
Version 9 of Icon for MS-DOS
Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona

IPD247c
March 10, 1996
http://www.cs.arizona.edu/icon/docs/ipd247.html

1. Introduction

Version 9 of Icon for MS-DOS should run on any PC or PC clone running MS-DOS 3.0 or higher. A math
co-processor is supported and used if present; otherwise software emulation is used. Approximate 500K of
free RAM is needed to run Icon satisfactorily. Two versions of Icon's executor system are provided. One
supports arithmetic on integers of unlimited magnitude and the other does not. The latter is considerably
smaller than the former and can be used if you do not have enough RAM for the former.

This implementation of Icon is in the public domain and may be copied and used without restriction. The Icon
Project makes no warranties of any kind as to the correctness of this material or its suitability for any
application. The responsibility for the use of Icon lies entirely with the user.

The basic reference for Version 8 of Icon is the second edition of the book The Icon Programming Language
[1]. This book is available from the Icon Project at The University of Arizona.

The new features of Version 9 of Icon are described in an accompanying technical report [2].

2. Installing MS-DOS Icon

Three executable binary files are needed to use Icon:

icont.exe translator
iconx.exe executor
ixhdr.exe bootstrap header

These files should be located at a place on your PATH specification. In addition, icont.exe and ixhdr.exe
must be in the same directory.

There are two forms of icont and iconx: ones without large-integer arithmetic and ones with it. The former
are named icont.exe and iconx.exe as distributed, while the latter are named icontl.exe and
iconxl.exe. The distribution is contained in several files in LHA format. These files have the extension lzh.
If you do not have a copy of lha.exe, execute the self-extracting archive lha213.exe on the distribution
diskette. This will produce lha.exe and documentation.

The distribution files are:

docs.lzh documents
icon.lzh executable binary files
readme installation overview and recent notes
samples.lzh Icon programs and data

To install the .exe files, set your current directory to the desired place, place the appropriate distribution
diskette in a drive, and dearchive the files there using lha.exe. For example, using drive A to dearchive the
executable binary files, the following will do:

a:lha x a:icon.lzh

The same technique can be used for extracting the remaining files.

Pick the translator and executor that fit your needs, place them at a location on your path, and rename them to
icont.exe and iconx.exe if necessary. For example, if you want the executor that supports large-integer
arithmetic, the following will do:

rename icontl.exe icont.exe
rename iconxl.exe iconx.exe

3. Running MS-DOS Icon -- Basic Information

Files containing Icon programs must have the extension .icn. Such files should be plain text files (without
line numbers or other extraneous information).

The Icon translator, icont, produces an "icode" file that is executed using iconx.exe. There are two forms of
icode files:

1. Executable icode files that invoke iconx.exe automatically when they are run. These icode files have the
extension exe.

2. Non-executable icode files that are run by iconx with the icode file as an argument. These icode files have
the extension icx.

Non-executable icode files require about 8K less RAM to run than executable files, but they are more awkward
to run. Note: Executable icode files do not stand alone; they require iconx.exe to run.

Producing Executable Icode Files

Executable icode files are produced by default. An Icon program in the file prog.icn is translated by

icont prog.icn

If your translator is named differently, simply use that name. For example, if your translator is named
icontl.exe, use

icontl prog.icn

The result is an icode file with the name prog.exe. This file can be run by

prog

Alternatively, icont can be instructed to execute the icode file after translation by appending a -x to the
command line, as in

icont prog.icn -x

This only works if your executor is named iconx.exe, since the -x option looks for this name. In the sections
that follow, it is assumed that the executor is named iconx.exe.

If icont is run with the -x option, the file prog.exe is left and can be run subsequently using an explicitly
named executor as described above.

The extension .icn is optional on the command line. For example, it is sufficient to use

icont prog

Producing Non-Executable Icode Files

To produce a non-executable icode file, use the option -I, as in

icont -I prog

The result is an icode file named prog.icx. It can be run by

iconx prog

Note that the icx extension is not necessary.

iconx will find an icode file if it is in the current directory or at place given on your PATH specification.

Except for the icode file extension and the method of running non-executable icode files, the remarks in the
previous section apply.

4. Testing the Installation

There are a few programs on the distribution diskette that can be used for testing the installation and getting a
feel for running Icon:

hello.icn
This program prints the Icon version number, time, and date. Run this test as

icont hello
hello

Note that this can be done in one step with

icont hello -x

cross.icn
This program prints all the ways that two words intersect in a common character. The file cross.dat
contains typical data. Run this test as

icont cross -x <cross.dat

meander.icn
This program prints the "meandering strings" that contain all subsequences of a specified length from
a given set of characters. Run this test as

icont meander -x <meander.dat

roman.icn
This program converts Arabic numerals to Roman numerals. Run this test as

icont roman -x

and provide some Arabic numbers from your console.

If these tests work, your installation is probably correct and you should have a running version of Icon.

5. More on Running Icon

For simple applications, the instructions for running Icon given in Section 3 may be adequate. The icont
translator supports a variety of options that may be useful in special situations. There also are several aspects
of execution that can be controlled with environment variables. These are listed here. If you are new to Icon,
you may wish to skip this section on the first reading but come back to it if you find the need for more control
over the translation and execution of Icon programs.

5.1 Arguments

Arguments can be passed to the Icon program by appending them to the command line. Such arguments are
passed to the main procedure as a list of strings. For example,

iconx prog text.dat log.dat

runs the icode file prog.icx, passing its main procedure a list of two strings, "text.dat" and "log.dat".
The program also can be translated and run with these arguments with a single command line by putting the
arguments after the -x:

icont prog -x text.dat log.dat

These arguments might be the names of files that prog.icn reads. For example, the main procedure might
begin as follows:

procedure main(args)
in := open(args[1]) | stop("cannot open file")
out := open(args[2]) | stop("cannot open file")
 .
 .
 .

5.2 The Translator

The icont translator can accept several Icon source files at one time. When several files are given, they are
translated and combined into a single icode file whose name is derived from the name of the first file. For
example,

icont prog1 prog2

translates the files prog1.icn and prog2.icn and produces one icode file, prog1.exe.

A name other than the default one for the icode file produced by icont can be specified by using the -o option,
followed by the desired name. For example,

icont -o probe prog

produces the icode file named probe.exe rather than prog.exe.

If the -c option is given to icont, the translator stops before producing an icode file and intermediate "ucode"
files with the extensions left for future use (normally they are deleted). For example,

icont -c prog1

leaves prog1.u1 and prog1.u2, instead of producing prog1.exe. These ucode files can be used in a
subsequent icont command by using the .u1 name. This saves translation time subsequently. For example,

icont prog2 prog1.u1

translates prog2.icn and combines the result with the ucode files from a previous translation of prog1.icn.
Note that only the .u1 name is given; the .u2 name is implied. The extension can be abbreviated to .u, as in

icont prog2 prog1.u

Ucode files also can be added to a program using a link declaration.

Icon source programs may be read from standard input. The argument - signifies the use of standard input as a
source file. In this case, the ucode files are named stdin.u1 and stdin.u2 and the icode file is named
stdin.exe.

The informative messages from the translator can be suppressed by using the -s option. Normally, both
informative messages and error messages are sent to standard error output.

The -t option causes &trace to have an initial value of -1 when the icode file is executed. Normally, &trace
has an initial value of 0.

The option -u causes warning messages to be issued for undeclared identifiers in the program.

5.3 Environment Variables

When an icode file is executed, several environment variables are examined to determine execution parameters.
The values assigned to these variables should be numbers.

Environment variables are particularly useful in adjusting Icon's storage requirements. Particular care should
be taken when changing default values: unreasonable values may cause Icon to malfunction.

The following environment variables can be set to adjust Icon's execution parameters. Their default values are
listed in parentheses after the environment variable name:

TRACE (undefined)
This variable initializes the value of &trace. If this variable has a value, it overrides the
translation-time -t option.

NOERRBUF (undefined)
If this variable is set, &errout is not buffered.

STRSIZE (65000)
This variable determines the size, in bytes, of the initial region in which strings are stored. If
additional string regions are needed, they may be smaller.

BLKSIZE (65000)
This variable determines the size, in bytes, of the initial region in which lists, tables, and other objects
are stored. If additional block regions are needed, they may be smaller.

COEXPSIZE (2000)
This variable determines the size, in 32-bit words, of each co-expression block.

MSTKSIZE (10000)

This variable determines the size, in words, of the main interpreter stack.

QLSIZE (5000)
This variable determines the size, in bytes, of the region used by the garbage collector for pointers to
strings.

The maximum region size that can be specified is 65000.

6. Features of MS-DOS Icon

MS-DOS Icon supports all the features of Version 9 of Icon, with the following exceptions and additions:

Pipes are not supported. A file cannot be opened with the "p" option.

For files opened in the translate mode, the position produced by seek() may not reflect the actual byte
position because of the translation of carriage-return/line-feed sequences to line-feed characters.

Path specifications can be entered using either a / or a \. Examples are:

A:\ICON\TEST.ICN
A:/ICON/TEST.ICN

The following MS-DOS device names can be used as file names:

console CON
printer PRN LST LPT LPT1
auxiliary port AUX COM RDR PUN
null NUL NULL

For example,

prompt := open("CON", "w")

causes strings written to prompt to be displayed on the console. Use of a null file name means
no file is created.

MS-DOS Icon also has some functions in addition to the standard repertoire. These are described in
the next section.

7. MS-DOS Functions

Disclaimer: The following functions provide a gateway to facilities provided by MS-DOS and ROM BIOS.
These functions should be used with care, since Icon maintains strict control over its environment (although it
uses standard MS-DOS interfaces and does not bypass MS-DOS or ROM BIOS in any way). The descriptions
that follow are low-level descriptions. They assume knowledge of the Intel 8086 (8088, 80x86) architecture.

Int86(L) generates a hardware interrupt. The input is a list of integer values: [interrupt number, ax, bx,
cx, dx, si, di, es, ds]. It returns a list of the form [flags, ax, bx, cx, dx, si, di, es, ds].
Great care must be taken in using this function. Some things to watch out for are:

Interrupt functions that alter the stack registers (SS or SP) or alter the MS-DOS memory chain (that is,
allocate or deallocate memory in the MS-DOS memory region). When Icon expands memory, it
expects the next allocation to be contiguous with the region it currently owns.

Interrupt functions that operate on files opened by Icon's open(s) function -- that is, closing,
seeking, reading, or writing.

The values of ES and DS may not be valid on return.

InPort(i) returns an integer from hardware port i.

OutPort(i1, i2) writes value i2 to hardware port i1.

GetSpace(i) allocates a static block of storage outside of Icon's direct control (that is, it is not be affected by
garbage collection). This function simply calls the malloc() allocation routine and returns the address of the
resulting block as a long integer.

FreeSpace(A) frees a static block of storage, where A is a value returned by GetSpace(i). No check is make
to verify that the block was allocated by GetSpace(i). The results are unpredictable if it was not. Arithmetic
should not be performed directly on a value returned by GetSpace(i).

Peek(A, i) builds a string pointing to the address specified by A with a length of i, where A is either an
integer that specifies a linear address value or a list of the form [segment, offset] and i is a length (default
1). This is the only way of "seeing" the contents of a block of storage allocated by GetSpace(i). Consider the
following example:

block := Peek(addr := GetSpace(100),100)

The value of block is a string of length 100 and addr is the linear address of the block.
Peek(A, i) does not move data into Icon's memory region. Instead, it builds a string qualifier that points to
the data.

Poke(A, s) copies a string s to location A, where A is an address specified in the same way as for Peek(A,
s) and s is a string to be copied to that storage location. The string is copied directly into storage, byte by byte.
No conversion is performed. This is the only way of assigning data to a block of storage allocated by
GetSpace(i).

8. Known Bugs

The -x option is not supported by some versions of MS-DOS Icon.

MS-DOS memory management sometimes causes problems. Some programs that require a lot of memory may
abort or hang when run by the -x option to icont. This can be avoided running the icode file as a separate
step. Also, if there is not enough free RAM, the system() function may fail silently or hang.

9. Reporting Problems

Problems with Icon should be noted on a trouble report form (included with the distribution) and sent to:

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, AZ 85721-0077
U.S.A.

(520) 621-6613 (voice)

(520) 621-4246 (fax)

icon-project@cs.arizona.edu

Acknowledgements

Clint Jeffery and Gregg Townsend collaborated with the author in the development of Version 9. Will
Mengarini provided the mechanism for producing executable icode files.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language , Prentice-Hall, Inc., Englewood
Cliffs, NJ, second edition, 1990.

2. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Version 9.1 of the Icon Programming Language ,
The Univ. of Arizona Icon Project Document IPD267, 1995.

Icon home page

