Benchmarking Version 8 of Icon
Ralph E. Griswold

Department of Computer Science, The University of Arizona

Benchmarks of Icon programs provide interesting comparisons of the performance of different computer sys-
tems [1].

A suite of representative Version 8 Icon programs has been assembled to provide uniform benchmarks over the
range of computers on which Icon has been implemented. Tools are provided so that testing is largely automatic.

The benchmark programs do not require any ‘‘optional’’ features, such as co-expressions, and they work with
the same regions sizes on implementations of Icon with either fixed or expandable memory regions. Input and out-
put normally are suppressed to avoid factors like disk speed from affecting the results.

The benchmark programs, taken from the Icon program library [2], are:
concord.icn Simple word concordance; string analysis and synthesis with table manipulation.
deal.icn Randomly selected bridge hands; string synthesis with mapping.
ipxref.icn Icon program cross reference; string analysis and synthesis with list manipulation.
queens.icn: Solutions to the non-attacking n-queens problem; goal-directed evaluation and string synthesis.
rsg.icn: Random sentence generation; string synthesis with list and table manipulation.

The procedures that are used to support benchmarking are listed in Appendix A. A Makefile for running the
benchmarks is listed in Appendix B.

The benchmark suite is available in a variety of formats for different computer systems. It includes a form for
reporting results to the Icon Project [3].

IPD115b -1- March 8, 1990

References

R. E. Griswold and M. T. Griswold, Icon Newsletter 31, Nov. 1989.
2. R. E. Griswold, The Icon Program Library, The Univ. of Arizona Tech. Rep. 90-7, 1990.

R. E. Griswold, Version 8 Icon Benchmark Report, The Univ. of Arizona Icon Project Document IPD116,
1989.

IPD115b -2- March 8, 1990

Appendix A — Support Procedures

R R
#

Support procedures for Icon benchmarking.

#

R R

The code to be times is bracketed by calls to Init__(name)
and Term__(), where name is used for tagging the results.
The typical usage is:

procedure main()
[declarations]
Init__(name)

Term-_()
end

If the environment variable OUTPUT is set, program output is
not suppressed.

HHFHFHFTHRHFHHFHFHFRHFHHFHRHRHR

AR

global Save__, Saves__, Name__

List information before running.

#
procedure Init__(prog)
Name__ := prog # program name
Signature__() # initial information
Regions__()
Time__()
if getenv("OUTPUT") then { # if OUTPUT is set, allow output
write("*** Benchmarking with output ***")
return
}
Save__ = write # turn off output
Saves__ := writes
write := writes = 1
return
end

IPD115b -3- March 8, 1990

List information at termination.

procedure Term__()

if not getenv("OUTPUT") then { # if OUTPUT is not set, restore output

write := Save__
writes = Saves_

}

write(Name
Regions__ ()
Storage__ ()
Collections__()
return

end

final information

," elapsed time = ", Time__())

List garbage collections performed.

#

procedure Collections__()

static labels
local collections

initial labels := ["total","static", "string", "block"]

collections = []

every put(collections, &collections)

write("collections")

every i := 1 to *labels do
write(labels(i], right(collections]i],8))

return
end

List region sizes.

#

procedure Regions__()
static labels
local regions

initial labels := ["static

regions := []

II’ "String", llbIOCkll]

every put(regions, ®ions)

write("regions")

every i := 1 to *labels do
write(labels(i], right(regions]i],8))

return
end

IPD115b

March 8, 1990

List relveant implementation information
#
procedure Signature__ ()
write(&version)
write(&host)
every write(&features)
return
end

List storage used.

#

procedure Storage__ ()
static labels
local storage
initial labels := ["static","string", "block"]
storage := []
every put(storage, &storage)
write("storage")
every i := 1 to *labels do

write(labels]i], right(storageli],8))

return

end

List elapsed time.

#

procedure Time__()
static lasttime

initial lasttime = &time

return &time - lasttime
end

IPD115b

March 8, 1990

Appendix B — Makefile for Benchmarking

HRAR R
z Makefile for Version 8 Icon benchmarking.
Z###

In order for benchmark results to be compared meaningfully with
those from other systems, the string and block regions must be set to
65,000 bytes. This is the normal default.

To run the benchmarks, use

make benchmark

This creates .out files with benchmark results and lists the timings.

On systems where timing varies with load or other factors, use

make rerun

which reruns the benchmarks and appends the results to the .out files.

HHFHFHFTHRHFHHFHFHFRHFHHFHRHRHR

R

Program output normally is suppressed. To get program output, set
the environment variable OUTPUT. The “expected” output (modulo
timing differences), is in files .std for comparison. (These files
are not included with all disributions because of their large size.)

HOH KK B K

R
SHELL=/bin/sh

what:
@echo "What do you want to make?"

benchmark: # do the whole thing
make translate compile run check

translate: # create ucode files for linking
icont —s —c post
icont —s —c options
icont -s —c shuffle

compile: # compile the benchmark programs
icont —s concord
icont —s deal
icont —s ipxref
icont —s queens
icont —-s rsg

IPD115b -6- March 8, 1990

run:

rerun:

check:

IPD115b

run the programs

echo Running concord ...

iconx concord <concord.dat >concord.out
echo Running deal ...

iconx deal -h 500 >deal.out
echo Running ipxref ...

iconx ipxref <ipxref.icn >ipxref.out
echo Running queens ...

iconx queens -n9 >queens.out
echo Running rsg ...

iconx rsg <rsg.dat >rsg.out

rerun the benchmarks

echo Running concord ...

iconx concord <concord.dat >>concord.out
echo Running deal ...

iconx deal -h 500 >>deal.out
echo Running ipxref ...

iconx ipxref <ipxref.icn >>ipxref.out
echo Running queens ...

iconx queens —-n9 >>queens.out
echo Running rsg ...

iconx rsg <rsg.dat >>rsg.out

grep elapsed *.out

March 8, 1990

