User's Guide for Version 8 of Icon for CMS

Alan Beale
SAS Institute, 1Inc.

1. INTRODUCTION

Version 8 of Icon for CMS should run on the IBM 30xx and
43xx families of processors and on other 370-type processors
that use CMS under Release 4, 5 or 6 of VM/SP or VM/HPO.
This version of Icon will also run under all releases of
UYM/XA SP, in either a 370-mode or XA-mode virtual machine.

Jersion 8 of Icon for CMS 1is distributed on a tape which
includes executable modules, test programs, data for the
test programs, documentation files, and the C source code.
The tape also 1includes tne Icon program library. Printed
documentation is included with tapes distributed by the Icon
Project at the University of Arizona.

This CMS implementation of Icon is in the public domain
and may be copied and used without any restriction. The
Icon Project makes no warranties of any kind about the cor-
rectness of this material or its suitability for any appli-
cation. The responsibility for the wuse of 1Icon lies
entirely with the user.

Version 8 of Icon for CMS 1is an implementation of Icon
that was developed for the UNIX* operating system. Some of
its features and commands retain the flavor of UNIX, and
thus they are sometimes unlike typical CMS features and com-
mands.

The CMS user should remember that although most CMS com-
mands are not case sensitive, Icon source code as well as

arguments and parameters passed to the Icon translator or
executor are case sensitive.

* UNIX is a trademark of AT&T Bell Laboratories.

IPD126 -i- May °, 1390

2. DOCUMENTATION

The basic reference for the Icon programming _anguage is the
book

The Icon Programming Language, second edition, Ralph E.
Griswold and Madge T. Griswold, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1990. 365 pages. ISBN
0-13-447889-4. $29.95.

This book is available from the Icon Project at the Univer-
sity of Arizona. It also can be ordered through any book-
store that handles special orders or by telephone directly
from Prentice-Hall: (201) 767-9520.

Note that the first edition of this book, published in
1983, describes an older version of 1Icon and does not con-
tain information about many of the features of Version 8.

% brief overview of Icon is contained in technical report
TR 90-6 <1>. Features that have been added to Icon since
the bocok was written are described in the report TR 90-1
<2>. These technical reports, together with this document
(ICON LISTING on the tape), provide enough information to
write and run simple Icon programs, but anyone who intends
to use Icon extensively will need the book.

3. INSTALLING CMS ICON

Installation of Icon is described in the document "Version 8
of Icon for CMS - Installation and Recompilation" (INSTALL
LISTING on the tape). Please see that document for instal-
lation information.

4. RUNNING CMS ICON - BASIC INFORMATION

Files containing Icon programs must have ICN as their file-
type. Such files should not have line numbers or other
extraneous information. They may have any record format.
Lines can be of any practical length (they need not be lim-
ited to eighty characters).

The ICONT translator produces an "icode" file that can be
used by the ICONX executor. For example, an Icon program in
the file PROG ICN Al is translated by entering this at the
Ready: prompt

icont prog

IPD126 -2- May 7, 1390

The result is an icode file with the name PROG ICX Al. This
file can then be executed by entering the following:

iconx prog

When a filename (such as PROG) is given to the Icon
translator (ICONT), the translator automatically supplies
the filetype of ICN. The executor (ICONX) automatically
supplies the filetype of ICX and filemode Al. Thus, the

filetype and filemode should not be entered. ICONT and
ICONX can be run by entering their names next to a file name
on the FILELIST screen followed by /N.

There are two ways to run an Icon program for the first
time: (1) as shown above, the translation ccmmand (ICONT)
and then the execution command (ICONX) can be entered: or
(2) the two steps of running the translator and the executor
can be combined into one step by using the -x option of
ICONT, as:

icont prog -x

The translator (ICONT) will run the executor (ICONX) only if
translation was successful. The two-step procedure must be
used if redirections or C runtime options are to be passed
to the executor (see Sections 6.1 and 6.5).

After an Icon program has been run in either of the two
ways, the icode file (for example, PROG ICX Al) is left on
your A disk: this program may be executed subsequently with
only the execution command (ICONX). Note that the icode
file is put on the A disk regardless of which disk contains
the Icon source file.

5. TESTING THE INSTALLATION

There are a few Icon programs on the distribution tape that
can be used for testing the installation and getting a feel
for running Icon.

hello icn This prcegram prints the Icon version num-
ber, identifies the host computer, prints
the date and time, and gives a message to
the world. Run this test as

icont hello
iconx hello

Note that this can be done in one step
with

IPD126 -3- May 7, 1990

icont hello -x

kross icn This program prints all the ways that two
words intersect in a common character. The
file RROSS DAT contains typical data. Run
this test as

icont kross
iconx kross <kross.dat

meander icn This program prints the "meandering
strings" that contain all subsequences of
a specified length from a given set of
characters. The file MENADER DAT contains
test data. Run this test as

icont meander
iconx meander <meander.dat

roman icn This program converts Arabic numerals to
Roman numerals. Run this test as

icont roman -x

and provide some Arabic numbers from the
terminal. Enter the word EOF to stop the
program.

If these tests work, the installation is probably correct
and it should be a running version of Icon.

6. MORE ON RUNNING ICON

For simple applications, the instructions for running Icon
given in Section 4 may be adequate. The ICONT translator
supports a variety of options that may be useful in special
situations. There also are several aspects of execution
that can be controlled with environment variables. These
are listed here. Users who are new to Icon may wish to skip
this section on the first reading but come back to it if
they find the need for more control over the translation and
execution of Icon programs.

IPD126 -4- May 7, 1990

6.1 COMMAND-LINE PROCESSING

Standard input and standard output are received from and
sent to the terminal. They can be redirected using greater-
than or less- than signs:

iconx prog <infile.data >outfile.data

This command will run a translated program in PROG ICX Al:
it will use INFILE DATA Al as input; it will use OUTFILE
DATA Al for output. Note that in a redirection, a period
must be placed between the CMS filename and filetype. For
an input redirection, the file may exist on any accessed
disk: for output, a filemode of Al is assumed. You can also
specify an explicit filemode letter, for example,
>outf.data.c.

If you run an Icon program from an "old-style" EXEC, you
must specify the standard £ile redirections differently.
Surround the fileids with parentheses and omit the period
between the filename and filetype, and between the filetype
and filemode. For example,

ICONX PROG <(INFILE DATA) >(OUTFILE DATA)

6.2 ARGUMENTS

Arguments can be passed to the Icon executor by appending
them to the command line. Such arguments are passed to the
main procedure as a list of strings. For example,

iconx readrite text.data readrite.out

runs the icode file READRITE ICX Al, passing its main proce-
dure a list of two strings, "text.data" and "readrite.out".
These arguments might be the names of files that the program
reads from and writes to. For example, the main procedure
of READRITE ICN (on the distribution tape) begins as fol-
lows:

procedure main(a)
if *a = 0 then a := S< "readrite.icn", "*" $>
in := open(a$<l$>) | stop("cannot open input file")
out := open(a<2>,"w") | stop("cannot open output file")

Note that the sequences $< and $> may replace the left and
right brackets in CMS Icon.

IPD126 -5- May 7, 1990

When you use the -x option to execute a program after
translation, you can specify program arguments after -x, for
example:

icont readrite -x text.data readrite.out

Keep in mind that the "old-style" EXEC lanquage converts
all program arguments to uppercase characters and truncates
them t> a maximum of eight characters. Therefore, 1if the
previous example is invoked from an old-style ZXEC, the pro-
gram arquments received by ICONT will be

READRITE
-X

TEXT.DAT
READRITE

If you plan to execute an Icon program from an "old-style" EXEC,
you should code vour program to accept arguments in this style.

6.3 THE TRANSLATOR

The ICONT translator can accept several Icon source files at
one time. When several files are given, they are translated
and combined into a single icode file whose name is derived
from the name of the first file. For example,

icont progl prog2

translates the files PROGl1 ICN Al and PROG2 ICN Al and pro-
duces one icode file, PROGl ICX Al.

A name other than the default one for the icode file pro-

duced by the trar.slator can be specified by using the -o
option, followed by the desired name. For example,

icont -o pb.icx PROG

produces the icode file named PB ICX Al rather than PROG ICX
Al.

If the -c option is given to ICONT, the translator stops
before producing an icode file, leaving intermediate "ucode"
files with the filetypes Ul and U2 for future use (normally
they are deleted). For example,

icont -c progl

leaves PROG1 Ul Al and PROGl U2 Al, instead of producing
PROGl ICX Al. These ucode files can be used in a subsequent

IPD126 -6- May 7, 1990

ICONT command by using the Ul name. This saves translation
time when the program is used again. For example,

icont prog2 progl.ul

translates PROG2 ICN Al and combines the result with the
ucode files from a previous translation of PROGlL 1ICN Al.
Note that only the Ul name is given. The final qualifier can
be abbreviated to .u, as in

icont prog2 progl.u

Ucode files also can be added to a program using the link
declaration in an Icon source program as described in <2>,

The informative messages from the translator can be sup-
pressed by using the -s option. Normally, both inlormative
messages and error messages are sent to standard error out-
put (the terminal).

The -t option causes &trace to have an initial value of
-1 when the icode file is executed. Normally, &trace has an
initial value of 0.

The option -u causes warning messages to be issued for
undeclared identifiers in the program.

Icon has several tables related to the translation of
programs. These tables are large enough for most programs,
but translation is terminated with an error message, indi-
cating the offending table, if there is not enough room. If
this happens, larger table sizes can be specified by using
the -S option. This option has tke form -SXn, where the let-
ter X is replaced by one of the letters below to specify the
table and n 1is the number of storage units to allocate for
the table.

default

letters values
¢ constant table 100
f field table 100
g global symbol table 200
i identifier table 500
1 1local symbol table 100
n line number table 1000
r record table 100
s string space 20000
t tree space 15000
C code buffer 15000
F file names 10
L labels 500

IPD126 -7- May 7, 1990

The units depend on the table involved, but the default
values can be used as guides for appropriate settings of -§
options without knowing the units. For example,

icont -S5c200 -Sg600 prog
translates PROG ICN with twice the constant table space and

three times the global symbol table space that ordinarily
would be provided.

6.4 ENVIRONMENT VARIABLES

When an icode file is executed, several environment vari-
ables are examined to determine execution parameters.
Except for MEMMON, the values assigned to these variables
should be numbers. In CMS, environment variables are imple-
mented as GLOBALV variables, in the group CENV.

Environment variables are particularly useful in adjust-
ing Icon's storage requirements. This may be necessary if
there is insufficient memory to run programs that require an
unusually large amount of data. Particular care should be
taken when changing default sizes: wunreasonable values may
cause Icon to malfunction.

The following environment variables <can affect 1Icon's
execution parameters. The default values are listed in
parentheses after the environment variable name:

+ TRACE (undefined). This variable initializes the value
of &trace. If this variable has a value, it overrides
the translation-time -t option.

+ STRSIZE (65000). This variable determines the initial
size, in bytes, of the region in which strings are
stored.

+ HEAPSIZE (65000). This variable determines the initial
size, in bytes, of the region in which Icon allocates
lists, tables, and other objects.

¢+ STATSIZE (20480). This variable determines the initial
size, in bytes, of the static region in which co-ex-
pressions are allocated.

+ STATINCR (STATSIZE/4). This variable determines the
amount by which the static region is expanded if neces-
sary.

v+ COEXPSIZE (2000). This variable determines the size, in
32-bit words, of each co-expression block.

IPD126 -8- May 7, 1990

+ MSTKSIZE (l10000). This variable determines the size, in
words, of the main interpreter stack.

+ MEMMON (undefined). This variable specifies a file
name to which memory-monitoring data should be written.
(This data can be interpreted by the MEMSUM program in
the Icon program library.)

For example, to set the value of the environment variable
TRACE to -1, and then invoke the translated 1Icon program
PROG ICN Al, the following is entered:

GLOBALV SELECT CENV SET TRACE -1
ICONX PROG

6.5 C RUNTIME OPTIONS

CMS Icon is implemented using the SAS/C (r) compiler. The
SAS/C runtime environment supports several runtime options
which may be wuseful in some circumstances. These options
ail begin with the = character, and may appear anywhere on

the command line.
Useful options include:

v =/nnnkK - This option establishes the total amount of
space managed by Icon for all its regions. Because CMS
Icon is an "expandable regions" implementation of Icon,
each region can expand beyond its initial size; how-
ever, the total allocated space is 1limited by this
option. The default is =/500K.

+ =warning - This option enables warning messages from
the SAS/C environment. These messages may be helpful
if an Icon program misbehaves, especially in performing
I/0. By default, Icon suppresses all these messages.

C runtime options must be passed directly to ICONX. That
is, if they are used with ICONT, they apply only to the exe-
cution of ICONT, even if the -x option is used to invoke
ICONX after translation is complete.

IPD126 -9- May 7, 1990

7. FEATURES OF CMS ICON

CMS Icon supports all the features of Version 8 of Icon,
with the following exceptions and additions.

+ Because most IBM 3270 terminals and emulations cannot
directly enter brackets, most users will require sub-
stitutions in Icon source programs. The two-character
sequence $< can be substituted for the left bracket,
and $> can be substituted for the right bracket. For
example, the following line of Icon code for MVS trun-
cates the string TEXT to sixty characters:

text := textS<1:61$>

Brackets (EBCDIC numbers X'AD' and X'BD') can, of
course, be used if they can be entered.

Similarly, the sequences S$(and $) can be used in place
of the left and right braces.

Note that either the EBCDIC unbroken bar (X'4F') or the
broken bar (X'6A') may be used as the Icon or operator.

+ The collating sequence (used for the sort() function
and for lexical comparisons) of CMS Icon is that of
EBCDIC, the native CMS character set. Similarly, hexa-
decimal and octal escape sequences are given EBCDIC
rather than ASCII interpretations, for instance, the
string "\x40" prints as a blank, not as the @ symbol.
Note that this may cause Icon programs developed under
another system to produce different results wusing CMS
Icon.

Note that in EBCDIC \n and \l are considered to be dif-
ferent characters (X'1l5' and X'25' respectively), even
though they are identical in ASCII.

+ The Icon control character notation \-x produces the
EBCDIC equivalent of the ASCII character control-x, for
x any "normal" character. If x is an EBCDIC character
without an ASCII equivalent, the value of \-x is com-
pletely meaningless.

+ The keyword &ascii produces the set of characters which
are EBCDIC equivalents to characters in the standard
128-character ASCII set, according to one popular
interpretation. If sascii is converted to a string,
its characters are in their EBCDIC order, not the ASCII

order.

The other cset keywords (&lcase, &ucase, &digits,
&cset, &letters) are as defined by The Icon Programming
Language.

IPD126 -10- May 7, 1990

+ Input and output can be redirected (see Section 6.1).

+ In an Icon program, a file name may be specified with
spaces or periods between the filename, filetype, and
filemode: for example, the following open expressions
are eguivalent:

intext := open("dickens chapterl al")
intext := open("dickens.chapterl.al"):

Any messages generated by the translator or executor
about a file name (or about the Icon program itself)
will have a period (rather than a space) between the
filename and the filetype.

v+ The following special names can be used in redirection
commands (see Section 6.1) or as an argument to open()
in Icon programs.

reader (rdr) for input from the virtual reader

printer (prt) for output to the virtual printer

punch (pun) for output to the wvirtual punch

terminal (term, *) for input to or output from the
terminal

ddn:anyname for input or output to the file

defined by DDname anyname.

Also a null file name ("") can be used to process an
empty (DUMMY) file.

Pipes are not supported. A file cannot be opened
with the "p" option.

+ CMS Icon supportes three different I/0 modes, selected
by options in the second argument of open. These modes
are translated ("t"), untranslated ("u") and record-
structured ("s"). (The translated and untranslated
modes are sometimes called “text" and "binary”.) The
default mode is translated.

When a file is processed in translated mode, it is
treated by Icon as a stream of characters, with each
record or line break in the file represented as a new
line character ("\n"). (If a translated file is the
virtual printer, or has filetype LISTING, the form feed
("\f") and carriage return ("\r") characters can also
be used to effect page formatting.) When a file is
processed in untranslated mode, it 1is treated by Icon
as a stream of characters, with record breaks ignored.
When a file 1is processed in structured mode, each
record is treated by Icon as a line, but no character
represents the line break. Note that when a fixed for-

IPD126 -11- May 7, 1990

mat file is processed in translated mode, trailing
blanks are ignored on input, or added as necessary on
output. No similar processing is performed in record-
structured mode; in untranslated mode, the last record
of a file will be padded with null characters (X'00')
if necessary.

The exact operation of the Icon I/0 functions in each
mode is as follows:

- read(), write() and the ! operator process a file a
"line" at a time. In translated or untranslated mode,
read() and ! read to the next new line character, and
write() writes a new line character after the rest of
its output. 1iIn translated mode, read() and write()
therefore actually do read or write a line of the
file, unless (1) on input, the file contains a physi-
cal new-line character, or (2) on output, a line is
too large for the file format, in which case it will
be split. Observe that, in untransiated mode, read()
and write() have nothing to do with the way the file
is divided into records.

- In record-structured mode, read(), write() and ! pro-
cess a file a record at a time. If the length of a
record generated by write() 1is incompatible with the
file format, the write call will fail. In record-
structured mode, the new-line character is just
another EBCDIC character.

- reads() and writes() process a file a character at a
time. In untranslated or record-structured mode,
record breaks are ignored. In translated mode, a
record break is read as a new-line character, and if
a new-line character is output, a record break is
forced.

Translated mode is usually to be preferred, except when pro-
cessing a file that might contain control characters. In
this case, untranslated mode is to be preferred unless the
record structure of the file 1is significant, 1in which case
record-structured mode should be used. Even though record-
structured mode is the I/0 mode closest to standard :>MS 1/0,
translated mode is usually preferred because of the inflexi-
bility of record-structured mode for files with fixed-length
records.

+ Whether the seek() and where() functions can be used
for a file, and the meaning of the results, depend on
the file's attributes, and on whether it was opened in
translateé or untranslated mode. Three important cases
are

IPD126 -12- May 7, 1990

- seek() and where() can be used with most files opened
in translated mode, but the file position does not
represent a count of characters. Seeking to a neg-
ative file position is not supported.

- For a file with fixed record format opened in
untranslated mode, seek() and where() are fully sup-
ported, and have the same meaning as in UNIX.

- seek() and where() cannot be used with most other
files opened in untranslated or record-structured
mode, except for seeks to positions 1 and 0.

The supported functionality is the same as that of the C
library functions fseek and ftell. For further information
on the behavior of these functions, see the SAS/C Library
Reference manual <3>.

+ The default attributes of a file created by the Icon
open() function depend on whether it was opened in
translated or untranslated mode. For translated mode,
the attributes are record format V with maximum record
length 65535. For untranslated mode, the attributes
are record format F with record length 1. Note that
the latter attributes allow full use of the seek() and
where({) functions, and inhibit padding with nulls at
the end of the file.

v+ When an Icon program reads from the standard input
file, a prompt of "iconx:" appears. No prompt appears
for any other terminal input file, The terminal may
not be opened as a bidirectional file (open mode "b").

¢+ End of file can be signalled from the terminal by
entering EQOF. This string must be in capital letters,
and may not have any trailing spaces.

+ CMS Icon supports an optional third argument to the
open() function which can be wused to specify file
attributes. The third argument 1is an "atttribute
string", which specifies system-dependent information
about the file. For example, using CMS Icon, the call
open("my output al", "c", "recfm=f,reclen=“9") can be
used to create a new file named MY OUTPUT Al, with
fixed-length 80-byte records. If there is no third
argument, default attributes are assumed.

v+ The attribute string should contain one or more key-
words, separated by commas. The keywords you may find
useful include:

recfm=f/v The file's record format. Only £ or v
may be specified (e.g., don't try
fb).

IPD126 -13- May 7, 1990

reclen=nnn The file's maximum record size. This
does not include the carriage control
byte for LISTING format files.

print=yes To cause the file to be generated in
LISTING format

page=nn Specifies the number of lines per page
for a print file

eof =xxx Specifies the end of file string for a
terminal file

prompt=xxx Specifies a prompt to appear on each

read from a terminal file

+ The system() function can be used to execute a CP or
CMS command or EXEC from Icon. For instance, sys-
tem("query rdr") invokes the CP QUERY command to dis-
play the contents of the virtual reader. Because Icon
runs in the CMS user area, you cannot use the system()
function to call any CMS command or program t-.at also
runs in the user area.

The system() function can also be used to pass commands
to an active subcommand environment. For instance, if
XEDIT is active, system("xedit: stack") can be usa2d to
transfer the current XEDIT line to the CMS stack.

8. THE ICON INTERFACE TO EXEC2/REXX

Version 8 of CMS Icon includes an interface to the EXEC2 and
Rexx command languages which can be used to fetch and set
EXEC variables from an Icon program. This functionality is
provided via the procedures in REXX ICN. These procedures
in turn use the Icon callout() procedure to call C functions
that interface to EXEC2 and Rexx. See the technical report
TR 90-8 <4> for more information on callout().

The procedures provided in REXX ICN are as follows:
+ RexxActive - to determine whether an EXEC is active

+ RexxVar - to return the value of an EXEC2 or Rexx vari-
able

+ RexxSet - to assign a value to an EXEC2 or Rexx vari-
able

+ RexxDrop ~ to drop an EXEC2 or Rexx variable

+ RexxAll - to return an Icon table containing the names
and values of all defined EXEC2 or Rexx variables

IPD126 -14- May 7, 1990

For more detailed information, see the comments in the
source of REXX ICN.

10. THE ICON PUBLIC LIBRARY

The Icon public library is a collectiorn of Icon source code
and data files contributed by Icon users. It is described
in technical report TR 90-7 <5>. The organization of the
files is somewhat different from the organization described
in that document, due to the absence of "directories" on
CMS. Also, the Idol preprocessor for "object-oriented Icon"
is not present on the tape, as it is not yet functional on
CMS.

On CMS, the files described in TR 90-7 as part of the
"procs" directory are assigned filemode)1 on <he 1Icon
installation minidisk. These files contain wuseful proce-
dures, many of which are referenced by other public library
members. These files should be compiled using the -z
option, so that the resulting .ul and .u2 members can be
referenced later.

Similarly, the files described as part of the "progs"
directory in TR 90-7 have been assigned filemode 2. These
files contain the source for various Icon applications.
Many of the programs include link declarations referencing
these files. Data files for these programs (the "data"
directory) are also assigned filemode 2.

Most of the programs and procedures in the Icon public
library were developed on UNIX and other operating systems
dissimilar to CMS. Some of them also have dependencies on
the ASCII character set. For these reasons, it is possible
that some of these programs will prove either useless or
non-functional when run on CMS.

Several programs and procedures of particular interest on
CMS have been added to the public library for CMS 1Icon.
These are not yet described in TR90-7. They include:

+ EBCDIC ICN - A collection of procedures to assist in
running Icon programs dependent on either the ASCII or
EBCDIC character set on other systems. It is possible
that some ASCII-dependent programs in the program
library can be easily made portable by use of these
procedures.

+ ICVT ICN - A program to convert an Icon program to an
equivalent program more easily edited on tre 370,
replacing brackets and braces with the corresponcing
digraphs, or vice versa.

IPD126 -15- May 7, 1990

See the source <code for these files for further details
on their use.

11. KNOWN BUGS AND LIMITATIONS

A list of known bugs in Icon itself is given in <2>. At
this time, there are no known bugs specific to CMS Icon.

12. REPORTING PROBLEMS

Problems with CMS 1Icon should be noted on a trouble report
form (TROUBLE ICONFORM) on the distribution tape) and sent
to

Icen Project

Department of Computer Science
Gould-Simpson Building

The University of Arizona
Tucson, AZ 85721

J.S.A.

(602) 621-4049

icon-project@cs.arizona.edu (Internet)

... {uunet, allegra, noao}'!arizona!icon-project (uucp)
I a program is involved, a :opy of the program will be

appreciated. The program may be necessary to provide help.

13. REGISTERING COPIES OF ICON

Those who received a copy of Version 8 of TIcon for CMS
directly from the Icon Project are registered users and will
receive the Icon Newsletter without charge. This Newsletter
contains information about new implementations, updates,
programming techniques, and information of general interest
about Icon.

Those who received a copy of Version 8 of Icon for CMS
from a source other than the Icon Project should fill out a
registration form (REGIS ICONFORM on the distribution tape)
and send it to the Icon Project at the address listed above.
This will entitle them to a free subscription to the Icon
Newsletter and assure that they receive information about
updates.

IPD126 -16- May 7, 1990

14. ACKNOWLEDGEMENTS

The design and development of the Icon programming language
was supported, in part, by the National Science Foundation
under grants MCS75-01397, MCS79-03890, MCS81-01916,
DCR-8320138, DCR- 8401831, and DCR-8502015.

Many individuals contributed to the design and implemen-
tation of Icon. The principal ones are Cary Coutant, Dave
Gudeman, Dave Hanson, Tim Korb, Bill Mitchell, Xelvin Nil-
sen, Janalee O'Bagy, Gregg Townsend, Ken Walker, and Steve
Wampler.

This implementation of Icon for CMS was created by Alan
Beale and Tim Hunter of SAS Institute, Inc.

REFERENCES

l. R. E. Griswold, An Qverview of Version 8 of the Icon
Programming Language, The Univ. of Arizona Tech. Rep.
90-6, 1990.

2. R. E. Griswold, Version 8 of Icon, The Univ. of Arizona
Tech. Rep. 90-1, 1990.

3. SAS/C Library Reference Manual, second edition, volumes
1 and 2.

4. R. E. Griswold, -con-C Interfaces, The Univ. of Arizona
Tech. Rep. 90-8, 1990.

5. R. E. Griswold, The Icon Program Library The Univ. of
Arizona Tech. Rep. 90-7, 1990.

IFD126 -17- May 7, 1990

