
Installing Version 8.10 of Icon on UNIX Platforms

Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend

Department of Computer Science, The University of Arizona

1. Introduction
Version 8.10 [1] is the current version of Icon, superseding Version 8.0. Version 8.10 contains a few new

features and major changes to the implementation. In addition, there is now a compiler as well as an interpreter for
Icon. As a result of changes in the way Version 8.10 is implemented, personalized interpreters are no longer sup-
ported.

This report provides the information necessary to install Version 8.10 of Icon on computers running UNIX. The
installation process for Version 8.10 is similar to that for Version 8.0, but there are enough differences that persons
who previously installed Version 8.0 should read this document carefully before proceeding.

The implementation of Icon is designed so that it can be installed, largely automatically, on a variety of UNIX
platforms. This is accomplished by configuration information that tailors the installation to specific platforms.

The distribution contains configuration information for many UNIX platforms. These are listed in the appendix.
Some of these originated under earlier versions of Icon, and not all of these have been tested yet under Version 8.10.
The platforms marked with an asterisk in the appendix have been tested under Version 8.10. Installation on a tested
platform should be routine, although minor configuration adjustments may be necessary for local conditions.

If there is configuration information for your platform, you may be able to install Icon without modification, but
if problems show up, you may have to modify configuration files [2]. In some cases, there may be partial
configuration information. If the configuration information for your platform is partial or lacking altogether, you still
may be able to install Version 8.10 of Icon by providing the information yourself, using other configurations as
guides.

If your platform is not listed in the appendix, it may have been added since this report was written. See Section
2.1 for information on how to check for a configuration for a specific platform.

2. The Installation Process
There are only a few steps needed to install Icon proper. In addition to Icon itself, there are two optional com-

ponents that you can install: a variant translator system [3] and a program library [4]. You may want to review the
technical reports describing these optional components before beginning the installation. In any event, the installa-
tion of optional components can be done separately after Icon itself is installed.

As mentioned above, Version 8.10 contains both an interpreter and a compiler. The instructions that follow are
for the installation of both the interpreter and compiler. If your resources are limited or you are new to Icon, you
may wish to install only the interpreter initially. See Section 3 for information on installation of the interpreter or
compiler separately.

On most platforms, there also are optional X Window System facilities for which Icon can be configured [5].
Icon configured for X is referred to as X-Icon.

There are Makefile entries for most steps. Those steps are marked by asterisks. Steps that are optional are
enclosed in brackets:

IPD218a ! 1 ! May 6, 1993

1. Decide where to unload Icon.
2. Unload the Icon hierarchy at the selected place.
[3."] Check the status of the configuration for your system.
4." Configure the source code for your system.
5." Compile Icon.
6." Run simple tests.
[7."] Run extensive tests.
[8."] Run benchmarks.
[9.] Install Icon at the desired place.

Step 1: Deciding Where to Unload Icon
Unlike previous distributions of Icon, you can build Version 8.10 at any place you wish. The executable binaries

can be moved to other places later.
In the balance of this report, relative paths and the location of files are given with respect to the location at

which the Icon hierarchy is unloaded. For example, a reference to make is with respect to the Makefile at the top
level of this hierarchy.

Step 2: Unloading the Files
The distribution consists of a hierarchy, which is rooted in ‘‘.’’. Icon is distributed in a variety of formats. It

requires about 9.7 MB of disk space when unloaded. Some of this is optional material that may be removed after
installation.

The usual distribution medium is magnetic tape, although it is also available on cartridges and diskettes.
Tapes: The Icon system is provided on tape in tar recorded at 1600 bpi.

To unload the tape, cd to the directory that is to hold the Icon hierarchy and mount the tape. The precise tar or
cpio command to unload the distribution tape depends on your local environment. On a VAX running 4.nbsd, use
the following command:

tar x

Cartridges: Data cartridges are functionally equivalent to magnetic tapes, but they are not blocked. For example,
on a Sun Workstation, cd to the directory that is to hold the Icon hierarchy and use

tar xf /dev/rst0

Diskettes: Diskettes contain compressed tar files on diskettes in MS-DOS format. Copy the ".Z files on the
diskettes to the directory that is to hold the Icon hierarchy and use a script such as the following:

for i in ".z
do

p=‘basename $i .z‘
uncompress <$i | tar xf !
rm $i # for the brave

done
Note: Some UNIX utilities for copying files from MS-DOS formatted diskettes produce all-uppercase names, so the
".Z is needed in the script above.

If the root of the Icon hierarchy is icon, the resulting hierarchy should look like this after the distribution files
are unloaded:

IPD218a ! 2 ! May 6, 1993

| -bin------ executable binaries and support files
|
| -config--- | -unix----- UNIX configuration directories
|
| -docs----- documents
|
| -ipl------ Icon program library
|
| | -common---- common source
| | -h--------- header files
| | -iconc----- Icon compiler source

| -icon---- | -src------ | -icont----- Icon translator source
| | -preproc--- preprocessor source
| | -rtt------- run-time translator source
| | -runtime--- run-time source
| | -vtran----- variant translator source
| | -xpm------- XPM support
|
| | -bench----- benchmarks
| | -calling--- Icon-C interface tests
| -tests---- | -general--- general tests

| -samples--- samples programs
| -special--- special tests
| -vtran----- variant translator tests

There are additional subdirectories that are not shown above.

Step 3: Checking the Status of the Configuration for Your Platform
You may wish to check the status of the configuration for your platform. This can be done by

make Status name=name
where name is one of those given in the table in the appendix at the end of this report. For example,

make Status name=sun4
lists the status of the configuration for a Sun 4 workstation.

In many cases, the status information was provided by the person who first installed Icon on the platform in
question. The information may be obsolete and possibly inaccurate; use it as a guide only.

There are some configurations for which not all features of Icon are implemented. If the status information
shows this for your platform, proceed with the installation, but you may wish to implement the missing features
later. See [2] for this.

Step 4: Configuring Icon for Your Platform
Configuring Icon creates several files for general use. Before starting the configuration, be sure your umask is

set so that these files will be accessible.
There are two configuration possibilities; with or without X facilities.
To configure Icon without X facilities, do

make Configure name=name
where name is the name of your platform as described above. For example,

make Configure name=sun4
configures Version 8.10 of Icon for a Sun 4 Workstation, but without X facilities.

IPD218a ! 3 ! May 6, 1993

To configure Icon with X facilities, use X-Configure instead of Configure, as in
make X!Configure name=sun4

Note: On some platforms, error exit codes from installation processes may be intercepted by make and result in
warning messages. These messages can be safely ignored.

If you first configure without X facilities and later decide to add them, you will need to re-install Icon starting
with this step.

Step 5: Compiling Icon
Next, compile Icon by

make Icon
There may be warning messages on some platforms, but there should be no fatal errors.

Note: For C compilers like GNU C that do not produce advisory messages for every C file they compile, there is
a long period without any informative output during the construction of the run-time system for the Icon compiler.

If you get an error messages such as

./newhdr: file size is 12840 bytes but MaxHdr is only 10000
you need to increase the value of the manifest constant MaxHdr in config/unix/name/define.h as indicated. After
doing that, repeat Step 4.

Step 6: Performing Simple Tests
If Icon compiles without apparent difficulty, a few simple tests usually are sufficient to confirm that Icon is run-

ning properly. The following does the job:

make Samples
This test compares local program output with the expected output. There should be no differences. If there are no
differences, you presumably have a running Version 8.10 Icon.

Note: If Icon fails to run at all, this may be because there is not enough ‘‘static’’ space for it to start up. If this
happens, check define.h in your configuration directory. If it contains a definition for MaxStatSize, try doubling it,
and start over with Step 4. If define.h does not contain a definition for MaxStatSize, add one such as

#define MaxStatSize 20480
and go back to Step 4. If this solves the problem, you may wish to reduce MaxStatSize to a smaller value that
works in order to conserve memory. If this does not solve the problem, try increasing MaxStatSize even more
(although it is unlikely that much larger values will help).

Step 7: Extensive Testing
If you want to run more extensive tests, do

make Test
Some differences are to be expected, since tests include date, time, local host information, and platform-specific for-
mats for floating-point numbers. In addition to Test there are some individual tests of optional features. See the
main Makefile for more information about the tests.

Testing the X facilities must be done interactively.

Step 8: Benchmarking
Programs are provided for benchmarking Version 8.10 of Icon. To perform the benchmarks, do

make Benchmark
See also the other material in the subdirectory tests/bench. It contains a form that you can use to record your
benchmarks with the Icon Project (see Section 9).

IPD218a ! 4 ! May 6, 1993

Step 9: Installing Icon
The files needed to run Icon are placed in bin in the Icon hierarchy as the result of building Icon:

iconc Icon compiler
icont Icon translator for interpreter
iconx Icon executor for interpreter

Files needed by iconc also are placed in bin:
dlrgint.o stubs for large integer arithmetic
libXpm.a XPM library if X is configured
rt.a compiler library
rt.db compiler database
rt.h include file

Some other files related to installing Icon and the optional components mentioned earlier also are placed in bin.
The executable files needed to run Icon — iconc, icont, and iconx — can be copied or moved to any desired

place, and they need not all be in the same directory.
Similarly, the files needed by iconc can be moved to another directory. There is a Makefile entry for doing this:

make CopyLib Target=directory
where directory is the directory in which the files needed by iconc are to be placed.

Since iconc must know the location of the files it uses and icont must know the location of iconx, it is necessary
to patch iconc and icont if the files they need are moved. The program patchstr, also placed in bin, is provided for
this purpose.

For iconc, patchstr is used as follows:
patchstr iconc!location directory/

where iconc!location is where iconc is located and directory is where the files that iconc needs are located. For
example, if iconc is moved to /usr/local/iconc and the files needed by iconc are placed in the directory
/usr/local/icon/iconc.lib, the patching step is

patchstr /usr/local/iconc /usr/local/icon/iconc.lib/
Note that a full path should be used for the directory that contains the files iconc needs and that this path must be
followed by a terminating slash.

For icont, patchstr is used as follows:
patchstr icont!location iconx!location

For example, if icont is moved to /usr/local/icont and iconx is moved to /usr/local/icon/iconx, the patching step is
patchstr /usr/local/icont /usr/local/icon/iconx

The patching of iconc and icont can be repeated if necessary.
The paths used by iconc and icont can be checked by using patchstr without a second argument, as in

patchstr /usr/local/iconc
which prints the path in /usr/local/iconc.

3. Installing the Interpreter and Compiler Separately
As mentioned earlier, the interpreter and compiler can be installed separately. If one is installed first, the other

can be added without re-installing the former.
Installing the interpreter or compiler separately is very similar to installing both at the same time. Steps 1

through 4 in Section 2 apply to both the interpreter and compiler and need be done only once.

IPD218a ! 5 ! May 6, 1993

For subsequent steps, there are Makefile entries that are the same as for the combined installation, but with the
suffixes !icont and !iconc to differentiate the interpreter and compiler.

For example, to install only the interpreter, the steps are

make Icon!icont
make Samples!icont
make Test!icont
make Benchmark!icont

Note: When testing the Icon compiler in conjunction with some C compilers, it may be necessary to remove the
options !p !w for suppressing warning messages that appear in icon/tests/general/Makefile.

4. Variant Translators
The variant translator system facilitates the construction of preprocessors for variants of the Icon programming

language.
The variant translator system requires a version of yacc(1) with large regions. You may have to tailor your ver-

sion of yacc(1) for this. If there is a problem, it will show up during testing.
A script, icon_vt, for creating variant translators, is placed in bin during the configuration step described earlier.

There is no separate step for building the variant translator system.
For testing, do

make Test!vtran
There may be warning messages during compilation, but there should be no fatal errors.

5. Icon Program Library
The Icon program library contains a variety of programs and procedures. This library not only is useful in its

own right, but it provides numerous examples of programming techniques that may be helpful to novice Icon pro-
grammers. While this library is not necessary for running Icon programs, most sites install it.

In addition to the library proper, the directory ipl/idol contains an object-oriented version of Icon written in Icon.
Go to that directory for more information.

The Icon program library can be used with both the interpreter and the compiler. However, its use under the
compiler requires command-line options in some programs to enable features that are not enabled by default when
using the compiler. Because of this problem, the installation of the the Icon program library presently is supported
for only for the interpreter.

To build the Icon program library, do

make Ipl!icont
This puts compiled programs in ipl/icode and translated procedures in ipl/ucode.

To test the library, do

make Test!ipl!icont
No differences should show.

You can copy the executable programs in ipl/icode and the translated procedures in ipl/ucode to other places to
make them more accessible, although they can be used from any location that is readable by the user.

6. Installing Documentation
The directory docs contains manual pages:

IPD218a ! 6 ! May 6, 1993

icon.1 Icon compiler and interpreter
icon_vt.1 Icon variant translator

You may wish to copy these manual pages to a standard location for such documentation. If you are replacing an
earlier version of Icon, you should delete the obsolete manual pages, icont.1, iconc.1, and icon_pi.1.

The docs directory also contains PostScript files for technical reports related to Version 8.10 of Icon.

7. Cleaning Up
You can remove object files and test results by

make Clean

If you copied components of Icon to other places, you can delete the copies left in the Icon hierarchy.
You also can remove source files, but think twice about this, since source files may be useful to persons studying

or modifying Icon. In addition, you can remove files related to optional components of the Icon system that you do
not need. If you are tight on space, you may wish to remove documents as well.

8. Communicating with the Icon Project
If you run into problems with the installation of Version 8.10 of Icon, contact the Icon Project:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602) 621-8448 (voice)
(602) 621-4246 (fax)

icon-project@cs.arizona.edu (Internet)
... uunet!arizona!icon-project (uucp)

Please also let us know if you have any suggestions for improvements to the installation process or corrections
or refinements to configuration information.

References

1. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Version 8.10 of the Icon Programming Language, The
Univ. of Arizona Icon Project Document IPD212, 1993.

2. R. E. Griswold, C. L. Jeffery and G. M. Townsend, Configuring the Source Code for Version 8.10 of Icon,
The Univ. of Arizona Icon Project Document IPD213, 1993.

3. R. E. Griswold, Variant Translators for Version 8.10 of Icon, The Univ. of Arizona Icon Project Document
IPD204, 1993.

4. R. E. Griswold, The Icon Program Library; Version 8.10, The Univ. of Arizona Icon Project Document
IPD224, 1993.

5. C. L. Jeffery and G. M. Townsend, X-Icon: An Icon Windows Interface; Version 8.10, The Univ. of Arizona
Tech. Rep. 93-9, 1993.

IPD218a ! 7 ! May 6, 1993

Appendix — UNIX Icon Configurations

Configuration information for the platforms listed below is provided in Version 8.10 of Icon. Asterisks identify
configurations that have been tested under Version 8.10, although some have documented problems.

computer UNIX system name

Amdahl UTS amdahl_uts
Apollo Workstation BSD domain_bsd
Astronautics ZS-1 UNIX zs1
AT&T 3B1 (UNIX PC) System III unixpc
AT&T 3B2 System V att3b_2
AT&T 3B5 System V att3b_5
AT&T 3B15 System V att3b_15
AT&T 3B20 System V att3b_20
AT&T 3B4000 System V att3b_4000
AT&T 6386 System V att6386
CDC Cyber NOS/VE cdc_vxve
Celerity 4.2BSD celerity_bsd
Codata 3400 Unisis codata
Convergent MegaFrame CTIX mega
Convex C240 BSD convex
Cray-2 UNICOS cray2
"DEC MIPS Ultrix decstation
DG AViiON System V aviion
DIAB D-NIX diab_dnix
Elxsi-6400 BSD elxsi_bsd
Encore UMAX multimax_bsd
Gould Powernode UTX gould_pn
HP 9000/330 HP-UX hp9000_s300
HP 9000/500 HP-UX hp9000_s500
"HP RISC HP-UX hp_risc
IBM 370 AIX ibm370_aix
IBM PS/2 AIX ps2_aix
IBM RS6000 Workstation AIX rs6000_aix
IBM RT Workstation ACIS rtpc_acis
IBM RT Workstation AIX rtpc_aix
Intel 286 XENIX 286 i286_xenix
"Intel 386 Linux i386_linux
"Intel 386 System V i386_sysv
Intel 386 System V using GNU C i386_sysv_gcc
Intel 386 System V, Release 4 i386_svr4
Intel 386 XENIX 386 i386_xenix
Intel 386 XENIX 386 using GNU C i386_xenix gcc
Intergraph Clipper System V clix
"Iris 4D Irix iris4d
Macintosh AU/X mac_aux
Masscomp 5500 System V masscomp
Microport V/AT System V microport
MIPS/r3000 System V mips
Motorola 8000/400 System V mot_8000
Multiflow Trace UNIX trace
"NeXT Mach next

IPD218a ! 8 ! May 6, 1993

Plexus P60 System V plexus
Pyramid 90x 4.2BSD pyramid_bsd
Ridge 32 ROS ridge
Sequent Balance 8000 Dynix balance_dynix2
"Sequent Symmetry Dynix symmetry
Siemens MX500 SINIX mx_sinix
Stride 460 UniStride stride
Sun 2 Workstation SunOS sun2
"Sun 3 Workstation SunOS sun3
Sun 3 with 68881 SunOS sun3_68881
Sun 386i SunOS sun386i
"Sun 4 Workstation SunOS sun4
"Sun 4 Workstation SunOS using GNU C sun4_gcc
"Sun 4 Workstation SunOS 4.1 under Open Windows sun4_openwin
Sun 4 Workstation SunOS using Code Center sun4_saberc
"Sun 4 Workstation Solaris using GNU C sun4_solar_gcc
Unisys 7000/40 4.3BSD tahoe_bsd
VAX-11 4.1BSD vax_41_bsd
VAX-11 4.2BSD and 4.3BSD vax_bsd
VAX-11 System V vax_sysv
VAX-11 Ultrix vax_ultrix
VAX-11 9th Edition vax_v9

IPD218a ! 9 ! May 6, 1993

