the source program, to simulate event reports, or to passon a
real event from the primary EM that received it to one or more secondary EMs. Pseudo events, on the other hand, are
used for more general inter-tool communications during the course of monitoring, independent of the TP's execution
behavior.

Virtual eventsusing event()

The MT Icon function event(code, value, recipient) sends a virtual event report to the co-expression recipient,
which defaults to the &main co-expression in the parent of the current task, the same destination to which implicit
events are reported.

There are times when a primary EM wants to pass on its events to a secondary EM. An example would be an
event transducer that sitsin between the EM and TP, and usesits own logic to determine which events are reported to
EM with more precision than is provided by the masking mechanism. A transducer might just as easily report extra
eventswith additional information it computes, in addition to those received from TP. A more substantial application
of virtual eventsis a monitor coordinator, an EM that coordinates and produces events for other monitors. Such a
tool is presented in Chapter 12.

Pseudo events for tool communication

EMs generally have an event-processing loop as their central control flow mechanism. The logical way to commu-
nicate with such atool isto send it an event. In order to distinguish a message from aregular event report, the event
code must be distinguishable. I1nthe monitoring framework thisis achieved simply by using an event code other than
aone-letter string, such as an integer. Since not all EMs handle such events, they are not delivered to an EM unless
it passes a second argument to EvGet(), such as EvGet(mask, 1).

The framework defines a minimal set of standard pseudo events, which well-behaved EMs should handle cor-
rectly; these pseudo events are described in Chapter 12. Beyond thisminimal set, pseudo events allow the execution
monitor writer to explore communication between EM s as another facility to ease programming tasks within the mon-
itoring framework.

6.5 Monitoring Techniques

The next few chapters demonstrate the potential of MT Icon’s execution monitoring facilities with examples of a
variety of monitoring techniques. The examples are actual program fragments (rather than pseudocode) that show
how to program variousforms of monitoringin MT Icon. The purpose of thisdemonstrationisto present M T Icon as
apractical language in which to devel op exploratory monitors. The examplesall follow a common outlineand use a
common set of facilities, which are described below.

Anatomy of an execution monitor

The execution monitoring interface presented in this chapter uses a form of event-driven programming: the central
control flow of EM is aloop that executes the TP for some amount of time, and then returns control to EM with
information in the form of an event report. The central loop of an EM typically looks like:
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while EvGet(eventmask) do
case &eventcode of {
# a case clause for each code in the event mask

}

Event-driven programming is more commonly found in programs that employ a graphical user-interface, where
user activity dominates control flow. Because monitoring employs a programming paradigm that has been heavily
studied, many coding techniques developed for graphical user interface programming, such as the use of callbacks
[Clar85], are applicableto monitors. Severa of the example EMsin subsequent chaptersuse acallback model to take
advantage of a higher-level monitoring abstraction available by means of alibrary procedure.

Handling user input
An EM that handles user input could do so by polling the window system after each event in the main loop:

while EvGet(eventmask) do {
case &eventcode of {
# a case clause for each code in the event mask

# poll the window system for user input

}

If the events being requested from the TP are relatively infrequent, this causes no great problem. However, the more
frequent the event reportsare, the more overhead isincurred by thisapproach relativeto the executionin TR, Intypical
EMs polling for user events may slow execution from imperceptibly to as much as 15%. Chapter 13 providesfigures
on the relative frequency of varioustypes of events.

Since the dowdown is afunction of the frequency of the event reports and not just the cost of the polling opera-
tion itself, techniques such as maintaining a counter and only polling every n event reports still impose a significant
overhead. In addition such techniques reduce the responsiveness of the tool to user input and therefore reduce the
user’s control over execution.

Monitor interaction events, presented earlier in this chapter, addressthis performanceissue by allowing user input
to be supplied viathe standard event stream produced by EvGet(). Since the E_MXevent event normally occurs far
less frequently than other events, it makes sense to place it last in the case expression that is used to select actions
based on the event code. Using this feature the main loop becomes:

while EvGet() do
case &eventcode of {
# other cases update image to reflect the event
E_MXevent: {
# process user event

}
}

EvGet() reports pending user activity immediately when it is available; the control over execution it providesis
comparableto polling for user input on each event.

Querying thetarget program for more infor mation

After each event report, EMs can use MT Icon’sinter-task data access functionsto query TP for additional informa-
tion, such asthe values of program variables and keywords. The access functions can be used in several ways, such
as
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e applying a predicate to each event report to make monitoring more specific,

e sampling execution behavior not reported by events by polling the TP for information unrelated to the event
reports [Ogle9q], or

¢ to present detailed information to the user, such as the contents of variables.

Visualization techniques

Program visualization employs the high-bandwidth processing capabilities of the human visual system in order to
mitigate the volume problem inherent in execution monitoring. Because of the amount of information most EMs
need to present, support for development of new visualization techniquesis essential to support the claim that EMs
developed in an exploratory manner can be useful and practical.

Thefundamental issuesin visualization are concerned primarily with effective use of the screen, maximizing the
amount of information displayed, its understandability, and the rate at which it is updated. Thorough treatment of
these topics is beyond the scope of this book; they are briefly mentioned here because they motivate many of the
examplesto follow.

Mapping to a geometry — Visualizations map the information to be presented onto a geometry for presentation on
the screen. In program visualization this often is difficult because the information described has no natural
geometry. The artificial geometry that is constructed may be unintuitive or even misleading to the viewer. In
order to avoid this, many EMs employ familiar visual metaphors.

Space limitations — Screen space limits the amount of detail that can be portrayed. If several views are presented
simultaneously, screen space in any one view may be limited to a few sguare inches. Given limited space,
scaling and miniaturization are important, but careful graphic design isjust asimportant.

Animation —Smooth transitionsbetween the states presented by the visual display areimportant for user orientation.
Animation implies real-time updates as the program is executing. The performance of the underlying window
system software limits the kind and quality of the views that can be animated.

There are trade-offs inherent in these issues. For example, the more complex the geometric mapping or scal-
ing/miniaturization technique, the less satisfactory the animation may be.

6.6 Icon graphics capabilities

Icon is best known as a string and list processing language, but it also includes graphics facilities [ Jeff91, Jeff93].
Visualization toolswrittenin | con present their output using the typewindow. Thissection describesaspectsof Icon’s
window system facilitiesthat areused in subsequent chapters. It presentsonly asmall subset; seethereferencemanual
[Jeff93] for a complete description of Icon’s graphics facilities.

Windows allow both text and graphic input/output to be freely mixed. While on-screen, windows may be moved,
resized, and iconified by the user or the I con program. Window exposure (also known as “redraw” or “paint”) events
are handled automatically and do not have to be handled by the programmer; the window contents are retained un-
til the window closes. If the keyword &window has a window value, it serves as a default window for all graphic
functions. The remaining examplesin this chapter assume &window is the window of interest.

Icon’s window interface uses a raster graphics model based on that of Xlib, the X Window System C language
interface[Gett88]. In thismodel, awindow isatwo-dimensional array of points, also called picture elements (pixels)
in the x- and y-coordinates starting from the pixel (0,0) in the upper-left corner and moving positive to the right and
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down the window. Several functions take pixel coordinates and draw geometric figures on the window. Pixels are
drawn with awindow’s current foreground color.
Someuseful functionsaregivenin Figure 6.1; other graphicsfunctionsare described asthey are used in examples.

EraseArea() clearsarectangular area

DrawArc() drawsan arc

DrawPoint() draws a point

DrawLine() drawsaline

DrawRectangle() drawsarectangle

DrawsString() draws astring

Event() returns the next user event

Fg() sets the color used in subsequent drawing
FillArc() draws afilled arc

FillRectangle() draws afilled rectangle

GotoRC() moves text cursor position

Pending() returnsalist with user events awaiting processing

Figure 6.1: Some useful 1con graphicsfunctions

Many visualization tools make extensive use of color in graphics operationsto encode information about related
data types or program operations. Such tools could change the output drawing color by repeated callsto Fg(), but it
is much faster to ask the window system to set up several window values that draw with different colors. The call
XBind(&window, "fg="|| s) createsawindow valuethat draws on thewindow using foreground color s. All graphics
functions may be prefixed with such awindow argument w to draw with a non-default color, for example

w_red := XBind(&window, "fg=red")
DrawPoint(w_red, X, y)

drawsared point at (X, y).
When an encoding of colorsis used in a visualization tool, atable is typically used to store a mapping from a
source domain such as string type names to window bindings with various colors.

6.7 Someuseful library procedures

Asmentioned in Section 6.3.1, several library proceduresare useful in EMs. This section presentsthose library pro-
cedures that are used in the examplesin the rest of this book; the rest are described in the evinit library reference
[Gris92(].

L ocation decoding and encoding procedures are useful in processing location change event values, but they are
also useful in other monitors in which two-dimensional screen coordinates must be manipulated. Besides program
text line and columns, the technique can variously be applied to individual pixels, to screen line and columns, or to
screen grid locations in other application-specific units.

In addition, various EMs use utility procedures. Figure 6.2 lists the library proceduresthat are used in this book.



6.7. SOME USEFUL LIBRARY

PROCEDURES

53

location()
vertical()
horizontal()

prog_len()

WColumns()
WHeight()
WRows()
WWidth()

encodes a two-dimensional location in an integer
returns the y/line/row component of alocation
returns the x/column component of alocation
returns the number of lines in the source code for TP

procedure_name() returnsthe name of aprocedure

returns the window width in text columns
returns the window height in pixels
returns the window height in text rows
returns the window width in pixels

Figure 6.2: Library proceduresused in this book
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Chapter 7

Following the L ocus of Execution

Perhaps the most basic monitoring act is following along in the source code as execution progresses. Locus of execu-
tion information is used in various tools such as source-code viewers and profilers. Frequently, location information
isused in combinationwith other execution information to inform the user of the specific source codelineand column
responsible for some behavior of interest.

This chapter presents simple example EMs that monitor location information and present it graphically. Thefirst
set of tools shows recent line number changes. These tools are primarily useful in detecting irregular control flow
patterns that merit investigation, and in detecting major phases in program execution. Following the line number
activity monitors, a graphical location profiler that displays cumulative location information is presented. Profilers
are primarily useful in performance tuning.

The examplesin thisand the next several chaptersare intended to demonstrate the broad capabilities of the moni-
toring framework. Actual source codeisgivenin order to demonstrate useful techniques and affirm the claim that the
framework supports an exploratory programming style. While the examples are often suggestive of monitors which
areuseful in their own right, they are necessarily kept ssmple for exposition. The development of more sophisticated
monitorsis an open-ended research domain for future work that this framework was designed to facilitate.

7.1 Location events

An event report with the code E_Loc occurs whenever the source line or column changes. Tracking the execution
locus minimally involves selecting this event code in the event mask that is passed to EvGet() along with any others
that may be of interest.

The value associated with achangein location is a 32-hit integer encoding of the line and column numbers. The
line number is given in the least-significant 16 bits, and the column number in the most-significant 16-bits.

7.2 A simpleline-number monitor

The code segment that foll ows outlines a simple line-number monitor that presents the sequence of source-codelines
on astrip chart. They coordinateis used to denote the line number; successive line numbers are plotted adjacently
along the x axis. Line numbersare scaled to fit the avail able screen space. A sample screenimageisshownin Figure
7.1. Thetool isanimated, showing thelast nline number changes, where nisthewidth of the monitor window. Asthe
animation progresses, ordinary sequential execution of successive expressionsappearsin thewindow asadownward-
doping line. Periodic repetitions of patternsin the window indicate the execution of loops.
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Figure 7.1: A simple line-number monitor

The EM starts by initializing the event monitoring system and opening a window on which to display its output.
Local variables x and y refer to screen coordinates; scale is used to adjust the y coordinate to fit within the bounds
of the window. Real numbersare used in the scaling arithmetic in order to use all of the available window space.

&window := open("LineMon”, "g”, "height=250", "width=250") |
stop(”"can’t open window")

scale := real(WHeight()) / prog_len()

x:=0

The program’s main loop reads a location event with a call to EvGet(), computes and scales the line number to
thewindow height, and plotsit in the window with acall to DrawPoint(). After the pointis plotted, x is advanced to
plot the next line number in the next pixel column to the right. When the plot reaches the right edge of the window,
the EM wraps around to the left edge. Because pixel columns are reused, arectangle one pixel wideis erased at each
iteration (EraseArea()’s height argument defaults to the entire window).

while EvGet(E_Loc) do {
y = vertical(&eventvalue) * scale
DrawPoint(x, y)
X = (x + 1) % WWidth() # advance x, wrapping from right to left
EraseArea(x, 0, 1) # clear pixel column for subsequent plot

}

Variations on the line number monitor are presented in Figure 7.2 and Figure 7.3. Figure 7.2 draws a segment
between the current source line and the preceding source line at each step. The effect emphasizeslarge jumpsin pro-
gram location that otherwise might not be noticed dueto extremely short visitsto certain locations. This phenomenon
occurs more frequently in procedures that generate multiple results from a single expression than it does in ordinary
procedural code. Figure 7.3 plots all the linesthat executein asingle CPU clock tick (a hardware-dependent value;
typically 4-20 milliseconds) in asingle column. Thisview compresses much morelocation information onto asingle
screen, but loses the ordering between specific location events within a clock tick.

7.3 A location profile scatter plot

Another location-monitoring example, presented bel ow, renders a continuously updated animated scatterplot of pro-
gram activity by source program line and column number. A sample screen image is presented in Figure 7.4. The
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Figure 7.2: Monitoring adjacent pairs of lines

Figure 7.3: Mapping CPU clock ticksto pixel columns

tool’s animation does not employ motion, but rather changesin color as execution commences. The colors are ren-
dered as grayscalesfor publication.

This EM maps source code columns and lines onto the x- and y- dimensions, one line or column per pixel. This
mapping may be useful or already familiar to the user becauseit isaminiaturized view of the programtext itself. Each
source location at which the TP executes is highlighted, with the number of times that location has been executed

given by a color progression on alogarithmic scale, from gray and blue through green and yellow and on to orange
and red for locations that have executed many times.

The EM startswith standard initialization code and then createsalist of bindingswith the variouscolors. A table,
counts, maintains the number of times execution has occurred at each location.
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Figure 7.4: A location profile scatterpl ot

&window := open(’locus”, "g”, "bg=white”, "width=80", "height=500") |
stop("can’t open window")
Color :=1]
every put(Color,
XBind(&window, "fg="||("gray”|"blue”|"green”|"yellow”|"orange”|"red")))
counts := table(0)

Withinitialization completed, the main|oop requestsalocation event, decodesitslineand column, and increments
the execution count for thelocation, stored in thetable as counts[&eventvalue]. A pointisthendrawninthewindow
with a color encoding the log of the location’s execution count. If the window height is not large enough to map the
source file lines onto pixels, a bar is drawn at the bottom of the window to indicate it has been clipped. A more
sophisticated version of this program scales the mapping from lines to pixels.

while EvGet(E_Loc) do {

y := vertical(&eventvalue)

X = horizontal(&eventvalue)

counts[&eventvalue] +:= 1

value := integer(log(counts[&eventvalue], 6)) + 1

if Context := Color[ value ] then
DrawPoint(Context, x — 1,y — 1)

if y > WHeight() then
FillRectangle(0, WHeight() — 4, 80, 4)

}



Chapter 8

Monitoring Procedure and Generator
Activity

Procedure activity is a major aspect of control flow, and it is especially significant in Icon because procedures can
generate more than one result. This chapter describes the monitoring of procedure activity in detail. The techniques
presented are important because they also apply to the monitoring of Icon’s built-in functions and operators as well
as string scanning environments. The examples given are intended to illustrate the framework’s capabilities and are
by no means the best or only way in which procedure activity may be portrayed.

In order to model the semantics of generators, most EM's maintain trees of suspended procedure activations that
may be resumed. After presenting techniques to maintain these trees, the chapter describes an EM that draws an
animated scatterplot of the number of results that each procedure produces; it quickly shows which procedures are
generators, and shows when the number of results a procedure is producing changes significantly. Knowing which
proceduresare generators can be important for students and program maintainersthat are unfamiliar with a program.
For programmersthat are familiar with the target program, knowing the number of results being produced per call to
agiven procedure can be valuable during debugging; it can confirm expected behavior and/or point out anomalies.

The chapter concludes with an EM that gives an abstract view of the actual tree of active and suspended proce-
dures; itisuseful for understanding the path that control flow took to get to the current place of execution. ThisEM is
generalized to include string scanning operationsin Chapter 10, and source code for aversion that also allows moni-
toring of built-in functions and operatorsis presented in Appendix A as an example of amore sophisticated monitor.

Asmentioned in Chapter 6, eventstake place at procedure calls, suspensions, resumptions, returns, failures, and
implicit removals. The constant ProcMask containsa cset for all the event codesrelated to procedures; similar con-
stants FncMask, OperMask, and ScanMask are used for other types of expression activity.

8.1 Activation Trees

The event value for calls and resumptions gives the procedure being activated, but other procedure events such as
suspension and return give thelcon value being produced. In order to track the currently active procedure, the monitor
must maintain a model of the program’s procedure activation tree (Figure 8.1).

The procedure evaltree() described in this section maintains a simple model of procedure activation trees using
records for tree nodes. Each record corresponds to an activation of a procedure. The record contains the procedure,
the parent activation record from which the procedure was called, and a list of any children (including suspended
ones) that this activation of the procedure has called:
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Figure 8.1: An activation tree

record activation(value, parent, children)

When used in an EM, the record type may have additional fields to maintain other information about the procedure
activation, such as the number of resultsit has produced. Figure 8.2 showsthe Icon structures formed by evaltree()
to model the activation tree in Figure 8.1. The source code for evaltree() is presented in Appendix A.

evaltree() maintains the complete activation tree as well as the current activation with the following monitor-
event loop. It is called with an event mask parameter and two procedure parameters. The event mask parameter
gives all the events needed by the EM. The procedure parameters consist of a callback procedure used to inform the
monitor of changesin the tree, and a record constructor for a record type that has at least the fields declared above.
The callback procedureis called with the activation record being entered aswell asthe activation record being exited.

procedure evaltree(mask, callback, activation_record)
# ... compute codes for each branch of the case clause from mask
while EvGet(mask) do
case &eventcode of {
# ... clauses maintain the activation tree and call client callback procedure

}

end

In order to operate properly with any combination of procedure, function, operator, and scanning environment
events, evaltree() examines its event mask and builds up lists of codes related to each of the six tree-modifying
events. It storesthese lists in the global variables CallCodes, SuspendCodes, ResumeCodes, ReturnCodes,
FailCodes, and RemoveCodes. In addition, evaltree() creates a dummy root activation on which to build the ac-
tivation tree.

The branches of evaltree()’s case clause perform the actual tree manipulations and then call the client callback
procedure, supplying it with both the activation being entered and the activation being exited. For each call event,
anew nodeis created and inserted as the right-most child of the current node. The new node becomes the currently
executing node.
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Figure 8.2: An lcon representation of an activation tree

ICallCodes: {
entered := activation_record()
entered.node := &eventvalue
entered.parent := current
entered.children ;=]
put(current.children, entered)
current := entered
callback(current, current.parent)

}

Return and fail eventsresult in theinverse of a call event: The current node is removed from the activation tree,
and the parent of the current node becomes active. When an |con return expression is executed, the instrumentation
producesremoval events for al descendants of the returning node preceding the resulting return event.

IReturnCodes | !FailCodes: {

exited := pull(current.parent.children)
current := current.parent
callback(current, exited)

}

Suspend and resume events do not change the structure of the tree. For suspend events, the parent becomes the
current (active) node; for resume events the right-most suspended child is resumed and becomes the current node.
After the current node is updated, the client callback procedureis called.
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ISuspendCodes: {
current := current.parent
callback(current, current.children[—1])

}

IResumeCodes: {
current := current.children[—1]
callback(current, current.parent)

}

Removal events denote the implicit exit of a node in the activation tree as a result of control flow. Typically a
removal event precedesthe current node’ sreturn or failureand denotesthe destruction of the current node’sright-most
child. If the current node has no children, removal indicates an implicit destruction of the current node, indicating
that it will not be used in the surrounding expression evaluation context.

IRemoveCodes: {
if exited := pull(current.children) then {
while put(current.children, pop(child.children))
callback(current, exited)

}

else {
exited := pull(current.parent,children)
current := current.parent
callback(current, exited)

}
}

The default clause in this case expression simply calls the client callback procedure. The activation tree is not
modified. This clauseis useful because execution monitors that use evaltree() may be interested in other types of
events besides those that involve the activation tree.

default: callback(current, current)

8.2 An animated call-result scatter plot

To illustrate the use of evaltree(), the following exampl e plots the number of times each procedure has been called
along the x axis, while the number of results it has produced is plotted along the y axis. Points are moved when-
ever either acall or aresumption occurs. Red is used for user-define procedures, while green indicates activity for
less-expensive built-in functions. If the user presses a mouse button on one of the plotted points, the names of any
procedures plotted at that point are listed. An example screen image from this program is given in Figure 8.3; the
name GenMoves in the lower right corner is the name of the procedure plotted at the last location on which the
mouse was clicked. Theimage does not convey the nature of the animation, in which plotted points start in the upper
left corner and migrate down and to the right at varying speeds and directions.

A call-result scatterpl ot servesseveral purposes. It servesasabasic procedurecall profiler, revealing which proce-
dures are used the most and are therefore most important in overall performance. Since thisinformation is presented
while the program is executing, it provides quicker feedback than profilers that present information only after exe-
cution hasrun to completion. Feedback during execution also showstemporal changes associated with major phases
in the program. These uses are language-independent. The call-result scatterplot also serves two language-specific
purposes:. It showsthe user which procedures are generators, and how many results the proceduresare producing per
cal.
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Genflowe

Figure 8.3: A scatterplot with motion

When aprocedure consistently producesno results, it moveshorizontally along the top edge. On the other hand, if
aprocedure generatesresults, it movesvertically straight down. If aprocedure consistently returnswith oneresult, it
movesdiagonally down and across. The slope of alinefromthe origin to agiven procedure’ spoint on thisgraph gives
the average number of results that procedure has produced per call. If the motion of a point plotted for a procedure
changesits direction substantially it may indicate unusual behavior that is worth further examination.

Two global tables, calls and results, store the dimensions' counts for each TP procedure. The global table
loc2procs maintainsaset of proceduresplotted at each point onthe graph; loc2procs iskeyed by theinteger-encoded
locations introduced in the preceding chapter and is discussed in more detail | ater.

global loc2procs, # table of sets of procedures at a given location
calls, # table of call counts
results # table of result counts

Procedure main() performsinitialization and calls evaltree(), which in turn obtains events, buildsthe activation
tree, and calls scat_callback() for each event report. main() passes scat_callback() to evaltree() as a parameter, in
additionto the event mask to use and the record type to usefor activations. The event mask includes procedure events
selected by the symbol ProcMask and monitor interaction events, indicated by the symbol E_MXevent. Monitor
interaction events, described in Chapter 6, provide a convenient means of incorporating user input such as mouse
clicks and button presses into EMs without a need for separately polling the EM window for activity.
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# ... from procedure main()

&window := open(“scat”,"g","width=150","height=180") |
stop(”"can’t open window”)

calls := table(0)

results := table(0)

loc2procs := table()

evaltree(ProcMask ++ E_MXevent, scat_callback, activation)

scat_callback() updates the plotted location of a procedure whenever it is called or produces a result, calling
plot() to increase the appropriate procedure’s x- or y-coordinate, respectively. If the event isacall, the point corre-
sponding to parameter new (the activation being entered) is updated, while if the event is a suspend or areturn, the
point corresponding to parameter old (the activation being exited) is updated.

If the event indicates user activity, a code indicating the user input is supplied in &eventvalue, and the keywords
&x and &y are updated to indicate the mouse location. If the user presses the escape character "\ e”, monitoring is
terminated; if the user presses a mouse button, write_names() is called to write the names of procedures plotted
where the mouse indicates.

procedure scat_callback(new, old)
case &eventcode of {

E_Pcall: plot(new.node, 1, 0)
E_Psusp | E_Pret:  plot(old.node, O, 1)
E_MXevent: {

case &eventvalue of {
"\e": stop("execution halted”)
&lpress: repeat {
write_names()
if Event() === &lrelease then break

}
}
}
}

end

The procedure plot() takes a procedure and updates the tables to reflect its new position. If the procedureis the
only occupant of the screen coordinateit isleaving, thepointiserased there; similarly if the new positionisnot already
occupied, apointisdrawn. “Points’ are plotted two pixelswide and two pixelshigh becauseindividual pixelsprovide
poor visibility on some displays. An even larger size might improve visibility further at a cost of screen space. plot()
uses a logarithmic scale in order to keep the screen size required by this application reasonable for large programs.
A logarithmic scaleis chosen over alinear scale because any linear scale would either plot the most important often-
called procedures off the edge of the chart or else plot all the less frequently called functionstogether in one corner
of the chart. The scaling process uses the distance of the point from the origin in order to preserve the ratio of cals
to resultsin the scaled point; thisis discussed in more detail below.
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procedure plot(who, iscall, isrslt)
loc := scaled_location(calls[who], results[who])
if *delete(\loc2procs[loc], who) = 0 then
EraseArea(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
calls[who] +:= iscall
results[who] +:= isrslt
loc := scaled_location(calls[who], results[who])
lloc2procs[loc] := set()
if *insert(loc2procs[loc], who) = 1 then
FillRectangle(horizontal(loc) * 2, vertical(loc) * 2, 2, 2)
end

scaled_location(x, y) scales its arguments and produces an integer encoding of the point (x, y) with the x-
coordinatein the most significant 16 bits and the y-coordinatein the least-significant 16 bits. scaled_location() also
computes the distance from the origin for a point using the Pythagorean theorem; it is used during scaling.

procedure scaled_location(x, y)

length :=sqrt(x " 2 +y " 2)

return location(scale(y, length), scale(x, length))
end

The procedure scale(coord, len) applies alogarithmic scaling factor to a coordinate. 1f logarithmic scales were
applied separately to the x- and y- coordinates, the proportions of calls to results would not be preserved and the
resulting points would be plotted artificially close to the central diagonal of slope 1. Instead, the logarithmic scaleis
applied to the distance from the origin. The coordinateis multiplied by the ratio of the scaled length to the original
length. When both coordinates are so scaled, the scaled point formsa similar triangle to the original unscaled point;
the slope of callsto resultsis preserved from the unscaled point.

procedure scale(coord, length)
if length < 1 then return O # avoid divide by O error
return integer(coord * log(length, 1.25) / length)

end

Procedure write_names() prints the names of all procedures plotted near a mouse click. It builds alist L of
the names of all proceduresin the loc2procs table located within one pixel of the current mouse location. When
write_names() has built the list of procedures, it erases the last name list, and writes the new list of namesin the
lower left corner of the window.

procedure write_names()

static maxrows, maxcolumns

&x [:=2

&y =2

# build a list of names of procedures

L:={]

everyi:=—1to1ldo

everyj:=—1to1do{

loc := location(&y + j, &x + i)
every put(L, procedure_name(!\loc2procs[loc]))

# compute the geometry needed to erase last name list
if max := *L[1] then {

every max <:=*IL

maxcolumns <:= max
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}

maxrows <:= *L
&col := WColumns() — maxcolumns
&row := WRows() — maxrows — 1
EraseArea(&x, &y)
if *L > 0 then
everyi:=1to*Ldo{
GotoRC(WRows() — *L + i, WColumns() — max)
writes(&window, L[i])

e := Event()
end

The scat program could be generalized in several ways; for instance, it is trivial to extend scat to accomodate
Icon’s built-in function and operator repertoire. If thisinformation were cross-referenced with static knowledge of
which functions and operators were generators, scat could show whether they are being used generatively, or only
used to obtain single results as in conventional programming. Another useful way to extend scat would be to allow
the user to specify lines (dopes) to indicate a procedure’s expected result/call ratio; if the number of results were too
low or too high, the user might want to stop execution and inspect the situation in closer detail.

8.3 Algae

A program named Algaeillustrates one approach to displaying procedureand generation activity in amore connected
fashion. Algae displays an animated representation of the activation tree for procedures, built-in functions, and/or
string scanning environments as the TP executes, and serves as a basis for other more sophisticated EMs that are
presented in later chapters.

Figure 8.4: Algae

Algaeisdesigned to use little screen space and does not require rearrangement of nodes as the tree changes, like
conventional approachesto treelayout do. Thisattempt to save screen space and animation time produces an approx-
imation of the activation tree that sacrifices the details of parent-child relationshipsin the tree. The Algae metaphor
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is meant to complement more conventional layouts, not to replace them. Theideabehind Algae isto present enough
of the expression activity so that common goal-directed evaluation patternsin TP are identified and strange behavior
can be noticed as an unfamiliar pattern in the animation.

Algae geometry

The Algae window uses a simple two-dimensional grid of cells; the vertical dimension depicts expression nesting
depth, such as calls and returnsfrom procedures. The horizontal dimension depicts generator suspension width, such
as procedure, function/operator, and scanning environment suspension. Whenever a computation is suspended, new
computations at the same level start in the next cell column to the right, indicating the possibility of backtracking
into the suspended computation. A sample image of Algaeis shown in Figure 8.4. The target program being moni-
tored isarecursive descent parser. Magenta (depicted asdark gray) cells represent suspended | con proceduresfor the
nonterminals of a parse that is being attempted. A yellow (light gray) cell in the bottom-right is the currently active
procedure. Light blue (medium gray) is used to fill in cells when they are vacated; coloring these cells provides a
“high water mark” for the computation up to any given point and givesit an overall characteristic shape.

In order to support the two-dimensional geometry, Algae’s activation tree records have fields for the row and the
column of the cell assigned for each activation:

record algae_activation(value, parent, children, row, column, color)

Since screen space is limited, each activation is depicted as a small hexagon in the window, color-coded by the kind
of activation (procedure, function, operator, or string scanning environment). The size of the hexagonsis scalable.
Given this geometry it would be easier to plot Algae using rectangular points. Hexagons are used primarily for their
visual effect —they provide a smoother animation as the tree grows and shrinks. Position changesin Algae are often
diagonal, and in a square mapping, these changes appear to be a farther distance than horizontal or vertical position
changes. A collection of Icon procedures totalling roughly 160 lines were written to manipulate hexagons; they are
omitted here for the sake of brevity. In the code below, the procedure spot() fills a hexagon at a given location with
aparticular color.

Because screen spaceislimited and the activation treeis constantly changing, Algae doesnot lay out thetreeina
way that spreads out nodesthroughout the availabl e screen space. Instead, Algaelaysout tree nodesfrom theleftmost
edge of the window, being careful to maintain the correct depth and breadth of the tree, and making sure that no two
nodes occupy the same cell. When a new node is created, it is a assigned a cell with arow given by its level; the
column is computed by inspecting the existing tree and finding the first position to the right of both the parent node
and any nodes at the new node’s level.

Since expression trees grow and shrink along their rightmost edge, the tree search to assign a column is a pre-
order depth-first right-to-left search. An important special caseisif the node's parent already has a child, in which
case the newly-created node can immediately be assigned a column adjacent to its older sibling; this case is handled
directly in algae_callback() for efficiency and often allows the tree search to be avoided entirely.

The code to compute the columniis:

procedure computeCol(parent)
node := parent
while node.row > 1 do node := \node.parent # find root
if node === parent then return parent.column
if col := subcompute(node, parent.row + 1) then
return max(col, parent.column)
else
return parent.column
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end
procedure subcompute(node, row)

# check this level for correct depth

if \node.row = row then return node.column + 1

# search children from right to left

return subcompute(node.children[*node.children to 1 by —1], row)
end

Using evaltree() to incrementally update the display

Algae makes extensive use of colorsto indicate the kind of activation, such as whether it is aprocedure, function, or
string scanning environment. In main(), several bindings are created with different foreground colors, as described
in Chapter 6. The colorsused are arbitrary and the user can determine the contents of the node by clicking onit if the
color is not familiar.

Afterinitialization, Algae callsevaltree() and passesit areferenceto the procedurealgae_callback(). Theevent
mask used is variable and depends on command-line arguments. The body of algae_callback() performsthe incre-
mental animation of the tree. Each event that modifies the activation tree entails the updating of two display cells:
acell that is entered is drawn in yellow to mark it as the active cell, and a cell that is exited is either drawn in the
color associated with the activation (if it is suspended) or in abackground gray color (if the associated activation has
returned or failed and no longer exists).

case &eventcode of {
ICallCodes: {
new.column := (old.children[—2].column + 1 | computeCol(old))
new.row = old.row + 1
new.color := Color[&eventcode]
spot(\old.color, old.row, old.column)

IRetCodes | !FailCodes: spot(background, old.row, old.column)
ISuspCodes | IResumCodes: spot(old.color, old.row, old.column)
IRemCodes: {

spot(black, old.row, old.column)

WFlush(black)

delay(100)

spot(background, old.row, old.column)

}

E_MXevent: user_event(&eventvalue, new)

}

spot(yellow, new.row, new.column)

Algae controls

User control of Algae consists of marking specific hexagons (using the left mouse button) or entire rows and columns
(using the middle button) to pause execution. Pressing the right button atop an hexagon marked active or suspended
printsthe name of the associated procedure or function, or the subject of the associated string scanning environment.
Theinput handling is performed by do_event() in response to an E_MXevent.

Each call to algae_callback() checksto see whether the cell being entered is one selected by the user to pause
execution, and if it is, the callback procedureloops reading user events until the user indicates that execution should
continue. algae_callback() concludeswith the code for this test:
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loc := location(new.row, new.column)
if \step | (new.column >= \maxcolumn) |
(new.row >= \maxrow) | \ hotspots[loc] then {
step = &null
XWindowLabel("Algae stopped: (s)tep (c)ont ()clear ")
while e := Event() do
if user_event(e, new) then break
XWindowLabel("Algae”)

}

The procedureuser_event() returnsif execution should proceed, but failsif executionis still paused and another
user event should be obtained. The code for user_event() is somewhat lengthy and is included in the compl ete text
of Algaein Appendix A.

The techniques presented here apply not only to Icon’s built-in functions, operators, and scanning environments
— the evaltree() procedure can accomodate all of these kinds of events simultaneously and maintain one large ex-
pression activation tree. Some differences between the different kinds of activations exist; an obvious one is that
function and operator events are so frequent that monitoring them in an EM like Algae vastly reduces the tool’s ef-
fectiveness in monitoring the less-frequent procedure activity. It would be useful to explore variants of evaltree()
that allow certain subtreesto be ignored, or do not plot activity at al unlessinteresting behavior such as generation
or backtracking takes place.
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Chapter 9
Monitoring Memory Usage

Memory usageis an important aspect of program behavior that is not directly evident from source code examination.
The execution monitoring instrumentation produces events on every memory all ocation with an event code that indi-
catesthe type allocated and a corresponding event value giving the size of the allocation in bytes. In addition, events
occur at garbage collections, including the types and sizes of objects that survive reclamation. Allocation events are
selected with the evinit symbol AllocMask.

This chapter presents a variety of EMsthat portray aspects of memory usage. First, EMsare given that plot each
individual allocation in relation to other recent allocations; they are useful in observing localized program behavior
such asallocations of unusual size or changesin the major phases of execution. Later in the chapter, EMsthat portray
cumulative memory usage behavior are discussed; they provide a useful profiling service and a general understand-
ing of the TP's use of memory. These simple examplesillustrate only afew of many visual metaphorsthat have been
developed for memory usage, ranging from literal views of the heap to completely abstract animations whose pat-
terns reflect a program’s memory allocations. Some of the other tools that portray memory activity are described in
a separate document [Gris92b].

9.1 Allocation by type

Many visual metaphors can be used to depict allocation types or sizes, or both. Two allocation monitors are pre-
sented in this section. The first emphasizes frequencies and patterns of typesin allocated memory, while the second
emphasizes allocation size information. These examples also exhibit a clean separation of the data collection and
graphics rendering tasks, enabling the visual metaphorsto be used in other tools that monitor types of events other
than memory allocations.

9.1.1 Pinwhee

The pinwheel metaphor presents a sequence of values, in this case the event codes associated with allocation event
reports, encoded as colors or textures drawn in sectors around acircle. The n sectors of the circle represent a history
of the last n alocation eventsin the TP's execution. A screen image from a program using this metaphor to present
memory allocation patternsisgivenin Figure 9.1. In thisexample, event codesfor Icon’sall ocated types are mapped
onto colors. The view is updated on each allocation; the animation rate gives an indication of the frequency with
which memory allocations occur.

Pinwheel and many other visual metaphors have been encapsulated in proceduresfor use by execution monitors.
By using acommon set of conventions, the metaphors can be applied interchangeably and to different types of data.
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Figure 9.1: Pinwheel

The procedure pinwheel(), called with no arguments, starts with local variable declarations and then initializes sev-
eral variables that scale the mapping.

procedure pinwheel()
local clear, xorg, yorg, radius, radians
local angle, arc, sector_units, fullcircle, blank, max, xratio, yratio

max := real((WWidth() < WHeight()) | WWidth())
xratio := WWidth() / max

yratio := WHeight() / max

fullcircle := 2 * &pi

radians := 0
sector_units := fullcircle / Sectors # amount to advance
blank := 2 * sector_units # amount to blank

xorg := WWidth() / 2
yorg := WHeight() / 2
radius := max /2
while NextEvent() do {
FillArc(Background, 0, 0, WWidth(), WHeight(), radians + sector_units, blank)
FillArc(Binding, 0, 0, WWidth(), WHeight(), radians, sector_units)
DrawLine(Background, xorg, yorg, xratio * radius * cos(radians) +
Xorg, yratio * radius * sin(radians) + yorg)
radians +:= advance

}

end

Pinwheel’smain |oop readsamonitoring event, drawsafilled arcin abinding that uses acolor associated with the
event, and erases the next dice of the pinwheel to mark the edge of motion. Thelocal variable angle, the front edge
of the pinwheel motion, isadvanced at each iteration. The procedure NextEvent() encapsulatesthe task of reading a
program event and sel ecting an appropriate color (or texture) to portray it so that the type of databeing processed and
the color used to draw the pinwheel are independent of the task of drawing the pinwheel itself. NextEvent() assigns
the global variable Binding awindow value with an appropriate foreground color for use in drawing the sector.
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9.1.2 Nova

The nova metaphor is another example of a radial mapping of a sequence of event reports. Each allocation event
report is plotted as aline segment from the center of the window in polar coordinates, with aradius given by the size
of the allocation (&eventvalue), at aregular angular offset from the preceding value. Like pinwheel, the graphicis
drawn in a color that indicates the allocation type, based on the event code, and the display is animated at the rate at
which memory allocations take place. An example screen image from novais shownin Figure 9.2.

Figure 9.2: Nova

Like pinwheel, nova begins with an initialization section, followed by a loop that reads an event (again using
NextEvent()) and draws a line at the appropriate angle and of the appropriate length.

procedure nova()
local clear, xorg, yorg, radius, radians
local arc, sector_units, fullcircle, erase, oldvalue
initial gclear := 1
erase := list(Sectors)
fullcircle := 2 * &pi
radians :=0
sector_units := fullcircle / Sectors # amount to advance
xorg := WWidth() / 2
yorg := WHeight() / 2
radius := ((WHeight() < WWidth()) | WHeight()) / 2.0
while NextEvent() do {
put(erase, Value)
oldvalue := get(erase)
DrawLine(Background, xorg, yorg, \oldvalue * cos(radians) + xorg,
oldvalue * sin(radians) + yorg)
DrawLine(Binding, xorg, yorg, Value * cos(radians) +
xorg, Value * sin(radians) + yorg)
radians +:= advance

}

end

The following example demonstrates how memory allocation monitors may be of practical use. A poetry-
scrambling program submitted by a user produced the visual signature given in Figure 9.3 (left) when run under a
tool using the nova metaphor (the wedge shaped gap in Figure 9.3 (left) is present simply because the nova's sweep
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has not completed its first revolution). The program builds up very long lists by repeated concatenation, resulting in
the frequent very large allocations shown in the figure. After changing two lines of code to replace alist concatena-
tion with callsto Icon’s put() function, the visual signature became “normal” and program execution speed doubled
(Figure 9.3, right).

Figure 9.3: Frequent large all ocations suggest a problem (left); the program runstwice asfast after atwo-line change

9.2 Cumulative allocation by type

Visualizing individual allocation events is useful for understanding local phenomena, but an overall summary of
memory allocation is also useful in understanding program behavior. The following code segment totals the amount
of memory allocated in the program by datatype, building atable of sumsthat is keyed by the all ocation event codes
for each type. The sums are cumulative, that is, garbage collections are not taken into consideration.

t ;= table(0)
while EvGet(AllocMask) do
t{&eventcode] +:= &eventvalue

9.21 Animating abar graph

Thefollowing procedure rendersalist of non-negative numbersin awindow asabar graph. Each bar in the graphis
givenastring namein alist caled labels and is drawn using a color from alist of color contexts named colors; the
indices of labels and colors match those of thelist of numbers.

procedure bar_graph(L, labels, colors, scale)
local height, x, vy, i
EraseArea()
height := WHeight()
bar_width := real(WWidth()) / *L
WAttrib("label=Bar Graph, scale ” || left(scale, 6))
everyi:=1to*Ldo {
X := (i — 1) * bar_width
y = L[i] * scale
FillRectangle(colors[i], x, height — y + 1, bar_width — 2, y)
DrawsString(x, 15, labels]i])
}

end
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If bar_graph is called frequently, such as every time an event occursin an execution monitoring setting, the fre-
guent window updates create a distracting amount of screen flicker. In such an animation, an incremental approach
iS more appropriate.

The following program updates a bar graph incrementally. The bar graph presents cumulative memory allocation
by type. An example screen image from this animated bar chart isgivenin Figure 9.5.

Refresh 5String List File Table Real Record Czet Set

Figure 9.4: An animated bar graph

The cumulative allocations are stored in list bars, in the order they appear on the screen. A parallel list of labels
for each bar ismaintained in labels; it isbuilt from atable evs that maps event codesto their string names. Thetable
is constructed by the standard evinit library procedure evsyms(). The mapping from event codes to screen position
is maintained by the table typecode2bar. The animated bar graph scalesitself as cumulative all ocationsincrease.

"N

&window := open("barmem”,
height := WHeight()

evs ;= evsyms()
typecode2bar ;= table()

g") | stop("can’t open window")

bars :=[]
labels :=[]
scale :=4.0

Themain loop requests an allocation event and calls procedure bar() to update the size of the bar that corresponds
to the event. A new bar is created when atype'sfirst allocation takes place. No screen space is devoted to types for
which no alocation occurs. As each bar’slabel is obtained from the event namestable evs, the event’'s E_ prefix is
stripped by the string subscript [3:0].

while EvGet(AllocMask) do {
if /event2bar[&eventcode] := *put(bars,0) then {
put(labels, evs[&eventcode][3:0] | "?”)
put(Colors, contexts[&eventcode])
}
extent := (bars[event2bar[&eventcode]] +:= &eventvalue) * scale
if extent > height — 20 then
bar_graph(bars, labels, Colors, scale /:= 2)
else
bar(extent, Colors[t[&eventcode]], event2bar[&eventcode])
}

The procedure bar() simply fillsin arectangle for the added space.
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procedure bar(extent, Color, i)

X = (i — 1) * bar_width

y := height — extent + 1

FillRectangle(Color, x, y, bar_width — 2, &eventvalue * scale + 1)
end

9.2.2 Piecharts

Thefollowing procedure draws a pie chart from atable shares in which each portion of the pie represents akey and
their relative size isthe key’stable value. A parallel table colors of window bindings contains the color, grayscale,
or texture that is used to distinguish each of the parts.

procedure draw_pie(shares, colors, sum, X, y, width, height)
local start, fraction, k, path
start:=0
fraction := 360 * 64.0 / sum
every k := key(shares) do {
path := fraction * shareslk]
FillArc(colors[k], x, y, width, height, start, path)
start +:= path

}

end

Unlessthe updaterateishigh, avisualization tool using this procedure can be animated by brute-force by redraw-
ing the entire image each time rather than incrementally. If the update rate is high, the chart might only be redrawn
when aconstituent’s size changes by a significant amount, such as morethan one percent of thetotal. A sample screen
image from such aprogramis givenin Figure 9.6.

Figure9.5: A pie chart

9.3 Running allocation by type

In order to take garbage collectionsinto account, the program must select E_Collect and E_EndCollect events. The
E_Collect event is produced prior to agarbage collection. The E_EndCollect event occursafter agarbage collection,
and if it is selected, the monitoring instrumentation also produces (re)allocation eventsin between the E_Collect and
E_EndCollect for the objects that survived the collection.
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codes := AllocMask ++ E_Collect ++ E_EndCollect
t ;= table(0)
while EvGet(codes) do
if &eventcode === E_Collect then t := table(0)
else t[{&eventcode] +:= &eventvalue

A more complex example of monitoring alocation by typeisthe following strip chart. It usesthe approach asthe
preceding example, but portrays a continuous animation in awindow. In the following example, they axisis used to

show the proportions of memory used by all types. An example screen image from this program is given in Figure
9.7.

Figure 9.6: A memory alocation strip chart

The program monitors all memory allocation and garbage collection information, maintains a table of running
sumsof memory by type, and drawseach vertical lineinthe graph asaset of segmentsthat are color coded by typeand
whose length correspondsto the proportion of memory used by that type. An external library procedure, typebind(),
islinked and used to providethe color encoding. typebind() returnsatablewhose keysaretypeallocation event codes
and whose values are window bindings with foregrounds set to various colors; the table is stored in global variable
Colors. Since colorsvary from device to device, severa palettes are available from typebind(), depending on the
output device to be used. The global variable tallies refers to atable of sums of allocations keyed by type. Global
variable heapsize storesthetotal amount of available memory. The event processing loop in proceduremain() calls
redraw() to update the window on each allocation and clears the window on garbage collection.

tallies := table(0.0)
heapsize := 0
every heapsize +:= keyword("regions”, Monitored)
&window := open("MemoryType”, "g")
Colors := typebind(&window, AllocMask)
mask := AllocMask ++ E_Collect
while EvGet(mask) do
case &eventcode of {
E_Collect: {
EraseArea()
tallies := table(0.0)

}
default: {
tallies[&eventcode] +:= &eventvalue
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redraw()

}
}

The procedureredraw() updates the display when needed. Real arithmetic is used to minimize numeric errorsin the
mapping.

procedure redraw()

static x

initial x := 0

start :=0

every k := key(t) do {
segment := WHeight() * real(tallies[k]) / heapsize)
FillRectangle(Colors[k], x, start, 1, segment)
start +:= segment

}
X =X+ 1 % WWidth()
EraseArea(x + 1, 0, 1)
end

Itispossibleto substantially improveonthistrivial example; redundant call s and type conversionscan be avoided,
and many variations on the mapping from the problem space onto the image geometry are possible. In particular it
may be worth avoiding screen updates when the change to be reported is very small.

9.4 Survival rates across collections

If a garbage collection reclaims only a small amount of storage, the TP may quickly run out of free memory and
collect again. As the frequency of collections rises, overall system performance declines rapidly. Thisinformation
can be obtained by selecting E_Collect and E_EndCollect events and reading TP's &storage keyword.

while EvGet(E_Collect) do {

L:=1]

every put(L, keyword("storage”, Monitored))

EvGet(E_EndCollect)

L2 :=]

every put(L2, keyword("storage”, Monitored))

write("reclaimed ",integer(real(L[2] — L2[2]) / L[2] * 100),
" percent of the string region”)

write("reclaimed ”,integer(real(L[3] — L2[3]) / L[3] * 100),
" percent of the block region”)

}



Chapter 10
Monitoring String Scanning

Asadescendant of SNOBOL4, |con hasanatural orientation towardstext processing and includesacontrol structure
devoted to that task. This chapter presents abrief overview of Icon’s string scanning facilities and then gives exam-
ple execution monitors that portray the target program’s use of this control structure. The examples are themselves
relatively simple, but demonstrate the framework’s capabilitiesin this areaand are suggestive of more advanced pos-
sibilitiesto be explored in this domain using the framework. Techniques for monitoring string scanning can be built
by extending the techniques presented for monitoring procedure and operator activity in Chapter 7.

10.1 Overview of string scanning

Icon’s string scanning facility provides high-level text processing capabilities that free the programmer to think in
terms of patternsin the text instead of character-by-character handling of indices and subscripts. String scanning
operations work within the context of a string being scanned, the subject, and a current position of interest within
that subject. Together, the subject and position form a scanning environment (Figure 10.1).

subject "the yellow brick road"

¢

position

Figure 10.1: A string scanning environment

The Icon expression
s ? expr

evaluates expr in a scanning environment that consists of subject s and an initial position of 1 (the beginning of the
string). Scanning environmentsremain in effect inside any procedure calls within expr. Scanning environments may
be nested; the outer scanning environment is saved and restored when the inner environment is entered and exited.

Operations on scanning environmentsinclude absolute and relative movement of the position as well as various
forms of string and character set matching and searching. Relatively sophisticated parsing is performed by using
these operatorsin conjunction with goal-directed eval uation and backtracking. In particular, thefunctionsthat change
position within an environment, move() and tab(), undo their effectsif they are resumed by backtracking.
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10.2 String scanning events

Sincea TP may suspend fromand later resumeascanning environment, string scanninginstrumentationincludesaset
of eventsfor environment creation, suspension, resumption, failure, and removal, analogous to the events that occur
as aresult of procedure activity. Monitoring string scanning may entail the maintenance of a scanning environment
tree using code similar to the procedure activity tree presented in Chapter 7.

In addition to these events, string scanning position changes result in the occurrence of E_Spos events. If the
scanning position is restored by move() or tab() during backtracking, a second E_Spos event occurs.

Scanning environment activity including position change events can be selected by an EM using the library sym-
bol ScanMask as the argument to EvGet(). In addition to ScanMask events, a string scanning monitor may be
interested in calls to the built-in string-scanning functions that comprise Icon’s pattern matching primitives, such as
find() and upto().

10.3 Absolute and relative position changes

This section givestwo simple EMsthat present position change information with different emphases: (1) aview that
portrays absolute position, and (2) aview that emphasizes relative position changes.

Visualizing absolute positions within the subject

String scanning operationsmovethe position of interest within the subject forward or backward. Moving the position
forward is common; moving the position backward is |ess common and usually is triggered by backtracking during
goal-directed evaluation. It is useful to be able to observe when the position moves forward or backward and how
large the changes in position are relative to the size of the string.

Thefollowing program displaysan animated strip chart with subject lengthsand position changeinformation. For
each position change event, the length of the subject is drawn down from the top and filled with two or three colors:
ared segment indicates the current position or the number of characters already processed, while a white segment
indicates the remainder of the string not yet processed. If backtracking has occurred, a gray segment in between the
red and thewhiteindicatesthefurthest forward that the scanning position hasreached or the extent of the backtracking.
A sample screen imageis given in Figure 10.2.
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Figure 10.2: Absolute string position

The program starts with standard initialization code, including the creation of window bindingsfor drawing seg-
mentsin red and gray. The width of each bar is determined by variable barwidth, and the number of pixels drawn
per character in the various segmentsis specified in the variable scale.
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The program’s main loop requests position change events, and plots a segment on the window for each change.
DrawRectangle() draws ablack outline to indicate the size of the scanned subject; callsto FillRectangle() plot the
red and gray segments. A variable max holds the furthest position reached during scanning of a particular subject
string; the gray segment isonly drawnif backtracking has moved the position backwardsinto parts of the subject that
have already been scanned.

while EvGet(E_Spos) do {
s := keyword("subject”, Monitored)
position := &eventvalue
if s == s_old then max <:= position
else max :=1
if *s > 0 then {
DrawRectangle(x, 0, barwidth, scale * *s)
FillRectangle(red, x, 0, barwidth, scale * (position — 1))
if max > position then
FillRectangle(gray, x, scale * (position — 1),
barwidth, scale * (max — position))

= (x + barwidth + 1) % WWidth()
EraseArea((x + barwidth + 6) % WWidth(), 0, barwidth + 6)
sold:=s

}

Thisssimple EM does not scale its output to fit the window; in the event avery long subject is scanned, output is
clipped to window boundaries. An additional limitation isthat backtracking informationis not saved and restored for
nested scanning environments.

Visualizing relative position changes

By tracking relative position changes, backward motion is highlighted and large position changes are emphasized.
The following EM plots relative position change as distance from the middle of the window, with forward position
change going bel ow the midpoint and backward position change going up from the midpoint. A sample screenimage
isshownin Figure 10.3.

Figure 10.3: Relative string position

After initialization, the mainloop reads E_Spos eventsand usesthekeyword() functionto obtain the correspond-
ing subject. If the subject is unchanged since the last event, the relative position changeis noted. Like the previous
example, this tool would provide more accurate information if it saved and restored the subject for nested scanning
environments. The next section provides a method for doing so.
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barwidth := 3
&window := open("pos”, "g") | stop("can’t open window")
x:=0

while EvGet(E_Spos) do {
s := keyword("subject”, Monitored)
p := &eventvalue
FillRectangle(x, WHeight() / 2, barwidth, 1)
if s === s_old then
if p > p-old then
FillRectangle(x, WHeight() / 2, barwidth, p — p_old)
else if p_old > p then
FillRectangle(x, WHeight() / 2 — (p_old — p), barwidth, p_old — p)
X := (x + barwidth + 1) % WWidth()
EraseArea((x + barwidth + 6) % WWidth(), 0, barwidth + 6)

s.old :=s
p-old:=p
}

10.4 Scanning oper ations and the environment tree

Since scanning environments may be nested in much the same way as procedures, functions, and operators, it makes
sense to use a tool similar to the Algae tool presented in Chapter 8 to portray nested scanning environments. One
way to make use of such atool isto display scanning activity such as calls and results of string scanning functions
and operators as graphical manipulationsinside the hexagon allocated by Algae to the active scanning environment.

A modified version of Algae that displays string functions and operators encoded as colors is shown in Figure
10.4. The program uses the pinwheel metaphor from Chapter 9 to animate the sequence of operations independently
within each scanning environment. Around the pinwheels' outside borders, circles are drawn in red, white, and gray
segmentsto show current position and positional backtracking, similar to the absolute string positions example given
earlier. The border around the pinwheel in the second column of Figure 10.4 is almost entirely dark (the grayscale
depiction of red), indicating that the scanning position is almost to the end of the string, while the border around
the pinwheel in the fourth column is only dlightly dark above the three o’ clock position, showing that the scanning
position is still near the front of the scanned string.

In order to add this kind of detailed information about string scanning environments, extra fields are added to
Algae'sactivation record typefor the current scanning position, the farthest scanning position reached in the scanning
environment, and the environment’s pinwheel angle (expressed in units of 1/64th of a degree).

record activation(node, parent, children, row, column, color, pos, maxpos, angle)

Updating position in the current scanning environment

Position change events are added to the event mask passed to evaltree(). The case expression of the callback pro-
cedure for E_Spos events updates the current scanning environments position fields, and draws red and gray arcs
around the outside of the hexagon to show position information. Global variables HexWidth and HexHeight are
used to determine the region inside the hexagon that is available for drawing.

Note that a callback static variable, scanenv, is used rather than the current activation (new), which can be a
procedure, function, or operator called within the current scanning environment. scanenv is maintained by code
added to the case expression branches of Algae’s evaltree() callback procedure, described below.
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Figure 10.4: Scanning environment trees and operations

case &eventvalue of {
# ... other Algae case branches as given in Chapter 8
E_Spos: {
scanenv.pos := &eventvalue
scanenv.maxpos <:= &eventvalue
unit := fullcircle / *scanenv.node
DrawArc(red, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10, O, (&eventvalue — 1) * unit)
if scanenv.maxpos ¢, scanenv.pos then
DrawArc(gray, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10,
(&eventvalue — 1) * unit, (scanenv.maxpos — scanenv.pos) * unit)
DrawArc(wwhite, hexcolumn_x(scanenv.col) + 5,
hexrow_y(scanenv.row, scanenv.col) + 5,
HexWidth — 10, HexHeight — 10,
(scanenv.maxpos — 1) * unit, fullcircle — (scanenv.maxpos — 1) * unit)

}
}

Drawing pinwheel sectorsfor string scanning functions

The global table of colorsis extended to map important string scanning functions onto window bindings with fore-
ground colors that indicate which function is being performed. Activity that involves these functionsis captured by
adding codeto the callback procedure’scase expressions. The codefor suspension eventsis shown here; smilar code
is added to the other cases.

ISuspCodes: {
pinwheel(scanenv, \ Colors[new.node])
# ... rest of code for suspension events
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Maintaining pinwheelsfor nested scanning environments

The added fields of an activation record are initialized whenever anew scanning environment event isreceived. The
modified code looks like:

ICallCodes: {
# ... code as given in Chapter 8
if &eventcode === E_Snew then {

New.pos := new.maxpos = 1
new.angle :=0
}

}

The pinwheel drawing procedure from Chapter 9 is revised to take an activation record and a window binding
with aforeground color to encode the string operation being performed, and draw a single sector in that foreground
eachtimeit iscalled.

procedure pinwheel(arecord, win)
static full_circle, sector_units
initial {
full_circle := 360 * 64
sector_units := full_circle / 16 # 16 sectors in the circle

radians := —dtor(arecord.angle / 64)
X := hexcolumn_x(arecord.col) + 6
y = hexrow_y(arecord.row, arecord.col) + 6
width := HexWidth — 12
height := HexHeight — 12
center_x := X + width / 2
center.y :=y + height / 2
FillArc(arecord.color, X, y, width, height, arecord.angle + sector_units, blank)
FillArc(win, x, y, width, height, arecord.angle, sector_units)
DrawLine(arecord.color, center_x, center.y,
radius * cos(radians) + center_x, radius * sin(radians) + center.y)
arecord.angle +:= sector_units
arecord.angle %:= full_circle
end

10.5 Conclusions

String scanning is an important feature in Icon. In order to monitor it correctly, an EM must not only handle posi-
tion changes, but also handle nested and suspended scanning environments. The extra attention required to monitor
scanning correctly parallelsthe effort required to implement scanning correctly in the language.

Although string scanning is important, most programs use string scanning in extremely simple ways. Although
detailed views will always be useful in debugging situations, in more general program-understanding efforts the in-
formation provided by literal text-oriented views of string scanning may be less useful than might be expected. A
better approach may be to view string scanning within a larger context of program operation, such as the modified
Algaeexample. Itisnot clear how to best monitor and visualize string scanning; thisis still an open areafor research.



Chapter 11

Monitoring Data Structuresand Variable
Usage

Previous chapters have demonstrated techniques for monitoring various aspects of program control and memory us-
age. Although some aspects of TP data usage are observable by means of memory allocation and garbage collection
events, key aspects of program behavior are often characterized in terms of operations on program data, such as ma-
nipulations of program data structures or variable references.

This chapter presents techniques for monitoring data from both program-wide and narrower, variable-oriented
viewpoints. Example EMsincludelist access monitorsthat show usage of |con’sbuilt-in list datatype on aprogram-
wide scale, and variable reference monitors that show activity within individual procedure activations. There are
many other ways to present data structure activity and thisis an open area of research. The examplesin this chapter
illustrate the capabilities and possible uses of the framework in this domain.

11.1 List Accesses

On a program-wide scale, atool that visualizes list activity is representative of techniques needed to monitor Icon’s
list, table, record, and set datatypes. Icon’slist datatypeis used for avariety of purposes. Some programs use afew
large lists, while other programs may use hundreds or thousands of small lists. Lists can changein size dynamically
using both queue and stack operations, and they can also be accessed randomly similar to arraysin other languages.

The following EM portrays an overall view of list behavior in a TP. TP's lists are presented as a sequence of
vertical bars, with each bar’s length proportional to the size of the corresponding list. Vertical segments of the bars
are color-coded by the typesof thelists' elements. If al of alist’'selementsare of the same type, thisformsa solid bar
of that type'scolor; if alistis heterogeneous, its appearanceis“ candy-striped” with the various colorsof itselements
types. The horizontal position of alist’s bar on the display is given by the list’s serial number. A serial number isan
integer associated with each list when it is created. Using serial numbersto determine screen position ordersthelists
from left to right by time of creation.

Queueg, stack, and array-style random accesses are portrayed by changing the size of the bar (in the case of queue
and stack accesses) or briefly painting a segment of the bar black and then redrawing it (in the case of random ac-
cesses). An exampleimage from this program is given in Figure 11.1. Empty columns in this view indicate seria
numbersat which no list has yet been created (on the far right) or lists that are empty or have been garbage collected
(in the middle of the figure).

One of the key features of this programis a high degree of scalability necessary in order to accomodate programs
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Figure 11.1: A list access monitor

with very large numbers of lists and yet present as much detail as screen space allows. In particular, if the number of
listsistoo largeto fit in the window, thewindow is split into two rows and the number of vertical pixelsper element is
halved; this generalizesto n rows of asfew asone vertical pixel per list element. Figure 11.2 depictsaview in which
the number of lists has caused a split into two rows. Figure 11.3 depicts a scaled image for alarger number (around
400) of lists requiring eight rows. Spacesin the figures again generally indicate empty or garbage-collected lists.
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Figure 11.2: A moderate number of lists

Thisscalability isachieved by maintaining anumber of interdependent variablesto describe the screen geometry.
Thewindow isdivided into amatrix of sizerows by cols correspondingtoindividual lists; each element of the matrix
isinturn divided into vertical segments of height elem_height.

global
rows, # number of rows of entire lists
cols, # number of lists displayed per row
elem_height # height of an individual list element

In addition to this basic screen geometry, a count of the number of listsin TP iskept in number_active, and the
mapping from lists to window (row,column) coordinates is maintained in table list_locations. The mapping from
lists to window coordinates uses list serial numbers as keys, rather than list values themselves. If the EM retained
referencestothe TPlistsinstead of their serial numbers, none of the TP lists could be reclaimed by garbage collection.

Procedureredraw() drawsan entire pictureof all thelistsintheprogram. It usesthe MT Icon function structure()
to generate all the allocated structuresin the program, and assigns each list arow and column. Each element of each
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Figure 11.3: A large number of lists

list isthen drawn by FillRectangle() in a color determined by the element’stype by acall to objcolor().

procedure redraw()
EraseArea()
column_width := WWidth() / cols
row_height := WHeight() / rows
everyi:=1torows — 1 do DrawLine(0, i * row_height, WWidth(), i * row_height)
number_active := 0
list_locations := table()
every type(L := structure(Monitored)) == "list” do { # for every list in the heap...
number_active +:= 1
row := 1 + number_active / cols
col := number_active % cols
list_locations[serial(L)] := location(row, col)
every index := 1 to *L do
FillRectangle(objcolor(L[index]), col * column_width, (row — 1) * row_height +
(index — 1) * elem_height + 1, column_width, elem_height)

end
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Procedureredraw() is called whenever the scaling must be changed. The view it establishes can be updated in-
crementally for ordinary list construction and access by drawing one or moreindividual list elements with procedure
plot(). plot() draws a rectangle, first with a black rectangle to highlight the access, and then with a rectangle of a
specified color.

procedure plot(w, row, col, index, del)

/del := 40

X = col * column_width

y = (row — 1) * row_height + (index — 1) * elem_height + 1

if del > O then {
FillRectangle(vblack, x, y, column_width, elem_height)
WFlush(vblack)
delay(del)

FillRectangle(w, X, y, column_width, elem_height)
end

Themain loop fetches list events and updates by calling plot(). redraw() is called when the screen becomes full
or thewindow size changes. One significant detail of list access monitoringisthat alist accessresultsin two events,
onewiththelist itself for an event value, and a second event with an integer event value that givestheindex accessed
within the list. EM saves the list value in the first event and uses it when the second is reported. Since the events
comein pairs, TP doesnot do anything in between the two events, but after the second event, EM must use and then
destroy itsreferenceto thelist or it might spurioudly prevent the list from being garbage collected.

while EvGet(ListMask) do
case &eventcode of {
E_Lref : L := &eventvalue
E_Lsub: {
index := &eventvalue
if index < O then
index +:=*L+1
loc := list_locations[serial(L)]
plot(objcolor(L[index]), vertical(loc), horizontal(loc), index)
L := &null

}

# ... other events handled similarly

}

Although this example uses some sophistication to scale well to larger numbers of lists, it can be enhanced in
variousways. For example, relaxing the direct mapping from serial number to screen location would allow screen-
spaceto bereclaimed whenever alist was garbagecollected. Another improvement would beto portray list operations
inavisually distinct way instead of simply maintaining an accurate representation of the lists' contents.

11.2 Monitoring variable references

Monitoring structure accesses with techniques such as those described in the previous section is useful, but in many
EMs, notably debuggers, data monitoring is driven from the variables used in the program. We consider two exam-
ples of variable monitoring, onethat visualizesall variables and one that identifies referencesto specific variables of
interest.
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11.2.1 Assignment events

One of the most common monitoring techniques is the observation of assignments, where the user is informed or
monitoring code is executed whenever an assignment to a particular variable or set of variablesis made. Theinstru-
mentation reports an E_Assign event on each assignment. E_Assign has a string event value equivalent to calling
name(v) on the assigned variable, suffixed by a scope code. The scope codes are

Code Scope
i global
static
local
" parameter

Statics, locals, and parametersarefollowed by the name of the procedurein whichthey aredefined. For example, a
local variableiin proceduremain() would producean E_Assign event value”i-main”. Variablereferencesto structure
elements have no scope code.

For assignments to named variables and keywords, the name and scope are sufficient to perform reference detec-
tion; the nameand scope may be augmented by procedure activity informationin order to providefiner detail for local
(and especialy recursivelocal) variables. For assignments to structure elements, the event value cannot produce the
name. A given structure element might be assigned by means of any of several variablesthat reference the structure.
For this reason, reference detection techniques are different for named variables and for structure-element variables.

11.2.2 Monitoring variables by name

Figure 11.4 showsawindow image of atool that displaysthe names and types of variables associated with procedure
activations; the names are written in multiple columns in the case of a procedure with alarger number of variables.
As its appearance indicates, the tool is an enlarged version of the Algae program from Chapter 8. The names of
procedure parameters and local variables are displayed within each activation, drawn in a color that indicates the
type of thevariable. Colorsare updated after each assignment. One useful extension to thistool isto show the values
of integers. Thisis useful because integers are common, because they do not require much space, and because they
are not heap-allocated and therefore do not appear in other data-oriented monitors.

The required modificationsto Algae source code are omitted here for the sake of brevity; they are comparableto
the extensionsfor string scanning given in the preceding chapter. Thetechnique used isthe monitoring of assignment
events, considering only those events whose scope code indicates either alocal variable or parameter assignment.

The use of source-text names creates serious spatial problems. Another reasonable way to extend this EM would
be to modify it to use smaller rectangles for each variable and omit the names. Specific variables' names could be
shown when the user clicks the mouse atop a particular variable.

11.2.3 Monitoring individual variables

A named variableisidentified by its name and scope, or by itsinstantiating procedureactivationif recursively created
local variables are considered distinct. For such variables, reference detection is implemented using the E_Assign
event valuesand some additional logic. Two examplesbelow illustrate caseswhere (1) the EM actson any assignment
to avariable defined within a given procedure, and (2) the EM acts on assignments only within a specific activation
record.
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Figure 11.4: Monitoring variablesin active procedures

In the non-recursive case, variables can be identified by their name and scope. A collection of variable names of
interest might be stored in an Icon set (“trapped_variables” in the code below). Variable traps require selection of
assignment events and maintenance of current procedure information using the evaltree() procedure as described in
Chapter 8 on following procedure activity. The correct invocation of evaltree() is:

evaltree(ProcMask ++ E_Assign, trap_callback, activation_record)
Proceduretrap_callback() detects variable referenceswith a set membership test.

procedure trap_callback(current_proc)
if &eventcode === E_Assign then
if member(trapped_variables, &eventvalue) then {
# perform trap

}

end

In some EM’s, the handling of recursive procedure calls requires a more sophisticated form of variable trapping
in which each individual local variable within each procedure activation record is treated as a distinct entity and can
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be trapped separately. Thisis relevant in recursive procedure calls. This form of trapping can be implemented by
adding afield to the structure maintained for activation records:

record trapped_activation(p, parent, children, trapped_variables)
The variable reference detection is performed using this record typein an evaltree() invocation of the form:
evaltree(ProcMask ++ E_Assign, trap_callback, activation_record)
and replacing the line
if member(trapped_variables, &eventvalue) then {

in trap_callback() with the line

if member(new.trapped_variables, &eventvalue) then {

11.2.4 Detecting structure variablereferences

| con structures have pointer semantics. Consequently, if two variablesrefer to the same structure, atrap on the name
of an element of one of the variableswill not catch an assignment using the other variable name. In the code

L1 :=list(2)
L2 :=L1
L2[1] := "foo”

atrap on variable L1[1] will not catch the assignment even though assignment is madeto it. In order to trap structure
elements, the information provided in assignment events need to be mapped down to the underlying structure.

Unfortunately, name(v) for a structure variable produces only a type code letter and a string image of the sub-
scripting element. Without resorting to data intrusive techniques such as altering the internal representation of 1con
structures, monitors cannot tell from an assignment to an element which structure the element isin. Instead monitors
use the framework’s extensive access to the program state.

Given the information E_Assign events provide about structure assignments, one way to trap structure elements
isto check if a structure assignment might be a variable trap, and then compare all structures that might have been
changed, after the assignment has been performed. In general, non-intrusive techniques for monitoring assignment
areinefficient: this particular approach imposesacost on structure variable assignment proportional to the number of
trapped structure variables of the same type and index; if alarge number of variablesareto betrapped, dataintrusive
techniques may be needed for performance reasons. An appropriate trapped variable technique has been devel oped
for SNOBOL 4 [Hans7g].

For every trapped structure variable, atriple consisting of the structure, the index or key, and the old value is
maintai ned.

record trapped_structvar(struct, index, value)

These records are stored in a table, indexed by the string name that is reported by E_Assign when the variable is
assigned.

Structure variable traps use not only E_Assign events, but also the E_Value events that are produced following
the assignment. If the structure indexed by the key does not still equal the old value, the assignment has taken place.
Thistechniqueis not capable of detecting assignments of the same value replacing itself in structures. The codeis
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codes := E_Assign ++ E_Value
while EvGet(codes) do
case &eventcode of {
E_Assign : {
if match("T[" — "L[” — "R.”, &eventvalue) then
struct_asgn := trapped_structs[ &eventvalue |
else struct_asgn := &null

E_Value : {
every tv ;= !\struct_asgn do
if tv.struct [ tv.index ] ~=== tv.value then {
# the trapped structure element has been assigned

}
}
}

Thistechnique works directly for tables and lists. It also worksfor record fields aslong asthefield is trand ated into
its corresponding index for insertion into the trapped_structvar record.
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Chapter 12

Monitor Coordination and Communication

Asillustrated in the preceding chapters, MT Icon and its execution monitoring interface makeit easy to develop new
EMs. In this model, monitors are free to specialize in particular aspects of program execution, and the user selects
the aspects to monitor in a given execution. When multiple EMs come into play, the selection of which EMsto use,
the execution of those EMs, and their communication interface are the responsibility of a program called a monitor
coordinator (MC).

This chapter presents monitor coordination as another domain within the scope of the exploratory program devel -
opment features provided by the execution monitoring framework. After a general discussion of monitor coordina-
tors, an example monitor coordinator is presented that implements a generalization of the selective broadcast com-
munication paradigm advocated by Reiss [Reis90a]. Other paradigms of monitor coordination are possible within
the framework. In addition, other generalizations of selective broadcast proposed in the literature may prove com-
plementary to the one presented in this chapter [Garl90].

12.1 Some monitoring configurations
MT Icon execution events are always reported to the parent program that |oaded the TP being monitored. Thismeans

that the normal event reporting mechanism handles simple rel ationships such as monitoring a monitor or monitoring
multiple TPs (Figure 12.1).

/ - €VENt request
@ — = eventreport

Figure 12.1: Monitoring a monitor; monitoring multiple TPs
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On the other hand, the parental event report relationship means that if more than one EM is to monitor a TR, the
TP's parent must provide other EMswith artificial copiesof the TP events, MT Icon’sevent() function providesthis
service. Figure 12.2 depicts a parent EM that forwards TP eventsto an assisting EM.

- event request
AN — = eventreport
A\ = = artificial event

Figure 12.2: Forwarding eventsto an assistant

Monitor coordinators are specialized EMs whose primary function is to forward events to other client EMs. A
monitor coordinator isan event monitoring ker nel that integratesand coordinatesthe operation of multiple stand-alone
tools. By analogy to operating systems, the alternative to a kernel design would be a monolithic program execution
monitor that integrates all operationsinto a single program.

Figure 12.3 depicts some relationshipsamong M Cs. Figure 12.3(a) issimilar to Figure 12.2 and showsthat aMC
isjust an execution monitor that forwards events. Figure 12.3(b) shows the main purpose for MCs, the execution of
multiple EM’s on asingle TP. Figure 12.3(c) shows a MC monitoring a MC.

M C configurationsand logic generally are limited to and revolve around parent-child relationships. For example,
it is impossible to monitor eventsin a TP loaded and being monitored by another EM or MC unless that parent is
configured to forward such events.

—- cVenNt
request

— = event
report

= =g artificial
event

(@) (b) (c)

Figure 12.3: Monitor coordinators

Since event reportsalso transfer control, M Cs also are schedulersfor EMSs, relinquishing the CPU to them by for-
warding eventsto them. Inthe simplest case the M C forwardsan event and waitsfor the EM to request another event
before continuing; thisschedulingisaform of cooperative multi-tasking. If theM Cistheparent that loadedtheEM in
guestion, it can request event reports (such as clock ticks) from the EM in order to preempt its execution. Since MCs
are special-purpose EMs, development of efficient MC designs falls within the scope of exploratory programming
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support provided by MT Icon.

12.2 Advantages and disadvantages of the M C approach

The three primary advantages of monitor coordinators are:

Modularity With aMC, monitors can be devel oped independently of one another and of the MC itself; they can run
as stand-alone monitors, directly loading and executing the program to be monitored. This allows monitorsto
be debugged separately and puts “fire-walls’ between monitors when they monitor the same program at the
sametime.

Specialization Support for multiple monitors allows EMs to be written to observe very specific program behavior
and still be used in amore general setting. Thisin turn reduces the burden of generality placed on EM authors.
Specialization also smplifies the task of presenting information, since each EM uses its own window and the
user decides how much attention and screen space to devote to each EM.

Extensibility Extensibility refers to the ease with which new tools are added to the visuaization environment.
Adding a new tool to run under a MC does not require recompiling or even relinking the MC or any of the
other visualization tools.

Monitor coordinators do have disadvantages. The implementation of MCs poses serious performance problems
that require careful consideration. Although unsuitablefor exploratory monitor devel opment and experimental work,
asingle monolithic EM provides better performance than a M C that loads multiple EMs.

The primary problem with MCs is the number of context switches among tasks; on some architectures, notably
RISC architectures such as the Sun SPARC, switching between coroutinesis an expensive operation. Minimizing the
number of switches required must be a goal of most MC designs.

12.3 Eve, an execution monitor coordinator

Eveis an example of a MC that allows the user to execute one or more EMs selected from a list and forwards TP
eventsto those EMs that the user selects. The communication provided by Eve represents a generalization of the se-
lective broadcast communi cationsparadigm, because EM s may changethe set of eventsat any time during execution;
in Reiss's FIEL D system, tools can specify the set of eventsthey are interested in only when they are started. Unlike
Forest’s generalization of selective broadcast in which dynamic control is achieved by placing a greater computa-
tional load on the coordinating message server, Eve maintains an extremely simple message dispatch mechanism and
passes policy changes on to the TP by recomputing the TP's event mask whenever needed. By suppressing eventsas
early aspossible, the higher performancerequired for execution monitoring is attained. Thistechnique of continually
minimizing the set of events reported by the TP could be used in conjunction with a Forest-style policy mechanism
in the monitor coordinator if that were desired.

Eve is a cooperative multi-tasking scheduler. Figure 12.4 shows an image of Eve's control window. On the | eft-
hand side are buttons that pause and terminate TP execution and a slider that controls execution speed. The main
area of the window consists of a configurable list of EMs, and for each EM a set of buttons allow the tool to be
controlled during TP execution. In thefigure, two EMsareloaded and enabled. The source codefor Eveis presented
in Appendix B.
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Figure 12.4: Eve's control window

12.4 Writing EMstorun under Eve

Eve supplies eventsto client EMs using the standard EvGet() interface [Gris90b]. This section describes afew dif-
ferences between the stand-alone interface and the Eve environment. Note that programs written for the Eve envi-
ronment run without change or recompilation as stand-alone toals.

Client environment

After each EM isloaded, Eveinitializesit with referencesto its event source (the Eve programitself) and the TRP. The
former is necessary so that EMsyield control to Eve to obtain each event. The latter is provided so that the state of
the TP may be examined or modified directly by all EMs. These referencesin the form of co-expression values are
assigned to the keyword &eventsource and the global variable Monitored, respectively; the global variable Moni-
tored isdeclared in each EM when it links to the evinit event monitoring library.

Since under Eve &eventsource isnot the TR, EMs should always use Monitored to inspect program state. For
example, to inspect the name of the current source file in the executing program an EM should call keyword("file”,
Monitored) rather than keyword("file”, &eventsource).

Aside from the fact that &eventsource is not Monitored under Eve, from a programmer’s standpoint, Eve's
operationisimplicit. Just asmonitoring does not inherently affect TP behavior (other than slowing execution), within
the various EMs Eve's presence normally is not visible; the EM can call EvGet() as usual.

General-purpose artificial events

Eve sends certain artificial events when directed by the user (in the Eve control window). These include the disable
and enable events discussed above, E_Disable and E_Enable. A tool can pass a second parameter to EvGet() in
order to receive these pseudo-events, for example EvGet(mask, 1). When an E_Disable event isreceived, atool is
requested to disableitself. Toolsthat do not maintain any state between events can simply shut off their event stream
by calling EvGet(’’, 1):

case &eventcode of {
# ... more frequent events come first
E_Disable: while EvGet(’'’, 1) ~=== E_Enable

}

Tools that require events in order to maintain internal consistency might at least skip their window output op-
erations while they are disabled. An E_Enable event informsthe tool that it should resume operation, updating its
display first if necessary.
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Monitor communication example

In addition to the use of artificial eventsfor communication between Eve and other EMs, artificial events can be used
by EMsto communicate with each other, using Eve as an intermediary. For example, aline-number monitor such as
the one shownin Figure 7.1 is more useful if the user can inquire about a section of interest in the line-number graph
and see the corresponding source text. This functionality can be built into the line-number monitor, but since many
visualization tools can make use of such a service, it makes more sense to construct an EM to display source lines,
and use virtual eventsto communicate requests for source code display from other EMs.

Communication using Eve startswith the definition of an artificial event code for use by the communicating EMs.
Some of these codes such as E_Disable are defined in the standard library, but in general EMs can use any artificial
event codesthat they agree upon. Inthiscase, an event code, E_ALoc, isdefined for artificial location display events.
Communicating EMs also agree on the type and meaning of the associated event value. In this case the associated
event value is an integer encoding of a source line and column number, similar to that produced by E_Loc events.

The source-code display EM is similar to other EMs, except that it is not interested in TP events, but only in
E_ALoc events. Itsmainloop is

while EvGet('’, 1) do

if &eventcode === E_ALoc then {
# process requests for source code display

}

Any EM that wishes to request source location display services sendsan E_ALoc event to Eve. Eve then broad-
casts this event to those tool s that requested artificial event reports. The code to send alocation request event to Eve
fromwithinan EM is

loc := location(line, column)
event(E_ALoc, loc, &eventsource)

12.5 Evein operation

This section describes the primary techniques employed in Eve to obtain good performance. The key ideas are to
filter events at the source and to precompute the set of EMs to which each event codeis distributed.

Different EMs require different kinds of events. After obtaining alist of client EMs to execute, Eve loads each
client. It then activates each EM for thefirst time; when the EM completesitsinitialization, it calls EvGet(), passing
Eve an event mask.

12.5.1 Computation of the minimal event set

Each time an EM requestsiits next event report from Eve, it transmits a cset event mask indicating what eventsit is
interested in. Eve could simply request all events from the TP, and forward event reports to each EM based on its
current mask. The interpreter run-time system is instrumented with so many events that this brute-force approachis
too slow in practice. In order to minimize the cost of monitoring, Eve asksthe TP for the least set of events required
to satisfy the EMs.

From the event masks of all EMs, Eve computes the union and uses this cset to specify events from the TP. The
code for thisunion calculation is

unioncset := "’
every monitor := Iclients do
if monitor.enabled === E_Enable then

unioncset ++:= monitor.mask
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Although every EM can potentially changeits event mask every timeit requests an event, constant recomputation
of the union mask would be unacceptably expensive. Fortunately, most tools call EvGet() with the same event mask
cset over and over again. Eve does not recompute the union event mask unless an EM’s event mask changes from
the EM’s preceding event request.

125.2 Theevent codetable

The minimal event set described above greatly reduces the number of events actually reported from the TP. When
an event report is received from the TP, Eve dispatches the report to those EMs that requested events of that type.
Thelarger the number of EM s running, and the more specialized the EM s are, the smaller the percentage of EMsthat
typically areinterested in any given event.

Eve could simply test the event code with each EM’s cset mask with a call any(mask, &eventcode). This test
isfast, but performing the test for each EM isinefficient when the number of EMsislarge and the percentage of EMs
interested in most eventsis small. Instead, thelist of EMs interested in each event codeis precomputed as the union
mask is constructed. These lists are stored in atable indexed by the event code. Then, after each event isreceived, a
single table lookup suffices to supply the list of interested EMs. For each enabled monitor, the code for union mask
computation is augmented with:

every ¢ := Imonitor.mask do {
/EventCodeTable[c] ;=]
put(EventCodeTable[c], monitor)

}

12.5.3 Event handling

Eve requests three types of events whether or not any client EM has requested them: E_Tick, E_MXevent, and
E_Error. Eve uses these events to provide basic services while execution is taking place; since these events occur
relatively infrequently they do not impose agreat deal of overhead.

E_Tick eventsallow Eveto maintain asimple execution clock onthe control panel. E_MXevent eventsallow Eve
to receive user input (such as a change in the dider that controls the rate of execution) in its control panel. E_Error
events allow Eve to handle run-time errorsin the TP and notify the user when they occur, allowing errorsto be con-
verted to expression failure at the user’s discretion.

12.5.4 Evesmain loop

Eve's main loop activates the TP to obtain an event report, and then dispatches the report to each EM whose mask
includes the event code. Since this loop is central to the performance of the overall system, it is coded carefully.
Event dispatching to client EMs costs one table lookup plus a number of operations performed for each EM that is
interested in the event — EMsfor whom an event is of no interest do not add processing time for that event. The code
for Eve'smainloopis:

while EvGet(unioncset) do {
zCaII Eve’s own handler for this event, if there is one.
?\ EveHandlers[&eventcode]) ()
z Forward the event to those EM's that want it.
#
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every monitor := |EventCodeTable[&eventcode] do
if C := event(, , monitor.prog) then {
if C ~=== monitor.mask then {
while type(C) ~=="cset” do {
#
# The EM has raised a signal; pass it on, then
# return to the client to get his next event request.
#
broadcast(C, monitor)
if not (C := event(, , monitor.prog)) then {
unschedule(monitor)

break next
}
}
if monitor.mask ~===:= C then
computeUnionMask()
}
}
else

unschedule(monitor)
# if the slider is not zero, insert delay time

}

12.6 Interactiveerror conversion

Normally execution terminates when arun-time error occurs. 1con supportsafeature called error conversion that al-
lows errorsto be converted into expression failure. Error conversion can be turned on and off by the source program
by assigning an integer to the keyword &error. &error indicates the number of errorsto convert to failure before ter-
minating the program; on each error the value of &error is decremented and if it reaches zero the program terminates.
A program can effectively specify that al errors should be converted by setting &error to a small negative integer.
The mechanism is limited in that it does not alow the user or the program to inspect the situation and determine
whether error conversion is appropriate: error conversion is either on or it is off.

Eve catchesrun-timeerrorsin the TP and allows the user to decide whether to terminate execution, or convert the
error into expression failure and continue execution (Figure 12.5).

[ Run-time error

Run-time error 102

File deadman.icn; line 2
numeric expected
offending value: "hello”
Convert to failure?

Figure 12.5: Eve'sinteractive error converter

An E_Error event occurs upon a run-time error. A monitor that requests E_Error eventsis given control before
the error is resolved. Eve requests these events, presents the user with the error, and asks for an appropriate action.
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The codein Eve that does interactive error conversionis:

procedure eveError()
win := open("Run-time error * —— &eventvalue, "g")
write(win, "Run-time error ", &eventvalue)
write(win, "File ", keyword("file”, Monitored), ”; line ", keyword("line”, Monitored))
write(win, keyword("errortext”, Monitored))
writes(win, "Convert to failure? )
if read(win)=="y" then
keyword("error”, Monitored) := 1
close(win)
end



Chapter 13

Perfor mance

In the absence of specialized hardware support, monitoring imposes significant performance overhead on TP execu-
tion. In practice, the user of the system usually is unable to observe execution behavior in any detail at the rate at
which it is generated by the monitoring system, and must frequently stop or slow down execution in order to inspect
details. Similarly, the more sophisticated the execution monitor’s analysis of execution behavior, the more overall
execution speed directly relates to time spent in the monitor. In light of these facts, performance considerations for
the monitoring framework are not asimportant as the quality and utility of the information provided by EMs.

Nevertheless, many of the systemsdiscussed in Chapter 2 are reported to experience performance problems, espe-
cialy tied to the rate at which information is extracted from the target program. Execution monitoring is useful only
if the performance of theimplementation isfast enough so that the system can be applied successfully to medium and
large programs and solve real-world problems. Empirically, the framework devel oped for monitoring Icon programs
meets this criterion.

The purposeof this chapter isto measurethe performance overhead associated with monitoringinMT Icon. Since
the general execution model may be relevant to the monitoring of other high-level languages, costs are provided for
separable components such as the implementation of multi-tasking and the interpreter instrumentation. The eval-
uation is concerned primarily with time measures, rather than space requirements; space has not been an issue in
practice.

The performance results provided in this chapter start with baseline measurements of the cost of multi-tasking
support and instrumentation, followed by measurementsof therel ative costs of monitoring different typesof language
events. The chapter concludes with a note on the effect of CPU type upon the cost of monitoring, and a discussion
of the costs incurred by monitor coordinators.

13.1 Costsof multi-tasking and of inter preter instrumentation

Thereference point for measurements presented in this chapter isthe Version 8.10 I con interpreter, which can be con-
ditionally compiled with no tasking or monitoring support, with multi-tasking, or with multi-tasking and monitoring
support.

Thefirst cost to be considered isthat of the multi-tasking implementation employed by MT Icon. Theimplemen-
tation is optimized for detailed monitoring in which many event reports take place and task switching is therefore
extremely frequent. In order to minimize the cost of the task switch, an extra memory reference is imposed when
accessing task-specific global variablesin the run-time system. The overhead on these extra memory referencesis
insignificant compared with overall interpreter execution costs.
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Timingsfor the lcon benchmark suite[Gris90a] run on a Sun Sparcstation | PX under the I coninterpreter compiled
without and then with multi-tasking support are shown in the two leftmost columns of Figure 13.1 (the remaining
columns are discussed below). Generally the benchmarks' execution differencesunder Icon and MT Icon are small
enough to fall within the margins of error in the measurements due to variationsin machine load.

TP | Icon | MT Icon | MT Iconwith events | ... withVM
concord | 5.5 5.7 8.9 10.2
deal 6.6 6.6 8.0 9.1
ipxref | 1.3 14 2.1 2.2
queens | 8.1 8.2 124 13.2
rsg| 82 8.1 115 12.8

Figure 13.1: MT Icon benchmark timings (seconds)

In addition to multi-tasking, execution monitoring depends on the presence of instrumentation added in-line to
the interpreter and run-time system code under conditional compilation. When compiled with instrumentation, the
interpreter performsteststo determine whether to report each event, even if monitoring is not being performed. The
column of Figure 13.1 labeled “MT Icon with events’ gives Icon benchmark suite timings using an interpreter built
with monitoring instrumentation. Since instrumentation of virtual machine instructionsimposes a significant cost all
by itself, thefiguresin the rightmost column show timingswith virtual machineinstructionsincluded. Generally, the
presence of pervasive instrumentation increases execution time thirty to fifty percent even when it is not used.

This measureisindependent of the co-expression model and the use of independently written and translated Icon
programs as monitors; it would be incurred due to the presence of the instrumentation even if entire execution mon-
itoring system including visualizations were tightly integrated into the Icon interpeter itself.

13.2 Relative costs of monitoring different language features

Some classes of events are much more costly to monitor than others. Thisis roughly proportional to the frequency
with which an event occurs. For example, garbage collection events occur very seldomly, so it costs very little to
monitor garbage collection events. Line number changes are far more frequent; virtual machine instructions are the
most common of all. The classes of events covered are memory all ocations, assignments, type conversions, structure
accesses, procedure activity, built-in function activity, operator activity, string scanning activity, program source code
location changes, and virtual machine instruction execution.

Figure 13.2 gives benchmark suite event counts in the leftmost column, followed by percentagesfor each of the
major categories of events, and Figure 13.3 gives execution times for monitors that request those events but do no
computation of their own. The timings are generally proportional to the amount of work actually performed by the
computation, and not a direct function of any particular class of events. Generally, however, the more events moni-
tored the greater the slowdown imposed by monitoring. Comparison of Figures 13.1 and 13.3 showsthat on a Sparc,
monitoring typically imposes an overhead of one order of magnitude for infrequent event categories, or two orders
of magnitudefor virtual machineinstructions, compared with execution under the standard Icon interpreter. Compu-
tations performed by the EM or EMs as they process events further slow TP execution.

With the exception of garbage collections, there are 1.18 events per virtual machine instruction on average, typ-
ically ranging from one (the virtual machine instruction event itself) to around twelve. The number of events that
occur per virtual machine instruction is not strictly bounded, since a garbage collection can result in a number of
events proportional to the number of data objects that survive collection in the block region.
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total # | aloc | assign | conv | struct | proc | func op | scan loc | VM instr

concord | 3782971 1.7 49 | 205 0.2 0.2 9.1 8.8 18 8.2 44.6
deal | 1963019 32 57 | 265 14| 11| 21| 128 0| 79 34.7
ipxref | 1044476 0.6 17| 211 34| 05| 13| 189 0| 87 43.8
queens | 6835489 0.1 40 | 29.9 43| 02 0| 180 0| 80 35.3
rsg | 5367792 0.9 2.7 4.0 3.7 0 37| 135 0| 100 61.5

Figure 13.2: Total event counts and percent of eventsin each category

dloc | assign | conv | struct | proc | func op | scan loc | VM instr
concord | 33.2 724 | 2253 | 146 | 145 | 107.1 | 107.8 | 34.7 | 114.7 386.2
deal | 522 | 478 | 1533 | 179|163 | 21.6| 80.6| 100 | 718 184.1
ipxref | 4.5 81| 634 | 124 | 42 65| 561| 26| 414 102.6
queens | 19.2 | 108.7 | 584.8 | 101.4 | 21.5 | 16.1 | 362.4 | 16.0 | 208.7 534.8
rsg | 29.8 598 | 747| 719|160 | 729 | 2051 | 155 | 2145 761.7

Figure 13.3: Execution times for no-op monitors by category (seconds)

For each virtual machineinstructioninthe TP, an EM potentially receives several event reportsresulting in arbi-
trarily lengthy computationson its part. Since event reporting is built around the | con co-expression context switch,
the CPU-dependent speed of the context switch operation compared with normal program activitiesis important in
determining the cost of using a multi-tasking model of execution monitoring instead of a one-process model. Fig-
ure 13.4. compares timings of ordinary operations, context switches, and event reporting on the Sun Sparcstation
IPX and an Intel 486 processor. The figures are the average from one million executions of each operation. Thefirst
three columns give timings for the null operation, integer addition, and procedure call. The fourth column timesthe
| con co-expression context switch, while the fifth column times the event reporting mechanism including its context
switch.

Thefirst and third rows report timings taken using |con’s built-in timing mechanism, while the second and fourth
rows give times observed by the UNIX shell time command. Although the Sparcstation performs almost twice as
fast asthe 486 on normal computations, its advantageis greatly reduced for execution monitoring becauseits context
switch is very ow — the context switch executes a software trap that flushes register windows to memory. When
thissystem timeistaken into account (adding the two figures given in each column of the second and fourth rows) the
1486 outperforms the Sparc by a factor of 4 for the co-expression context switch, and by roughly 50 per cent on the
event reporting mechanism. Of course, the Sparc’s performance advantage on the rest of the TP and EM execution
translates into faster execution overall.

CPU no-op i+ p(x) @x | event()...EvGet()

Sparc (&time) 10.4 38.8 33.6 97.5 277.8
Sparc (u+stime) | 10.2+0.1 | 39.4+0.4 | 33.6+0.2 | 79.5+93.5 222.0+113.0
1486/33 (&time) 195 63.8 58.5 78.0 363.7
i486/33 (u+stime) | 11.7+0.2 | 38.2+0.2 | 34.9+0.1 | 46.5+0.1 235.2+1.6

Figure 13.4: Costs of various operations (microseconds, average)
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13.3 Limitations of graphics hardware and software

Experience has shown that in many program visualization applications, the window system software is not able to
perform window output at the rate at which it is produced by an EM; this is observed when monitors written using
asynchronous window system calls complete execution noticeably before animation stops in the monitor window.
For such applications, writing EMsin Icon instead of alower-level language does not cost as much in terms of per-
formance as might be expected. In contrast, MT Icon isleast suitable for EMs with complex graphics requiring sig-
nificant numeric computation, because such applications' performanceislesslikely to belimited by window system
capabilities and because Icon is not oriented towards numeric applications.

13.4 Cost incurred by monitor coordinators

Although MC's offer great flexibility, the use of aMC to execute multiple EMsinstead of writing a single monolithic
EM imposes additional overhead, primarily increasing the number of task switches required. The MC Eve can be
used to illustrate this cost.

Intheworst case, all EMsrequest areport for every event. Under Eve, if thereare N toolsthen thereare2* N +
2 task switches per event report. A monolithic EM would incur only two switches per event report, from TPto EM,
and from EM to TP. Evethereforeimposes2 * N additional switchesin the worst case.

In the best case, the event masks are digjoint and only one EM is interested in any event to be reported. In this
case Eveincurs four task switches per event report — twice as many as in the monolithic case. Since userstypically
employ multiple EMs to provide information about a variety of aspects of program behavior, the expected normal
case is closer to this best case behavior than the worst case in which the EMs are all observing the same events.
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Conclusons and Future Work

MT Icon and itsinstrumentation provide aframework in which it is possible to take a program monitoring ideafrom
conceptionto implementationin ashort period of time. The primary contributionin thisframework isthe exploitation
of coroutines and dynamic loading to provide EMs with program state information at the source level instead of at
the machinelevel.

14.1 Successes of the framewor k

The framework demonstrates the viability of:
e exploratory development of execution monitors, given suitable language support,
e asynchronoustask model for the monitoring of programswritten in high-level languages,
e application of monitors developed under the framework to obtain useful performance tuning information.

MT lcon’s execution monitoring interface has proven simple enough to be programmed even by novice | con pro-
grammers. In one semester, studentswith no prior | con programming experiencewere ableto the framework in auni-
versity course to construct sophisticated program visualization tools. Expert users can construct experimental EMs
in hoursinstead of days.

Exploratory monitor programming is of limited usefulnessif it does not scale up to accomodate the devel opment
of larger full-featured monitoring services. MT Icon allows the execution of multiple EMs on asingle TP using a
monitor coordinator as an attractive alternative to monolithic all-encompassing tools such as traditional debuggers
and profilers. Performance degrades gracefully as tools are added.

Dynamic loading and synchronous, shared-address space tasks have proven to be a robust model in which TP
and EMs can co-exist. Task switching between TPsand EMs provides acceptabl e performance while minimizing the
impact of monitoring upon the behavior of the TP,

The implementation of dynamic loading and multi-taskingin MT Icon builds upon Icon’simplementation of co-
expressions. The execution monitoring framework is therefore portable to most of the platforms that Icon runs on
with the exception of personal computers with small memory sizes. The system has been run on avariety of UNIX
platformsaswell as OS/2 2.0. Many of the more powerful EM s make extensive use of |con’sgraphicsfacilities; use
of graphicsisagreater portability limitation than MT Icon and the execution monitoring interface.

The execution monitoring framework has been used to implement a variety of profiling tools for tuning perfor-
mance, such as tools that count the number times a given line or given procedure has been executed. Of particular
interest are language-specific tools that profile behavior that is not related directly to the program source code, but
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rather takes place in the run-time system, such as garbage collection or type-conversion. Such costs may not be read-
ily apparent to a programmer writing or reading the code.

One such profiler simply indicates in a small window whenever a garbage collection takes place. For normal
programs this monitor imposes little overhead and is unobtrusive, while programs that are exhibiting thrashing heap
behavior flash repeatedly, drawing attention to the problem. Upon observing such behavior, the user may be ableto
adjust heap size parameters so that thrashing does not occur in future executions.

A more sophisticated profiler cross-references type-conversion information with program source locations and
applies simple heuristics to select locations where frequent conversions are likely to be unnecessary or redundant.
The user then can manually inspect the locations found to determine whether a simple modification can eliminate
the conversions. The redundant conversions profiler has resulted in speedups of 0-15 percent on real programs, with
useful results on programs written both by novice and expert users.

In addition to profiling tools, program tuning often results from the observation of behavior presented by more
general EMs. For example, inefficient structure manipulations can frequently be inferred by observing allocation
patterns or structure access activity, as in the novatool examplein Chapter 9.

Successin target program tuning suggests the related issue of language implementation tuning. MT Icon’s exe-
cution monitoring framework was not built with the objective of providing information for improving theimplemen-
tation. Nevertheless, prior research in the monitoring and visualization of memory usage led to improved allocation
heuristics[Gris89], and observation of EMsunder MT | con a so suggested improvementsto theimplementation. For
example, monitoring of list-creation eventsled to achangein list concatenation with the result that it is faster and al-
locates | ess space than before.

Instrumentation also can find problems in the implementation. Modifications to the implementation during the
construction of the Icon compiler at one point introduced a bug into the implementation of the built-in string analysis
function many(). The bug allowed many() to produce string indices beyond the bounds of the subject string. The
bug was observed in a string scanning EM, where position events appeared past the end of the subject string.

14.2 Limitations of the framework

Although the framework addresses the construction of monitorsfor a broad spectrum of program behavior, the tech-
niquesit uses are of limited applicability to other languages, and the ability to monitor implementation behavior does
not extend into the realm of observing activity during garbage collection. In addition, there areinherent limitationsin
the use of non-intrusive monitoring techniques. some kinds of debugging require intrusion into the target program,
and the framework is not oriented towards intrusive techniques.

The approach to execution monitoring presented here is not applicable to programming languages and systems
in which the implementor of the execution monitoring facilities does not “own” the implementation of the language.
Beyond access to source code, instrumentation of alanguage run-time system generally requiresintimate knowledge
of the implementation and represents amajor investment of effort. Because instrumentation is spread throughout the
code, it poses added maintenance problemsin the implementation and must be added to the primary sourceiif it isto
remain functional in future language updates and versions.

Thetechnique of capturing program behavior viarun-time system instrumentation is not appropriatefor low-level
compiled languages, where instrumentation is more appropriately embedded in generated code via a preprocessor or
compiler modifications. Instrumentation of an interpreter is generally simpler and easier than modifying a compiler
code generator.

MT Icon’sdynamically loaded coroutines do not have ready equivalentsin most other languages and would have
to be added, as they were to Icon, before the exploratory execution monitor development provided by MT Icon can
berealized. The implementation of a portable dynamic |oading mechanism was much ssimpler for an interpreter than
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would be the case for acompiled language. |n some cases, notably Small Talk, the language has the requisite features
but the implementation may require added features such as separatel y-collected heap spaces before EM s can execute
without interfering with TP behavior.

Another limitation of the framework is in the area of garbage collection monitoring. The MemMon system is
ableto providevery detailed information about | con’s marking and compaction algorithmsthrough afile-based event
stream [Gris89]. Thisinformation has proven useful in practice, but there is no way to safely report events during a
garbage collectionin MT Icon. An event report causes transfer of control and execution in an EM. During agarbage
collection, TP datamay not bein avalid format and if an EM were free to inspect it, system failure would result.

Thisis oneinherent penalty in the one-process and thread modelsin which EMs directly access TP data through
pointers. Since this limits the monitoring of implementation behavior, rather than TP behavior, it is not an unaccept-
able loss. If the garbage collection algorithm is under study, a two-process model or file-based monitoring system
should be employed rather than the MT Icon task model.

14.3 Enhancements and futuredirections

The execution monitoring framework for |con was motivated by adesire to explore new types of execution monitors,
particularly program visualizationtools. Theframework isan enabling technology and its success should resultin the
development of various experimental monitoring tools. I1n addition, some general problemsin execution monitoring
have been observed that further work may mitigate or solve. A third future direction is the application of concepts
fromthiswork to the monitoring of other languages. A fourth futuredirection consistsof further tuning theframework
and integrating it with Icon compiler technology.

Update variation in simultaneous animations

As detailed in the chapter on system performance, some events occur very frequently compared with others. Since
graphic output is often a bottleneck in the present system, animations based on frequent events such as location
changes reduce or preclude the effectiveness of animations based on less frequent events.

Mitigating the effects of this problem is an open areafor research. Clearly, the faster the overall executionis, the
faster the slowest animation in a group runs, but then faster animations' motion will be too fast to be useful. One
possible way for monitors of frequent kinds of eventsto coexist with monitors of infrequent eventsisif the monitors
of frequent events sampletheir events at some rate determined by the less frequently updated monitors. For EM sthat
do not maintain amodel of TP state this may work; for EMs such as Algae that do maintain amodel, it will not. The
best such EMs can hopeto do isimplement areduced output mode in order to improve slower EMS animation rates
by improving overall execution speed.

Concurrency among monitors

Our monitoring framework isinteractive and allows full debugging unlike most event-based monitoring and debug-
ging systems. This degree of interaction means that by design, the TP cannot continue its execution concurrently
whilean EM is processing an event and/or user input.

On the other hand, EMs are typically independent of one another and if MT Icon were extended to allow true
concurrency on multiprocessor hardware, all the EMsinterested in any given event could run concurrently. As more
and better EMs are devel oped, the growing motivation to run more EMs more of the time will create an interest in
shared-memory multiprocessors.
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I ntegrating monitorsinto coordinators

Our framework alows EMs to be compiled and executed separately, or in conjunction with one another using an
MC. Under an MC, a large number of task switches may take place with each event. Although this has not been
prohibitivein practice, the possibility of merging commonly used EM functionality directly into the MC and avoiding
the task switching overhead is attractive. For example, the interactive run-time error conversion and elapsed CPU
time features of Eve were first implemented as stand-alone EMs and later added to Eve.

L ess commonly-used EMs can remain stand-alone and be loaded separately. The ability to add EM functionality
into an MC isalso attractivein light of |con compiler technology discussed below, in which the M C performance may
be substantially increased. Merging functionality could be accomplished relatively easily for EMsthat use callbacks.
EMsthat utilize their own flow of control to change states from event to event would require more effort to integrate.

I ntegrating the I con inter preter and compiler

The MT Icon facilities are specific to the Icon interpreter and are not supported by the Icon compiler [Walk91]. On
the other hand, the I con compiler offers significant performanceimprovementsover theinterpreter. Thetwo systems
share the same run-time code and data representation, and there is no fundamental reason why an EM cannot be
compiled by the Icon compiler and linked with interpreter code so that it is able to load and execute interpreted Icon
programs. Sincethevast majority of time spent in most monitoring situationsis spent in the EM, the ability to execute
EMs at compiled speeds would dramatically improve monitoring performance. This improvement could apply to
monitor coordinators such as Eve without losing the flexibility of the current system, in which dynamically-loaded
EM s can be selected from a menu and run together under an MC.

M or e execution monitors

The purpose of the research presented in this book wasto facilitate the devel opment of new EMs. The collection of
EMsimplemented so far in testing the framework isin no way exhaustive. Now that the framework isimplemented
and has been proven useful, more EM s should be devel oped. As of yet relatively few EMs provide user-control over
the details of the information presented. Existing EMs are oriented towards general program understanding (and
particularly visualization) tasks. The development of exploratory execution monitors using this framework still has
large unexplored potential. EMs that provide more specific debugging facilities have yet to be written, and have
obvious utility. In addition, EMs have application areas in specia contexts that have not been treated, such as the
education of novice programmers.

Moretypes of events; finer selection controls

The event monitoring instrumentation in the present system is extensive, but in a language with as much built-in
behavior as Icon, it will amost aways be possible to add more types of events. For example, no instrumentation is
currently available to monitor certain control structures such as aternation and limitation, to monitor the dynamic
hash table activity used in Icon’s built-in set and table data types, or to monitor I/O such asfile and window activity.

The existing system has certain events that would benefit from further subdivision into different event codes.
Conversion events might usefully be coded by destination type the way allocation events are, for example. Thereare
other events for which finer selections than the event mask mechanism may be appropriate, similar to the selection
of virtual machine instructions of interest via opmask(). Generally these are just performance enhancements, and
the current system performs satisfactorily. Nevertheless, eventsfor which thisfiner selection might be useful include
location events and operator and function events.
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L anguage support for trapped variables

The non-intrusive techniquesfor the monitoring of individual variablesthat are presented in Chapter 11 do not scale
well when large numbers of variables need to be monitored. For such applications, data intrusive language support
for trapped variables would provide a better alternative.

There are two primary operations on variables that are of interest: assignments and dereferencing operations. A
variable trap mechanism might insert alayer of indirection into a trapped variable reference; the intermediate block
inserted between the variable descriptor and its value would cause a side-effect such as an event to occur when the
variable was assigned or dereferenced. Trapped variables are data intrusive, but not problematically so, since the
intermediate block might be allocated in the EM rather than the TP,

The concept of a trapped variable is old [Gris72], and underlies such mechanisms as the SNOBOL 4 variable
association facility [Hans78]. Adding trapped variable support to Icon is non-trivial but not impractical. Since the
techniqueis complementary to the approaches presented in thisbook, adding it would improvethe overall capabilities
of the framework.

Preemptive scheduling monitor coordinators

No event mask is used when Eve sends an event report to an EM; the EM runs until it requestsits next event. Under
some circumstancesan M C may want to regain control from an EM that consumes excessive resources by monitoring
the EM, requesting event reportsfor clock ticks, for example. Thiswould enableaMC to give priority to some EMs
over others, or ensure that all EMsreceive regular CPU timein order to handle user interaction promptly.

14.4 Final thoughts

Itisillustrative of the neglect of execution monitoring in the literature that no major programming language has been
designed with explicit linguistic support (as opposed to library packages and other extra-linguistic forms of support)
for monitoring; such support has at best come after the fact and is more often entirely missing. Without such support,
the literature is filled with articles on how to implement crude forms of monitoring using low-level techniques and
nonportable operating system and machine architecture capabilities and articles that present high-level abstractions
of monitoring with no demonstration of their application to practical problems.

MT Icon represents a successful grafting of support for execution monitoring onto an existing language. Being
an afterthought, its design and implementation are naturally somewhat constrained. The question arises: In a new
high-level language language, if linguistic support for execution monitoring isan explicit design goal, what language
features should be present? MT Icon suggests some of them (dynamic loading, synchronous tasks), but it may be
possible to conceive of better services than M T Icon provides, and a better execution model with which to perform
monitoring.
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Appendix A: Algae

This appendix presents the Icon source code for Algae, the example execution monitor introduced in Chapter 8 and
enhanced in Chapters 10 and 11.

R T R R R T R B R R B P R
#

# File: algae.icn

#

# Subject: Program to show expression evaluation as “algae”
#

# Author: Clinton Jeffery

#

# Date: 5/1/92

#

BB T R R R T R R B R R B P R
#

# Press ESC or g to quit

# Left mouse assigns specific (row,column) break "points”

# Middle mouse assigns absolute depth and width break lines
# Right button erases assigned break "points”

#

# When paused due to a break, you can:

#

# c to continue

# s to single step

# C to clear one point and continue

# " " to clear everything and continue

#

$include "evheader.icn”

link evinit

link evutils

link options

link optwindw

link hexlib

link evaltree

global scale, # cell (hexagon or square) size
step, # single step mode
nuMrows, # number of cell rows
numcols, # number of cell columns
spot, # cell—fill procedure (hex or square)
mouse, # cell-mouse—locator procedure
Visualization, # the window
wHexOutline, # binding for drawing cell outlines
depthbound, # call—depth on which to break
breadthbound, # suspension—width on which to break

hotspots # table of individual cells on which to break
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record algae_activation(node, row, column, parent, children, color)

#
# main() — program entry point. The main loop is in evaltree().
#
procedure main(av)
local codes, algaeoptions
#
# pull off algae options (don’t consume child’s options in this call
# to options()).

#

algaeoptions =]

while av[1][1] == "—"do {
put(algaeoptions, pop(av))
if algaeoptions[—1] == "—f" then put(algaeoptions, pop(av))
}

Evlinit(av) | stop("Can’t Evinit ",av[1])
codes := algae_init(algaeoptions)
evaltree(codes, algae_callback, algae_activation)
WALtrib("windowlabel=Algae: finished”)
EvTerm(&window)

end

#
# algae_init() — initialization and command—line processing.
# This procedure supplies default behavior and handles options.
#
procedure algae_init(algaeoptions)
local t, position, geo, codes, i, ch, coord, e, s, X, ¥, m, row, column
t := options(algaeoptions,
winoptions() || "P:S:—geo:—square!—func!—scan!—op!—noproc!”)
N['L"] := "Algae”
N['B"] := "cyan”
scale := \t["'S" | 12
if \t["square”] then {
spot := square_spot
mouse ;= square_mouse
}
else {
scale /:=4
spot := hex_spot
mouse := hex_mouse
}
codes := cset(E_MXevent)
if /{["’noproc”] then codes ++:= ProcMask
if \t[’scan”] then codes ++:= ScanMask
if \t[’func”] then codes ++:= FncMask
if \t["op”] then codes ++:= OperMask

Appendices



Appendices

hotspots := table()
&window := Visualization := optwindow(t) | stop("no window”)
numrows := (XHeight() / (scale * 4))
numcols := (XWidth() / (scale * 4))
wHexOutline := Color("white”)  # used by the hexagon library
if /t["square”] then starthex(Color("black™))
return codes
end

#
# algae_callback() — evaltree callback procedure for algae.
# Called for each event, it updates the screen to correspond
# to the change in the activation tree.
#
procedure algae_callback(new, old)
local coord, e
initial {
old.row := old.parent.row := 0; old.column := old.parent.column := 1
}
case &eventcode of {
ICallCodes: {
new.column := (old.children[—2].column + 1 | computeCol(old)) | stop("eh?”)
new.row := old.row + 1
new.color := Color(&eventcode)
spot(\old.color, old.row, old.column)
}
IReturnCodes |
IFailCodes: spot(Color("light blue”), old.row, old.column)
ISuspendCodes |
IResumeCaodes: spot(old.color, old.row, old.column)
'RemoveCodes: {
spot(Color("black”), old.row, old.column)
WFlush(Color("black”))
delay(100)
spot(Color("light blue”), old.row, old.column)

}

E_MXevent: dolevent(&eventvalue, new)
}
spot(Color("yellow”), new.row, new.column)
coord := location(new.column, new.row)
if \step | (\breadthbound <= new.column) | (\depthbound <= new.row) |
\ hotspots[coord] then {
step := &null
WALtrib("windowlabel=Algae stopped: (s)tep (c)ont ()clear ")
while e := Event() do
if dolevent(e, new) then break
WALtrib("windowlabel=Algae”)
if \ hotspots[coord] then spot(Color("light blue”), new.row, new.column)

}
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end

#

# procedures for the "—square” option, display Algae using squares
# instead of hexagons.

#

# Draw a square at (row, column)
procedure square_spot(w, row, column)

FillRectangle(w, (column — 1) * scale, (row — 1) * scale, scale, scale)
end

# encode a location value (base 1) for a given x and y pixel
procedure square_mouse(y, X)

return location(x / scale + 1, y / scale + 1)
end

#
# clearspot() removes a "breakpoint” at (x,y)
#
procedure clearspot(spot)
local s2, x2, y2
hotspots[spot] := &null
y := vertical(spot)
X := horizontal(spot)
every s2 := \!hotspots do {
X2 := horizontal(s2)
y2 := vertical(s2)
}
spot(Visualization, y, X)
end

#
# setspot() sets a breakpoint at (x,y) and marks it orange
#
procedure setspot(loc)
hotspots[loc] := loc
y := vertical(loc)
X := horizontal(loc)
spot(Color("orange”), y, X)
end

#
# dolevent() processes a single user input event.
#
procedure dolevent(e, new)
local m, xbound, ybound, row, column, x, y, s
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case e of {
an |
"\e”: stop("Program execution terminated by user request”)
'S # execute a single step
step =1
return
}
"C: { # clear a single break point
clearspot(location(new.column, new.row))
return
}
"] # space character: clear all break points

if \depthbound then {
every y := 1 to numcols do {
if not who_is_at(depthbound, y, new) then
spot(Visualization, depthbound, y)

}
if \breadthbound then {

every x := 1 to numrows do {
if not who_is_at(x, breadthbound, new) then
spot(Visualization, x, breadthbound)

}
every s := \!hotspots do {
x := horizontal(s)
y := vertical(s)
spot(Visualization, y, X)
}
hotspots := table()
depthbound := breadthbound := &null
return
}
&mpress | &mdrag: { # middle button: set bound box break lines
if m := mouse(&y, &x) then {
row := vertical(m)
column := horizontal(m)
if \depthbound then { # erase previous bounding box, if any
every spot(Visualization, depthbound, 1 to breadthbound)
every spot(Visualization, 1 to depthbound, breadthbound)
}
depthbound := row
breadthbound := column
#
# draw new bounding box
#
every x := 1 to breadthbound do {
if not who_is_at(depthbound, x, new) then
spot(Color("orange”), depthbound, x)
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}
every y := 1 to depthbound — 1 do {

if not who_is_at(y, breadthbound, new) then
spot(Color("orange”), y, breadthbound)

}

&lpress | &ldrag: { # left button: toggle single cell breakpoint
if m := mouse(&y, &x) then {
xbound := horizontal(m)
ybound := vertical(m)

if hotspots[m] === m then
clearspot(m)
else
setspot(m)
}
}
&rpress | &rdrag: { # right button: report node at mouse location

if m := mouse(&y, &x) then {
column := horizontal(m)
row := vertical(m)
if p := who_is_at(row, column, new) then
WALtrib("windowlabel=Algae ” || image(p.node))

}
}
}
end
#
# who_is_at() — find the activation tree node at a given (row, column) location
#

procedure who_is_at(row, col, node)
while node.row > 1 & \node.parent do
node := node.parent
return sub_who(row, col, node) # search children

end
#
# sub_who() — recursive search for the tree node at (row, column)
#
procedure sub_who(row, column, p)
local k
if p.column === column & p.row === row then return p
else {

every k := Ip.children do
if g := sub_who(row, column, k) then return q

end
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#
# computeCol() — determine the correct column for a new child of a node.
#
procedure computeCol(parent)
local col, x, node
node := parent

while \node.row > 1 do # find root
node := \node.parent
if node === parent then return parent.column

if col := subcompute(node, parent.row + 1) then {
return max(col, parent.column)

}
else return parent.column
end
#
# subcompute() — recursive search for the leftmost tree node at depth row
#

procedure subcompute(node, row)

# check this level for correct depth

if \node.row = row then return node.column + 1

# search children from right to left

return subcompute(node.children[*node.childrento 1 by —1], row)
end

#
# Color(s) — return a binding of &window with foreground color s;
# allocate at most one binding per color.
#
procedure Color(s)
static t, magenta
initial {
magenta := Clone(&window, "fg=magenta”) | stop("no magenta”)
t ;= table()
It[E_Fcall] := Clone(&window, "fg=red”) | stop("no red”)
It[E_Ocall] := Clone(&window, "fg=chocolate”) | stop(’no chocolate”)
N[E_Snew] := Clone(&window, "fg=purple”) | stop("no purple”)

}
if *s > 1 then

/ [s] := Clone(&window, "fg="|| s) | stop("no ",image(s))
else

/ {[s] := magenta
return t[s]
end

procedure max(x,y)
if X < y then return y else return x
end
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B R R R R R R R
#

# Name: evaltree.icn

#

# Title: Maintain activation tree

#

# Author: Clinton Jeffery

#

# Date: July 28, 1992

#

R R R R R R R R
#

# Usage: evaltree(cset, procedure, record constructor)

#

# Requires: MT Icon and event monitoring.

# the record type must have fields node, parent, children

#
T T R R R
#

$include "evheader.icn”

record __evaltree_node(node,parent,children)

global CallCodes,
SuspendCodes,
ResumeCodes,
ReturnCodes,
FailCodes,
RemoveCodes

procedure evaltree(mask, callback, activation_record)
local ¢, current, child, p

/activation_record := __evaltree_node

CallCodes := string(mask ** cset(E_Pcall || E_Fcall || E_Ocall || E-Snew))
SuspendCodes := string(mask ** cset(E_Psusp || E_Fsusp || E-Osusp || E-Ssusp))
ResumeCodes := string(mask ** cset(E_Presum || E_Fresum || E_Oresum || E_Sresum))
ReturnCodes := string(mask ** cset(E_Pret || E_Fret || E_Oret))

FailCodes := string(mask ** cset(E_Pfail || E_Ffail || E-Ofail || E-Sfail))

RemoveCodes := string(mask ** cset(E-Prem || E_-Frem || E.Orem || E_Srem))

current := activation_record()
current.parent := activation_record()
current.children :=[]
current.parent.children :=[]

while EvGet(mask) do {
case &eventcode of {
ICallCodes: {
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end

¢ := activation_record()
c.node := &eventvalue
c.parent := current
c.children :=]
put(current.children, c)

current:=c
callback(current, current.parent)
}

IReturnCodes | !FailCodes: {
p := pull(current.parent.children)
current := current.parent
callback(current, p)
}

ISuspendCodes: {
current := current.parent
callback(current, current.children[—1])
}

IResumeCodes: {
current := current.children[—1]
callback(current, current.parent)
}

IRemoveCodes: {
if child := pull(current.children) then {

while put(current.children, pop(child.children))

callback(current, child)

}

else {

if current === current.parent.children[—1] then {

p := pull(current.parent.children)
current := current.parent
callback(current, p)

next

}

else stop("evaltree: unknown removal”)

}

}
default: {

callback(current, current)

}
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Appendix B: Eve

This appendix presents the | con source code for Eve, the example monitor coordinator presented in Chapter 12.

BHHHHH R R R R

#
# File: eve.icn
#

# Subject: Program to control multiple execution monitors

#

# Author: Clinton Jeffery

#

# Date: November 17, 1992

#

B R R R B B R R T B R R R R F R R B R

#
# Version: 3.2
#

BHHHHH R R R R R R R

#

# An execution monitor coordinator

#

$include "evheader.icn”

link evutils
link options
link optwindw
link vidgets
link vbuttons
link vslider
link vstyle
link vtext

link vtools
link vstopsgn

global
cmd, # target program file name
clients, # list of client objects
unioncset, # union of client’s csets
root, # root of the widget tree
msg, # main message widget
enabled, # list of checkbox widgets
stopSign, # state of the stop sign widget
stopstate, # state of the stop sign widget
EventCodeTable, # table of EM’s to call for each event
loaded, # list of checkbox widgets
delayval, # amount of slowdown to insert per event
verbose, # switch to make Eve explain itself
candidates, # list of potential EM’s to run
ticksum, # number of clock ticks elapsed in TP
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EveHandlers, # Eve’s procedures for each event
EveBroadcastQueue # queue used for EM — EM communication
#
# main() — initializes TP, EM’s, Eve’s own tables, then enters the main loop
#

procedure main(av)
local optable, all, i, monitor,
arglist, C, eveoptions

optable := initialize TP (av)
if \verbose then write("Eve: Monitoring ", cmd, ” (", image(&eventsource), ”)")

all := optable["all"]
initializeEMs(optable)

initializeEve()
if \verbose then write("Eve: executing monitored program”)

mainLoop()
end

#
# mainLoop() — Eve’s main loop
#
procedure mainLoop()
local monitor, C
while EvGet(unioncset) do {
#
# Call Eve’s own handler for this event, if there is one.
#
(\ EveHandlers[&eventcode]) ()
#
# Forward the event to those EM’s that want it.
#
every monitor := !EventCodeTable[&eventcode] do
if C := event(, , monitor.prog) then {
if C ~===monitor.mask then {
while type(C) ~=="cset” do {
#
# The EM has raised a signal; pass it on, then
# return to the client to get his next event request.
#
broadcast(C, monitor)
if not (C := event(, , monitor.prog)) then {
write("unschedule #1")
unschedule(monitor)
break next
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}
}
if monitor.mask ~===:= C then
computeUnionMask()
}
}
else {
write("unschedule #2")
unschedule(monitor)
}
delay(6 < delayval)
}
set_Vstrset_coupler(stopstate, , "done”)
stopsigndone(stopSign)
drawtime()
eveQuit()
end
#
# initialize TP() — initialize the target program
#

procedure initialize TP(av)
local optable, eveoptions
# EvGlobals()

delayval := 0
*av>0 | stop("usage: eve [—f eveconfig] [—s] [—all] icon—command—line”)
#

# pull off eve options (don’t consume child’s options in this call
# to options()).

#

eveoptions :=[]

while av[1][1] == "—"do {
put(eveoptions, pop(av))
if eveoptions[—1] == "—f" then put(eveoptions, pop(av))
}

optable := options(eveoptions, "P:V!—geo:f:s—all!”)
/optable[’P"] :="0,0"

/optable[f"] := getenv("HOME?") || "/.eve”
/optable['L"] := "Eve”

/optable["T"] := "helvetica,bold, 17"

/optable["H"] := 100

/optable["W"] := 100

verbose := optable["V"]

cmd := pop(av) | stop("Eve: Icon program command—Iline argument is missing!”)
&eventsource := load(cmd, av) | stop("can’t load ”, image(cmd))
return optable

end
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#
# intializeEMs — initialize the execution monitors
#
procedure initializeEMs(optable)
local all, i, titles, title, wantheight, maxwidth, arglist
all := optable["all"]
candidates := getClientList(optable['f"], all)
titles := getTitles()
&window := optwindow(optable) | stop("no &window”)
maxwidth := calcWidth(titles)
wantheight := WAttrib("fheight”) * (*candidates + 1) + WAttrib("ascent”)
wantheight <:= 80
WALtrib("width="|| (maxwidth + 101 + TextWidth("loadiconifyenable”) + 16))
WALtrib("height=" || wantheight)
wantheight <:= 240
# build buttons and sliders on Eve’s window
root := Vroot_frame(&window)
attachClientControls(titles, maxwidth, all)
VResize(root)
# allow user to select EMs
while(pop(Pending()))
until stopstate.value ~==="startup” do
run()
if wantheight ~= WALttrib("height”) then WAttrib("height="||wantheight)
attachSlider()
while(pop(Pending()))
clients :=]
everyi:=1to * candidates do
if \all | \loaded][i].callback.value then {
arglist := titledparse(candidates][i])
put(clients, client(pop(arglist), arglist, i))
}
# the first time through we activate the clients with no useful value
if \verbose then write("Eve: initializing ", *clients, " clients”)
every i := 1 to *clients do
clients[i].mask := @ clients[i].prog

end
#
# initializeEve() — initialize Eve’s own state variables
#
procedure initializeEve()
ticksum :=0

EveHandlers := table()
EveHandlers[E_Tick] := eveTick
EveHandlers[E_MXevent] := eveEvent
EveHandlers[E_Error] := eveError
computeUnionMask()
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end

#
# calcWidth() — compute the width needed for Eve window, in pixels
#
procedure calcWidth(titles)
local maxwidth
maxwidth := 0
every maxwidth <:= TextWidth(!titles)
maxwidth <:= TextWidth("Executing program ” || cmd) + 4
maxwidth +:= TextWidth("..”)
return maxwidth
end

#
# getTitles() — from a list of candidates, build a list of titles
#
procedure getTitles()
local titles, i
titles := list(*candidates)
every i := 1 to *candidates do

if candidates[i][1] == "\"" then
candidates[i] ? {
move(1)
titles[i] := tab(find("\""))
}
else

titles[i] := candidates][i]
return titles
end

#
# attachClientControls() — attach controls for each possible EM,
# as well as Eve’s stopsign and exit button
#
procedure attachClientControls(titles,maxwidth,all)
local fheight, y, dotwidth, descent, i, title, aborter
fheight := WALttrib("fheight”)
descent := WAttrib("descent”)
dotwidth := TextWidth(".")
loaded := list(*candidates)
enabled := list(*candidates)
every i := 1 to *candidates do {
y := i * fheight + descent
title := left(titles[i], maxwidth / dotwidth, ".")
while TextWidth(title) > maxwidth do title := left(title, *title — 1)
Vmessage(root, 101, y, &window, title)
loaded[i] :=
FixedCheckbox(all, root, 101 + maxwidth, y,
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&window, loadedChange, i, fheight)
FixedCheckbox(&null, root, 101 + maxwidth + TextWidth("load”) + 8,
y, &window, iconicChange, i, fheight)
enabled[i] :=
FixedCheckbox(all, root, 101 + maxwidth + TextWidth("loadiconify”) + 16,
y, &window, enableChange, i, fheight)

stopstate := Vstrset_coupler(if /all then "startup” else "running”,,,,,,
['startup”,”running”,”stopped”,”done”])

stopSign := stopsign(&window, stopstate)

aborter := stopsign(&window, Vstrset_coupler("abort”,,,,,,["abort]))

insert(Vrecset, "stopsign_rec”)
Vinsert(root, stopSign, 10, 0, 80, 80)
msg := Vmessage(root, 101, 0, &window, "Select client monitors”)
Vinsert(root, Vline(&window, 101, fheight,
101 + TextWidth("Select client monitors”), fheight))
Vmessage(root, 101 + maxwidth, 0, &window, "load”)
Vmessage(root, 101 + maxwidth + TextWidth("load”) + 8, 0, &window, "iconify”)
Vmessage(root, 101 + maxwidth + TextWidth("loadiconify”) + 16, O,
&window, "enable”)
Vinsert(root, aborter, 0, 80, 100, 70)
end

#

# attachSlider() — attach slider for execution speed control

#

procedure attachSlider()
VRemove(root, msg)
Vmessage(root, 101, 0, &window, "Executing program ” || cmd)
Vvert_slider(root, 48, 180, &window, speed, , XHeight() — 190, 10, 0, 100, 0)
Vmessage(root, 10, 175, &window, "slow”)
Vmessage(root, 10, XHeight() — 20, &window, "fast”)
VResize(root)

end

#
# speed() — set the speed from the slider value. A vidget callback.
#
procedure speed(foo, newdelay)
delayval := integer(newdelay " 1.5)
end

#
# run() — vidget event handler; yields control after every event by suspending
#
procedure run(e, X, Y)
local return_value
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if \e then {
if return_value := VEvent(root, e, x, y) then suspend return_value
else suspend
}
repeat {
e := Event()
if return_value := VEvent(root, e, &x, &y) then
suspend return_value
else suspend

}

end

#
# titledparse() — parse command lines with an optional string title
# at the front. The syntax of .eve file lines is
# ['title”] cmd [options]
#
procedure titledparse(s)
if s[1] =="\""then
s?{
move(1)
tab(find("\"))
move(1)
tab(many(’ "))
return parse(tab(0))
}
else return parse(s)
end

#
# Trivial command line (string) argument ——> list conversion.
#
procedure parse(s)
local I, s2
=1l
s?{
while s2 := tab(upto(’ *)) do { put(l, s2) ; tab(many(’ ")) }
if *(s2 := tab(0))>0 then put(l, s2)
}
return |
end

#
# unschedule(EM) — remove EM from those that are receiving events.

#

procedure unschedule(EM)
local newclients, monitor
newclients :=[]
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every monitor := Iclients do {
if monitor ~=== EM then put(newclients, monitor)
else write("unscheduled ”, image(EM.name))
}

clients := newclients

computeUnionMask()

end

#

# computeUnionMask() — determine the set of events required by the
# union of all EM’'s —— including Eve'’s tick, error and user input needs
#

procedure computeUnionMask()
static tickset
local monitor, ¢
initial tickset := cset(E-Tick || E-MXevent || E_Error)

EventCodeTable := table()
EventCodeTable[’noop”] :=
EventCodeTable[E_Tick] :=[]
EventCodeTable[E_MXevent] :=[]
EventCodeTable[E_Error] =[]
unioncset := tickset
every monitor := Iclients do
if monitor.enabled === E_Enable then {
unioncset ++:= monitor.mask
every ¢ := Imonitor.mask do
if c ~=== E_MXevent then {
/EventCodeTable[c] :=[]
put(EventCodeTable[c], monitor)

}

”

}

if \verbose then write("Eve: union mask ", image(unioncset))
end

#
# getClientList(s) — read the .eve file and return a list containing
# its contents.
#
procedure getClientList(s, all)
local fin, line, candidates
candidates :=[]
if \s then fin := open(s) | stop("can’t open”, s)
else if not (fin := open(getenv("HOME?") || "/.eve”)) then {

fin ;= &input
write("Enter a list of client command lines. A blank line terminates”)
}

while *(line := read(fin))>0 do
put(candidates, line)
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if fin ~=== &input then close(fin)
return candidates
end

#

# During execution, Eve’s knowledge about EMs is stored in a list of
# records of type "client_rec”.

#

record client_rec(name, args, eveRow, prog, state, mask, enabled)

#
# client() — create and initialize a client_rec.
#
procedure client(args[])
local self
self := client_rec ! args
if /self.name then stop("empty client?”)
self.prog := load(self.name, self.args) | stop("can’t load ”, image(self.name))
variable("&eventsource”, self.prog) := &current | stop("no EventSource?”)
variable("Monitored”, self.prog) := &eventsource | stop("no Monitored?")
/self.state := "Running”
/self.mask :="
/self.enabled := E_Enable
return self
end

#
# eveEvent() — event handler for E_MXevent user input event.
# If the user pressed the stop sign, the stop sign changes into a green light;
# wait until the user presses the green light before continuing.
#
procedure eveEvent()
run(&eventvalue, &x, &y)

while stopstate.value === "stopped” do
run()
&eventcode := "noop”
end
#
# eveTick() — event handler for E_Tick clock tick event.
#

procedure eveTick()
drawtime(ticksum +:= &eventvalue)
end

#
# eveError() — event handler for E_Error TP run—time error event.
#
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procedure eveError()

local w

if keyword("error”, &eventsource) = 0 then
#
# this error would be fatal, handle it
#

if w := open("Run—time error”, "x”",
"font=helvetica,bold,24”, "lines=10") then {
write(w, "Run—time error ”, image(&eventvalue))
write(w, "File ", keyword("file”, &eventsource),
" line ", keyword("line”, &eventsource))
write(w, keyword("errortext”, &eventsource))
write(w, "offending value: ", image(keyword("errorvalue”, &eventsource)))
writes(w, "Convert to failure? ”)
if Event(w)===("y"|"Y”") then
variable("&error”, &eventsource) := 1

}
end
#
# drawtime() — write the current elapsed TP clock time
#

procedure drawtime(val)
/val := ticksum
GotoXY(10, 84)
writes(&window, "T: ", val)
end

#
# loadedChange() — vidget callback for the "loaded” buttons
#
procedure loadedChange(i, val)
local arglist

if /val then {
# trying to turn off a load while running? Sorry...
loaded][i].callback.V.toggle(loaded][i].callback, i, 1)
}

else {
arglist := titledparse(candidates][i])
write("arglist:”)
every write(!arglist)
put(clients, client(pop(arglist), arglist, i))
enabled][i].callback.V.toggle(enabled[i].callback, i, val)
if /enabled][i].callback.value then enabled[i].D.draw_off(enabled]i])
else enabled[i].D.draw_on(enabled][i])
write(image(enabled(i].callback.value), ”,”, clients[*clients].enabled)
clients[*clients].mask := @ clients[*clients].prog
computeUnionMask()
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}
}
else {

enabled[i].callback.V.toggle(enabled[i].callback, i, val)
if /enabled][i].callback.value then enabled[i].D.draw_off(enabled]i])
else enabled[i].D.draw_on(enabled][i])
}

end

#

# enableChange() — vidget callback for the "enable” buttons.
# Update Eve’s state, and inform client of disable/enable.

#
procedure enableChange(i, val)
local C, monitor
if stopstate.value ~=="running” then fail
val := if val === &null then E_Disable else E_Enable
every monitor := Iclients do {
if monitor.eveRow === i then {
monitor.enabled := val
(C :=event(val, , monitor.prog)) | (write("failing”) & fail)
if monitor.mask ~===:= C then
computeUnionMask()
}
}
end
#
# iconicChange() — vidget callback for the "icon” buttons.
#
procedure iconicChange(i, val)
local cl, v, v2
val := if val === &null then "window” else "icon”
every cl := Iclients do
if cl.eveRow === then {
if not (v := variable("Visualization”, cl.prog)) then
write("Visualization: failed”)
if find("window”,image(v)) then WALttrib(v,"iconic=" || val)
else if type(v) == "list” then
every v2 := lv do WAttrib(v2,"iconic=" || val)
else write("Visualization: ", type(variable("Visualization”, cl.prog))|"failed”)
}
end
#

# eveQuit() — TP execution completion handler

#

procedure eveQuit()

local ¢
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if \verbose then write("Eve: Monitored program has terminated execution”)
every c¢ := (Iclients).prog do
cofail(c)
GetEvents(root)
end

#

# broadcast() — sent event to interested EMs

#

procedure broadcast(x, except)
/EveBroadcastQueue ;=[]
put(EveBroadcastQueue, X)
put(EveBroadcastQueue, except)
flush_broadcast_queue()

end

#
# flush events produced during EM — EM communcation.
# This code appears similar to Eve’s main loop.
#
procedure flush_broadcast_queue()
local ¢, C, x, except, monitor
while *EveBroadcastQueue > 0 do {
x := pop(EveBroadcastQueue)
except := pop(EveBroadcastQueue) | stop("malformed broadcast queue”)
if x === "quit” then eveQuit()
every monitor := (except ~=== Iclients) do
if C := event(, , monitor.prog) then {
if C ~=== monitor.mask then {
while type(C) ~=="cset” do {
#
# The EM has raised a signal.
# Pass it on to all the others except the client.
#
put(EveBroadcastQueue, C)
put(EveBroadcastQueue, monitor)
if not (C := event(, , monitor.prog)) then {
unschedule(monitor)
if \verbose then
write("Eve warning: broadcast of ”,
image(&eventcode), " aborted”)

}

break next

}

if monitor.mask ~===:= C then
computeUnionMask()

else {
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unschedule(monitor)
if \verbose then

write("Eve warning: broadcast of ”, image(&eventcode), ” aborted”)
break

}

end
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Appendix C: Event Codes

The following list of event codesis provided in order to give a genera indication of the extent of instrumentation
discussed in Chapter 6. Moreinformation on these codesis presented in [Gris92¢].

Classes of events

AllocMask Memory allocation events
AssignMask Assignment events

TypeMask Eventsrelated to Icon data types
ConvMask Type conversion events

ListMask List operation events
RecordMask Record operation events
ScanMask String scanning events

SetMask Set operation events

TableMask Table operation events
StructMask Structure operation events (lists, records, sets, and tables)
ProcMask Procedure activity events
FncMask (Built-in) Function activity events
OperMask Operator activity events

I ndividual events

E_Record Record allocation

E_Lrgint Largeinteger allocation

E_Real Real number allocation

E_Cset Cset alocation

E_File File allocation

E_Tvsubs Substring trapped variable allocation
E_External External allocation

E_List List allocation

E_Lelem List element allocation

E_Table Table alocation

E_Telem Table element allocation

E_Tvtbl Table element trapped variable allocation
E_Set Set dlocation

E_Selem Set element alocation

E_Slots Hash header allocation

E_Coexpr Co-expression allocation

E_Refresh Refresh alocation

E_Alien Alien alocation

E_Free Free region

E_String String allocation

E_Integer Integer value pseudo-event

E_Null Null value value pseudo-event
E_Proc Procedure value pseudo-event
E_Kywdint Integer keyword value pseudo-event
E_Kywdpos Position value pseudo-event
E_Kywdsubj Subject value pseudo-event

E_Pid Symbol name

E_Sym Symbol table entry

E_Tick Clock tick
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E_Loc
E_Opcode
E_Aconv
E_Tconv
E_Nconv
E_Sconv
E_Fconv
E_Lsub
E_Rsub
E_Snew
E_Sfail
E_Ssusp
E_Sresum
E_Srem
E_Spos
E_Assign
E_Intcall
E_Intret
E_Stack
E_Ecall
E_Efail
E_Eret
E_Bsusp
E_Esusp
E_Lsusp
E_Eresum
E_Erem
E_Coact
E_Coret
E_Cofail
E_Pcall
E_Pfail
E_Pret
E_Psusp
E_Presum
E_Prem
E_Fcall
E_Ffall
E_Fret
E_Fsusp
E_Fresum
E_Frem
E_Ocall
E_Ofalil
E_Oret
E_Osusp
E_Oresum
E_Orem
E_Collect
E_EndCollect
E_TenureString
E_TenureBlock
E_Error
E_Exit

L ocation change
Virtual-machineinstruction
Conversion attempt
Conversion target
Conversion not heeded
Conversion success
Conversion failure

List subscript

Record subscript

Scanning environment creation
Scanning failure

Scanning suspension
Scanning resumption
Scanning environment removal
Scanning position
Assignment

interpreter call

interpreter return

stack depth

Call of operation

Failure from expression
Return from expression
Suspension from operation
Suspension from alternation
Suspension from limitation
Resumption of expression
Removal of a suspended generator
Co-expression activation
Co-expression return
Co-expression failure
Procedure call
Procedurefailure
Procedurereturn

Procedure suspension
Procedure resumption
Suspended procedure removal
Function call

Function failure

Function return

Function suspension
Function resumption
Function suspension removal
Operator call

Operator failure

Operator return

Operator suspension
Operator resumption
Operator suspension removal
Garbage collection

End of garbage collection
Tenure a string region
Tenure ablock region
Run-time error

Program exit
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E_MXevent monitor input event
E_Comment Comment
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