
1

No. 52 – April 1, 1997

Mail-Order Program Material

Over the years, we’ve seen the impact of chang-
ing technologies on our distribution of Icon pro-
gram material. At one time, all Icon program
material was distributed on 1/2" magnetic tape
and documents were provided in printed form.
Then diskettes came along and in a big way. Data
cartridges emerged but were never in much de-
mand. As diskette technology changed, we went
from low-density, one-sided 5.25" floppies to high-
density 3.5" floppies.

The demand for magnetic tape disappeared
long ago except for an occasional request for an
implementation that wasn’t available on diskette.
In the last 12 months, we’ve only had only one
request for a magnetic tape.

The biggest impact came with the Internet and
increasingly easy access to on-line files. For years
now, FTP has been the major method for the

distribution of Icon program material and docu-
mentation. The number of downloads from our
FTP area varies considerably with the season, the
academic calendar, and releases of new material.
It averages about 4,500 files a month — nearly
55,000 files a year.

Magnetic tape isn’t the only medium that’s been
swept away by change. We now get very few
requests for diskettes — only five in the last year.

Maintaining mail-order distribution of Icon
material is a considerable effort, even when the
demand is low. For example, we need to make up
new master diskettes and make copies for stock
whenever there is a new version of Icon — on a
per-platform basis. A new version of MS-DOS
Icon, for example, means new masters and new
stock.

That’s been only “in theory” for a year or so. We
haven’t made up new masters, much less copies,
until we had a request. Version 9.3 of Icon was
released last fall; we have yet to have a request for
it on diskettes.

For these reasons, we are discontinuing our
mail-order distribution of Icon program material.
If there’s something you just have to have on
diskette and we happen to have a copy around,
we’ll sell it to you. But we no longer maintain and
upgrade our stock.

Magnetic tapes fall into the nostalgia classifica-
tion for us (following punched cards and paper
tape that went that way long ago). Diskettes aren’t
there yet, and they probably will be around for
some time for our distribution of updates to the
source code for Icon and the Icon program library.

Contents

Mail-Order Program Material1

Teaching Icon ..2

Web Links ..3

Native Interface for Windows4

Programming Language Handbook......6

From Our Mail ..6

Knowledge Explorer7

Icon on the Web

Icon is on the World Wide Web at

http://www.cs.arizona.edu/icon/

2

Teaching Icon

In the last issue of the Newsletter Bill Mitchell,
a former student here, wrote about teaching Icon
in our comparative programming language
course.

Another former student, Beth Weiss, taught the
course before Bill. She’s no longer here, but she
left us some notes on her views about teaching
Icon and an outline from the Icon part of the
course.

Here’s what she had to say:

Some students really “get it”, and others
can’t understand why they couldn’t just
do everything in C.

I find it very helpful to repeatedly ask
the question “And what would it take to
do this in C or Pascal?” It keeps them
thinking about the dynamic nature of Icon,
which many of them have come to like a
great deal. I push string scanning :–), and
most students eventually do come to real-
ize that scanning is better than array ma-
nipulation, and they appreciate its power.
Generation seems to be something they
finally come to understand in Icon once
they see it in Prolog later in the semester.

I try very hard to stay away from the
“see how compactly this can be written in
Icon one-liners”, since I think that type of
code is counter-productive in terms of
thinking and coding ability. Some people,
of course, live for that type of code, and
there’s at least one every semester. :–)

One other thing that I find necessary in
the course is to keep reminding them why
Icon is a useful tool for them to learn. I
can’t deny it’s my favorite language :–),
but that’s not the reason we teach it in
comparative programming languages, of
course.

Beth used 74 transparencies for the Icon portion
of her course. Here’s the outline as taken from the
transparencies, omitting examples and only show-
ing subtopics in a few places:

Introduction

Characteristics of Icon

expression-based

goal-directed evaluation

no variable declarations

high-level string scanning

dynamic structures

automatic storage management

Success and failure

Conditional expressions

Bounded expressions

Output

Procedures

Outcome of an expression

Goal-directed evaluation

Control backtracking

Iteration

Alternation

Conjunction

Loops

Selection (case expressions)

Augmented assignment

Variables, values, and results

String scanning

the concept

positions in strings

matching functions

substrings

Alternation and scanning

Concatenation

Csets

Analysis with csets

Procedures and generators

Other string functions

Character generation

Downloading Icon Material
Most implementations of Icon are available
for downloading via anonymous FTP:

ftp.cs.arizona.edu (cd /icon)

3

Substrings

Lexical comparison

Structures

Lists

Tables

In a course like this, where several program-
ming languages are taught in one semester, the
time for any one language is limited. Bill Mitchell
omitted co-expressions and records because of
this. Note that Beth omitted these as well as sets.

The Icon Newsletter

Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

Editors

The Icon Newsletter is published three times a
year and is available on the World Wide Web. To
receive printed copies, contact:

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

e-mail: icon–project@cs.arizona.edu

and

© 1997 by Ralph E. Griswold, Madge T. Griswold,
 and Gregg M. Townsend

All rights reserved.

®

Bright Forest Publishers
 Tucson Arizona

Web Links

The Icon Web Site

The Icon Web site is updated when things re-
lated to Icon happen, such as a new Icon program
library release, a new issue of this Newsletter, and
so on.

If you’re actively interested in Icon, you should
follow the Status link on the Icon home page for
information about new developments.

We also add new technical reports (Icon Project
documents, or IPDs) from time to time, as well as
a few older ones that still are useful but have not
been prepared as Web pages before. You can find
these by following the Technical Reports link in
the Documentation section of the Icon home
page. Check the Other Documents link too; it
leads to documents on Icon that are not in the IPD
format.

Other Pages

Marc Espie’s page on Icon has an interesting
game called X-Tiles that is written in Icon. There’s
also a paper on Chinese monoids in which the
combinatorial computations were done using
Icon. Check this out at

 http://www.eleves.ens.fr:8080/home/espie/icon/

Tom Christopher’s home page has links to sev-
eral worthwhile Icon programs and related mate-
rial. It’s at

 http://www.iit.edu/~tc/

If you have a Web site with interesting material
related to Icon and would like us to list it in the
Newsletter, let us know.

4

Native Interface Components in
Windows Icon 9.3

Editors’ Note: The following article was contributed by
Clint Jeffery, who is implementing Version 9 of Icon for
Windows.

Icon’s graphics facilities use a combination of
built-in functions and Icon program library (IPL)
procedures to perform operations such as opening
and closing windows, drawing on them, and read-
ing events. Icon’s user interface components
(menus, scroll bars, dialogs, etc.) are all built using
IPL procedures written in Icon. This allows them
to run on the largest possible number of machines,
since they do not depend on proprietary compo-
nent sets such as Motif. Icon’s IPL procedures
happen to implement a look and feel similar to
Motif, which is attractive and feels natural on most
UNIX platforms.

Enter Windows, or more specifically Windows
Icon. In versions prior to 9.3, released in various
beta tests, the “Motif” look of the user interface
components proved to be unpopular with Win-
dows users. For this reason, Version 9.3 of Win-
dows Icon introduces various built-in user inter-
face components that make use of native Win-
dows features

Description of the Native Facilities

Version 9.3 of Windows Icon provides the fol-
lowing native facilities. Additions are still being
made to this set. The facilities described here are
available now, but they are still being integrated
into the Icon program library so that they are used
automatically in Icon programs that provide a
visual interface. This section summarizes features;
they are described more fully in the Windows Icon
documentation, IPD271, which comes with the
distribution.

The goal of the native facilities is not to provide
the entire Windows repertoire, any more than the
entire X Window repertoire is provided to UNIX
users. Instead, features have been chosen that are
(1) important to the Windows look and feel, (2)
general enough to be implementable on other
platforms, and (3) can coexist or be integrated with
existing IPL facilities.

Menus
A menu bar is created with a call like:

 MenuBar(W,
 ["&File", "&Open", "&Save", "&Exit"],
 ["&Edit", "&Cut", "&Paste", "&Copy"],
 ["&Help", "&About"]
)

This function converts approximately the top
text line of the window into a menu bar. The
appearance of the above example is given in
Figure 1. When menu items are selected, they are
produced as entire strings (such as "&Open") by
Event().

Figure 1: A Windows Menu Bar

Scroll Bars
A scroll bar is created with a call like

ScrollBar(W, "sb_1", x, y, wd, ht)

This function places a scroll bar with a particu-
lar size and position, which default to a standard
size on the right edge of the window. The appear-
ance of a typical scroll bar is illustrated in Figure
2. When scroll bar activity takes place, the scroll

5

bar’s string id is produced (in this case,
"sb_1") by Event(), and &x and &y are both
set to the scroll bar’s position.

Figure 2: A Windows Scroll Bar

Buttons
A button is created with a call like

Button(W, "hello", x, y, wd, ht)

This function places a button with a par-
ticular size and position. The size defaults
to a standard size large enough display the
button’s label. The appearance of a pair of
buttons is illustrated in Figure 3. When a
button is pressed, the button’s string label is
produced (in this case, "hello") by Event().

Figure 3: A Pair of Windows Buttons

Common Dialogs
Several common dialogs are provided for

selecting colors, fonts, and files to open or
save. These functions return an attribute
value or a file name. Examples are illus-
trated in Figures 4 - 7.

Conclusion
For developing elaborate Windows inter-

faces, Icon does not compete with commer-
cial Windows-specific programming envi-
ronments such as Visual Basic or Delphi.
Still, Icon programmers can write portable

 Figure 6: The Windows Save Dialog

Figure 5: The Windows Open Dialog

Figure 4: The Windows Font Dialog

6

applications that take advantage
of Icon’s power on multiple plat-
forms. The native facilities make it
easy to construct applications that
look and feel like they belong on
the Windows platforms. When in-
tegration with the IPL is complete,
this look and feel will come to ex-
isting Icon programs written for
the X Window System with no
source modification. Some addi-
tional native facilities, such as edit
regions and the multimedia inter-
face, are not described in this ar-
ticle. Additional information can
be requested and comments sent
by e-mail to Clint Jeffery:

jeffery@cs.utsa.edu

Winows Icon is available from:

 ftp://ringer.cs.utsa.edu/pub/icon/nt/graphics

Programming Language Handbook

Macmillan is planning a multi-volume Hand-
book of Programming Languages . Ralph
Griswold has contracted to write a section on Icon
for Volume II: Imperative Languages. The sec-
tion on Icon is projected to run about 100 pages.

We don’t know yet when the handbook will
appear, but our contribution is due August 1,
1997. We’ll provide more information when we
have it.

From Our Mail

What is Icon
used for?

Answering
that question
is not as hard
as knowing how
many Icon programmers there are. Of course, we
can’t know everything Icon is used for, but we
know it is used for rapid prototyping of complex
applications, research in the humanities, file pro-

Figure 7: The Windows Color Dialog

cessing, systems programming, molecular biol-
ogy, and so on. One time we did an “A to Z” listing
of specific applications and found most letters
had at least one entry. Basically, the applications
of Icon are very diverse. After all, Icon is a high-
level, general-purpose programming language.
Despite its emphasis on facilities for processing
text and complex structures, it can be used for
most anything. Interestingly, Icon seems to be
used most either for very simple applications or
very complex ones.

I have a new boss who says I have to program in C++,
but there are plenty of things that I can do faster and
more easily in Icon. How can I talk my boss into letting
me use Icon for these tasks?

We don’t encourage you to do anything that
might get you into trouble, although we know
several persons who have done very well using
Icon without telling anyone. If the programs you
have in mind aren’t going to be used by anyone
else and there is no issue with respect to future
maintenance, whatever programming language
is the best for getting the job done ideally should
be used. “You must use X” often is just a simple
rule that makes life easy for a supervisor and
removes a possible source of criticism. But to
address your specific question, one way to con-
vince your supervisor is to demonstrate that the
use of Icon can save time and money without
putting anything at risk. After all, most organiza-
tions welcome increased productivity.

7

Knowledge Explorer
Editors’ Note: Dick McCullough has written an Icon
tool for organizing knowledge. His description follows.

The Knowledge Explorer (ke) is an interac-
tive tool for organizing knowledge. It can be
viewed as a super-intelligent filing system, which
will restructure itself on command. The founda-
tion of ke is my knowledge representation lan-
guage (kr), which is based on a unique theory of
knowledge developed by Ayn Rand (Introduction
to Objectivist Epistemology, Expanded Second Edi-
tion, Meridian, 1990).

kr is a subset of English, with keywords that
have a specialized meanings. Sentences that ke
does not understand are simply recorded as
“newstatement”s. kr uses lists, sets, and associa-
tive tables to represent knowledge, which is why
I chose to implement it using Icon (Ralph E.
Griswold and Madge T. Griswold, The Icon Pro-
gramming Language, Third Edition, Peer-to-Peer
Commmunications, 1996). The pattern matching
capabilities of Icon were used to implement a
front end parser for kr. During the development
of the initial version of ke, from October 1996 to
March 1997, I made significant changes every
day, and did major rewrites about once a month.
This rapid evolution would not have been pos-
sible without using Icon.

A small sampling of statements in kr is shown
in the box below.

I have made the Knowledge Explorer avail-
able on the Internet as a shareware product. It can
be downloaded from

ftp://ftp.cdepot.net/ke/

Binary versions are available for Windows and
UNIX. For details, contact:

Dick McCullough

rhm@cdepot.net

There used to be a technical report on the interface
vidgets, but I can’t find it anymore. Where is it?

The vidgets have changed substantially since the
original description was written — so much so
that the old document can no longer be used. We
don’t have the resources to update the document;
it’s just something that has passed from the scene.
The vidgets are available through VIB and vari-
ous dialogs.

animal ise man,cat,dog # hierarchy
Dick isa person # hierarchy
Dick is "Richard H. McCullough" # identity/alias
Dick has sex:male # characterization
Dick do go to store # event – unit of change
man is animal with rational # definition
phone–list isa relation # define & load relation
phone–list has r_role: "phone:1 person:2"
phone–list has r_meaning: "person:2 has phone:phone:1"
read phone–list.rel
at space,time,view \ # define new knowledge unit
 from here,now,tabula_rasa
ke has ? # display all characteristics
apple ? orange # determine relation of concepts
apple isa∗ ? # walk up hierarchy
animal ise∗ ? # display subhierarchy
check definition # display undefined concepts
hfocus := event,newword,newstatement # hierarchy printout
hformat := outline # hierarchy printout

