User's Guide for Version 8.8 of Icon for MVS

Alan Beale
SAS Institute, Inc.

1. INTRODUCTION

Version 8.8 of Icon for MVS should run on the IBM 30xx and 43xx families
of processors and on other 370- or 390-type processors that use the MVS
(including MVS/XA and MVS/ESA) operating system. MVS Icon is intended
primarily for use under the MVS Time Sharing Option (TSO); however,
batch usage is also possible.

Version 8.8 of Icon for MVS is distributed on a tape which includes
executable modules, test programs, data for the test programs and docu-
mentation files. Printed documentation is included with tapes distrib-
uted by the Icon Project at the University of Arizona.

This MVS implementation of Icon is in the public domain and may be
copied and used without any restriction. The Icon Project makes no war-
ranties of any kind about the correctness of this material or its suit-
ability for any application. The responsibility for the use of Icon
lies entirely with the user.

Because Icon was developed for a wide range of environments, many of
its features and commands resemble those of other operating environments
such as UNIX! and Ms-DOs, and may therefore seem strange to the MVS
user. In particular, the MVS user should remember that although most
TSO commands are not case sensitive, Icon source code as well as argu-
ments and parameters passed to the Icon translator or executor are case
sensitive.

2. DOCUMENTATION

The basic reference for Version 8 of Icon is the second edition of the
book The Icon Programming Language <1>. This book is available from the
Icon Project at the University of Arizona. It also can be ordered
through any bookstore that handles special orders.

1 UNIX is a trademark of AT&T Bell Laboratories.

IPD231 -1- August 1, 1993

The new features of Version 8.8 of Icon are described in technical
report IPD210, available from the Icon Project at the University of Ari-
zona.

3. INSTALLING MVS ICON

Installation of Icon is described in the document "Version 8.8 of Icon
for MVS - Installation” (INSTALL.DOC on the tape). Please see that doc-
ument for installation information.

4. RURNING MVS ICON - BASIC INFORMATION

This discussion assumes you are running Icon from TSO. Batch execution
is discussed in a later section.

Files containing Icon programs must have ICN as their final quali-
fier and be prefixed by the current TSO prefix. Members of partitioned
data sets are permitted. Such files should not have line numbers or
other extraneous information. They may have any record format. Lines
can be of any practical length (they need not be limited to eighty char-
acters),

The ICONT translator produces an "icode" file that can be used by
the ICONX executor. For example, an Icon program in the data set
MY.ICN(PROG) is translated by entering this at the READY prompt (or in
SPF menu 6):

icont my(prog)

The result is an icode file with the name MY.ICX(PROG). This file can
then be executed by entering the following:

iconx my(prog)

wWhen a filename (such as MY) is given to the Icon translator
(ICONT), the translator automatically supplies the final qualifier of
ICN. The executor (ICONX) automatically supplies the final qualifier of
ICX. Thus, the final qualifier should not be entered.

Note that the discussion above assumes that Icon has been installed
into a LINKLIST data set, or that the Icon load library is included in
your session's STEPLIB. If neither of these are true, you must use the
TSO CALL command to invoke Icon. For example,

call icon(icont) ‘my(prog)’
call icon(iconx) 'my(prog)'

IPD231 -2- August 1, 1993

Because the CALL command translates arguments to upper case, you may
find yourself unable to access certain Icon options via the CALL com-
mand. (This is a reason that Icon should be installed into LINKLIST.)
Note that with some versions of the TSO CALL command you can use the
ASIS keyword of CALL to inhibit upper-case translation.

There are two ways to run an Icon program for the first time: (1)
as shown above, using the translation command (ICONT) and then the exe-
cution command (ICONX) separately; or (2) combining the two steps of
translation and execution by using the -x option of ICONT, as:

icont my(prog) -x

The translator (ICONT) will run the executor (ICONX) only if translation
was successful. The two-step procedure must be used if redirections,
environment variables, or C runtime options are to be passed to the
executor (see Sections 6.1, 6.5 and 6.6).

After an Icon program has been run in either of the two ways, the
icode file (for example, MY.ICX(PROG)) is left undisturbed; this program
may be executed subsequently with only the execution command (ICONX).

5. TESTING THE INSTALLATION

There are a few Icon programs on the distribution tape that can be used
for testing the installation and getting a feel for running Icon. If
you did not install Icon yourself, you must copy the Icon source and
data files from the id of the installer to your own id before running
the commands shown below.

hello.icn This program prints the Icon version number, iden-
tifies the host computer, prints the date and
time, and lists the implemented Icon features. Run
this test as

icont examples(hello)
iconx examples(hello)

Note that this can be done in one step with
icont examples(hello) -x
cross.icn This program prints all the ways that two words
intersect in a common character. The file
EXAMPLES.DATA(CROSS) contains typical data. Run

this test as

icont examples(cross)
iconx examples(cross) <examples.data(cross)

IPD231 -3- August 1, 1993

meander.icn This program prints the "meandering strings" that
contain all subsequences of a specified length
from a given set of characters. The file
EXAMPLES .DATA(MEANDER) contains test data. Run
this test as

icont examples(meander)
iconx examples(meander) <examples.data(meander)

roman.icn This program converts Arabic numerals to Roman
numerals. Run this test as

icont examples(roman) -x

and provide some Arabic numbers from the terminal.
Enter the word EOF to stop the program.

If these tests work, the installation is probably correct and you
should have a running version of Icon.

6. MORE ON RUNNING ICON

For simple applications, the instructions for running Icon given in Sec-
tion 4 may be adequate. The ICONT translator supports a variety of
options that may be useful in special situations. There also are sev-
eral aspects of execution that can be controlled with environment vari-
ables. These are listed here. Users who are new to Icon may wish to
skip this section on the first reading but come back to it if they find
the need for more control over the translation and execution of Icon
programs.

6.1 COMMAND-LINE PROCESSING

Standard input and standard output are received from and sent to the
terminal. They can be redirected using greater-than or less-than signs:

iconx prog <infile.data(fred) >outfile.data

This command will run a translated program in PROG.ICX; it will use
INFILE.DATA(FRED) as input; it will use OUTFILE.DATA for output.

IPD231 -4- August 1, 1993

6.2 ARGUMENTS

Arguments can be passed to the Icon executor by appending them to the
command line. Such arguments are passed to the main procedure as a list
of strings. For example,

iconx examples(readrite) text.data readrite.out

runs the icode file EXAMPLES.ICX(READRITE), passing its main procedure a
list of two strings, "text.data" and "readrite.out". These arguments
might be the names of files that the program reads from and writes to.
For example, the main procedure of EXAMPLES.ICN(READRITE) (on the dis-
tribution tape) begins as follows:

procedure main(a)
if *a = 0 then a := $< "examples.icn(readrite)", "*" §$>
in := open(a$<l1$>) | stop("cannot open input file")
out := open(as<2>,"w") | stop("cannot open output file")

.

Note that the sequences $< and $> may replace the left and right brack-
ets in MVS Icon.

When you use the -x option to execute a program after translation,
you can specify program arguments after -x, for example:

icont examples(readrite) -x text.data readrite.out

6.3 THE TRANSLATOR

The ICONT translator can accept several Icon source files at one time.
When several files are given, they are translated and combined into a
single icode file whose name is derived from the name of the first file.
For example,

icont my(progl) my(prog2)

translates the members MY.ICN(PROGl) and MY.ICN(PROG2) and produces one
icode file, MY.ICX(PROGl).

A name other than the default one for the icode file produced by the
translator can be specified by using the -o option, followed by the
desired name. For example,

icont -0 pb.icx my(prog)

produces the icode file named PB.ICX rather than MY.ICX(PROG).

IPD231 -5- August 1, 1993

If the -c option is given to ICONT, the translator stops before pro-
ducing an icode file, leaving intermediate "ucode" files with the final
qualifiers Ul and U2 for future use (normally they are deleted). For
example,

icont -c my(progl)

leaves MY.Ul(PROG1) and MY.U2(PROG1), instead of producing
MY.ICX(PROGl). These ucode files can be used in a subsequent ICONT com-
mand by using the Ul name. This saves translation time when the program
is used again. For example,

icont my(prog2) my.ul(progl)

translates MY.ICN(PROG2) and combines the result with the ucode files
from a previous translation of MY.ICN(PROGl). Note that only the Ul name
is given. The final qualifier can be abbreviated to .u, as in

icont prog2 my.u(progl)

Ucode files also can be added to a program using the link declara-
tion in an Icon source program as described in Section 6.4.

Icon source programs can also be read from standard input (normally
the TSO terminal). The argument - signifies the use of standard input
as a source file. (The end of terminal input is signalled by entering a
line containing only the word EOF.) 1In this case, the ucode files are
named STDIN.Ul and STDIN.U2 and the icode file is named STDIN.ICX.

The informative messages from the translator can be suppressed by
using the -s option. Normally, both informative messages and error mes-

sages are sent to standard error output.

The -t option causes &trace to have an initial value of -1 when the
icode file is executed. Normally, &trace has an initial value of 0.

The option -u causes warning messages to be issued for undeclared
identifiers in the program.

6.4 THE LINK DECLARATION

Programs which call Icon procedures contained in other files may use the
link declaration to declare the dependency. On most systems, the decla-
ration "link subs" indicates that the ucode for required procedures is
to be found in the files SUBS.Ul and SUBS.U2. This interpretation,
though supported on MVS, is generally inadequate there, due to the use
of partitioned data sets for Icon source and ucode files.

When a link declaration, such as "link subs", is processed by MVS
Icon, the "search order" is as follows:

IPD231 -6- August 1, 1993

1. The files ICONLIB.Ul and ICONLIB.U2, if they exist, are
searched for the member SUBS,

2. If this was unsuccessful, the files allocated to the DDnames
UlLIB and U2LIB are searched for the member SUBS,

3. If this was also unsuccessful, an attempt is made to locate
sequential files named SUBS.Ul and SUBS.UZ2.

For greater flexibility, the "environment variable" IPATH can be
used. To use this facility, add the option "=IPATH=(dsl ds2 ...)" any-
where after the command name when invoking ICONT. For example:

icont my(prog) =IPATH=(mathlib setlib)

specifies that the ucode libraries MATHLIB.Ul/U2 and SETLIB.Ul/U2 are to
be searched for members named in link declarations, If IPATH is speci-
fied, the first two standard search steps above are bypassed, that is,
neither U1LIB/U2LIB nor ICONLIB.Ul/U2 is searched.

Note that the ISPF interface to Icon provides a more convenient
mechanism for specifying the IPATH information.

Also note that if your site licenses the SAS/C compiler, the SAS/C

PUTENV command can be used in TSO to permanently assign environment
variables.

6.5 ENVIRONMENT VARIABLES

When an icode file is executed, several environment variables are exam-
ined to determine execution parameters. The values assigned to these
variables should be numbers., Since MVS does not support environment
variables in the UNIX sense, they must be simulated by providing extra
arguments to the ICONX command. To set the environment variable X to
the value Y, you must specify =X=Y as an option on the command line.
(If your site licenses the SAS/C compiler, you can also use the SAS/C
PUTENV command to assign permanent values to environment variables.)

Environment variables are particularly useful in adjusting Icon's
storage requirements. This may be necessary if there is insufficient
memory to run programs that require an unusually large amount of data.
Particular care should be taken when changing default sizes: unreason-
able values may cause Icon to malfunction.

The following environment variables can affect Icon's execution
parameters. The default values are listed in parentheses after the
environment variable name:

o TRACE (undefined). This variable initializes the value of &trace.

If this variable has a value, it overrides the translation-time -t
option.

IPD231 -7- August 1, 1993

o STRSIZE (65000). This variable determines the initial size, in
bytes, of the region in which strings are stored. 1If additional
string regions are needed, they may be smaller.

0 BLKSIZE (65000). This variable determines the initial size, in
bytes, of the region in which Icon allocates lists, tables, and
other objects. If additional block regions are needed, they may
be smaller.

0 COEXPSIZE (2000). This variable determines the size, in 32-bit
words, of each co-expression block.

©0 MSTKSIZE (10000). This variable determines the size, in words, of
the main interpreter stack.

O QLSIZE (5000). This variable determines the size, in bytes, of the
region used by the garbage collector for pointers to strings.

For example, to invoke the translated Icon program MY.ICN(PROG) with
the environment variable TRACE set to -1, the following is entered:

ICONX MY(PROG) =TRACE=-1
Note that when you use the -x option of ICONT to invoke ICONX, any com-
mand-line environment variable specifications are passed only to ICONT,

and will have no effect on execution.

Note that the ISPF interface to Icon provides a more convenient
mechanism for specifying environment variables.

6.6 C RUNTIME OPTIONS

MVS Icon is implemented using the SAS/C (r) compiler. The SAS/C runtime
environment supports several runtime options which may be useful in some
circumstances. These options all begin with the = character, and may
appear anywhere on the command line.

A particuarly useful option is:

o =warning - This option enables warning messages from the SAS/C
environment. These messages may be helpful if an Icon program
misbehaves, especially in performing I/O. By default, Icon sup-
presses all these messages.

C runtime options must be passed directly to ICONX. That is, if
they are used with ICONT, they apply only to the execution of ICONT,
even if the -x option is used to invoke ICONX after translation is com-
plete.

IPD231 -8- August 1, 1993

6.7 RUNNING ICON FROM ISPF

Icon Version 8.8 includes an ISPF panel for invoking the Icon translator
and/or executor which may be more convenient than the standard proce-
dures, especially if it is necessary to use IPATH or other environment
variables. The method of access to this panel will be chosen at the
time Icon is installed. Often, it will be accessible as the I option of
the U (User Application) panel. See your installer for more informa-
tion.

The Icon ISPF panel allows you to specify up to 4 environment vari-
able settings, up to 4 IPATH libraries, and also to specify whether
Ul/U2LIB should be searched for link files. These settings are retained
in your ISPF profile.

The Icon ISPF panel is invoked using the ISPF option NEWPOOL(ICON).
This means that ISPF variable pools created by Icon programs are kept
separate from those for other ISPF applications. See Section 9 for fur-
ther information on use of ISPF services from Icon.

7. FEATURES OF MVS ICON

MVS Icon supports all the features of Version 8.8 of Icon, with the fol-
lowing exceptions and additions.

o0 Because most IBM 3270 terminals and emulations cannot directly
enter brackets, most users will require substitutions in Icon
source programs. The two-character sequence $< can be substituted
for the left bracket, and $> can be substituted for the right
bracket. For example, the following line of Icon code for MVS
truncates the string TEXT to sixty characters:

text := text$<1l:618$>

Brackets (EBCDIC numbers X'AD' and X'BD') can, of course, be used
if they can be entered.

Similarly, the sequences $(and $§) can be used in place of the
left and right braces.

Note that either the EBCDIC unbroken bar (X'4F') or the broken bar
(X'6A') may be used as the Icon or operator.

o The collating sequence (used for the sort() function and for lexi-
cal comparisons) of MVS Icon is that of EBCDIC, the native MVS
character set. Similarly, hexadecimal and octal escape sequences
are given EBCDIC rather than ASCII interpretations, for instance,
the string "\x40" prints as a blank, not as the € symbol. Note
that this may cause Icon programs developed under another system
to produce different results using MVS Icon.

IPD231 -9- August 1, 1993

Note that in EBCDIC \n and \l are considered to be different char-
acters (X'l5' and X'25' respectively), even though they are iden-
tical in ASCII.

0 The Icon control character notation \-x produces the EBCDIC equiv-
alent of the ASCII character control-x, for x any "normal" charac-
ter. If x is an EBCDIC character without an ASCII equivalent, the
value of \"x is completely meaningless.

o The keyword &ascii produces the set of characters which are EBCDIC
equivalents to characters in the standard 128-character ASCII set,
according to one popular interpretation. If &ascii is converted
to a string, its characters are in their EBCDIC order, not the
ASCII order.

The other cset keywords (&lcase, &ucase, &digits, &cset, sletters)
are as defined by The Icon Programming Language.

o Input and output can be redirected (see Section 6.1).

o In an Icon program, a file name is normally interpreted as a TSO
file name, that is, the user's current prefix is added automati-
cally. Filename prefixes may be used to request other styles of
file name. The file name "dsn:sysl.maclib(dcb)" specifies the
data set whose full name is SYS1.MACLIB(DCB); the file name
*ddn:sysutl" specifies the file referenced by the DDname SYSUT1.
Use of these prefixes may be necessary when Icon programs are run
in batch: see section 9.

o The following special names can be used in redirection commands
(see Section 6.1) or as an argument to open() in Icon programs.

dsn:sysout=a for output to a SYSOUT data set

dsn:&name for output to a temporary data set
* for input to or output from the TSO
terminal

Pipes are not supported. A file cannot be opened with the "p"
option.

o MVS Icon supportes three different I/0 modes, selected by options
in the second argument of open. These modes are translated ("t"),
untranslated ("u") and record-structured ("s"). (The translated
and untranslated modes are sometimes called "text" and "binary".)
The default mode is translated.

When a file is processed in translated mode, it is treated by Icon
as a stream of characters, with each record or line break in the
file represented as a new line character ("\n"). (If a translated
file has print attributes (RECFM A), the form feed ("\f") and car-
riage return ("\r") characters can also be used to effect page
formatting.) When a file is processed in untranslated mode, it is
treated by Icon as a stream of characters, with record breaks

IPD231 -10- August 1, 1993

ignored. When a file is processed in structured mode, each record
is treated by Icon as a line, but no character represents the line
break. Note that when a fixed format file is processed in trans-
lated mode, trailing blanks are ignored on input, or added as nec-
essary on output. No similar processing is performed in record-
structured mode; in untranslated mode, the last record of a file
will be padded with null characters (X'00') if necessary.

The exact operation of the Icon I/0 functions in each mode is as
follows:

- read(), write() and the ! operator process a file a "line" at a
time. In translated or untranslated mode, read() and ! read to
the next new line character, and write() writes a new line
character after the rest of its output. In translated mode,
read() and write() therefore actually do read or write a line
of the file, unless (1) on input, the file contains a physical
new-line character, or (2) on output, a line is too large for
the file format, in which case it will be split. Observe that,
in untranslated mode, read() and write() have nothing to do
with the way the file is divided into records.

- In record-structured mode, read(), write() and ! process a file
a record at a time. If the length of a record generated by
write() is incompatible with the file format, the write call
will fail. In record-structured mode, the new-line character is
just another EBCDIC character.

- reads() and writes() process a file a character at a time. In
untranslated or record-structured mode, record breaks are
ignored. 1In translated mode, a record break is read as a new-
line character, and if a new-line character is output, a record
break is forced.

Translated mode is usually to be preferred, except when processing a
file that might contain control characters. 1In this case, untranslated
mode is to be preferred unless the record structure of the file is sig-
nificant, in which case record-structured mode should be used. Even
though record-structured mode is the I/0 mode closest to standard MVS
1/0, translated mode is usually preferred because of the inflexibility
of record-structured mode for files with fixed-length records.

0 Whether the seek() and where() functions can be used for a file,
and the meaning of the results, depend on the file's attributes,
and on whether it was opened in translated or untranslated mode.
Three important cases are

- seek() and where() can be used with most files opened in trans-
lated mode, but the file position does not represent a count of
characters. Seeking to a negative file position is not sup-
ported.

IPD231 -11- August 1, 1993

- For a sequential file with RECFM F, FS or FBS opened in
untranslated mode, seek() and where() are fully supported, and
have the same meaning as in UNIX.

- seek() and where() cannot be used with most other files opened
in untranslated or record-structured mode, except for seeks to
positions 1 and 0.

The supported functionality is the same as that of the C library func-

tions
functi

o

IPD231

fseek and ftell. For further information on the behavior of these
ons, see the SAS/C Library Reference manual <3>.

The default attributes of a file created by the Icon open() func-
tion depend on whether it was opened in translated or untranslated
mode. For translated mode, the attributes are
RECFM=VB, LRECL=259,BLKSIZE=6160. For untranslated mode, the
attributes are RECFM=FBS,LRECL=1,BLKSIZE=4080. Note that the lat-
ter attributes allow full use of the seek() and where() functions,
and inhibit padding with nulls at the end of the file.

When an Icon program reads from the standard input file, a prompt
of "iconx:" appears. No prompt appears for any other terminal
input file. The terminal may not be opened as a bidirectional
file (open mode "b").

End of file can be signalled from the terminal by entering EOF,
This string must be in capital letters, and may not have any
trailing spaces.

MVS Icon supports an optional third argument to the open() func-
tion which can be used to specify file attributes. The third
argument is an "atttribute string", which specifies system-depen-
dent information about the file. For example, using MVS Icon, the
call open("my.output", "c", "recfm=f,reclen=80,blksize=3200, alcu-
nit=blk,space=400") can be used to create a new file named
MY.OUTPUT, with fixed-length 80-byte records, and enough space for
400 3200-byte blocks. If there is no third argument, default
attributes are assumed.

The attribute string should contain one or more keywords, sepa-
rated by commas. The keywords you may find useful include:

recfm=£/v/u The file's record format. Only £, v
or u may be specified (e.g., don't try
fb).

reclen=nnn The file's maximum record size. This

does not include 4 bytes for V-format
control data

blksize=nnn The file's block size,

print=yes To cause the file to be generated in
print format (RECFM A)

page=nn Specifies the number of lines per page

for a print file

-12- August 1, 1993

eof=xxx Specifies the end of file string for a
terminal file

prompt=xxx Specifies a prompt to appear on each
read from a terminal file

alcunit=blk/trk/cyl Specifies the space allocation unit,
blocks, tracks or cylinders

space=nnn Specifies the amount of space to
allocate for a new file

extend=nnn Specifies the amount of space to
request when extending the file

dir=nnn Specifies the number of directory
blocks for a new PDS

rlse=yes/no Specifies whether to release unused

space when the file is closed

o The system() function can be used to execute a TSO command or
CLIST from Icon. For instance, system("listds my.data") invokes
the LISTDS command to display attributes of the data set MY.DATA.

8. THE ICON INTERFACE TO ISPF

Version 8.8 of MVS Icon includes an interface to ISPF which can be used
to display panels, access and modify ISPF variables, etc., from an Icon
program., This functionality is provided via the procedures in
EXAMPLES.ICN(ISPF). These procedures in turn use the Icon callout()
procedure to call C functions that interface to ISPF.

The procedures provided in EXAMPLES.ICN(ISPF) are as follows:

o ISPQry - to determine whether ISPF services are available

0 ISPExec - to pass a request for an ISPF service to ISPF

o ISPVcopy - to obtain the value of a variable in an ISPF variable
pool

O ISPVrepl - to modify the value of a variable in an ISPF variable
pool

For more detailed information, including return code and error handling,
see the comments in the source of EXAMPLES.ICN(ISPF).

IPD231 -13- August 1, 1993

9. RUNNING ICON IN MVS BATCH

The MVS implementation of Icon was designed for interactive use. How-
ever, it can be used in MVS batch if certain guidelines are followed.

One way to run Icon in batch is to run it under the batch terminal
monitor program (IKJEFTOl). When this is done, the only difference from
normal TSO operation is that &input, &output and &errout are allocated
to the DDnames SYSIN, SYSPRINT and SYSTERM respectively, rather than to
the terminal.

When ICONT or ICONX is run as a normal batch program, without the
use of IKJEFTO0l, certain restrictions and differences apply, as follows:

0 File names specified to Icon in batch will be prefixed by your
userid, whch may differ from your usual TSO prefix. Note that if
your site does not run RACF or some similar security product, no
userid is available. 1In this situation, each file to be trans-
lated by ICONT must be prefixed with dsn:, and must be fully qual-
ified. For example the EXEC statement

// EXEC PGM=ICONT,PARM='dsn:mytsoid.hello.icn'

compiles the program contained in the data set MYTSOID.HBELLO.ICN,
and stores the icode in MYTSOID.HELLO,.ICX.

0 The -x option of ICONT is not available in batch.

o The files &input, &output and &errout are allocated to the DDnames
SYSIN, SYSPRINT and SYSTERM respectively.

o If your site does not run a security product such as RACF, each
file name used by an Icon program, either as an argument to
open(), or as a redirection, must have a dsn: or ddn: prefix.

o The system() function may not be used in batch.

o Be careful to specify lower case in options where necessary, as
the options may not be recognized if upper case is used.

10. ICON LIBRARY PROGRAMS

Several programs and procedures of particular interest on MVS have
been added to the public library for MVS Icon. These are distributed on
the MVS Icon distribution tape. These include:

0 ICONLIB.ICN(EBCDIC) - A collection of procedures to assist in run-
ning Icon programs dependent on either the ASCII or EBCDIC charac-
ter set on other systems. It is possible that many ASCII-depen-
dent programs can be easily made portable by use of these
procedures.

IPD231 -14- August 1, 1993

0 PGMLIB.ICN(ICVT) - A program to convert an Icon program to an
equivalent program more easily edited on the 370, replacing brack-
ets and braces with the corresponding digraphs, or vice versa.

See the source code for these members for further details on their
use.

11. KNOWN BUGS AND LIMITATIONS

A list of known bugs in Icon itself is given in <2>, At this time,
there are no known bugs specific to MVS Icon.

ICONT depends on the ability to allocate a work file using the unit
name VIO. If this unit name is not defined at your site, translation
will fail. See the Installation document for information on correcting
this problem., Alternately, you can allocate the SYSTMPOl DDname to a
temporary data set when you run ICONT to bypass the problem.

12. REPORTING PROBLEMS

Problems with MVS Icon should be noted on a trouble report form
(ICON.FORM(TROUBLE) on the distribution tape) and sent to

Icon Project

Department of Computer Science
Gould-Simpson Building

The University of Arizona

Tucson, AZ 85721

U.S.A.

(602) 621-8448 (voice)

(602) 621-4246 (fax)
icon-project@cs.arizona.edu (Internet)
... uunet!arizona!icon-project (uucp)

If a program is involved, a copy of the program will be appreciated.
The program may be necessary to provide help.

13. REGISTERING COPIES OF ICON

Those who received a copy of Version 8.8 of Icon for MVS directly from
the Icon Project are registered users and will receive the Icon Newslet-
ter without charge. This Newsletter contains information about new
implementations, updates, programming techniques, and information of
general interest about Icon.

Those who received a copy of Version 8.8 of Icon for MVS from a
source other than the Icon Project should fill out a registration form

IPD231 -15- August 1, 1993

(ICON.FORM(REGIS) on the distribution tape) and send it to the 1Icon
Project at the address listed above. This will entitle them to a free
subscription to the Icon Newsletter and assure that they receive infor-
mation about updates.

14. ACKNOWLEDGEMENTS

The design and development of the Icon programming language was sup-
ported, in part, by grants from the the National Science Foundation.

Clint Jeffery, Gregg Townsend, and Ken Walker collaborated with Dr.
Ralph Griswold in the development of Version 8.8.

This implementation of Icon for MVS was created by Alan Beale of SAS
Institute, Inc.

REFERENCES

1. R. E. Griswold, The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, second edition, 1990,

2, R. E. Griswold, C. L. Jeffery, G. M. Townshend and K. Walker, Ver-
sion 8.8 of the Icon Programming Language, The Univ. of Arizona
Icon Project Document IPD210, 1992.

3. SAS/C Library Reference Manual, second edition, volumes 1 and 2.

4. R. E. Griswold, Icon-C Interfaces, The Univ. of Arizona Tech. Rep.
90-8, 1990.

IPD231 -16- August 1, 1993

