Monitoring Events in Icon Programs

Ralph E. Griswold
Department of Computer Science, The University of Arizona

1. Introduction

Most of the events that occur during the execution of a program go unnoticed, and fortunately so — in most
cases, only the end results of computations are interesting.

In order to thoroughly understand a program, however, much more detailed information is needed about events
that occur during program execution. This report describes instrumentation of the interpretive implementation of the
Icon programming language that provides the information needed for visualization tools that can assist in debug-
ging, performance measurement, and program analysis. The information provided by the instrumentation can, of
course, be used for other purposes.

2. Events

Many kinds of events occur during the execution of a program. Examples of such events are changes in the
location in the program where execution is taking place, the values produced by expressions, procedures calls, and
so forth. The kinds of events that occur depend, of course, on the semantics of the programming language and its
implementation. The kinds of events that are important depend on what aspects of program execution are to be
visualized and to some extent on the nature of the visualization tools.

No program is totally independent of the implementation of the programming language in which it is written.
Often there is no clear dividing line between the semantics of the programming language and its implementation.
Similarly, program performance depends on the computer on which it is run and the environment for exccution.
Consequently, there are events that are not directly related to the program semantics.

The kinds of events needed by visualization tools fall into several categories. Many events correspond to the
execution of specific source-language operations, such as procedure calls and returns. Other events correspond to
specific aspects of the implementation, such as garbage collection. External events, such as clock ticks, are needed
also.

There typically is some overlap between language events and implementation events. While the semantics of
Icon imply storage allocation of some kind, the amount and, to some extent, the time and place of allocation depend
on the implementation. Garbage collection also is implied by the semantics of Icon (and the properties of real-world
computer systems), but the events related to it are clearly in implementation. In the case of storage management in
Icon, thesc aspects of the implementation are acknowledged in the language by the keywords &collections,
®ions, and &storage, which provide a linguistic bridge between the implementation of Icon and the language
itself.

It is worth noting that visualization of aspects of the implementation of a programming language can be useful to
programmers. Icon’s memory-monitoring sysiem (1] is an example. This system uses a history of storage alloca-
tion and garbage collection events to drive visualization tools that present pictures of Icon’s allocated data regions
and the details of memory management. These visualization tools, despite their focus on the implementation events,
have proved valuable to Icon programmers in understanding program behavior, improving program performance,
and selecting appropriate programming strategies.

Another example of the overlap between language and implementation events occurs in expression evaluation in
Icon. The interpretive implementation of Icon is designed around a stack-based virtual machine whose instruction
set lies somewhere between the semantics of Icon and the instruction sets of real computers on which Icon runs {2].
Some virtual machine instructions correspond directly to the semantics of Icon, while others have littie or no rela-
tion to the language itself. For example, there is a virtual machine instruction corresponding to each Icon operator,
but there also are virtual machine instructions that manipulate the stack but which have no direct relevance to the
Icon language itself.

The number of relevant events that occur during the execution of a program may be enormous. A typical Icon

IPD152b -1- August 25, 1991

program, for example, allocates thousands of objects and may process them many times during garbage collections.
Recording events affects program performance. Processing events by tools is time-consuming and the amount of
data to be transmitted or stored may be very large. Consequently, discrimination in selecting the kinds of events to
be recorded is a serious practical concern, On the other hand, failure to anticipate the significance of an cvent, and
hence failure to record it, can lead to unsatisfactory or even misicading results. There is an essential tension here
between cost and value.

It is impractical to record everything that goes on during program execution. Some events are, of course, simply
unimportant. Others can be skipped because of knowledge of the language or implementation allows them o be
reconstructed, if necessary. For example, when a list is created, it is not necessary to record all the allocation events;
these can be derived from a knowledge of the implementation.

3. Instrumentation of the Icon Interpreter

The interpretive implementation of Icon [2,3] has been selected for the development of program visualization
tools. This implementation is mature, accessible, portable, and easily modified. Event data is produced by instru-
mentation that has been added to this implementation. This instrumentation is modeled after the instrumentation
used for the Icon memory monitoring system mentioned earlier [1]. Indeed, the event monitoring system is an exten-
sion of the memory monitoring system and subsumes it.

Event-monitoring code has been added to the implementation at appropriate points to provide information about
relevant events when they occur. Compilation of this instrumentation code is conditional; it is included only if a
manifest constant is defined.

Event monitoring is inactive unless it is specifically requested. Event monitoring does not significantly affect
the performance of Icon programs unless it is active. If it is active, event monitoring degrades performance some-
what but docs not otherwise affect program behavior.

4. Characterizing Events

Most events have associated values. For example, the return from a procedure has an associated source-language
value, and the allocation of a block of memory has an associated size and type. The allocation of a list can be
vicwed as an allocation event with two paramelters, the type of object and the amount of space allocated or as a list
allocation event with a single parameter, the amount of space allocated. The choice between such different charac-
terizations depends partly on the use to which the event information is to be put and partly on how it is encoded.
Since most events have only one associated value, this format is used uniformly in reporting events. Events with
several associated values are encoded as multiple events with single values or the several values are encoded as one.
Events that have no associated value are encoded with a dummy value. The overall result is uniformity at the
expense of some artificiality.

5. Event Streams

The instrumentation is designed so that it can be used in different ways. For example, it can communicate
directly with a program monitor. The instrumentation also can be used 0 wrile event sireams that record the events
that occur during program execution. An event stream can be piped into another process or save in a file for post-
mortem analysis. Most of the remainder of this report is concemed with event streams.

The instrumentation does not produce an event stream unless a file (or pipe) to receive the event information is
specified by a command-line option or an environment variable. See Appendix A.

Because of the vast amount of information produced during the execution of a program, some potential event
information is discarded for practical reasons. For example, many Icon source-language values are very complex. It
is impractical to produce the source-language values associated with events. Instead, source-language values are
abstracted to their types in event streams.

The event description language uscd in event streams is an extension of the description language used for alloca-
tion history files the memory monitoring system [4]). The event description language is reasonably compact and
easy 1o parsc. An event stream consists of event tokens separated by white space (blanks, tabs, and newlines).

IPD152b -2- August 25, 1991

Except for a few special situations, white space is optional and can be used 1o increase rcadability or omitted to
reduce the size of an event stream. An event token consists of a value and a code. Values are represented by nonne-
gative integers or, in a few cases, by strings. For example, the types of source-language values are encoded as small
integers.

A value may be omitted if it is the same as the value for the last occurrence of the the same kind of event. This
reduces the size of events streams considerably.

Event codes are represented by single characters excluding digits, white-space characters, and a few other char-
acters that are reserved for special purposes. In practice, the codes are printable ASCII characters, although that res-
triction is not necessary and is used only for readability.

6. Event Contexts

For both conceptual and practical reasons, it is useful to identify different event contexts. For example, events
such as calling a procedure, returning a value, and allocating storage occur as a direct result of the evaluation of
expressions in the program. Such evenis can be thought of as occurring in an evaluation context. On the other hand,
events during garbage collection occur in an essentially different context.

The choice of contexts is largely determined by the language and its implementation. For example, allocation
and procedure invocation are quite different kinds of events, but they occur in the same context — expression
evaluation. On the other hand, some kinds of events occur in more than one context. For example, the relocation of
data during garbage collection is naturally cast as re-allocation, using the same kinds of events as for allocation in
the evaluation context.

Context changes are treated as events — context beginning and ending events, where the context itself is the
value of the event. Contexts can be nested.

7. Creating and Using Event Streams
Appendix A describes how to obtain event streams,

Writing tools that use event streams requires considerable knowledge of the specific contexts and events.
Appendices B and C contain detailed information about these matters.

Appendix D contains an example of an event stream 1o illustrate the encodings used.

Facilities are available for processing event streams. These facilities use the same symbolic representation for
events, values, and contexts as is used in the instrumentation that produces event streams. See Appendix E.

The instrumentation of events is evolving. New instrumentation is being added and some encodings may be
changed. The use of symbolic names in support procedures minimizes the problems associated with such changes.
However, the evolving and experimental nature of the instrumentation tends to make previous event streams
obsolete.

Acknowledgement
Gregg Townsend collaborated in the design of event streams and the facilities for processing them.

References
1. R. E. Griswold and G. M. Townsend, The Visualization of Dynamic Memory Management in the Icon
Programming Language, The Univ. of Arizona Tech. Rep. 89-30, 1989,

2. R. E. Griswold and M. T. Griswold, The Implementation of the Icon Programming Language, Princeton
University Press, 1986.

3. R.E.Griswold, Supplementary Information for the Implemeniation of Version 8 of Icon, The Univ. of Arizona
Icon Project Document IPD112, 1990.

IPD152b -3- August 25, 191

4. G. M. Townsend, The Icon Memory Monitoring System, The Univ. of Arizona Icon Project Document
IPD113, 1990.

IPD152b -4- August 25, 1991

Appendix A — Producing Event Streams

The instrumentation to produce an event stream is included only if the Icon translator (icont) and executor
(iconx) are compiled with the manifest constant EventMon defined. The description that follows assumes the use
of an instrumented version of Icon.

An event stream is produced by the execution of an Icon program only if it is requested prior to program
execution. There are two ways 10 request an event stream: setting an environment variable and using a command-
line option.

The Environment Variable EVENTMON

If the environment variable EVENTMON is set, its value is used as the file to receive the event stream. For
example, in BSD UNIX

- setenv EVENTMON prog.mon

causes an event stream to be written to prog.mon.
If the value of EVENTMON begins with a vertical bar, it is interpreted as a pipe through which the event stream
is sent. For example,
setenv EVENTMON "|grep A"
filters the event stream through grep, sending to standard output only those lines that contain the letter A. Pipes, of
course, can be used only on operating systems that support the facility.

Caution: The environment variable EVENTMON causes any Icon program compiled under an instrumenicd
version of Icon to produce an event stream. Care should be taken to unset EVENTMON after a desired event stream
is produced to avoid its being overwritten by Icon programs that are run subsequently.

The —E Option

An event stream also is produced if the command-line option -E to iconx is used. The argument to this option is
interpreted in the same way as for the environment variable EVENTMON. For example,

iconx —E prog.mon prog
runs prog and directs the event stream to prog.mon.

Note that this command-line option can only be used if iconx is run explicitly; it cannot be used with the direct
execution of icode files that is supported by UNIX Icon. Explicit use of iconx works on UNIX systems, however,

IPD152b -5- August 25, 1991

Appendix B — Event Contexts

The Evaluation Context

The evaluation context contains most of the events that are directly related to program execution, These include
procedure-level events (such as calls and returns), expression-level events (such as function and operator
invocation), and some implementation events (such as virtual-machine instructions and storage allocation).

Al present many such events are instrumented, and instrumentation is being added for others.

Garbage Collection Contexts

There are five contexts related to garbage collection: collection proper, verification, marking, redrawing, and
refreshing. These contexts are somewhal arbitrary and are cast in a form that makes it easy o produce allocation
history files from event streams.

The Symbol Table Context

Procedures and functions vary from program to program. The names of procedures and functions are needed by
some visualization tools. To reduce the size of event streams, an integer is associated with each name and these
integers are used in place of the names. The associations between names and integers is given in a symbol-table
context that is produced at the beginning of every event stream. Symbol table information is given in event pairs,
the first being the identifying integer and the second being the name. See the example event stream given in
Appendix D.

Other symbol-table information may be added in the future.

IPD152b -6- August 25, 1991

Appendix C — Event Values and Codes

Event codes and some event valucs arc represented symbolically, both as manifest constants in the C code for
the instrumentation and as corresponding global variables in Icon procedures that process event streams. It is not
necessary 1o know the actual values of these symbols; in fact they may change as the instrumentation evolves. (The
event codes are defined in src/hVmonitor.h in the source code for Icon.)

Event Values

Many values are simply numerical quantities such as the number of byies allocated for an allocation event. A
few kinds of events (such as symbol-table ones) have string values. String values are enclosed in quotation marks.

Two kinds of values encode fixed information: event contexts and the types of Icon source-language values.
The symbols for contexts are:

symbol context

C_Collect garbage collection

C_Eval evaluation

C_Mark marking allocated data

C_Redraw redrawing allocated data information
C_Refresh refreshing allocated data information
C_Symbols symbol table

C_Verify verifying allocated data information

Type codes are based on the the ones used in Icon descriptors. Since those type codes start at zero and there is

no type code in a string descriptor (qualificr), the values for types in event stream are one greater than those in
descriptors and the code for strings is 0. The symbols for the types are:

symbol type

T_Bignum large integer
T_Coexpr co—expression

T _Cset cset

T_External external block
T_File file

T_Integer integer

T Lelem list—element block
T List list

T_Null null

T_Proc procedure
T_Real real number
T_Record record
T_Refresh refresh block
T_Selem set—element block
T_Set set

T_Slots hash header block
T_String string

T_Table table

T_Telem table element
T_Tvsubs substring trapped variable
T_Tvibl table—element trapped variable

IPD152b

-7- August 25, 1991

Comments

A line beginning with a # is considered to be a comment. This is an exception to the usual value/code event
syntax and is an instance where white space (the previous and following linefeeds) is required.

A line beginning with a ; is also considered to be a comment. Such lines result from calls of mmpause().

Event Codes
An alphabetical listing of the event code symbols follows, together with brief explanations of the events and the

kinds of value they have.

IPD152b

symbol

E_Alien
E_Base
E_Bignum
E_Bsusp
E_Coact
E_Coexpr
E_Cofail
E_Collect
E_Colm
E_Comment
E_Coret
E_Cset
E_Cvcset
E_Cvint
E_Cvnum
E_Cvreal
E_Cuvstr
E_Ecall
E_Efail
E_End
E_Eresum
E_Eret
E_Error
E_Esusp
E_Exit
E_External
E_File
E_Free
E_Highlight
E_telem
E_Line
E_List
E_Lsusp
E_Oftset
E_Opcode
E_Pause
E_Pcall
E_Pfail
E_Pid
E_Presum
E_Pret

event

show alien block

show base of regions
allocate large integer
suspend from built—in
activate co—expression
allocate co—expression
fail from co—expression
start garbage collections
change source column
comment

return from co—expression
allocate cset

convert 1o cset

convert 1o integer
convcert Lo numeric
convert to rcal

convert to string

call built-in

fail from built-in

normal program termination
resume built—in

return from built-in

error termination

suspend from built—in
exit termination

allocate external block
allocate file block

show free region
highlight object

allocate list—element block
change source line
allocate list block
suspend from limitation
note memory offset
interpret virtual-machine code
pause memory monitoring
call procedure

fail from procedure
procedure identification
resume procedure

return from procedure

value

bytes

bytes

bytes

code for built—in
co~expression serial number
bytes
co—expression serial number
region number
column number
comment text string
co—expression serial number
bytes

input type

input type

input type

input type

input type

code for built—in
none

none

code for built-in
retun type code
error code

return type code
exit code

bytes

bytes

bytes

highlight string -
bytes

line number
bytes

return type code
bytes

code number
pause text string
procedure code
none

procedure number
procedure code
return type code

August 25,1991

E_Psusp
E_Pvan
E_Real
E_Record
E_Refresh
E_Region
E_Selem
E_Set
E_Size
E_Slots
E_Start
E_String
E_Sym
E_Table
E_Telem
E_Tick
E_Tvsubs
E_Tvtbl
E_Used

suspend from procedure
vanquish procedure frame
allocate real number block
allocate record block
allocate refresh block
storage region

allocate set—element block
allocate set block

show region size

allocate hash block

start new context

allocate string

symbo! table entry

allocate table block

allocate table—element block
clock tick

allocate substring block
allocate table—element block
show space used in region

retum type code
procedure code
bytes

bytes

bytes

region number
bytes

bytes

bytes

bytes

context number
bytes

procedure name
bytes

bytes

number of ticks*
bytes

bytes

bytes

*Clock ticks are based on the UNIX system clock, which typically ticks every 4 to 20 milliseconds; on an Sun 4, it ticks every 10 mil-

liseconds.

IPD152b

August 25, 1991

Appendix D — An Example Event Stream

The event stream from a short program follows. Event streams are not intended to be rcadable; this example is
included only to give an idea of the nature of event streams and the encodings used. See the other appendices for
detailed information about event strcams and for procedures to process them.

The program that produced the following event stream is:

procedure main()

every write(&features)

every write(image(main,2.0 + 0,&lcase ++ &ucase,[]))
end

The resulting event stream is:

lcon event stream, Version 8.4.000

#

program: example

date: Sun Aug 25 08:04:48 1991

2(

1."main"T

2. "write"T

3."image"T

2)

i

6(259772<60000=60000>319808<0=65024>384832<0=65024>6)

3(
2+10000x10004+202210208+8210218+2210222+210226+4210232+2210236+2050212288+2712Z
3)

7(259772<60000=60000>319808<0=65024>384832<0=65024>7)
12288+25625k23m1.6101C6402_108011]6708508406403_108016|620006401080
15|61061¢12546+3420r70053010ub6401080610¢r700530fub6401080610¢r700530f
ub6401080610¢cr7005301ub6401080610cr700530fub6401080610¢cr700530fub6401080
610cr700530fub8401080610c¢r700530fub6401080610¢cr700530fub6401080610cr700
5301ub6401080610cr700530fub6401080610c¢r700530fub6401080610cr700530tubs40
1080610¢r7005301ub6401080610cr700530fub6401080610cr7005301uff670850840
006907506006404_108031|30030c4d4r690640108035(6205r640108045|620r6401080
42/42042c10er690640108052(650km9r640108021|61061¢10s4s0r640108015(610¢
r70053016906405_10801)6801F{8600X
7(259772<60000=60000>319808<14=65024>384832<280=65024>7)

1)

Normal Exit

IPD152b -10- August 25, 1991

Appendix E — Processing Event Streams

The facilities here are designed to simplify the processing of event streams. These facilities consist of an Icon
procedure and a set of functions that is built into versions of iconx that are compiled with event monitoring enabled.

There also is a package of Icon procedures that can be used in place of the built-in functions.

Efficiency in processing event streams is a prime concern in visualization. The built-in functions are much
faster than the Icon procedures and should be used where possible.

Values related to event streams are communicated via (Icon) global identifiers for efficiency. See Appendix C
for a list of the global identifier names.

Initialization
The package is initialized by the Icon procedure Evinit(f), where f is an Icon file that specifies the event strecam.
It may-be a file that has been opencd as a pipe. The default is standard input.

Evlinit() sets the values of global identifiers corresponding to the names of event codes and contexts. Evinit()
also creates two tables:

e ProcName, which maps integer values that encode procedures and functions to the names of the
corresponding procedures and functions.

e AllocMap, which maps allocation event codes to the corresponding MemMon allocation codes.
The procedure Evinit() is in a library file that can be linked as follows:
link evinit
If the procedure package is used in place of the built-in functions, it can be linked as follows:
link evprocs

The ucode files for evinit and evprocs must be accessible through IPATH,
Programs that link evinit must be compiled with —SI1200.

Context Selection

The speed of processing an event stream can be improved by limiting processing to selected contexts, which is
done by

EvSelect(i1, i2, ..., in)

where i1, i2, ..., in arc the desired contexts. Contexts should be specified by global identifiers corresponding to the
context names that are provided by Evlnit().

If EvSelect() is called with no arguments, all contexts are selected.

EvSelect() can be called as needed to change the selected contexts.

Producing Events
The function

EvGet(c)

reads the event stream, processing the currently selected contexts and returns when an event whose code is in the cset
¢ is encountered. The characters in C correspond to the event codes of interest. If ¢ is omitted, all events are
processed.

EvGet() sets the values of four (Icon) global variables before it returns:
EvCode The event code (a one-character string)

IPD152b -11- August 25,1991

EvContext The current event context (a positive integer)
EvValue The event value (an integer or string)

EvGivenValue The event value as it actually appears in the event stream; it is null if the value for the
event is not explicitly specified in the event stream,

EvGet() retumns the value of EvCode but fails when the event stream is exhausted.
EvGet() can be called with different arguments as desired; the argument applies only to the current call.

An Example
The following tool prints a summary of procedure events:

link evinit

procedure main()
local codes, ProAct

Evinit()
ProAct := table(0)
EvSelect(C_Eval) # procedure events only occur in C_Eval

codes := csetf(E_Pcall ++ E_Presum ++ E_Pfail ++ E_Pret ++
E_Psusp ++ E_Pvan)

while EvGet(codes) do
ProAct[EvCode] +:= 1

write("procedure calls: right(ProAct[E_Pcall],5))

write("procedure resumptions: “, right(ProAct[E_Presum],5))

write("procedure returns: right{(ProAct[E_Pret],5))

write("procedure suspensions: ", right(ProAct[E_Psusp},5))

write("procedure failures: ", right(ProAct{E_Pfail],5))

write("procedure removals: ", right(ProAct[E_Pvan],5))
end

IPD152b -12- August 25,1991

