
Version 9 of the Icon Compiler

Ralph E. Griswold

Department of Computer Science, The University of Arizona

1. Introduction

There are two forms of the implementation of Icon, an interpreter and a compiler. The interpreter gets a program
into execution quickly and is recommended for program development, debugging, and most production situations.
The compiler produces code that executes somewhat faster than interpreted code (a factor of 2 or 3 is typical), but
the compiler requires a large amount of resources and is very slow in producing executable code. The compiler is
recommended only for small programs where execution speed is the paramount concern.

In most respects, the Icon compiler is compatible with the Icon interpreter [1]. Most programs developed under
the interpreter run under the compiler with no changes.

It takes considerably longer to compile an Icon program than it does to translate it for interpretation. In most
cases, it is advisable to do program development using the interpreter and then produce a production version of the
program with the compiler.

Since compiler support for some features of Icon makes it difficult to produce fast executable code, these
features are not available unless the compiler is told they are needed. This information is imparted by options to the
compiler.

The compiler performs a number of optimizations to improve run-time performance. These optimizations can be
disabled.

The Icon compiler produces C code, which is then compiled and linked to produce an executable program. Pro-
grams produced by the compiler stand alone and do not require a separate run-time system like the interpreter.

Only the routines needed by a compiled program are included in its executable file. Consequently, the size of a
compiled program depends to a considerable extent on the range of features it uses.

The compiler itself requires a significant amount of memory. It must read a data base into memory, maintain a
representation of the entire program, and perform analyses. Type inference in particular may require a large amount
of memory, depending on the nature of the program. Icon programs on the order of several thousand lines may
require several megabytes of memory to compile. In case a program does not compile with type inference enabled
due to memory limitations or compiles slowly due to excessive paging, it may compile satisfactorily with type
inferencing disabled.

The C code produced by the compiler is relatively voluminous and may require a large amount of disk space.
Disabling all optimizations typically doubles the size of the generated C code.

Although the Icon compiler has been tested extensively at the Icon Project, it has not yet been used by a large
and diverse programming community. Further use will certainly uncover bugs. If a compiled program appears to
malfunction, first be sure it works properly with the Icon interpreter. Then try enabling optional features. Finally,
try disabling all optimizations. Report bugs to the Icon Project. Include enough information, including the program
and data, so that the problem can be replicated.

The next section describes how to run programs with the Icon compiler. The last section describes differences
in language features between the compiler and interpreter.

2. Running the Compiler

The Icon compiler is invoked with the command

iconc [ options ] files [ −x [ args ] ]

where options can be any of the following:

−c stop compilation after producing C code

IPD237a − 1 − October 31, 1995



−e file redirect standard error output to file
−f s enable features as indicated by the letters in s

a - all, equivalent to delns
d - enable debugging features, including the effect of −f n (see below)
e - enable error conversion
l - enable large-integer arithmetic
n - produce code that keeps track of line numbers and file names in the source code
s - enable full string invocation

−m preprocess each source file with the m4 preprocessor (UNIX only)
−n s disable specific optimizations. These are indicated by the letters in s:

a - all, equivalent to cest
c - control flow optimizations other than switch statement optimizations
e - expand operations in-line when reasonable (keywords are always put in-line)
s - optimize switch statements associated with operation invocations
t - type inference

−o file use file as the name of the executable file
−p arg pass arg on to the C compiler used by iconc
−r path use the run-time system at path.
−s suppress informative messages from the compiler
−t enable debugging features as for −f d and initialize &trace to −1
−u issue warning messages for undeclared identifiers in the program
−v i set verbosity level of informative messages to i
−C prg have iconc use the C compiler given by prg

File Names

One or more source file names must be specified. If a name has no suffix, .icn is appended. Otherwise, the name
must already have a suffix of .icn. The argument ‘‘−’’ indicates that the source should be read from standard input.
If the −o option is not used, the name of the executable file is constructed from the name of the first source file;
stdin is used for ‘‘−’’. The compiler produces a C program source file and a C include file as intermediate files. The
names of these files are constructed from the name of the executable file. For example,

iconc prog.icn

creates prog.c and prog.h. These files subsequently are deleted unless the −c option is specified. In any event, any
previous versions of prog.c and prog.h are overwritten.

Options

See Section 3 for a description of features enabled by the −f options. Use of these features may reduce the
optimizations performed by the compiler.

The −p option passes its argument to the C compiler. For example,

iconc −p "−w"

might be used to suppress warning messages. −p options accumulate; −p "" clears the list of options, including the
initial set of standard options.

The −r option allows specification of the location of the directory that contains files needed by iconc. This over-
rides the default location. The path argument must be terminated by a slash, as in

iconc −r /usr/icon/lib/

The −v option controls the level of detail of iconc’s informative messages. −v 0 is the same as −s. −v 1 is the
default behavior. Presently −v 2 and −v 3 only affect messages during type inferencing and are useful for monitor-
ing its progress on large programs. −v 2 causes a dot to be written for each iteration of type inferencing. −v 3
writes an indication of the amount of information found in each iteration of type inferencing.

The −C option can be used to override the default C compiler used by iconc. It is possible, although unlikely,
that using a different C compiler than the one expected when iconc is built may produce code incompatibilities.

IPD237a − 2 − October 31, 1995



As noted earlier, the −n t option sometimes is needed when compiling very large programs. The other −n
options are used mostly for debugging the compiler.

Disabling control-flow optimizations by −n c may result in unreachable C code and corresponding warning mes-
sages when it is compiled. Such messages may be annoying, but they can safely be ignored. Occasionally unreach-
able C code may occur even with control-flow optimizations. This may indicate unreachable Icon code.

Environment Variables

The compiler determines the definition of a run-time operation from an operation data base. It links any needed
routines from the link library associated with the data base. The compiler supports a search chain of these data
bases and libraries. When searching a chain of data bases, it uses the first definition for an operation that it
encounters. The environment variable DBLIST contains a blank separated list of data bases to be searched before
the standard one. (The standard data base can be changed with the −r option.) An alternate data base may be placed
in the search chain to provide new operations or to override standard operations.

The environment variable LPATH is used to specify paths to search for linked Icon source files. See the infor-
mation on linking files in Section 3.

Automatic Execution

The −x option causes the compiled program to be executed automatically. Arguments to the program can be
specified after the −x option, which must appear last. For example,

iconc prog −x test.log test.out

compiles and runs prog.icn with the arguments test.log and test.out.

3. Differences in Language Features

The compiler is designed to be compatible with the interpreter for Version 8.10 of Icon. This goal cannot be
completely realized because several features of the language make optimizations difficult. Those features that cause
problems and are not considered essential to the language have either been removed or made available only through
compiler options.

Debugging, string invocation, linking code from other Icon programs, and external functions are handled some-
what differently in the compiler from the way they are handled in the interpreter. These differences are discussed in
the following sections.

Large Integers

The −f l option enables large integer support. This allows the use of large integer literals and allows arithmetic
expressions to use and produce large integer values. When this option is used, iconc produces code that is some-
what less efficient for arithmetic on ordinary integer values. This option may only be used with a run-time system
that supports large integers. On most platforms, large integer support is the default; if large integers are not sup-
ported, iconc issues a warning and ignores the option.

Debugging Features

Several features of Icon provide debugging facilities. These features may require the generation of additional or
more complex code. They normally are disabled, but they can be enabled by the −f d compiler option. An attempt
to use a debugging function or keyword in a program where the compiler has not generated code to support it gen-
erally results in run-time error 402, program not compiled with debugging option.

The debugging facility in the compiler includes the printing of file names and line numbers with error messages
and the printing of a procedure call trace-back when an error occurs. Even when a program is compiled with full
debugging features enabled, there is no symbolic representation of the offending expression at the end of the trace-
back. The other operations falling under the heading of debugging features are:

IPD237a − 3 − October 31, 1995



display()
name()
variable()
&level
&trace
&line
&file

The −f n option enables limited debugging features. These are &line, &file, and the printing of line numbers and
file names in error messages.

String Invocation

In the presence of string invocation, the compiler makes no attempt to infer what might be invoked. To fully
support string invocation in the absence of other information, the compiler must link run-time routines for every
operation. This results in a large executable file. String invocation is very useful in some programs, but it is not a
heavily used feature. For these reasons, the compiler only supports string invocation to the extent explicitly
requested by the programmer.

There are two ways for the programmer to enable support for string invocation. The −f s option makes all opera-
tions available for string invocation. Alternately, more selective control is possible using a new language feature,
the invocable declaration. The syntax for this declaration is

invocable-declaration ::= invocable operation {, operation }*

operation ::= string-literal |
string-literal : integer-literal |
all

Each string-literal is the string representation of an operation that might be invoked with string invocation. This
may be a procedure, a record constructor, a built-in function, or an operator. For operators, the integer-literal indi-
cates the number of arguments for the operator. If it is missing, all operators using that operator symbol (typically
unary and binary versions) are made available. all indicates that all operations must be available for string invoca-
tion. For example, the following declaration indicates that binary +, binary and unary −, and write may be invoked
with string invocation.

invocable "+":2, "−", "write"

There are some minor differences between string invocation in the compiler and in the interpreter. In the com-
piler, arguments to built-in operations are not automatically dereferenced, while they are in the interpreter. This
means that string invocation on operations that make use of variables can produce different results in the two sys-
tems. For example, string invocation on assignment performs the assignment in the compiler, but produces a run-
time error in the interpreter.

There are three additions to string invocation in the compiler. The string [...] represents list creation; it takes a
variable number of arguments. The compiler treats & as an ordinary operator, so it is available for string invocation.
In both the interpreter and the compiler, the string ... represents the ternary operation to-by. The interpreter imple-
ments to as a short-hand notation for to-by with a third argument of 1, so string invocation is not available for
binary to. The compiler, on the other hand, implements to as a separate operation, and ... can be used in string
invocation on two arguments.

If string invocation is attempted on an operation and there is no request to make it available, invocation may be
unable to locate the operation and issue run-time error 106, procedure or integer expected. Because string invo-
cation is under programmer control rather than being an Icon configuration option, it is no longer listed in
&features.

The preceding discussion of string invocation also applies to the use of the built-in function proc.

IPD237a − 4 − October 31, 1995



External Functions

A search list of data bases/libraries combined with the features of the compiler’s run-time implementation
language [2] make it easy to call many C functions from within Icon. All that is required is a built-in function that
converts between Icon and C values, and calls the C function. The call is typically specified as in-line code. The
built-in function may be given the same name as the C function. The function is then added to a data base/library in
the search list. The external function mechanism of the interpreter is not supported.

Linking Source Files

The compiler supports the link declaration, but it works differently than it does in the interpreter where it causes
ucode files to be linked into the icode file. There are no ucode files in the compiler; instead the link declaration
works on source files. It takes the file names from the link declaration, adds .icn suffixes, and compiles the files as if
they had been specified on the command line. The source files are located using paths specified with the LPATH
environment variable; this is analogous to the use of the IPATH environment variable in the interpreter.

Error Conversion

The −f e option allows the use of &error to enable the conversion of run-time errors into failure. Unless −f e is
specified, the value of &error has no effect, and run-time errors are not converted to failure.

References

1. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood Cliffs,
NJ, second edition, 1990.

2. K. Walker, A Tutorial on Adding Functions to the Icon Run-Time System, The Univ. of Arizona Icon Project
Document IPD173, 1991.

IPD237a − 5 − October 31, 1995


