Building Version 9.0 of MPW Icon

Ralph E. Griswold
Department of Computer Science, The University of Arizona

Robert J. Alexander

1. Background

The implementation of Version 9.0 of the Icon programming language is written
amost entirely in C, and it is designed to be portable to a wide range of computers and
operating systems. This document concerns the compilation of 1con for Macintosh under
MPW (MPW Icon).

Version 9.0 of Icon requires at least a1024K (1M) Macintosh to run. It runs all but
very large programs well if the MPW Shell is given a MultiFinder partition size of 1024K
(and can run small programsin as little as 600K). Of course, programs with very large
code size or that accumulate large amounts of datawill require that the partition size be
increased. Compiling Version 9.0 of Icon requires MPW, MPW C (Version 3.0 or
beyond), and the MPW assembler, aswell asHFS. At least 2M of RAM is recommended
for Version 3.x of MPW C — building MPW Icon Version 9.0 with less available memory
has not been attempted as of this writing.

The Icon language book [1] and atechnical report provided with this distribution [2]
together comprise a complete description of Version 9.0 of the Icon programming
language. See Section 4 for information about the implementation itself.

2. Organization of the Implementation

The source code for Icon isorganized in a hierarchy. The distribution is on a high-
density disk. Thefilesare in a self-extracting archive (.sea file).

Theillustration that follows shows the folder hierarchy normally used to work on
MPW Icon.

=
S

P N
h
N

common

[

Your MPW
Disk

src iconc

preproc

runtime

P —

H H

tests

local

If adifferent arrangement is used, it may be necessary to make changesto Makefiles
and other supporting files.

Toinstal the con source-related files:

1. Createthefoldersto theleft of the dashed line using either the Finder or MPW
Shell.

2. Createthefolder bin.
3. Extract the source files by opening src.sea on the distribution disk; navigate to

the folder V9 and unload them there. Thiswill create the additional foldersto
theright of the dahsed line.

4. Extract thetest program from tests.sea in asimilar manner.

2.1 Source Files

The seven source-code folders under src contain files related to the various
components of Icon asfollows:

common source code for modules common to several components of Icon.

h header files used by filesin the other folders.

icont source code for the Icon translator/linker for the interpreter. The
trandator converts source-language programs to ucode, an assembly
language for an abstract “Icon machine’. The linker combines one or
more ucode filesinto asingle binary icode file in executable format
for the Ilcon machine.

iconc source code for the Icon compiler. As of thiswriting, the compiler
has not been built under MPW and doing so may require a
considerable amount of work.Y ou may wish to delete this folder

preproc source code for the run-time system trandator.

rt source code for atrandator that builds files for the run-time system.

runtime source code for the Icon run-time system, including the interpreter.

The seven source-code folders under src contain files for related to the various
components of Icon asfollows:

There are three executable components related to building and running I con:
The Translator and Linker

The trandator and linker, icont, performs both source code trand ation and linking
functions. The trandator isrelatively straightforward. It contains alexical anayzer, a
parser, a code generator, and support routines. The transator produces printable ucode
files. The linker is somewhat more complex than the trandator. It reads ucode files and
outputs binary code and data structures that are needed during execution.
The Run-Time Translator

The run-time trangdlator, rtt, trandates filesfor Icon’ s run-time system, which are
written in asuperset of C, to standard C. It isused only to build the interpreter.

The Interpreter

Theinterpreter, iconx, islarge and complex. It includes code for al the operationsin
the Icon language. In addition, it manages storage dynamically.

2.2 Binary Files

The bin subdirectory in V9 is where the executable files for Icon will reside after
compilation and linking.

3. Building the Icon Interpreter

Building the Icon interpreter is straightforward. Go to these subdirectoriesin src in
the following order:

common
icont

rt
runtime

In each of these subdirectories, do the following:
1. Enter amake command.

2. Look for resulting make commands in the output. If there are any, recursively
select and execute these first.

3. Finaly, select the resulting compilation, linking, and other commands and
execute them.

As aresult, the executable for the Icon interpreter will be placed in the bin subdirectory of
V9.

4. Testing Icon

The folder tests contains alarge battery of 1con programs and afolder stand that
contains the “ standard” output of running these programs. Fileswhose namesendin .icn
are the test program source files, those ending in .dat are files containing test data, and .Ist
filesarelists of test programsto berun asagroup. Thelists are:

intrcoex.Ist CO-expressions
intrlarg.lst large-integer arithemtic
intrmain.Ist main features

(There are corresponding lists for the Icon compiler.)

Normally, the tests are run by using the script Test-icont, which isin the tests
folder.For example,

Test-icont intrmain

tests the main features of the Icon interpreter.

Taken together, these tests run for quite awhile. Y ou may wish to redirect the output
of the scriptsto afile or files for easier examination.

Since the standard test results were obtained from a UNIX implementation, several
differences will exist between the test output produced by MPW Icon and the standard test
files (if they don’t, you' ve done something wrong!). The differences are dueto

» Differencesin thetime of day, date, name of the host machine, and other minor
implementation differences.

» Differencesin internal processing capacity and external formatting of floating
point numeric output (real numbers).

All of the above differences will be reported as discrepancies when the test scripts are
run. The reported differences must be scanned to determine whether they are due to the
above causes or arereal errors.

5. The Implementation Book

If you are interested in the larger view of the implementation of Icon, or if you are
interested in modifying or extending Icon, you may want to acquire the book The
I mplementation of the Icon Programming Language. This book concentrates on the
run-time system and covers data structures, the virtual machine, the interpreter, the
implementation of generators, and storage management. It also contains material
specifically related to making modifications to the source code.

The publication information is: The Implementation of the Icon Programming
Language, by Griswold and Griswold, Princeton University Press, ISBN 0-691-08431-9,
hardbound, 336 pages, $61.00. The book may be ordered from the Icon Project.

The implementation book corresponds to Version 6.2 of the Icon source code. There have
been several changes in the source code between Version 6.2 and the present version.
Reports describing these changes are avail able free of charge from the Icon Project. Ask for
IPD112, IPD215, and IPD239.

6. Trouble Reports and Feedback
If you run into problems, contact the Icon Project:

Icon Project

Department of Computer Science
Gould-Simpson Building

The University of Arizona
Tucson, AZ 85721

U.S.A.

(602) 621-2018 (voice)
(602) 621-4246 (fax)

icon-project@arizona.edu (Internet)

... uunet!arizonalicon-project (uucp)

We cannot promise to solve your problems, but we will try. We aso may be ableto
place you in contact with other persons who are compiling Icon and who may have similar
problems.

Please dso let us know of any suggestions for improvements to the compilation
process or its documentation.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, second
edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

2. R. E. Griswold, Clinton L. Jeffery, Gregg M. Townsend, Version 9.0 of the Icon
Programming Language, The Univeristy of Arizona, technical report IPD236, 1994.

