
IPD263a - 1 - November 13, 1995

Building Source-Code Processors for Icon Programs

Ralph E. Griswold

Department of Computer Science, The University of Arizona

There are many situations in which processing an Icon source-language program is useful.
Many of these fall into the category of preprocessing to change the form of a program, as in
modeling string scanning [1]. In this case, all string scanning expressions are recast in terms of
procedure calls:

expr1 ? expr2 ➛ Escan(Bscan(expr1), expr2)

Preprocessors to do these kinds of things often are written by hand, an approach that often
produces unsatisfactory results. Hand-crafted preprocessors rarely treat source-language code
with complete generality. For example, a hand-crafted preprocessor for modeling string scanning
might not properly handle a string literal such as

write("The form is s ? e")

and instead change the literal. Similarly, hand-crafted preprocessors often assume that programs
are laid out in reasonable ways, and may not handle something like this:

s ?
while
move(
1
)
do
write(
move(
1
)
)

And few hand-crafted preprocessors correctly handle programs that contain syntax errors.

The reason for such problems is obvious: A correct and robust preprocessor must correctly
parse all source-language programs. This is a major undertaking that usually is short-circuited
because of the effort and technical skill that is required.

Icon’s variant translator system [2] was developed to mitigate these problems. It uses the
parser contained in the implementation of Icon together with a system for describing code
generation. Variant translators take care of the parsing part of the problem and do it in a way that
is as correct and robust as the Icon compiler.

By taking care of the parsing part of the problem, variant translators make it relatively easy
to create some kinds of processors. A preprocessor for modeling string scanning can be created by
making a few simple changes to the standard code-generation specifications.

Part of the problem with using with variant translators is having to learn how to specify
code-generators and dealing with a somewhat awkward syntax. A more serious problem is that
supplementary and often tricky C code is needed in many cases.

This report describes a meta-translator system for Icon. This term is used because a translator

November 13, 1995 - 2 - IPD263a

converts an Icon source-language program into an Icon procedure that, when called, produces a
translation of the original program:

program meta-procedureimt

meta-translation

icont –x

code-generation
procedures

result

translation

The result usually is another Icon program, such as one in which all string scanning expressions
have been replaced by procedure calls. But the result can be something entirely different, as shown
in an example later in this report.

The program imt is itself a variant translator. It handles only parsing and does not have to
be changed to effect different meta-translations.

As an example of meta-translation, consider the simple program

procedure main()
 while line := read() do
 line ? process()
end

The output of imt for this program is a procedure Mp() (for meta-procedure):

procedure Mp()
Proc("main",);
Body(WhileDo(Asgnop(":=",Var("line"),
Invoke(Var("read"),Null())),Scan(Var("line"),
Invoke(Var("process"),Null()))),);
End();
end

The procedure calls in Mp() correspond to the syntactic components of the original program. For
example, Proc() is a procedure that corresponds to a procedure declaration header in the original
program, and WhileDo() is a procedure corresponding to the while–do loop. The procedure Body()
writes the code for the procedure body.

The simplest of all translations is an identity translation in which the result is semantically
equivalent to the original program. These code-generation procedures are listed in the appendix
to this report and are contained in the library file identgen.icn. The code-generation procedure for
the identity translation of while–do is

procedure WhileDo(e1, e2)
 return code_gen("while ", e1, " do ", e2)
end

The procedure code_gen() produces the concatenation of its arguments. It can be changed for other
translations.

IPD263a - 3 - November 13, 1995

The result of linking identgen.icn with the procedure Mp() produced by imt and executing
the result is:

procedure main()
while (line := read()) do (line ? process())
end

This is functionally equivalent to the original program; only the layout is different.

To see how other translations can be done, consider the string-scanning transformation
given at the beginning of this article. The identify translation for string scanning is

procedure Scan(e1, e2)
 return code_gen("(", e1 , " ? ", e2, ")")
end

To get a translation for modeling string scanning, it’s only necessary to change this procedure to

procedure Scan(e1, e2)
 return code_gen("Escan(Bscan(", e1, "),", e2, ")"
end

For completeness, augmented string scanning should be translated in a similar manner. See
Augscan() in the appendix.

As another example, consider converting calls of map() to calls of Map() so that mapping can
be traced. The declaration for Map() might be

procedure Map(s1, s2, s3)
 return map(s1, s2, s3)
end

The meta-translation can be accomplished by adding the line

if e == "map" then e := "Map" # check procedure name

at the beginning of the procedure Invoke() shown in the appendix.

A procedure declaration for Map() must be included in the final program. This can be done
by adding the following lines to the beginning or end of main() in the code-generator procedures:

write("procedure Map(s1, s2, s3)")
write(" return map(s1, s2, s3)")
write("end")

An alternative approach, which is more desirable in the case of elaborate translations, is to
add

write("link libe")

at the beginning or end of main() and provide the code to be linked with the final program in libe.icn.

Incidentally, to trace a generator, suspend must be used instead of return; otherwise the
procedure won’t produce all the results produced by the generator. For example, for seq(), the
procedure would be

procedure Seq(i1, i2)
 suspend seq(i1, i2)
end

In fact, it doesn’t hurt to use suspend for functions that aren’t generators.

November 13, 1995 - 4 - IPD263a

Other Kinds of Translations

As shown in the examples above, code generators for meta-translation typically produce
Icon source-language code. They can, however, do other things. An example is the static analysis
of Icon programs to produce a tabulation of the syntactic tokens that occur in them.

Since Mp() describes the syntactic structure of a program with a procedure call for every
token, the code-generation procedure it calls can count the number of times they are called instead
of producing source code. Consider, for example, string scanning expressions. As shown above, the
procedure for identity translation for string scanning is

procedure Scan(e1, e2)
 return code_gen("(", e1 , " ? ", e2, ")")
end

To count the number of string scanning expressions in a program, all that’s needed is to
replace this procedure by

procedure Scan(e1, e2)
 token["e1 ? e2"] +:= 1
end

where token is a table created by the main procedure before Mp() is called. When Mp() returns, the
tabulation of tokens can be written out. (Table subscripts like "e1 ? e2" are used to make the results
easy to read.)

There are may possible variations on this approach. For example, when tabulating all the
tokens in a program, it may be better to use several tables to segregate operators, controls structures,
and so forth. See Reference 3 for the description of such a token tabulator.

Many simpler but useful translations are trivially easy to write. For example, to just count
the number of string-scanning expressions in a program and ignore all other kinds of tokens, all the
code-generations procedures except Scan() and Augscan() can be simply do nothing; no code is
required for them. (A collection of procedure wrappers for the code-generations procedures is
contained in emptygen.icn.)

Conclusions

Meta-translators allow translators for Icon programs to be written entirely in Icon. This
provides the power of a high-level language and one that is likely to be familiar to persons writing
source-code processors for Icon. In many cases, the necessary changes to the code-generation
procedures are obvious and easily accomplished. If every code-generation procedure needs to be
changed, as in the case of a complete token tabulator, the amount of clerical work can be significant.
For some kinds of translations, it may be necessary to understand the Yacc grammar for Icon.
Consult the source code for icont for this.

A potential problem with meta-translation is the amount of memory required to build the
Icon program that produces the final translation. As illustrated above, the output of imt is
considerably larger than the input to imt. If the input to imt is a large program, the procedure Mp()
that describes it is huge. It’s also necessary to link the code-generation procedures with Mp(), adding
to the size of the intermediate program. The memory needed usually is not a problem on platforms
in the workstation class, but it can be on personal computers.

IPD263a - 5 - November 13, 1995

Getting the Meta-Translator System

The meta-translator system is available by anonymous FTP to cs.arizona.edu; cd /icon/meta
and get READ.ME to see what to do next.

References

1. “Modeling String Scanning”, Icon Analyst 6, pp. 1-2.

2. Variant Translators for Version 9 of Icon, Ralph E. Griswold, Icon Project Document IPD245,
Department of Computer Science, The University of Arizona, 1995.

3. “Static Analysis of Icon Programs”, Icon Analyst 27, pp. 5-11.

November 13, 1995 - 6 - IPD263a

Appendix Code-Generation Procedures for Identity Translation

link cat code_gen(s1, s2, ...)

global code_gen

procedure main()

 code_gen := cat # so these procedures can be changed easily

 Mp() # call meta–procedure

end

procedure Alt(e1, e2) # e1 | e2

 return code_gen("(", e1, "|", e2, ")")

end

procedure Apply(e1, e2) # e1 ! e2

 return code_gen("(", e1, "!", e2, ")")

end

procedure Arg(e) # procedure argument (parameter)

 return e

end

procedure Asgnop(op, e1, e2) # e1 op e2

 return code_gen("(", e1, " ", op, " ", | e2, ")")

end

procedure Augscan(e1, e2) # e1 ?:= e2

 return code_gen("(", e1, " ?:= ", e2, ")")

end

procedure Bamper(e1, e2) # e1 & e2

 return code_gen("(", e1, " & ", e2, ")")

end

procedure Binop(op, e1, e2) # e1 op e2

 return code_gen("(", e1, " ", op, " ", e2, ")")

end

procedure Body(es[]) # procedure body

 every write(!es)

 return

IPD263a - 7 - November 13, 1995

end

procedure Break(e) # break e

 return code_gen("break ", e)

end

procedure Case(e, clist) # case e of { caselist }

 return code_gen("case ", e, " of {", clist, "}")

end

procedure Cclause(e1, e2) # e1 : e2

 return code_gen(e1, " : ", e2, "\n")

end

procedure Clist(cclause1, cclause2) # cclause1; cclause2

 return code_gen(cclause1, ";", cclause2)

end

procedure Clit(c) # 'c'

 return image(c)

end

procedure Compound(es[]) # { e1; e2; ... }
 local result

 if ∗es = 0 then return "{}\n"

 result := "{\n"
 every result ||:= !es || "\n"

 return code_gen(result, "}\n")

end

procedure Create(e) # create e

 return code_gen("create ", e)

end

procedure Default(e) # default: e

 return code_gen("default: ", e)

end

procedure End() # end

 write("end")

 return

end

procedure Every(e) # every e

November 13, 1995 - 8 - IPD263a

 return code_gen("every ", e)

end

procedure EveryDo(e1, e2) # every e1 do e2

 return code_gen("every ", e1, " do ", e2)

end

procedure Fail() # fail

 return "fail"

end

procedure Field(e, f) # e . f

 return code_gen("(", e, ".", f, ")")

end

procedure Global(vs[]) # global v1, v2, ...
 local result

 result := ""
 every result ||:= !vs || ", "

 write("global ", result[1:–2])

 return

end

procedure If(e1, e2) # if e1 then e2

 return code_gen("if ", e1, " then ", e2)

end

procedure IfElse(e1, e2, e3) # if e1 then e2 else e3

 return code_gen("if ", e1, " then ", e2, " else ", e3)

end

procedure Ilit(i) # i

 return i

end

procedure Initial(e) # initial e

 write("initial ", e)

 return

end

procedure Invocable(ss[]) # invocable ... (mt doesn't handle general case)

 if \es then write("invocable all")
 else write("invocable ", ss)

IPD263a - 9 - November 13, 1995

 return

end

procedure Invoke(e, es[]) # e(e1, e2, ...)
 local result

 if ∗es = 0 then return code_gen(e, "()")

 result := ""
 every result ||:= !es || ", "

 return code_gen(e, "(", result[1:–2], ")")

end

procedure Key(s) # &s

 return code_gen("&", s)

end

procedure Limit(e1, e2) # e1 \ e2

 return code_gen("(", e1, "\\", e2, ")")

end

procedure Link(vs[]) # link "v1, v2, ..."
 local result

 result := ""
 every result ||:= !vs || ", "

 write("link ", result[1:–2])

 return

end

procedure List(es[]) # [e1, e2, ...]
 local result

 if ∗es = 0 then return "[]"

 result := ""
 every result ||:= !es || ", "

 return code_gen("[", result[1:–2], "]")

end

procedure Local(vs[]) # local v1, v2, ...
 local result

 result := ""
 every result ||:= !vs || ", "

 write("local ", result[1:–2])

 return

end

procedure Next() # next

November 13, 1995 - 10 - IPD263a

 return "next"

end

procedure Not(e) # not e

 return code_gen("not(", e, ")")

end

procedure Null() # &null

 return ""

end

procedure Paren(es[]) # (e1, e2, ...)
 local result

 if ∗es = 0 then return "()"

 result := ""
 every result ||:= !es || ", "

 return code_gen("(", result[1:–2], ")")

end

procedure Pdco(e, es[]) # e{e1, e2, ... }
 local result

 if ∗es = 0 then return code_gen(e, "{}")

 result := ""
 every result ||:= !es || ", "

 return code_gen(e, "{", result[1:–2], "}")

end

procedure Proc(n, vs[]) # procedure n(v1, v2, ...)
 local result, v

 if ∗vs = 0 then write("procedure ", n, "()")

 result := ""
 every v := !vs do
 if \v == "[]" then result[–2:0] := v || ", "
 else result ||:= (\v | "") || ", "

 write("procedure ", n, "(", result[1:–2], ")")

 return

end

procedure Record(n, fs[]) # record n(f1, f2, ...)
 local result, field

 if ∗fs = 0 then write("record ", n, "()")

 result := ""
 every field := !fs do

IPD263a - 11 - November 13, 1995

 result ||:= (\field | "") || ", "

 write("record ", n, "(", result[1:–2], ")")

 return

end

procedure Repeat(e) # repeat e

 return code_gen("repeat ", e)

end

procedure Return(e) # return e

 return code_gen("return ", e)

end

procedure Rlit(r) # r

 return r

end

procedure Scan(e1, e2) # e1 ? e2

 return code_gen("(", e1 , " ? ", e2, ")")

end

procedure Section(op, e1, e2, e3) # e1[e2 op e3]

 return code_gen(e1, "[", e2, op, e3, "]")

end

procedure Slit(s) # "s"

 return image(s)

end

procedure Static(vs[]) # static v1, v2, ...
 local result

 result := ""
 every result ||:= !vs || ", "

 write("static ", result[1:–2])

 return

end

procedure Subscript(e1, e2) # e1[e2]

 return code_gen(e1, "[", e2, "]")

end

procedure Suspend(e) # suspend e

November 13, 1995 - 12 - IPD263a

 return code_gen("suspend ", e)

end

procedure SuspendDo(e1, e2) # suspend e1 do e2

 return code_gen("suspend ", e1, " do ", e2)

end

procedure To(e1, e2) # e1 to e2

 return code_gen("(", e1, " to ", e2, ")")

end

procedure ToBy(e1, e2, e3) # e1 to e2 by e3

 return code_gen("(", e1, " to ", e2, " by ", e3, ")")

end

procedure Repalt(e) # |e

 return code_gen("(|", e, ")")

end

procedure Unop(op, e) # op e

 return code_gen("(", op, e, ")")

end

procedure Until(e) # until e

 return code_gen("until ", e)

end

procedure UntilDo(e1, e2) # until e1 do e2

 return code_gen("until ", e1, " do ", e2)

end

procedure Var(v) # v

 return v

end

procedure While(e) # while e

 return code_gen("while ", e)

end

procedure WhileDo(e1, e2) # while e1 do e2

 return code_gen("while ", e1, " do ", e2)

end

