Adding New Types to Version 8.7 of Icon
Kenneth Walker

Department of Computer Science, The University of Arizona

1. Introduction

This document describes how to add new types to Icon. It deals with simple types, aggregate types whose values
contain other Icon values, and keywords that are variables. These are the kinds of types that are most likely to be
added to the language. Executable types such as procedures and co-expressions are beyond the scope of this docu-
ment as are types that require special representations and variable types that have special dereferencing semantics.

When referring to files in the Icon implementation, this document gives path names relative to the Icon source
directory, src. For example, if Icon is installed in /usrficon/v8 then the file common/filespec.txt has a full path
name of /usr/icon/v8/src/commonfilespec.txt

2. The Implementation of Icon Types

An Icon value is implemented as a two-word descriptor containing type information and value information [1].
The first word of a descriptor is the dword. For the types discussed here, the dword contains a unique code that
identifies the type (see [1] for types that have additional information in the dword). The second word of the descrip-
tor is the vword; it contains the actual value or a reference to the value.

Actual values that are too large to fit in one word are usually put in the block region. This region is controlled by
a storage management system that includes a garbage collector. The garbage collector is driven by information in
arrays indexed using the type codes associated with the blocks. The block region contains values for both simple
and aggregate types.

There are several other parts of the run-time system besides the garbage collector that need information about
Icon types. Some are Icon operations such as the type() function, while others are automaticly invoked features
such as error trace back. These are described in more detail below. Types, of course, typically have operations asso-
ciated with them that create and use values of the type; see [2] and [3] for instructions on adding new operations 10
Icon.

3. The Type Specification System

The Icon run-time system is written in RTL; this language is a superset of C with extensions specifically
designed for implementing Icon [2]. Icon types are used in several places in RTL and new types must be added to
this language. These uses include type checking constructs, return/suspend statements, and abstract type computa-
tions. In addition, the Icon compiler needs information about types in order to perform type inferencing. These
requirements are satisfied with a type specification system.

This system is a simple declarative language for naming types and describing some of their properties. Informa-
tion from the type specification system is incorporated in rit (the translator for RTL) and in iconc when they are
built.

All types specified by the system may be used in the RTL is and type_case constructs. They may also be used
in abstract type computations that describe the type behavior of an operation to iCONC’s type inferencing system.

IPD196 -1- June 15, 1992

Aggregate types may be used in a new type expression in an abstract type computation. A type specification may
optionally indicate that RTL supports a special form of return/suspend statement that constructs a return value, in
the form of a full descriptor, from a C value for the vword of the descriptor.

Type specifications are in the file common/typespec.txt. Comments in the file start with # and continue to the
end of the line. This file is translated into a C header file by the program typespec. This is not part of the normal
Icon build process; entries at the end of common/Makefile must be uncommented if typespec.txt is updated.

A type definition in the specification system has the form:
type-def ::= identifier opt-abrv : kind opt-return

where identifier is the name of the type and opt-abrv is an optional abbreviation for the type name. The abbreviation
has the form :

opt-abrv ::= nil|
{ identifier)

The abbreviation is used in tracing type inferencing and other places where a compact notation is desired. If no
abbreviation is given, the full type name is used.

There are three kinds of types: simple, aggregate, and variable. Their syntax and usage are described in
separate sections below. opt-return indicates optional RTL return/suspend support for the type. The four types of
vwords supported by this construct are introduced below as needed. Appendix A contains a complete grammar for
the specification language.

4. Simple Value Types

Types with a kind clause of simple are simple in the sense that values of the type do not have components that
contain other Icon values. These types may otherwise have sophisticated semantics.

There are three ways to implement the values of a type: encode them as C integers (these are guaranteed to be at
least 32 bits long), implement them as blocks in the block region, or implement them in storage allocated using mal-
loc() (in theory values can also be put in the string region, but it is only well suited for Icon strings; descriptors
pointing into this region must have a special form). The choice of implementation determines the type of C value
* stored in the vword of the descriptor representing the Icon value.

The dword of a descriptor for one of these types contains a fixed code. It consists of a small integer type code
along with flags describing characteristics of the descriptor. The small integer is represented by a preprocessor con-
stant defined in h/rmacros.h. Its name is created by capitalizing the first character of the type name and prepending
T_. For example, the definition of the type code for the cset type is

#define T_Cset 4
These definitions must be manually added to h/rmacros.h and the constant MaxType must be updated if the integer
exceeds the current value of MaxType.

There are corresponding constants with names beginning with D_ that include both the T_ type code and the
flags required for the type. For the types dealt with here, the flags in the constant D_Typecode must always be
included, and if the vword points to storage under control of the garbage collector, the flag F_Ptr must be included.
The definition of the D_ constant for the cset type is

#define D_Cset (T_Cset | D_Typecode | F_Ptr)

These must also be manually added to h/rmacros.h.

Three of the opt-return type specification clauses are useful for implementing value types (the fourth is used for
variable types; see below). These clauses add return/suspend statements to RTL of the form

retum type—name(expr)
suspend type—name(expr)

type-name is the identifier naming the type. It determines the D_ constant used for the dword of the operation’s
result descriptor. expr is a C expression whose value is placed in the vword of the result. The particular opt-return

IPD196 -2- June 15, 1992

clause chosen determines how the C value is stored in the vword. The clauses are

retum C_integer
retumn block_pointer
return char_pointer

C_integer indicates that the value is cast to a C integer; see the definition of word in h/typedefs.h for the exact C
type used. block_pointer indicates that the value is cast to (union block °); this is usually used for pointers to
blocks in the block region. char_pointer indicates that the value is cast to (char *). Note, only descriptors of a spe-
cial form may point into the string region; the storage used with retumn char_pointer must reside elsewhere.

As an example, the type specification for the cset type is

cset{c}: simple
retumn block_pointer

Suppose a variable cp within an Icon operation written in RTL points to a cset block. Then the statement
retum cset(cp);

constructs a result descriptor for the cset and returns it.

For a type with an associated block, a declaration for the block structure must be added to h/rstructs.h. By con-
vention, the structure name is created by prepending b_ to the type name. The first word of a block must contain its
T_ type code. If different instances of the block may vary in size, the second word of the block must contain this
size in bytes. The structure name of the new block must be added to the union block declaration in h/rstructs.h.
An allocation routine for the block must be added 1o runtime/ralic.r. The macros AlcFixBIk() and AlcVarBlk() are
useful in such routines; see other allocation routines for guidelines.

There are five arrays in runtime/memmgt.r that must be updated for all types. These are used by garbage col-
lection and diagnostic routines. The array bsizes contains the sizes of the blocks for corresponding T_ type codes.
An entry of ~1 indicates a type for which there is no block. An entry of 0 indicates a block whose second word con-
tains the size.

It is assumed that values of simple types implemented in the block region consist of single blocks containing no
descriptors and no pointers to other blocks. Therefore for simple types, the arrays firstd, firstp, and ptrno, contain 0
for types with blocks and -1 for types with no blocks. More complicated implementations are discussed in the next
section.

The array blkname contains strings used to identify types for use by debugging routines,

Storage for the values of a type usually should be allocated in the block region. However, for interfaces to pack-
ages written in C, it may be necessary to use storage that is not relocated by garbage collection. While it is possible
to place types allocated with malloc() under control of garbage collection, this is complicated and beyond the scope
of this document. See the implementation of co-expressions for an example of how this can be done. Alternatives
are to ignore the storage leakage caused by unfreed storage or provide an Icon function, along the lines of close(),
that explicitly frees storage associated with a value.

Three built-in functions must be updated to handle any new type. copy() and type() are in the file
runtime/imisc.r. image() is updated by changing the support routine getimage() in the file runtime/rmisc.r. If a
type has a logical notion of size, then the size operator in runtime/omisc.r must be updated.

Several other support routines must also be updated. outimage() in the file runtime/rmisc.r produces the
images of values for diagnostics and tracing. order() determines the collating sequence between types, anycmp()
determines the collating sequence between any two values, and equiv() determines whether two values are
equivalent (it is only updated for types, such as cset, for which a simple descriptor comparison is not adequate to
determine equivalence). These routines are in the file runtime/rcomp.r.

Appendix B contains a check list of files that must be updated when a type is added to Icon.

IPD196 -3- June 15, 1992

5. Aggregate Types

Aggregate types have values with components that are other Icon values. The aggregate type specification pro-
vides more sophisticated RTL abstract type computations for the type. These in turn allow iconc to produce code
that is better optimized.

For interpreter-only implementations, abstract type computations are not used and are optional in RTL code; the
simple type specification may be used in that case. However, the discussion later in this section on block layout and
on the storage management arrays still applies.

The kind clause of an aggregate type specification establishes and names abstract components for the type. The
clause is of the form »

kind

aggregate(component, ...)

component ::= identifier |

var identifier opt—abrv
Note, the opt-return clauses discussed in the previous section may be also used with aggregate types.

The aggregate specification can be thought of as establishing a sort of *‘abstract type record’’ whose fields, the
abstract components, summarize the type information of the actual components of values in the type. Most types are
give one abstract component. For example, the set type has the specification

set{S}: aggregate(set_elem)
return block_pointer
where set_elem represents all the elements of a set.

Abstract components can be accessed using dot notation, and the new abstract type computation can be used to
establish a new subtype of the type (subtypes only exist internally in the compiler and have no existence at the Icon
language level). A subtype can be returned by the operation and has its own component types independent of sub-
types created elsewhere, The abstract type computation for set intersection uses both dot notation and a New expres-
sion. It performs intersection in the abstract type realm. x and y are the parameters of the operation and may contain
different subtypes of the set type:

return new set(store[type(x).set_elem] ** store[type(y).set_elem))
(Note that the components can be thought of as references to information contained in a type store — thus the index-
ing notation.)
Components that represent Icon variables are preceded by var and may be given abbreviations for use in tracing
type inferencing. For example, the list type has the specification

list{L}: aggregate(var Ist_elem{LE})
retumn block_pointer

These components may be retumned from operations and represent the component as a variable. For example, the
abstract type computation for element generation operator when applied to a list is

return type(dx).lst_elem

where dx is the parameter of the operation. When a value rather than a variable is returned, the component must be
‘‘dereferenced’’ by indexing into the store, as in the abstract type computations of get():

return store[type(x).Ist_elem]

Non-variable components must always be dereferenced.

For types, such as tables, that contain Icon values serving different purposes, it may be effective to establish
several abstract components.

Aggregate types are implemented using blocks that contain descriptors, and they may be implemented using
several kinds of blocks, with some blocks having pointers to others. When there arc multiple blocks, there is always
a header block that uses the T_ code of the type. Other blocks are given internal type codes; these codes must be

IPD196 -4 - June 15, 1992

added to h/rmacros.h and entries must be made in the storage management arrays.

Any descriptors in a block must be at the end. The type’s entry in the firstd array is the location of the first
descriptor. Any block pointers in the block must be contiguous. The type’s entry in the firstp array is the location of
the first pointer and its entry in the ptrno array is the number of pointers.

6. Keyword Variable Types
Keyword variable types have a type specification with a kind clause of the form

kind ;= variable var—type-spec
var-type-spec ::= initially type |

always rype
type = type—name |

type ++ type—name

type-name = identifier

The compiler must be able to infer the types of values stored in a keyword variable. The initially option causes
the keyword variable type 1o be treated as a set of global variables, each initialized to the given type specified by the
type clause. The always option indicates that the keyword always contains values of the given type and the com-
piler does no actual inference on it. fype may be the union of several types; this indicates that the type is uncertain
and may be any of the ones specified. A special type-name, any_value, indicates complete uncertainty. The clause

always any_value

is a correct, although entirely imprecise, description of any keyword variable.

It is assumed that keyword variables are implemented by global descriptors (though other techniques are possi-
ble). The opt-return clause of the form

return descriptor_pointer

is uscful for implementing keyword variables, The vword of a result descriptor from a corresponding
retumn/suspend expression is of type struct descrip *.

Some of the same files must be updated for variable types as for value types. Type codes must be added to
h/rmacros.h. The D_ code must have the F_Var flag set, for example:

#define D_Kywdint (T_Kywdint | D_Typecode | F_Ptr | F_Var)

The storage management tables and the outimage() routine also must be updated.

Other updatcs are unique to variable types. The global descriptor must be established. runtime/data.r contains
its declaration, icon_init() in runtime/init.r initializes the descriptor, and h/rexterns.h contains an extern for it. The
keyword itself goes in runtime/keyword.r. Dereferencing must be updated; it is performed by deref() in
runtime/cnv.r. Assignment must be updated:; it is handled by the macro GeneralAsgn() in runtime/oasgn.r. The
name() function is updated by changing the support routine get_name() in runtime/rdebug.r. The variable()
function is updated by changing the support routine getvar() in runtime/rmisc.r.

If the descriptor may contain a value under control of garbage collection, the support routine collect() in
runtime/rmemmgt.r must be updated. postqual() preserves references to the string region; the macro Qual() is
used to check for such references. markblock() preserves references to blocks; the macro Pointer() is used to check
for such references.

IPD196 -5- June 15, 1992

References

1. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

2. K. Walker, An Implementation Language for Icon Run-Time Routines, The Univ. of Arizona Icon Project
Document IPD79, 1992,

3. K. Walker, A Tutorial on Creating Run-Time Operations for the Icon Compiler, The Univ. of Arizona Icon
Project Document IPD164, 1991.

IPD196 -6- June 15, 1992

Appendix A: Grammar for the Type Specification System

IPD196

type-def

kind

component

var-type-spec

Hype

type-name

opt-abrv

opt-return

identifier opt-abrv . kind opt-return

simple |
aggregate(componen, ...) |
variable var-type-spec

identifier |
var identifier opt-abrv

initially rype |
always rype

fype-name |
type ++ type-name

identifier

nil |
{ identifier }

nil |

return block_pointer |
return descriptor_pointer |
return char_pointer|
return C_integer

June 15, 1992

Appendix B: Check List

All Types
0O common/typespec.ixt — add type specification

DO common/Makefile — uncomment entries near the end of the file

0O h/rmacros.h — add T_Type macro

O h/rmacros.h — add D_Type macro

0O runtime/rmemmgt.r— bsizes table
0O runtime/rmemmgt.r — firstd table

O runtime/rmemmgt.r — firstp table

O runtime/rmemmgt.r — ptrno table

O runtime/rmemmgt.r — blkname table
0O runtime/rmisc.r — update outimage()

All Value Types

O runtime/fmisc.r — update copy()

O runtime/misc.r — update type()

O runtime/rcomp.r — update anycmp()
O runtime/rcomp.r — update order()

O runtime/rcomp.r — update equiv()

O runtime/rmisc.r — update getimage()

Types Implemented In The Block Region

O h/rstructs.h — add declaration for the block structure
O h/rstructs.h — update the union block declaration
O runtime/ralc.r — add an allocation routine

- Types With Sizes
O runtime/omisc.r — update size operator

All K'eyword Variable Types

O h/rexterns.h— extern for keyword descriptor

O runtime/cnv.r— update deref()

O runtime/data.r— declaration for keyword descriptor

0O runtime/init.r — initialize keyword descriptor

0O runtime/keyword.r — add keyword declaration

O runtime/oasgn.r — update GeneralAsgn() macro

O runtime/rdebug.r — update get_name() (two versions)
O runtime/rmisc.r — update getvar() (two versions)

Keyword Variables That Must Be Garbage Collected
O runtime/rmemmgt.r — update collect()

IPD196 -8-

June 15, 1992

