
IPD252 – 1 – August 28, 1994

Version 9.0 of MPW Icon

Ralph E. Griswold
Department of Computer Science, The University of Arizona

Robert J. Alexander

August 28, 1994
IPD252

1. Introduction

Version 9.0 of MPW Icon (Icon for the Macintosh under MPW) is distributed on an
800K diskette, which includes executable binary files, a few sample programs, and
documentation in machine-readable form. Printed documentation is included with
diskettes distributed by the Icon Project at the University of Arizona.

MPW Icon runs as part of the Macintosh Programmer's Workshop (MPW) integrated
environment. The MPW Shell is required to run MPW Icon (available for about $100
from APDA (Apple Programmers and Developers Association), (800) 282-2732).
Neither the Icon translator/linker nor programs written in MPW Icon can run
independently of the MPW Shell. Stand-alone Macintosh applications cannot be created
with MPW Icon. Programs produced with MPW Icon run under the MPW Shell as
tools.

Consult MPW documentation for Macintosh memory requirements. Icon itself presents
no exceptional memory demands beyond those of MPW itself, and most Icon programs
will run with minimally-configured MPW. Of course, Icon programs that have
exceptional memory requirements will require enough real or virtual memory on the
Macintosh, and will require that MPW be configured large enough.

Version 9.0 of MPW Icon was built using MPW 3.3.1, and is known to run properly
under MPW 3.3.1. It has not been tested with other versions of MPW as of this writing.
Past experience suggests that MPW Icon version 9.0 will run okay on any relatively
recent MPW version.

This implementation of Icon is in the public domain and may be copied and used without
restriction. The Icon Project makes no warranties of any kind as to the correctness of this
material or its suitability for any application. The responsibility for the use of Icon lies
entirely with the user.

2. Documentation

The primary reference for the Icon programming language is the book

IPD252 – 2 – August 28, 1994

The Icon Programming Language, second edition, Ralph E. Griswold and Madge
T. Griswold, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990. 365
pages. ISBN 0-13-447889-4.

This book is available from the Icon Project at the University of Arizona. It also can be
ordered through any bookstore that handles special orders or by telephone directly from
Prentice-Hall: (201) 767-9520.

Note that the first edition of this book, published in 1983, describes version 5 of Icon and
does not contain information about many of the features of later versions.

A brief overview of Icon is contained in technical report TR 90-6 [1] (Icon Overview on
the distribution diskette). Features that have been added to Icon since the book was
written are described in IPD236 [2] (Icon Version 9.0 on the distribution diskette).
These technical reports, together with this document (MPW Icon on the distribution
diskette), provide enough information to write and run simple Icon programs. Persons
who intend to use Icon extensively, however, will need the book.

As mentioned above, printed documentation is provided with copies of Icon obtained
from the Icon Project. Machine-readable documentation is also included on the
distribution diskette in the form of text and Microsoft® Word files. Text files can be
viewed and printed by the MPW Shell. Word documents contain fonts that are optimized
for printing on a LaserWriter. To print them on an ImageWriter, they will have the best
quality if the fonts Times 12 and 10, Helvetica 12, and Courier 10 are installed (or double
those sizes for best quality printing). Much of the style of the documents is expressed
through its fonts, so it is best not to tamper with them unless absolutely necessary.

3. Installing MPW Icon

A MPW Shell script is provided to perform the installation of Icon into the MPW system
on your Macintosh. The script will guide you through the installation, informing you of
the recommended places to store your Icon materials, and will allow you to exercise
options if you wish to keep Icon in a place different from the default. The procedure is
quite simple, and will go something like this:

A dialog will appear saying:

IPD252 – 3 – August 28, 1994

Followed by the following question:

If you already have a version of MPW Icon installed, select the Existing icon folder
choice. If this is your first Icon, select New icon folder.

The procedure will continue in this fashion, with a few more questions (such as which
folder?) and words of advice, until the installation is complete.

To start the installation procedure: start MPW Shell, insert the MPWIcon disk (the
distribution disk) into a disk drive and enter the command:

 MPWIcon:Installicon

The following items will be installed:

In the Icon folder (or other folder designated during the installation process):

Tools
icont The Icon translator and linker
iconx The Icon interpreter

Scripts
IconMPWTool Converts an icode file to a stand-alone MPW

tool.
Other

icon.help MPW-style help files for Icon.

In your MPW folder:

UserStartup•Icon Performs MPW initialization for Icon.

The installation script will attempt to delete obsolete version 7.0 (or earlier) files if it finds
them. Those files are itran, ilink, iconm, iconx.hdr, and bin (the folder and its
contents). If you want to save these files, move them to a diskette or another folder
before installation.

IPD252 – 4 – August 28, 1994

The installation can be aborted any time a dialog box is displayed by clicking its Cancel
button. Installation can be restarted from the beginning with no adverse consequences.

If you are running a version of MPW older than 3.0, you will have to enter the following
line into your UserStartup file (in the MPW folder):

Execute UserStartup•Icon

The • character is option-8. This requirement is discussed in more detail in section 9 of
this document. The additional line is not necessary for MPW version 3.0 and later.

4. Running Icon on the Macintosh under MPW — Basic Information

Files containing Icon programs must have the suffix .icn. Such files should be plain text
files (without line numbers or other extraneous information). The translator/linker
program icont produces an executable icode file. For example, an Icon program in the
file prog.icn is translated and linked by

icont prog.icn

The result is an executable icode file with the name prog. Icode files produced by MPW
Icon behave identically to MPW tools, and thus are invoked by entering their file names.
The icode file just created can be run by

prog

Use of the suffix .icn in the icont command is optional. For example, it is sufficient to
use

icont prog

icont will supply the .icn suffix if no suffix is entered.

5. Testing the Installation

There are a few programs on the distribution diskette that can be used for testing the
installation and getting a feel for running Icon. The programs and data files are in the
folder Samples.

hello.icn

This program prints the Icon version number, time, and date. Run this test as

icont hello
hello

kross.icn

This program prints all the ways that two words intersect in a common character. The file
kross.dat contains typical data. Run this test as

IPD252 – 5 – August 28, 1994

icont kross
kross <kross.dat

meander.icn

This program prints the “meandering strings” that contain all subsequences of a specified
length from a given set of characters. Run this test as

icont meander
meander <meander.dat

If these tests work, your installation is most likely correct — you have a running version
of Icon!

6. More on Running Icon

For simple applications, the instructions for running Icon given in Section 4 may be
adequate. The icont translator/linker supports a variety of options that may be useful in
special situations. There also are several aspects of execution that can be controlled with
environment variables. These are listed here. If you are new to Icon, you may wish to
skip this section on the first reading but come back to it if you find the need for more
control over the translation and execution of Icon programs.

6.1 Arguments

Arguments can be passed to the Icon program by appending them to the command line.
Such arguments are passed to the main procedure as a list of strings. For example,

prog text.dat log.dat

runs the icode file prog , passing its main procedure a list of two strings
["text.dat","log.dat"]. These arguments might be the names of files that prog.icn reads
from and writes to. For example, the main procedure might begin as follows:

procedure main(a)
 in := open(a[1]) | stop("cannot open input file")
 out := open(a[2],"w") | stop("cannot open output file")
 …

6.2 The Translator and Linker

The translator/linker icont can accept several Icon source files at one time. When several
files are given, they are translated and combined into a single icode file whose name is
derived from the name of the first file. For example,

icont prog1 prog2

translates and links the files prog1.icn and prog2.icn and produces one icode file,
prog1.

IPD252 – 6 – August 28, 1994

If the -c option is given to icont, only translation is performed and intermediate ucode
files with the suffixes .u1 and .u2 are kept. For example,

icont -c prog1

leaves prog1.u1 and prog1.u2, instead of linking them to produce prog1. (The ucode
files are deleted unless the -c option is used.) These ucode files can be used in a
subsequent icont command by using the .u1 name. This avoids having to translate the
.icn file again. For example,

icont prog2 prog1.u1

translates prog2.icn and links the result with the ucode files from a previous translation
of prog1.icn. Note that only the .u1 name is given. The suffix can be abbreviated to .u,
as in

icont prog2 prog1.u

Ucode files also can be added to a program when it is linked by using the link declaration
in an Icon source program as described in [2].

The informative messages from the translator and linker can be suppressed by using the
-s option. Normally, both informative messages and error messages are sent to standard
error output.

A name other than the default one for the icode file produced by the Icon linker can be
specified by using the -o option, followed by the desired name. For example,

icont -o probe prog

produces the icode file named probe rather than prog.

Icon source programs may be read from standard input. The argument - signifies the use
of standard input as a source file. In this case, the ucode files are named stdin.u1 and
stdin.u2 and the icode file is named stdin.

Normally, &trace has an initial value of 0. The -t option to icont causes &trace to have
an initial value of -1 when the program is executed. For example,

icont -t prog

causes tracing to occur when prog is run.

The option -u to icont causes warning messages to be issued for undeclared identifiers in
the program. The warnings are issued during the linking phase.

6.3 Environment Variables

IPD252 – 7 – August 28, 1994

When an Icon program is executed, several environment variables (exported shell
variables) are examined to determine execution parameters. The values assigned to these
variables should be numbers.

Environment variables are particularly useful in adjusting Icon’s storage requirements.
This may be necessary if your computer does not have enough memory to run programs
that require an unusually large amount of data. Particular care should be taken when
changing default sizes: unreasonable values may cause Icon to malfunction.

The following environment variables can be set to affect Icon’s execution parameters.
Their default values are listed in parentheses after the environment variable name.:

TRACE (0). This variable initializes the value of &trace. If this variable
has a value, it overrides the translation-time -t option.

NOERRBUF (undefined). If this variable is set, &errout is not buffered.

STRSIZE (65000). This variable determines the initial size, in bytes, of the
region in which strings are stored.

BLOCKSIZE (65000). This variable determines the initial size, in bytes, of the
region in which Icon allocates lists, tables, and other
objects.

COEXPSIZE (2000). This variable determines the size, in 32-bit words, of each
co-expression block.

MSTKSIZE (10000). This variable determines the size, in words, of the main
interpreter stack.

STATSIZE (20480). This variable determines the size, in bytes, of the static
region in which co-expression blocks are allocated.

STATINCR (calculated). This variable determines the size of the increment used when
the static region is expanded. The default increment is one-
fourth of the initial size of the static region.

Region sizes expand if more space is needed, but they never shrink.

7. Features of Icon for the Macintosh under MPW

MPW Icon supports the features of Version 9.0 of Icon, with the following exceptions
and additions:

• Icont supports the Commando facility of MPW. If the icont command is executed
via option-enter (instead of just enter), or if icont… is executed (icont followed by
the ellipsis character, option-;), a dialog box will come up that allows specification
of all options permissible as command line parameters to icont. (The option-enter
method of invoking Commando is available only with version 3.x of MPW and
later). Since the dialog box has “prompts” for most of the available options, it is an
alternative to using the manual or on-line help to remember options that are
infrequently used.

IPD252 – 8 – August 28, 1994

• The IPATH environment variable, which specifies where the linker should search
for library modules referenced in link directives, is a comma-separated list of
directory (folder) names (just like the Commands shell variable (this differs from
most versions of Icon, which use a space-separated list). The directory names must
have a colon as the last character, as is the MPW convention.

• An extensive on-line help facility is available that contains summary information
about the icont command, the iconx command (explicit invocation of the Icon
interpreter), and about many aspects of the Icon language itself. To access MPW
Icon Help, enter:

ihelp

Ihelp is an alias set up by UserStartup•Icon that invokes the MPW help system.

• The background tool execution feature of MPW 3.0 is available in MPW Icon (as it
is with most MPW tools). icont or an Icon program can run in the background
under the Finder (or MultiFinder for pre-System-7).

• The MPW “spinning beachball” cursor spins during execution of icont and during
execution of Icon programs. During Icon garbage collections, the cursor changes to
the wristwatch shape.

• Normally, the Icon interpreter, iconx, must be installed for Icon programs to run.
MPW Icon now has the facility to bundle the interpreter and icode file into a single
Macintosh file, giving it the appearance and functionality of normal non-interpreted
MPW tool. Of course, since it contains the interpreter, it is some 150K bytes larger
than its corresponding icode-only file. This feature is useful for creating MPW tools
to be run on systems that do not have MPW Icon installed. To convert an icode file
to a stand-alone tool, execute

IconMPWTool icode-file-name …

• Most of the error messages are formatted such that either part or all of the message
can be “executed” under MPW to call up the offending file and line. For example,
the interpreter error message

File x.icn; Line 2 # "b": missing semicolon or operator

is a valid MPW command that will open the file x.icn and select line 2. In a few
cases, only a portion of the message is executable and must be selected.

• Files created by execution of an Icon program (by open(filename,"w")) are MPW
text files; that is they have the same type and creator as files created within MPW:
type = 'TEXT' and creator = 'MPS '. Therefore their icons in Finder windows are
the same as for MPW text files, and double clicking the icon invokes the MPW Shell
to edit the file.

• Ucode files are given file type = 'TEXT', creator = 'UCOD'. Since they are human-
readable text files, the type of 'TEXT' makes them accessible to text editors (such as
MPW Shell). The type 'UCOD' causes them to have a generic document icon,

IPD252 – 9 – August 28, 1994

rather than the MPW Shell text file icon, to help distinguish them from Icon source
files and other “normal” text files.

• The new line designation \n and carriage return \r have their usual values reversed in
MPW Icon. This practice is “inherited” from MPW C. The codes are reversed
because the new line code used in Macintosh text files is the carriage return (rather
than the line feed as used by UNIX), and will not likely cause any problems.
Nonetheless, subtle effects could be introduced, such as image(string('\n\r'))
producing "\n\r" on UNIX systems and"\r\n" on Macs.

• I/O to “tty” files (i.e., to windows) can be fully buffered (normally it is “line
buffered”). Specifying fully buffered output allows considerably faster output to
windows, but has some undesirable side effects.

When fully buffered, buffered window output is not actually written to the window
until the buffer is full or an input operation is requested. Thus, output to windows
between lengthy operations performed by a program may not be seen in a timely
fashion. Also, standard output and error output can be intermingled in strange
ways.

When line buffered, buffered window output is written under the conditions above,
but the buffer is also written whenever a new line character is output. This causes
lines written to standard output and standard error, as well as any other output
streams open on a window, to be written in the same order as output by the
program.

To specify fully beffered window output, set the environment variable
NoLineFlush:

Set NoLineFlush 1 ; Export NoLineFlush

It is recommended that NoLineFlush be used only when the additional speed is
especially advantageous, since it often creates confusing output.

• The Macintosh Programmer's Workshop Shell's default stack size works well for
almost all Icon programs. However it may have to be increased for certain
exceptional ones. Experience so far shows that this will will be required extremely
rarely. The default stack size can be increased to handle virtually any requirement —
see the MPW documentation for the method of increasing the stack size.

• The ICONCORE environment variable, which causes a core dump on error
termination in many implementations of Icon, simply causes an abort in MPW Icon.
The only apparent difference between an abort and a normal termination in the MPW
environment is that a sequence of MPW commands will terminate if a program
aborts, regardless of the setting of shell variable Exit.

• The MPW console (i.e. window) input routines function such that a console input
operation transfers the entire line containing the insertion point, or if a range of text
is selected, the selected text. This may cause some incompatibility with existing Icon
programs that issue a prompt and then accept console input on the same line as the
prompt. For example, in

writes("How many?") # writes() outputs no new line character

IPD252 – 10 – August 28, 1994

n := read()

the value of n will contain the text "How many?" followed by the entered text. The
problem can be corrected by causing input strings to be on lines by themselves:

write("How many?") # write() outputs a new line character
n := read()

• Installation script

An MPW script is provided with MPW Icon to automate the installation process.

• UserStartup•icon

The MPW commands required to initialize MPW for use of Icon are encapsulated in
a separate UserStartup file, UserStartup•Icon. This change complements the
change in MPW 3.0 to automatically execute all files having names beginning with
UserStartup• as MPW initializes upon startup. If you are running under an older
version of MPW, insert the command

Execute UserStartup•Icon

into your UserStartup file.

• Command line options

The usual Icon requirement that all command line options must precede file names is
relaxed for MPW Icon. The normal Icon option-ordering requirement is inherited
from UNIX and is contrary to MPW’s command line conventions, and had to be
eliminated for Commando support to work.

• The -m option to icont (for macro preprocessing) is not implemented.

• The -x option to icont (for automatic execution after translating/linking) is not
implemented.

• The function system() is not supported.

• Pipes are not supported. A file cannot be opened with the "p" option.

8. Bugs

A complete list of known bugs in Version 9 of Icon is given in [2].

9. Differences Between Version 9.0 and Earlier Versions of MPW Icon

There are a number of differences between Version 9.0 and earlier versions of MPW
Icon, but few are likely to cause a difference in execution of Icon programs written under
the older versions. Most of the changes are upward compatible extensions [2]. If your

IPD252 – 11 – August 28, 1994

Macintosh has relatively small memory, watch out for problems caused by memory
shortage, since successive versions of Icon tend to grow in memory requirements.

Changes in version 9.0:

• The delay() built-in function is now implemented.

Changes in versions 8.x and earlier:

• Several new features were introduced in MPW Icon version 7.5 and are carried into
version 9. They are described in detail in section 7 of this document:

Commando dialog box support for icont
Background running under MPW 3.0
Spinning beachball cursor
Wristwatch cursor during garbage collection
On-line help facility
Ability to create stand-alone MPW tools
Error messages more MPW-like than in older versions
Window I/O is line-buffered by default — see NoLineFlush option in

section 7.
File type and creator of created files is same as MPW text files (type and

creator were null in older versions, making it difficult to edit them)
File type of ucode files is set to 'TEXT', for easy viewing with text

editors
Changes in method of specifying total Icon memory allocation

(IconSize)
The -x option of iconx has not been supported by MPW Icon since

version 7.5. Its burden to the MPW implementation outweighs its
utility.

• File hierarchy changes

File hierarchy changes are nil since version 7.5, but there are some significant
changes from earlier versions. The bin folder was done away with for version 7.5.
The Icon tools icont and iconx now reside in the Icon folder in the default
organization for MPW Icon. The bin folder used to hide a number of files that are
no longer needed, namely itran, ilink, iconm, and iconx.hdr. As with all
implementations of Icon since version 7.5, the translator (itran), linker (ilink), and
control program (icont) have been combined into a single program (icont). Besides
reducing the number of files needed to work with Icon, other benefits are gained
such as increased speed of translation and linking, reduced disk space requirements,
and generally simpler management of the Icon system.

• Change of environment variable names

The environment variable Icon had been named IconBin in previous versions.

• Memory management change

Since version 8.7 of MPW Icon, fixed, multiple memory regions are implemented.
This improves Icon’s ability to expand memory as needed while the program

IPD252 – 12 – August 28, 1994

executes. Prior versions used a single expandable region, which often could not
expand due to non-relocatable regions being allocated nearby. The environment
variable ICONSIZE is no longer needed. The other iconx region-allocation
environment variables (BLOCKSIZE, STKSIZE, etc.) are still available to tune
initial region allocation.

10. Reporting Problems

Problems with MPW Icon should be noted on a trouble report form (Trouble Form???
on the distribution diskette) and sent to

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602) 621-4049

icon-project@cs.arizona.edu (Internet)
... {uunet, allegra, noao}!arizona!icon-project (uucp)

If a program is involved, enclose it and any relevant data on a diskette.

11. Registering Copies of Icon

If you received your copy of MPW Icon directly from the Icon Project, it has been
registered in your name and you will receive the Icon Newsletter without charge. This
Newsletter contains information about new implementations, updates, programming
techniques, and information of general interest about Icon.

If you received your copy of MPW Icon from another source, please fill out a registration
form (Registration in the documents on the distribution diskette) and send it to the Icon
Project at the address listed above. This will entitle you to a free subscription to the Icon
Newsletter and assure that you receive information about updates.

Acknowledgements

The design and development of the Icon programming language was supported, in part,
by the National Science Foundation under grants MCS75-01397, MCS79-03890,
MCS81-01916, DCR-8320138, DCR- 8401831, and DCR-8502015.

Many individuals contributed to the design and implementation of Icon. The principal
ones are Cary Coutant, Dave Gudeman, Dave Hanson, Tim Korb, Bill Mitchell, Kelvin
Nilsen, Janalee O'Bagy, Gregg Townsend, and Steve Wampler.

Bob Alexander adapted Icon to the Macintosh under MPW.

IPD252 – 13 – August 28, 1994

References

1. R. E. Griswold, An Overview of the Icon Programming Language, The Univ. of
Arizona Tech. Rep. 90-6c, 1992.

2. R. E. Griswold, C. L. Jeffery, and G. M. Townbsend, Version 9.0 of the Icon
Programming Language, The Univ. of Arizona IPD236, 1994.

