
Building Version 9.0 of Icon for MS-DOS

Ralph E. Griswold

Department of Computer Science, The University of Arizona

The implementation of Version 9.0 of Icon includes both an interpreter and an optimizing compiler. The inter-
preter and compiler are largely compatible and almost all Icon programs will run under either, although some
features require the specification of options when used with the compiler [1]. The interpreter is appropriate for pro-
gram development and many production applications. The compiler can be used to get faster execution speeds and a
stand-alone executable file that can be distributed without the interpreter.

Note: This document is primarily concerned with building Icon for MS-DOS, but the source code also can be
used to build Icon for OS/2; see [2].

1. Requirements

Processors

Version 9.0 of Icon runs on computers with 8086/88/x86-family processors. IBM hardware compatibility is not
required. Either MS-DOS or PC-DOS, Version 3.0 or higher, is needed. The interpreter requires at least 500KB of
conventional memory to run satisfactorily. The Icon compiler requires a 32-bit processor with at least 4MB of
RAM. A fast 486 with considerably more RAM is recommended. The Icon compiler generates C code, which then
must be compiled and linked using the C compiler under which the Icon compiler was built.

C Compilers

The implementation is written almost entirely in C and RTL [3], a superset of C for which a translator to C is
supplied.

Building the interpreter is straightforward and can be done on a 16-bit platform with most of the popular C com-
pilers that support the large memory model. Building the interpreter requires at least 510KB of free RAM. If there
is not sufficient memory, MS-DOS may hang. If this happens, you may need to remove some memory-resident pro-
grams to build Icon. Building the compiler requires a 32-bit C compiler. The amount of RAM required depends on
the compiler. 4 MB is typical.

To date, the Version 9.0 interpreter for Icon for MS-DOS has been successfully built using the following C com-
pilers:

Borland C++ 3.0
Intel Code Builder 1.0
Microsoft C 6.0
Microsoft C 7.0
Turbo C 2.0
Watcom C/396 9.0
Zortech C++ 3.0

The Version 9.0 compiler for Icon has been successfully built using

Intel Code Builder 1.0
Watcom C/396 9.0
Zortech C++ 3.0

Version 9.0 also has been configured for Metaware High C 2.3, but this configuration has not been tested. The use
of a C compiler not listed here involves additional work to provide appropriate conditional code.

IPD249 − 1 − June 21, 1994

Assembly Language

Icon’s co-expressions require an assembly-language context switch. An appropriate assembler therefore is
necessary to provide this feature when building Icon entirely from the source code. However, object files for context
switches are provided, where available, for persons who do not have an assembler. Alternatively, co-expressions
can be disabled without otherwise affecting the use of Icon.

Batch Scripts

Some of the batch scripts for building and testing Icon use the call command, which allows a batch script to be
run from inside another batch script, with control then returning to the former one. If you are using an early version
of MS-DOS that does not support call, you will have to decompose the batch scripts that use it into more elementary
ones.

Disk Space

The material on the distribution diskettes occupies about 4.5MB when unloaded. This amount can be reduced
by deleting files related to the interpreter and to C compilers that will not be used. About 1.5MB additional space is
needed to completely build and test the Icon interpreter, although it is possible to get by with less by building incre-
mentally. Building the Icon compiler requires additional disk space — 3 to 4MB depending on the C compiler used.

2. Organization of the Implementation

The source code for Icon is organized in a hierarchy. Files for various components of Icon are packaged using
LHA. A copy of LHA is included in the distribution. Instructions for unloading the files are provided on the distri-
bution diskettes.

If the Icon hierarchy is rooted in \icon, the directories after unloading are:

| -bin------ executable binaries
|
| | -common--- common files
| |
| | | -borland-- Borland C++
| | | -codebldr- Intel Code Builder
| | | -highc---- Metaware High C
| -config--- | -msdos---- | -msc6----- Microsoft C 6.0
| | | -msc7----- Microsoft C 7.0
| | | -turbo---- Watcom C
| | | -turbo---- Turbo C
| | | -zortech-- Zortech C++
| |
| | -os2------ | -cset2-- Cset/2
|
| | -common--- common source
| | -h-------- headers
| | -iconc---- compiler source

| -icon---- | -src------ | -icont---- translator source
| | -preproc-- pre-processor source
| | -rtt------ run-time translator source
| | -runtime-- run-time source
|
| -tests---- | -local---- local test results

| -stand---- standard test results

In the descriptions that follow, path specifications assume that the Icon hierarchy is unloaded in \icon\bin. If the
location is different for your installation or requires a drive specification, interpret the path specifications that follow

IPD249 − 2 − June 21, 1994

accordingly.

The distribution diskettes also contain documentation and some tools that may be useful in building and testing
Icon. See the README files on the distribution diskettes.

Binary Files

Since rtt.exe cannot be built under all the C compilers that otherwise support Icon, a copy is included in the dis-
tribution. Several other executable binaries used in various aspects of building Icon are also included. These exe-
cutable binaries are installed in \icon\bin.

Source Files

The six source-code sub-directories under src contain the following components of Icon:

common files common to different components of Icon.

h header files used by files in the other directories.

iconc source code for iconc.exe, the optimizing compiler.

icont source code for icont.exe, the translator and linker that converts an Icon source-language pro-
gram into a form suitable for the interpreter.

preproc source code for an ANSI C pre-processor used by the run-time translator.

rtt source code for rtt.exe, a program used in translating run-time code to C.

runtime source code for the interpreter, iconx.exe, and run-time systems for the compiler and interpreter.

Configuration Directories

In order to simplify the process of compiling Icon under different C compilers, files that are compiler-specific,
such as batch and linker files, are provided in subdirectories of the config directory. The MS-DOS configurations
presently are:

borland Borland C++
codebldr Intel Code Builder
highc Metaware High C
msc6 Microsoft C 6.0
msc7 Microsoft C 7.0
turbo Turbo C
watcom Watcom C
zortech Zortech C++

The use of these configuration directories is described in next section. Note: Some files contain path information that
may need to be changed for a particular configuration.

3. Building Icon for a Supported Configuration

Before starting to compile Icon, be sure your C compiler is properly installed and that any paths that it needs are
properly set.

Setting up Files

The first step in the compilation process is to set up the files needed for compilation and linking. If you are
using one of the C compilers mentioned above, there is a batch script in the top level of the Icon hierarchy (assumed
to be \icon here) whose name corresponds to the C compiler. Running the batch script performs the configuration.
For example, if you want to configure Version 9.0 of Icon to compile under Borland C++, just enter

borland

This batch script copies compiler-specific scripts, source files, and object files to appropriate places in the source-
code hierarchy. Note: Some files may not be found during copying for some compilers. This is normal, since a com-
mon copying script is used and not all configurations have all the files that others do.

IPD249 − 3 − June 21, 1994

A file containing compiler-specific information, status, is also copied into the top level of the Icon hierarchy.
Read this file before proceeding, since it may contain information about problems and limitations related to the C
compiler.

Configuration Changes

Once Icon is set up for a specific C compiler, there may be a few changes you wish to make before building
Icon.

Co-Expressions: Co-expressions are supported by default on most platforms. To disable them, add

#define NoCoexpr

to \icon\src\h\define.h.

MS-DOS Functions: There are a few functions specially designed for using Icon under MS-DOS that are not
part of Icon’s standard function repertoire. The functions are described in [4]. These functions normally are
included if they are supposed for the C compiler used. If you wish to eliminate them (which decreases the size of
iconx by a few thousand bytes), remove

#define DosFncs

from \icon\src\h\define.h.

Large Integers: Icon has facilities for large-integer arithmetic, but these facilities normally are disabled for 16-
bit MS-DOS platforms because they increase the size of iconx substantially (20-30KB). If you have enough RAM
and wish to enable large-integer arithmetic, remove the following line from \icon\src\h\define.h:

#define NoLargeInts

Directory Path: The icon compiler, iconc.exe, needs to know where certain files are located. For most C com-
pilers used to build iconc.exe, this path can be patched after iconc.exe is built. In some cases, however, this is not
possible because of the format of executable files. See the file status mentioned in the preceding section.

In cases where patching does not work, it is necessary to decide in advance where the files needed by iconc.exe
will be located and to place a definition for RefPath in \icon\src\h\define.h. For example, if the location will be
c:\dos, the definition would be

#RefPath "c:\\dos\\"

Note that the string must end in a backslash.

Use of the Make Utility

The instructions for building Icon in the next section specify the use of batch scripts. A public-domain UNIX-
style make utility is included in this distribution. It is unloaded into \icon\bin as make.exe. To use it, move it to a
place on your PATH or add \icon\bin to your PATH.

Makefiles are installed when files are set up for a specific C compiler. You may find it convenient to use make,
especially if you modify the Icon source code. Be aware, however, that building Icon from Makefiles requires more
RAM than building Icon from batch scripts. This may cause problems in some situations. Makefiles also are not
available for some steps, either because some programs malfunction when run under make or because files are con-
structed on the fly and their names cannot be determined in advance.

Compilation

The steps in building Icon follow. Note that the first three steps refer to building the interpreter, while the last
two refer to the compiler. If you only want to build the interpreter, stop after Step 3.

The directories mentioned in the following steps are relative to \icon\src.

1. First cd common and run the batch script build. This creates object files used in the various components
of Icon.

IPD249 − 4 − June 21, 1994

2. Next cd ..\icont and run the batch script build. This builds icont.exe and installs it in \icon\bin.

3. Next cd ..\runtime and run the batch script build. This builds iconx.exe and installs it in \icon\bin. Note:
Problems with insufficient RAM are most likely to occur at this step. If the build fails for lack of space or
if MS-DOS hangs, reboot with fewer memory-resident programs.

Subsequent steps apply to building the Icon compiler and its support files. As mentioned above, a 32-bit C com-
piler is required for this.

4. First cd ..\iconc and run the batch script build. This builds iconc.exe and installs it in \icon\bin.

5. This step builds files needed by iconc.exe. A 386 or higher and at least 4MB of RAM are required. Two
of the batch scripts assume the Icon interpreter is installed in \icon\bin as built by Steps 2 and 3 above.
cd ..\runtime and run the following batch scripts:

header (creates a header and an object file needed by iconc.exe)
icontrns (creates C files and a database needed by iconc.exe∗)
iconcomp (creates object files∗∗)
iconlibe (creates a library needed by iconc.exe∗)

The files needed by iconc.exe are copied to \icon\bin.

The scripts flagged with ∗ take a long time. The script flagged with ∗∗ takes a very long time. The time
depends not only on processor speed but also on the compiler used.

4. Installing Icon

After performing the steps specified in the preceding section, \icon\bin should contain the components of Icon
indicated above.

To use Icon, the executable files need to be available via PATH. You can add \icon\bin to PATH or move the
executable files to a place already on PATH.

iconc.exe needs to know the location of two files that are initially installed in \icon\bin. The files are:

rt.db a database of information about Icon operations
rt.h a header file specified in the code iconc.exe produces

In addition, the following files are needed for linking the object files that result from compiling the C files produced
by iconc.exe:

rt.lib an object library that contains run-time operations
dlrgint.obj a stub for large integers (if large integers are not supported)

If these four files are moved, they should all be placed in the same directory.

iconc.exe is initially configured to expect its files in the directory from which it is executed. In order to be able
to run iconc.exe from any location, a path in it must be patched. The program patchstr.exe, in \icon\bin, performs
this task. It is used as follows:

patchstr iconc.exe directory−path\

where directory-path is the full path to the directory in which the four files mentioned above are located. Note that
the path specification must be followed by a backslash.

For example, if the files that iconc.exe needs are not moved, the patch step would be

patchstr iconc.exe \icon\bin\

The patching process can be repeated as necessary if the directory is moved.

IPD249 − 5 − June 21, 1994

5. Running the Icon Compiler

Please note: Running the compiler requires significant resources and it may not be practical on slow processors
or platforms with limited amounts of memory. Furthermore, it may be necessary to reconfigure your memory
extender so that iconc.exe can use all available RAM.

The use of the compiler under MS-DOS differs somewhat from the description given in [1], since some of the
operations iconc.exe performs under other operating systems are not practical under MS-DOS. Specifically, the C
files produced by iconc.exe are not compiled automatically and subsequently deleted. Instead, these operations
must be done after iconc.exe is run.

A batch script, icomp.bat, for using the Icon compiler, is installed in \icon\bin. A typical version is:

iconc %2 %3 %4 %5 %1
icc %1.c \icon\bin\rt.lib
del %1.c
del %1.h

The first argument is the name of the Icon program (without the .icn extension). The remaining arguments are pro-
vided for options to iconc. Note that the path for rt.lib needs to be changed if this file is moved as described in the
preceding section.

For example, to compile hello.icn with no options, use

icomp hello

while to compile hello.icn with no optimizations, use

icomp hello −na

Note that options follow the program name. See [1] for other options.

Note: If you are using more than one C compiler, be careful that the C compiler used to compile the output of
iconc.exe is the same as the one used to build rt.lib and the other files used by iconc.exe.

6. Testing Icon

The following files are required to test Icon:

compare.exe comparison utility
icomp.bat Icon compiler script (compiler tests only)
iconc.exe Icon compiler (compiler tests only)
icont.exe Icon translator
iconx.exe Icon interpreter

These files are located in \icon\bin after building Icon. They need to be available via PATH for the procedures
described below. Note that icomp.bat may need to be edited as described in the preceding section.

A suite of test programs is provided in \icon\tests. The expected output of the test programs is in
\icon\tests\stand; \icon\tests\local is provided for local output. The ‘‘standard’’ output was produced by Intel
Code Builder. Note: The tests provided are extensive, but they are not exhaustive.

The directory tests contains several batch scripts for testing Icon. The ones for testing the interpreter are:

intrcoex.bat co-expressions (if supported)
intrlarg.bat large-integer arithmetic (if supported)
intrmain.bat other features

There are corresponding scripts for testing the compiler:

compcoex.bat co-expressions (if supported)
complarg.bat large-integer arithmetic (if supported)
compmain.bat other features

IPD249 − 6 − June 21, 1994

These scripts report differences between ‘‘standard’’ and local output. Due to compiler or configuration differ-
ences, local output will differ in some cases from the output in stand. Test output from 16- and 32-bit versions of
Icon also may differ because of different constants used in dynamic hashing and different sizes for storage regions.
The string representation of floating-point numbers also various among different C libraries. Also, tests may fail
because of inadequate RAM, in which cases the differences shown may be large.

In the case of differences that appear to be abnormal, look at the corresponding .icn file for a possible explana-
tion.

Note: Running all the interpreter tests takes a long time. Running all the compiler tests takes a very long time.
If you are building Icon using a compiler for which Icon has been built before, you may wish to limit your testing to
a few programs. The scripts compsamp.bat and intrsamp.bat are provided for this purpose.

7. Configuring Icon for a Non-Supported C Compiler

If you want to build Icon under a C compiler for which there presently is no configuration, set up a configuration
directory for it and copy files from a configuration that is similar to your C compiler. See [5] for information on
modifying the new configuration to suit your C compiler.

If you are successful in building Icon with the new compiler, please send the configuration files and any changed
source files to the Icon Project as described in Section 10 so that they can be incorporated in future releases.

8. The Implementation Book

If you are interested in the larger view of the implementation of Icon, or if you are interested in modifying or
extending Icon, you may want to acquire the book on the implementation [6]. This book, which can be purchased
from the Icon Project, concentrates on the run-time system and covers data structures, the virtual machine, the inter-
preter, the implementation of generators, and storage management.

The implementation book corresponds to Version 6 of the Icon source code. There have been several changes in
the source code between Version 6 and the present version. Supplementary documentation describing these changes
is available free of charge from the Icon Project. Ask for [7-9].

9. Trouble Reports and Feedback

If you run into problems, contact the Icon Project:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602) 621-8448 (voice)
(602) 621-4246 (fax)

icon-project@cs.arizona.edu (Internet)
... uunet!arizona!icon-project (uucp)

We cannot guarantee to solve your problems, but we will try. We also may be able to place you in contact with
other persons who are compiling Icon and who may have similar problems.

Please also let us know of any suggestions for improvements to the compilation process and its documentation.

IPD249 − 7 − June 21, 1994

Acknowledgements

Many persons have been involved in the implementation of Icon. Clint Jeffery and Gregg Townsend colla-
borated with the author on Version 9.0.

References

1. R. E. Griswold, Version 9.0 of the Icon Compiler, The Univ. of Arizona Icon Project Document IPD237,
1994.

2. R. E. Griswold, Building Version 9.0 of Icon for OS/2, The Univ. of Arizona Icon Project Document IPD260,
1994.

3. K. Walker, The Run-Time Implementation Language for Icon, The Univ. of Arizona Icon Project Document
IPD261, 1994.

4. R. E. Griswold, Version 9.0 of Icon for MS-DOS, The Univ. of Arizona Icon Project Document IPD247, 1994.

5. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Configuring the Source Code for Version 9.0 of Icon, The
Univ. of Arizona Icon Project Document IPD238, 1994.

6. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

7. R. E. Griswold, Supplementary Information for the Implementation of Version 8 of Icon, The Univ. of Arizona
Icon Project Document IPD112, 1992.

8. R. E. Griswold, Supplementary Information for the Implementation of Version 9.0 of Icon, The Univ. of
Arizona Icon Project Document IPD239, 1994.

9. K. Walker, The Run-Time Implementation Language for Version 8.7 of Icon, The Univ. of Arizona Tech. Rep.
92-18. July 1992.

IPD249 − 8 − June 21, 1994

