
Some Tools for Visualizing Icon Programs

Gregg M. Townsend

Department of Computer Science, The University of Arizona

Introduction

This document describes a set of tools for visualizing Icon programs. Each reads an event stream [1] produced
during the execution of an Icon program. Most tools produce color displays under the X Window System using an
extended version of Icon [2]. Some annotated examples appear in the Appendix.

Common Characteristics and Options

Some tools use program line numbers recorded in the event stream. Meaningful results are unlikely for subject
programs built from multiple source files.

Some tools use ‘‘clock ticks’’ recorded in the event stream. These clock ticks are based on the Unix system
clock, which typically ticks every 4 to 20 milliseconds; on a Sun 4 it ticks every 10 milliseconds.

All display programs accept the following options in addition to those appearing in their individual descriptions:

−B color background color
−F color foreground color
−L label window label
−X xpos window x position
−Y ypos window y position
−W width window width
−H height window height
−M margin margin within window
−G [wxh][+x+y] window geometry in X form

After a display program completes, its window can be deleted by typing ∧C, ∧D, DEL, Q, or q in the window.
The display programs were developed and tested on color screens; usability on monochrome screens is unknown.

anim: An Animated Program Listing

anim displays a miniature program listing, highlighting each line of code as it is executed.

Two accompanying barcharts display execution profiles. The one on the extreme left shows the number of clock
ticks attributable to each source line. The second chart shows the number of times each line was executed.

A chart to the right of the listing shows a time-based history similar to that of the roll program.

Synopsis: anim [options] sourcefile.icn [eventstream]

−d n decay interval
−b n barchart length (0 to disable)
−z n history length (0 to disable)
−t n ticks per history pixel
−s n vertical line spacing, in pixels
−w n width of one character, in pixels
−h n height of one character, in pixels
−p n pointsize for text display
−S n spacing between display sections
−P color program text color
−C color comment color
−A color active text color
−O color old (past) text color
−F color barchart and history color
−R color barchart and history background color

IPD155 − 1 − December 6, 1990

−p works only under OpenWindows and overrides −w and −h. Setting either −p or −s establishes good defaults for
the other size parameters.

melody: Play the Tune of an Icon Program

melody translates each line-number event into a musical note in a three-octave range, playing the results through
the speaker on a Sparcstation. melody does not actually drive the audio port directly; it pipes directives into a
separate piano program, which is not described here.

Synopsis: melody [options] [eventstream]

−t do not pipe output through the piano program
−w use whole-tone instead of chromatic scale
−i invert the direction of the scale
−p n pitch of the highest note, in Hz
−m n meter, in beats per minute
−l n highest line number expected

roll: A Piano-Roll Display of Flow Control

roll displays a chart recording a time-history of program execution by line number. Unless −o is given, each
pixel column marks the lines executed during one clock tick. Gaps indicate garbage collections.

Synopsis: roll [options] [eventstream]

−l n highest line number expected
−o n overlap n line-number events per column

vitals: Display Vital Signs

vitals acts as a multi-pen chart recorder displaying program behavior over time.

Up to five narrow, color-coded traces at the top show conversions to integer, real, numeric, string, and cset
respectively. The first pixel of each trace marks the first conversion for that clock tick; each additional pixel
indicates a doubling of the number of conversions.

Two more traces show allocation within the string and block regions (in that order). The gray background
indicates the available memory; the black area indicates the current allocation.

Synopsis: vitals [options] [eventstream]

−R color background color for allocation displays
−S n spacing between sections
−s n allow growth factor of n in string region
−b n allow growth factor of n in block region

drive: A Front-End Driver for Parallel Visualization

drive runs one or more programs simultaneously from a single event stream. No explicit synchronization is
provided.

Synopsis: drive [options] <eventstream ′command′ ...

The commands specified are interpreted by sh and must be in the current search path. There are no options specific
to drive.

IPD155 − 2 − December 6, 1990

vis: Run Visualization Programs with Defaults

vis is a script that supplies parameters and runs multiple visualization programs in concert. It uses built-in
defaults to find the source and event stream files corresponding to the specified Icon program.

Synopsis: vis [options] program

−a run anim
−m run melody
−r run roll
−v run vitals

References

1. R. E. Griswold, Event Monitoring in Icon, The Univ. of Arizona Icon Project Document IPD152, 1990.

2. C. L. Jeffery, An Experimental Windows Facility for Icon, The Univ. of Arizona Icon Project Document
IPD150, 1990.

IPD155 − 3 − December 6, 1990

Appendix

The figures that follow show displays produced by the roll, vitals, and anim programs. All displays were
derived from the same program run.

Figure 1, from the roll program, shows how the focus of program control moves around within the program.
The vertical axis represents source code location, with each pixel row corresponding to one source line. The
horizontal axis represents time, with each pixel column covering one clock tick. The gaps are caused by garbage
collections, where multiple clock ticks occur without the execution of any user code. The light vertical line on the
right marks program termination.

Several distinct phases of execution are clearly visible. A brief initialization phase is followed by three
processing phases and then a short termination phase. The relative disorder of the central phase is caused by calls to
several procedures at scattered source locations. The first processing phase reflects activity at one location in the
main procedure plus one called procedure. The single wide bar in the last main phase reflects a multi-line loop with
no calls to other procedures.

Figure 2, from the vitals program, uses the same horizontal time scale; note how the garbage collections line up
with the other display. The ragged bands show the number of conversions to integer (gold), numeric (black), and
string (red) occurring during each clock tick. Conversions to real and cset would also be shown.

The black areas within the gray bands show allocation in the string and block regions. The block region fills up
three times, necessitating garbage collection. After a garbage collection there is again room for growth; were there
not, the region would have been expanded and the gray band would have widened proportionally.

Figure 3 is a snapshot of the anim program taken early during the Icon program’s central processing phase. The
source program is not really legible but it is easily correlated with a separate listing.

anim highlights the last ten lines executed in red. Since only four lines are highlighted, some looping is in
progress. Previously executed lines are black; unreached lines are medium gray; and comments are light gray.

The far left bar chart shows a profile based on clock ticks. One particular line near the center was credited with
the vast majority of the ticks and presumably accounts for most of the execution time so far. The other bar chart,
based on line counts, shows that the expensive line is one of four that were executed about the same number of
times.

The chart along the right is a distorted version of the roll display.

Figure 4 shows the same anim display at the conclusion of execution. Notice how both bar charts were
rescaled. The line that consumed most of the early execution time has been overshadowed by a new champion, and
significant time was also consumed in a group of six lines towards the bottom.

IPD155 − 4 − December 6, 1990

December 6, 1990IPD155 - 5 -

Figure 1: A Display Produced by the roll Program

Figure 2: A Display Produced by the vitals Program

December 6, 1990IPD155 - 6 -

Figure 3: An Intermediate Display Produced by the anim Program

December 6, 1990IPD155 - 7 -

Figure 4: A Final Display Produced by the anim Program

