A Stand-Alone C Preprocessor
Kenneth Walker

Department of Computer Science, The University of Arizona

1. Basis for Preprocessor Features

This preprocessor is based on the proposed ANSI C standard, but does not strictly conform to the standard. The
major enhancement to the standard is the implementation of multi-line macros, which may contain embedded
preprocessor directives.

2, Standard Features
This preprocessor supports the standard preprocessor directives:

#include
#define
#undef
#if
#itdet
#itndef
#elif
#else
#endit
#line
#error
#pragma
#

It supports the standard macros:

_LINE__
_ FILE__

_ DATE__
__TIME__

See below for a discussion of __STDC__. In addition, the preprocessor supports the standard features of trigraph
replacement, deletion of back-slash new-line pairs, macro replacement, token concatenation, stringizing, and con-
catenation of adjacent strings.

3. Multi-Line Macros

The mulii-line macro facility introduces two new preprocessing directives: #begdef and #enddef. These direc-
tives bracket the body of the multi-line macro. The #begdef directive is modeled after the #define directive but
does not contain the body of the macro. As with standard macros, there are both object-like and function-like
multi-line macros. This distinction is determined by whether the macro is defined with an argument list or not. The
two forms of #begdef are

IPD65c -1- January 8, 1991

#begdef macro-name
#begdef macro-name ([parameter-list |)

A multi-line macro may contain embedded preprocessor directives, including other multi-line macro definitions.
#line directives are executed when they are encountered, but all other directives are stored in the macro and exe-
cuted whenever the macro is expanded. As an example of using this facility, it is possible to write a macro which
will generate different versions of a function based on arguments to the macro. The macro GenFree in the follow-
ing example illustrates this. The context for this example is a program that maintains free lists of several structures.
Each structure is assumed to contain a next pointer. The free routines for some structures may be called with NULL
values, while others never will be.

#define True 1
#define False 0

#begdet GenFree{func, struct_name, checked)
void func(x)
struct struct_name *x;

{
#if checked
if (x == NULL)
return;
#endif

x—>next = struct_name ## _{_lst;
struct_name ## _f_Ist = x;

}
#enddef

struct item1 *item1_f{_Ist;
struct item2 *item2_f lst;

GenFree(free_item1, item1, True)
GenFree(free_item2, item2, False)

If this source is in the file t.c, then the result of running the preprocessor on t.c is
#line 17 t.c”
struct item1 ‘item1_f{_Ist;
struct item2 “item2_f_|[st;
#line 4 "t.c"
void free_item1(x)

struct item1 °“x;

{

if (x == NULL)
return;

x—>next = item1_f_Ist;
temi_f_Ist = x;

IPD6Sc -2- January 8, 1991

#line 4 "t.c”

void free_item2(x)
struct item2 *x;

{
#line 12 "t.c"

x—>next = item2_{_Ist;
item2_f_Ist = x;

}

4. Other Deviations from the Standard

The preprocessor fails to conform the the proposed ANSI standard on several other points. These points are
minor and most programmers need not be concerned with them, but they are described here for completeness. The
standard requires that a new-line within a macro invocation be treated as a normal white-space character. Presum-
ably this means that such a new-line does not terminate a preprocessor directive. However, this preprocessor recog-
nizes directives after back-slash new-line pairs and comments have been removed, but before macro invocations are
recognized. For example, in the code fragment

#include file
(a)
file may not be a function-like macro, because the #include directive ends with the new-line following file.
Preprocessing directives are also recognized before stringizing operators. Therefore, in the macro

#begdef m(include)
#include "a.h"
#enddef

#include is a directive, not a stringized parameter. If it had occurred somewhere other that at the beginning of a
line, it would have been a stringized parameter. Note that this is only relevant to multi-line macros. Another point
only relevant to multi-line macros is the fact that stringizing and token concatenation ‘‘belong’’ to the outer most of
nested definitions and are executed when that macro is expanded. So that

#begdef f1(a)
#define f2(b) a ## b
#enddef

f1(x)

fa(y)

produces xb, not xy.

White space is stripped from the beginning and end of macro arguments. As required by the standard, argu-
ments are expanded in isolation before being substituted into the macro (except that stringizing and token concate-
nation are done on unexpanded arguments), where they are rescanned. Because a multi-line macro can contain
macro defines and undefines, the expansion of the multi-line macro may have the side effect of changing macro
definitions. The pre-expansion of arguments is done once before the macro body is scanned, so these side effects do
not affect the pre-expansion. However, the side effects can affect arguments when they are rescanned in the body of
the macro. Therefore, the expansion of arguments may be different in different parts of the multi-line macro.

To be standard conforming, the macro __STDC__ must be predefined to 1. This indicates the compiler is stan-
dard conforming. This preprocessor is used both with compilers that are standard conforming and with those that are
not. For this reason, the macro is left undefined. It may be defined to 1 through a command line option when the
preprocessor is used with a standard conforming compiler. There is an additional predefined macro _ RCRS__
which indicates the number of levels of recursion allowed for macros. Its definition must be an integer. It is given an
initial value of 1, indicating that only one call to a given macro may be in effect at a time, that is, that recursion is

IPD65c -3- January 8, 1991

not allowed. If it is undefined, unlimited recursion is allowed. In the standard, recursion is never allowed, but in
multi-line macros recursion can be terminated with conditional compilation so it makes sense to allow it. For exam-
ple, the following macro repeats a piece of text a specified number of times.

#undet _ RCRS_

#begdef rep(text, n)
#iftn>0

text

rep(text, (n—1))
#endif

#enddef

Note that n is an expression not a number. If the macro is called with n of 4, it will terminate with the conditional
#if ((((4-1)-1)-1)-1) > 0

While the maximum level of recursion is exceeded for a macro, further expansion of the macro is inhibited; the
name is treated as if it were undefined. This is consistent with the standard.

Arithmetic in conditional directives is always done using long ints. However, to be standard conforming, a
preprocessor must at least distinguish between intermediate results that are long and those that are unsigned long.
The size of a long int is determined by the C compiler used to compile the preprocessor.

Include files are put in-line before processing, not afterwards. Therefore, macro invocations and conditional
inclusion may extend across include files. This is not allowed in the standard.

#line directives are always executed when they are encountered, even in branches of conditional inclusion
which are not selected.

The standard does not allow vertical tabs within a preprocessing directive. This preprocessor does not enforce
this. The standard does not allow tokens between an #else or #end and the following new-line. This preprocessor
ignores such tokens, so it can be used with existing system include files which violate the standard.

5. “Implementation Defined’’ Behavior

The standard designates some aspects of the preprocessor as being implementation defined. One example of this
is the interpretation of the #pragma directive. This implementation ignores all pragmas.

Whether the spelling of white space is retained is implementation defined. This is not significant if the output of
a preprocessor goes directly into a compiler. However, the output of this stand-alone preprocessor goes into a file.
Comments are normally replaced by a single space character and other white space is kept as is, except that white
space may be added or deleted around any generated #line directives. There is a command-line option for retaining
comments. When a directive is deleted from the text after being executed, the following white space up through the
first new-line is also deleted.

The interpretation of character constants as integers is implementation defined. This is relevant to expression
evaluation for conditional inclusion. When possible, this interpretation is based on the compiler used to compile the
preprocessor. An example of this is whether an octal character constant with the high order bit set is a positive or
negative number (determined by whether char is signed or unsigned).

The interpretation of wide characters is implementation defined. This preprocessor treats wide characters the
same as normal characters. Only the first byte of a multi-byte character is used during expression evaluation; the
rest are ignored.

The standard specifies that character strings be converted to intemal form before concatenation. This insures that
the concatenation of strings such as "\12" with "1" results in the two character string "™\0121" and not the one charac-
ter string "\121", Problems only arise when the first string ends with a one or two digit octal constant or ends with a
hexadecimal constant and the second string start with a digit from the corresponding base. When these situations
arise, the preprocessor converts the character at the end of the first string to a canonical three digit octal form;
overflow from hexadecimal constants is ignored. The only other situation where the representation of characters is
changed is when the target compiler does not support one or more of the standard escape sequences (for example,

IPD65¢ -4 - January 8, 1991

"\a’). In this case, the escape sequence is converted to the three digit octal form appropriate to the target compiler.

The syntax of include file names and the search for include files is implementation defined. This preprocessor
uses Unix path conventions. This is sufficient for most systems, but may have to be changed for others. For include
file names that start with '/’ this preprocessor uses the name as the complete path name of the include file. For other
names enclosed in quotes, the search starts in the location {directory in Unix terminology) of the file containing the
#include directive, proceeds to the location of the file which included the file containing the #include directive, and
50 on back to the location of the primary source file. If the include file is not found in any of those locations, the
search continues through locations specified on the command line, then finishes with the location(s) of system
include files. Note that this preprocessor is meant to be used with a variety of C compilers. The location of system
include files varies among these compilers; this location is determined when the preprocessor itself is compiled. The
search for file names enclosed in angle brackets only includes locations on the command line and the location(s) of
system include files.

When the file name on an include directive is the result of macro expansion and it is the form enclosed in angle
brackets, the mapping of tokens into the name is implementation defined. This implementation converts each
sequence of white space into a single space character and uses the exact spelling of other tokens for constructing the
file name.

6. Command Syntax with Standard Options
The preprocessor is invoked with the command

pp { option }J* { file }*

option ::= -C |
-P |
—-D identifier [= [macro-body]] |
—U identifier |
—| path |
-0 file

If no file is specified or '’ is specified for a file, the preprocessor reads from standard input. Normally the prepro-
cessor replaces each comment with a space; the —C option cause the preprocessor to retain the spelling of com-
ments. The preprocessor normally outputs #line directives; the —P option suppresses the output of #line directives
(however, white space is still adjusted as if #line directives were output).

The -D option specifies the definition of an object-like macro that is to be put in effect before preprocessing
starts. identifier is the name of the macro. If nothing else is given, the macro is given the value 1. If only an equal
sign is given, the macro is defined, but null. If a macro body is given, white space is stripped from the front and the
end.

The —U option undefines predefined macros before preprocessing starts. The macros _ STDC__ and
__RCRS__ may be undefined. In addition, there may be predefined macros that are specific to the C compiler the
preprocessor is being used with. All such macros may be the subject of the —U option. These macros are determined
when the preprocessor is compiled.

The —| option specifies a directory to look in when searching for include files. These directories are searched in
the order given on the command line. The overall search order for include files is explained above.

By default, the output of the preprocessor goes to standard output. The —0 option directs the output to the
specified file.

Other options may be defined when the preprocessor is used with specific compilers. These are typically needed
so the preprocessor knows what macros to predefine. For example, a compiler on an IBM PC may predefine dif-
ferent macros depending on the memory model specified for compilation. These additional options are determined
when the preprocessor is compiled and closely mimic the corresponding options of the compiler.

IPD65c -5- January 8, 1991

Appendix A: Porting

The preprocessor is written is C and is organized to be part of the Icon source distribution. When porting the
preprocessor, it is necessary to supply a define.h file as described in the appropriate Icon porting document. The
preprocessor also uses other shared .h files. These include config.h, cpuconf.h, and proto.h. Porting may requirc
adding conditional code or making other changes to these files. Additional changes may be needed in common rou-
tines, in particular, time.c.

Three files for the preprocessor itself may need changes. These files contain code that relates to setting up initial
defined constants and locating system include files. These features must match those of the compiler the preproces-
sor will be used with. System dependent code in pmain.c determines what options beyond the standard ones this
version of the preprocessor will recognize.

Functions in p_init.c are responsible for establishing predefined constants. This may require processing non-
standard command line options, environment variables, configuration files, etc. Functions in files.c are responsible
for locating system include files and dealing with variations in path syntax. Locating system include files may
require processing non-standard command line options, environment variables, configuration files, etc.

Appendix B: Unix
No additional options are supported for this system.

The macro unix is always predefined to 1. Any of the following that are defined when the preprocessor is com-
piled are also predefined to 1.

286

i386
mc68000
mc68010
mc68020
sparc
sun

vax

System include files are located in fusr/finclude/.

Appendix C: MS-DOS, Microsoft C 5.0

Additional options supported for this system are —AS, —AC, —~AM, —AL, —AH, —Za, and —J. These options may
be supplied through the CL environment variable or on the command line. If supplied through the environment vari-
able, they may be introduced with / rather than —. Other Microsoft C options which effect preprocessing are also
recognized from the environment variable. These include —D, -U, -u, and —| options.

The macros MSDOS and M_I86 are always predefined to 1. The following table shows the options and the
macro names they cause to be predefined to 1.

-AS M_I86SM

-AC M_186CM

-AM M_I186MM

-AL M_I86LM

-AH M_I86LM, M_I86HM
-Za NO_EXT_KEYS

—J _CHAR_UNSIGNED

The search path found in the environment variable, INCLUDE, (if defined) is used to to locate system include
files.

IPD65¢ -6- January 8, 1991

Appendix D: MS-DOS, Turbo C 2.0

Additional options supported for this system are —-mt, -ms, -mm, —-mc, —m!, ~mh, and —p. These options may
either be supplied on the command line or in the file turboc.cfg. The file used is the first one in the search path with
this name. Other Turbo C options which effect preprocessing are also recognized from this file. These include —I
(see below), —D and -U options.

The macro __MSDOS__ is always predefined to 1. The macro __TURBOC___ is always predefined to the
value it had when the preprocessor was compiled. The following table shows the options and the macro names they
cause to be predefined 10 1.

-mt _TINY__

-ms _SMALL__
-mm _ MEDIUM__
-mc _ COMPACT__
-ml __LARGE__
—mh __HUGE__

-p __PASCAL__

If-pisnot given, __ CDECL__ is predefined to 1 instead of __ PASCAL__.
The —| options in the file turboc.cfg are used to locate system include files.

IPD65c -7- January 8, 1991

