
1/te Icon9{ezvsCetter
No. 40 - December 21,1992

Contents
Reflections ... 1

New Implementations ... 1

HOPL-II...3

Icon Graphics... 3

TEXT Technology . . .3

ICEBOL6...4

Acknowledgments... 4

Icon Class Projects ... 5

Programming Corner... 7

Icon on the NEC 9801 ... 8

Ordering Icon Material... 9

Reflections
The first Icon Newsletter was published late in

1978.

Looking back over fourteen years of publica­
tion, we're struck not only by how long this has
been going on, but by all the things that have
happened related to Icon.

Here we are at the fortieth issue. When we
started we never imagined it would go on this
long or that we would have so many enthusiastic
users of Icon and subscribers to this Newsletter.

There are still a lot of things going on and we're
not about to run out of material.

For the immediate future, at least, we plan to
publish this Newsletter three times a year (al­
though you'll notice we came perilously close to
not getting this one into the 1992 schedule).

And, although the Icon Project is a bit strapped
financially, we expect to be able to continue to
provide this Newsletter without charge.

New Implementations
We've recently brought several more imple­

mentations of Icon up to the current version,
which is 8.8. Version 8.8 has essentially the same
functionality as 8.7, but it includes a few changes
to the implementation (we use minor version
numbers to enable us to track implementation
changes as well as minor changes to language
features).

Version 8.7/8 implementations are now avail­
able for Macintosh/MPW, MS-DOS, MS-DOS
386/486, OS/2, UNIX, and VMS.

The OS/2, UNIX, and VMS implementations
include the X-Icon graphic capabilities.

The UNIX and VMS implementations include
the optimizing compiler for Icon, as does the
source-code distribution for MS-DOS. (Persons
who subscribe to the source-code updates for
Icon already have the source code for the com­
piler.)

Macintosh/MPW Source Code

The Macintosh/MPW source code includes both
the interpreter and optimizing compiler, but no
attempt has yet been made to build the compiler
under MPW.

MS-DOS and OS/2 Source Code

The MS-DOS source code includes both the
interpreter and the optimizing compiler for Icon.

Building and running the compiler for Icon
under MS-DOS requires a 32-bit (386 or 486)
platform, a 32-bit C compiler, and at least 4MB of
RAM. The presently supported C compilers are
Intel Code Builder, Watcom C/386, and Zortech
C++.

The Icon compiler requires significant resources;
a fast 486 with considerably more RAM is recom­
mended for running the Icon compiler.

The source code includes configuration infor­
mation for OS/2, but no attempt has yet been
made to build the optimizing compiler under
OS/2.

VMS

As noted above, VMS Icon includes the X-Icon
graphic capabilities. The distributed executable
files require the DECWindows library even if the
graphic capabilities are not used. This library is
included with the VMS operating system, although
it may not be installed if X is not used at your site.

One possibility is to have the library installed
even if it's not used. Alternatively, the Icon source
code included with the distribution can be config­
ured without X-Icon and built so as not to require
the library.

Should You Update?

Persons who have old versions of Icon may
wonder whether they should bother to update to
the new ones. The answer depends on what ver­
sion you have and what your interests are.

Certainly anyone using Icon who has a version
of Icon prior to 8.0 should update to the latest
version. Version 8.0 added many new features
and substantially improved the implementation.

If you have an interest in graphics and the
current version of Icon for your platform sup­
ports X-Icon facilities, you should update if you
haven't already.

For other persons with earlier Version 8 imple­
mentations, the decision is more problematical.
Version 8.5 added several new functions and
keywords. Version 8.7/8 automatically expands
tables used by the Icon translator, eliminating
those annoying command-line options that for­
merly were necessary for large programs. And
several bugs have been fixed.

The next version of the Icon program library,

scheduled for release early next year incudes
programs that require features of Version 8.7/8.

Also, we cannot provide help with problems
that may come up in obsolete versions of Icon.

If you're like us, you may just wish to have the
latest software release. At least with Icon, it's not
a major expense.

What's in the Works?

Several implementations of Icon still are at Ver­
sion 8.0. We'd like to get these up to the current
version. This may not be easy. From an
implementor's point of view, going from Version
8.0 to 8.8 involves a lot of work, including plat­
form-specific changes.

In addition, we can't do any of these implemen­
tations locally and therefore have to rely on the
volunteer efforts of others.

At the moment, work is under way for CMS and
MVS, but as far as we know, nothing serious is
being done about the Amiga and Atari imple­
mentations.

You'll notice from the preceding sections that
the optimizing compiler presently is available
only for UNIX, VMS, and for persons who want to
build their own under MS-E>OS. In principle,
implementing the compiler is not much more
difficult than implementing the interpreter, but it
involves dealing with several technical problems
and requires considerable computational re­
sources. We expect that the compiler willbe imple­
mented for the Macintosh/MPW and OS/2 plat­
forms shortly after users of those platforms get
the source code.

Using the compiler is complicated by the fact
that it produces C code, so a person using the Icon
compiler needs a C compiler as well—in fact, the
same C compiler that was used to build the Icon
compiler.

We have the Icon compiler running under MS-
DOS for the 32-bit C compilers mentioned earlier.
We plan to distribute it, although we're not sure
there are enough persons with these C compilers
to make it worthwhile. We'd appreciate hearing
from those of you who have an interest in this. If
you have a 32-bit MS-DOS compiler that is differ­
ent from those listed earlier, we're interested in
knowing that also.

HOPL-II
The second History of Programming Languages

conference (HOPL-II) will be held in Cambridge,
Massachusetts on April 20-23,1993.

We're proud to announce that a paper on the
history of Icon is among the 14 papers to be
presented at the conference.

Those of you who attended the first History of
Programming Languages conference in 1978 will
recall how interesting it was. It's the only confer­
ence in our experience where the attendance at
successive sessions increased rather than de­
creased.

We hope the second conference will be equally
interesting and that we'll see some of you there.

Information about the conference can be ob­
tained from:

Dan Halbert
DEC Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, MA 02139

617-621-6616, voice

617-621-6650,fax

hopl@crl.dec.com

Icon Graphics Now Available
Electronically

At the request of some of our "fans", we've
started to place some Icon-related images on our
FTP and RBBS facilities so that they can be down­
loaded electronically.

We haven't decided yet just how to organize the
images. If you're using FTP,

cd /icon/images
get READ.ME

for guidance. The RBBS organization probably
will mirror the FTP one.

You'U find things like the Icon "Rubik's Cube"
and the auto-stereogram from Newsletter 39, the
Icon logo, and so forth.

We're using the popular CompuServe GIF for­

mat for most images, but some are in Encapsu­
lated PostScript format.

If there are images from past Icon publications
that you'd like to have, let us know and we'll see
what we can do.

TEXT Technology
Starting with the January, 1993, issue, the jour­

nal TEXT Technology will move its home base to
Dakota State University.

TEXT Technology publishes articles and reviews
about all facets of using computers for the cre­
ation, processing, and analysis of texts. It is de­
signed for academic and corporate writers, edi­
tors, and teachers. The bi-monthly journal con­
tains timely reviews of software for writing and
publishing, discussions of applications for the
analysis of literary works and other texts, notices
of significant events in computing around the
world, bibliographic citations, and much more.

Submissions of articles and reviews are wel­
come. They should be sent as ASCII files via
electronic mail to the Editor, Eric Johnson, at
eric@sdnet.bitnet. They also may be submitted on
MS-DOS diskettes and sent to the address below.

Subscription rates for one year (six bi-monthly
issues of sixteen pages each) are $20.00 for the
US., $27.00 for Canada, and $35.00 for other
countries (all prices are in U.S. funds). Subscrip­
tions (which may be charged to MasterCard or
Visa) should be sent to:

TEXT Technology
114 Beadle Hall
Dakota State University
Madison, SD 57042-1799
USA.

Downloading Icon Material
Most implementations of Icon are available
for downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

mailto:hopl@crl.dec.com
http://cs.arizona.edu

ICEBOL6
The Sixth International Conference on Sym­

bolic and Logical Computing was held on Octo­
ber 15 -16,1992.

The conference was devoted to study of non-
numeric computing, especially for applications
in the humanities. In addition to a focus on Icon
and SNOBOL, papers described applications writ­
ten in Prolog, Lisp, C, and Scheme, as well as
algorithms for non-numeric processing that might
be coded in almost any language.

Proceedings of the conference may be ordered
from Dakota State University. The volume con­
tains seventeen papers, 258 pages, by participants
from countries on four continents. The cost is
$40.00 (which includes postage).

Proceedings for three previous conferences are
available. The cost of the Proceedings for ICEBOL2
(131 pages) is $18.00. The only copies of the pro­
ceedings for ICEBOL4 (390 pages) that remain
have flaws in the binding; they are being sold for
$20.00. The cost of the proceedings for ICEBOL5
(331 pages) is $35.00.

All prices are in U.S. dollars, and they include
the cost of postage.

To order, send a check for the proper amount to:

ICEBOL PROCEEDINGS Orders
114 Beadle Hall
Dakota State University
Madison, SD 57042-1799
U.S.A.

The supply of some of the proceedings is lim­
ited.

Acknowledgments
Icon has benefited greatly over the years from

the contributions of interested persons through­
out the world. In fact, all the implementations of
Icon except for the UNIX one initially were done
as volunteer efforts by persons outside the Icon
Project. And some features, including large-inte­
ger arithmetic, were initially done elsewhere.

We don't mention persons working for the Icon
Project, since their contributions are part of their
jobs, although you'll find most of their names on
various documents. Two recent contributions by

persons outside the Icon Project deserve special
mention. Bob Alexander updated Macintosh/
MPW Icon to Version 8.8 and Darren Merrill not
only updated OS/2 Icon to Version 8.8 but also
added X-Icon graphics capabilities.

We'd also like to thank the many others who
have contributed to Icon in other ways, ranging
from suggesting new features to providing help
for other Icon programmers to contributing to the
Icon program library.

It sounds trite, but it's certainly true that Icon
would not be what it is without the contributions
of literally hundreds of persons over the last
fourteen years.

T/te Icon 9{ezvsCetter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Ngzosfetter is published three times a
year, at no cost to subscribers. To subscribe,
contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602)621-6448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

ThE UNIVERSITY OF

6

ARIZONA
TUCSON ARIZONA

and

I I The Bright Forest Company
I I Tucson Arizona

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

mailto:icon-project@cs.arizona.edu

Icon Class Projects
In the last Newsletter, we showed examples of

student projects written in X-Icon for a course on
string and list processing. Several readers have
asked us to show more of the projects. Here are
three.

Mohammad Basel Al-Masri wrote the grade-
book program shown in Figure 1. It operates like
a spreadsheet, with facilities for adding and delet­
ing rows and columns, entering text in a cell,
computing averages automatically, and so forth.
Other facilities include generating histograms,
summary listings, and so forth. (If the names in
Figure 1 look a bit Martian to you, its because we
scrambled them to protect the identity of the
students.)

Song Liang wrote the tool for examining Icon
data that is shown in Figure 2 on the next page.
Calls to visualization tools are added to the Icon
program to be examined. For example, executing
Show_structure(x) produces a window display­
ing the value of x. Values like lists and strings are

shown in boxes; clicking on a box brings up a
window showing more detail for the value. Scroll­
ing is provided for long strings and structures
that have many elements.

In a lighter vein, K'vin De Vries wrote an adven­
ture game in the classical style. See Figure 3 on the
next page. The player can move from room to
room in the "space" of the game, ask about the
rooms' contents, pick up and drop objects, and so
on. The program is self-descriptive to a point, but
part of the game is to discover the rules. K'vin
remarked that the game is intended to be frustrat­
ing. We can attest to that.

You might wonder how big these programs are.
It's hard to measure program size with differ­
ences in code density and the extent of comments.
For what it's worth, the grade-book application is
1,200 lines, the data examination tool is 1,576
lines, and the adventure game is 2,057 lines. For
the projects shown in the last Hewsle tter, the maze
game is 492 lines, the X-Icon interface builder is
2,682 lines, and the object-oriented drawing pro­
gram is 1,903 lines.

S Grade Book

Max = >

Height=>

Popivul, Rrkippig Gluho

Hiphurd, Rlub Hkuluvldh

h* l r . Oxl-MifJ

Ybyulbd. Phylf P

L iu is iw l . Nfglui

rti, YrfJplfJ

O i l f , fccglwl

Q l i f J , XrfJ

Rhuuloo, Viuuhf flrf

Uiuolplf , Giuu Aiphq

Xxudlkdr. X lx f lh 0

Ohequhu, Qlyh Jool rw. flu.

O l g t l f l w r , Kulfqlipxq Pulqf

Eklr, I l l f J

Ciqqlol. Ja j ig E.

Hiubiokr. Cooswf V

H 10 WINDOW
inter the ninlnun far the grade "C":
Inter the niniin* for the grade "D - :

SSt

1

1

1580

0570

5073

3610

7627

3E23

5579

1177

5186

7760

8374

4651

1576

1096

0401

4922

70
60

HW

10

5

10

9

7

10

9

4

9

2

0

10

10

6

8

10

10

10

HH2

20

10

16

20

20

10

13

20

19

19

18

16

20

17

6

19

10

20

HU3

20

10

19

16

19

20

12

17

18

19

19

20

12

19

15

19

19

Testl

100

40

100

99

89

76

56

98

79

99

100

100

43

56

60

63

100

100

Test2

100

35

80

99

59

45

99

87

55

76

99

33

69

87

80

99

65

99

flvg.

100

90.5

96.75

79.25

66.15

74.05

30.15

73.85

86.2

93.15

74.55

62.35

72.85

68.5

81.85

82.25
99.15

Grade

fl
fl
C

II

G

fl
C

B

fl
C

I

C

D

B

B

fl

H IS Control Window

K B
Bjj3l EBB

H3IIHBI

WBSK3M

S

a

Figure 1 — Grade-Book Application

table_1(4)

Order Is arbitrary, for table

llist.60<2O)l

ktrlng(108)l
"short"

5a
llist_66<2)l btrlrwdOS)!
"short"

Goto I Quit I

IEI string(i08)

I First I 34 I

1 Exit 1

a
see the execution of the procedure to show strin

I Goto I | Exit |

SI set_2(20) H
Order is arbitrary for set

[6]

[7:

[B]

[9]

[10]

[U]

[12]

[131

[14]

[15]

l l lst .62(4)|
4

12

1

et l (2>

I Goto LQuit Exit

M list_66(2) H

11]

[21
•dI2r
"I an here"

i Goto | i Jilt j [Exit i

I

Figure 2— Data Examination Tool

Icon Adventure a
? look a t p a r r o t

?•
|»OP|[LOOK IHVEXJ | INVENTORY! I QUIT I

|OET| |LOOK OT| I LOOK RH| | « U > |

Gale

»
Office

= &

I I * * &w«

= &

[I iEntr-ur.se

H«*stap

= &
Cot̂ ntv * * *i Pj

= &
&>ll«Tj

= &
t "B.X-C R L X « I tentt

Yard

=§=
(Jirt BOOK B

The parrot is a nice pretty green color. It stares back at you.

Figure 3 — Adventure Game

http://iEntr-ur.se

Programming Corner
Responses to the ques­

tionnaire in Newslet­
ter 38 indicated con­
siderable interest in
articles on simple
programming tech­
niques for Icon nov­
ices.

While the {Scon
J^rtalrjsi is designed

to cover matters concerning programming, we'll
include some short programming examples in
this and future issues of the Newsletter.

This article concerns the use of sets. Sets, in the
generality found in Icon, are rare in programming
languages, and persons who are used to pro­
gramming in a language like Pascal or C tend to
overlook the usefulness of sets in Icon.

The idea of a set is very simple: A set is simply
a collection of distinct values. The word distinct is
significant; a value can appear only once in a set,
as opposed to a list, which can contain many
instances of the same value. And, unlike lists, sets
are unordered. Consequently, sets embody the
concept of membership and are useful for holding
values that share a common property, such as a
set of all the (distinct) words in a file.

The nice thing about sets is that they are easy to
use. A set starts out empty, with no values. Values
can be inserted into a set or deleted from a set
without having to worry about the space they
occupy; sets grow and shrink automatically.

To see how easy it is to use sets, suppose you
have a procedure genword() that generates suc­
cessive words from the input file. If you're willing
to accept the definition of a word as a string of
consecutive letters, something as simple as the
following will do:

procedure genwordO

while line := readO do
l ine?{

while tab(upto(&letters)) do
suspend(tab(many(&letters))) \ 1

}
end

See pages 88-89 of the second edition of The Icon
Programming Language for an explanation if this
kind of string scanning is unfamiliar to you.

Most text files contain multiple instances of the
same words. To find all the distinct words, it's
necessary to keep track of the words that have
occurred. The distinct nature of values in sets
takes care of this automatically. The way a value
x is added to a set S is by

insert(S, x)

If x is not in S, it is added to S. If x already is in S,
it is not added. Ifs that simple.

So to create a set of the distinct words produced
by genwordO, all that's needed is

words := setO # start empty
every insert(words, genwordO)

The every control structure keeps resuming
genwordO/ causing it to produce all the words in
the input file. Each new word is added to words,
while words that have occurred before are ig­
nored. The end result is that words contains all
the distinct words in the input file.

The resulting set could be used in many ways.
For example, to write a list of all the distinct
words, all that's necessary is

every writeO words)

The element-generation operator ! generates the
values of words and every causes all of them to be
produced.

That/s fine if you don't care about the order in
which the words are listed. Since a set is (concep­
tually) unordered, the words may come out in
any order. In theory, the last word generated by
genwordO might be the first one to be listed. Of
course, there's some order to the set inside the
computer; it's just that it's not one you can predict
or that is useful.

It's simple enough, however, to list the words in
alphabetical order. Sorting a set produces a list
with the set values in order. In the case of strings,
this is alphabetical order.

The element-generation operator works on lists
as well as sets, but for lists it starts at the beginning
and progresses to the end. Consequently,

every write(!sort(words))

lists the words in alphabetical order.

We've taken a bit of a shortcut here. The func­
tion sort() produces a list and we've applied the
element-generation operation to this list without
bothering to save the list. We could have written

word list := sort(words)
every write(lwordlist)

In fact, that would have been the thing to do if we
needed the sorted list after listing its contents.

There's another order for listing the distinct
words that you might want: in order of first
occurrence. This is just a little more difficult.

What's necessary is to know when a new word
is being added to words. The function insert(S, x)
doesn't indicate this, but there's another function,
member(S, x), that does. It succeeds if x is in S but
fails if it is not.

To get the first-occurrence order of listing, this
will do:

every word := genwordO do {
if not member(words, word) then {

write(word)
insert(words, word)
}

}
Thus, if a word is not in words, it is written and
inserted into words.

If you need to keep a list of words in order of
first occurrence, rather than just list them as they
occur, you can build a list, using Icon's capability
to put values on to the end of a list:

wordlist := [] # start empty

every word := genwordO do {
if not member(words, word) then {

put(wordlist, word)
insert(words, word)
}

}
When this is complete, wordlist contains all the
distinct words in order of first occurrence. A
listing then can be produced by

every write(lwordlist)

or wordlist can be used in any other way that is
needed.

There are many other things you can do with
sets. Some are simple, like forming the union and
intersection of two sets. For example,

all_words := words 1 ++ words2

creates a new set, all_words, that contains all the
words in words! and words2. Similarly,

common_words := wordsl ** words2

creates a new set, common_words, that contains
only the words that are in both wordsl and
words2.

In our examples, we've used words and hence
all the values in the sets are strings. Sets are more
versatile than this. Their values can be anything
— strings, integers, real numbers, even struc­
tures.

And a set can contain values of different types.
This allows sets to be used for purposes far afield
from keeping track of distinct words. But using
them in such ways is more complicated and we're
trying to restrict programming material in the
Newsletter to things that a novice Icon program­
mer can easily use. If you're interested in other
possible uses of sets, see pages 195-197 of The Icon
Programming Language.

Icon on the NEC 9801 PC
Gotoo Hitosi has informed us that MS-DOS

Icon as distributed by the Icon Project does not
run on the NEC 9801 personal computer, even
though the 9801 runs MS-DOS. The reason is that
the 9801 is not a PC clone, but has a totally
different architecture (including BIOS).

He suggests two solutions to the problem: (1)
use it with the SIM TSR, which is distributed by
major communications networks, such as PC-
VAN, or (2) recompile Icon from the source code
using a C compiler for the 9801.

Note: The MS-DOS executables distributed by
the Icon Project do work on PC clones. In fact, the
NEC 9801 is the only MS-DOS machine we know
of on which our executables do not work.

O N O A
\<S 2* ovo

Ordering Icon Material

Whafs Available

There are implementations of Icon for several
personal computers, as well as for CMS, MVS,
UNIX, and VMS. Note: Icon for personal comput­
ers requires at least 640KB of RAM; it requires
more on some systems. Source code for most
implementations is available.

There also is a program library that contains a
large collection of Icon programs and procedures,
as well as an object-oriented version of Icon that is
written in Icon.

Icon Program Material

Icon programs provided by the Icon Project are
in the public domain.

All program material is accompanied by docu­
mentation in printed and machine-readable form
that describes how to install and use Icon. This
documentation does not, however, describe the
Icon programming language in detail. A book is
available separately.

Personal Computers: Executable files and
source codes are provided in separate packages.
Source code for MS-DOS includes the Icon opti­
mizing compiler, configurations for several C
compilers, and also OS/2. Note: Personal com­
puter distributions are stored in compressed for­
mat, and most diskettes are nearly full. It there­
fore is necessary to have a second drive to extract
the material.

CMS and MVS: The CMS and MVS packages
contain executable files, source code, test pro­
grams, and the Icon program library.

UNIX: The UNIX package contains source code
tout not executable files), test programs, related
software, and the Icon program library. UNIX
Icon can be configured for most UNIX platforms.

VMS: The VMS package contains executable
files, source code, test programs, and the Icon
program library.

Update Subscriptions: Updates to the Icon
source code and the Icon program library are
available by subscription.

Source-code updates are distributed on MS-
DOS diskettes in LHarc format, and are suitable

for compilation under MS-DOS and OS/2 or for
porting to new computers. Each update normally
provides a completely new copy of the source. A
source-code subscription provides five updates.
Updates are issued about three times a year.

Icon program library updates are available for
MS-DOS, the Macintosh, and UNIX. A library
subscription provides four updates. Updates are
issued about four times a year.

Documentation

In addition to the installation guides and users'
manuals included with the program packages,
there are three books on Icon. One contains a
complete description of the language, another
describes the implementation of Icon in detail,
and a third is an introductory text designed pri­
marily for programmers in the Humanities.

There are two newsletters. The Icon Newsletter
contains news articles, reports from readers, in­
formation of topical interest, and so forth. It is free
and is sent automatically to anyone who places an
order for Icon material. There is a nominal charge
for back issues of the Newsletter.

Wqt (Scott JkrraliiBi contains material of a more
technical nature, including in-depth articles on
programming in Icon. There is a subscription
charge for the <Axml^st.

Payment

Payment should accompany orders and be made
by check, money order, or credit card (Visa,
MasterCard, or Discover). The minimum credit
card order is $15. Remittance must be in U.S.
dollars, payable to The University of Arizona, and
drawn on a bank with a branch in the United
States. Organizations that are unable to pre-pay
orders may send purchase orders, subject to ap­
proval, but there is a $5 charge for processing such
orders.

Prices

The prices quoted here are good until February
28,1993. After that, prices are subject to change
without further notice. Contact the Icon Project
for more current pricing information.

Versions

Version information is shown in
parentheses.The symbol +• identi­
fies recently released material.

Ordering Instructions

Media: The following symbols
are used to indicate different types
of media:

O 9-track magnetic tape
@S data cartridge
B 5.25" diskette
U 3.5" diskette

Tapes are written at 1600 bpi.
Cartridges are written in QIC-24
format. 5.25" diskettes are 360K.
3.5" diskettes are 720/800K un­
less otherwise noted.

Diskettes are written in MS-DOS
format except for the Amiga, the
Atari ST, and the Macintosh. When
ordering diskettes that are avail­
able in more than one size, specify
the size (the default is shown first).

In some cases, there are several
diskettes in a distribution.

Shipping Charges: The prices
listed include handling and ship­
ping by parcel post in the United
States, Canada, and Mexico. Ship­
ment to other countries is made
by air mail only, for which there
are additional charges as noted in
brackets following the prices. For
example, the notation $15 [$5]
means the item costs $15 and there
is a $5 shipping charge to coun­
tries other than the United States,
Canada, and Mexico. UPS and ex­
press delivery are available at cost
upon request.

Ordering Codes: When filling
out the order form, use the codes
given in the second column of the
list to the right (for example, DE,
SU,. . .) .

B
LJ1

u

u
u
a
B
u

o
o
B 2

o

Executables

Acorn Archimedes (8.0)

Amiga (8.0)
Atari ST (8.0)
MS-DOS (8.8)

MS-DOS 386/486 (8.8)

Macintosh (8.0)

Macintosh/MPW (8.8)

OS/2 (8.8)

Source
Amiga (8.0)
Atari ST (8.0)
MS-DOS & OS/2 (8.8)
Macintosh (8.0)
Macintosh/MPW (8.8)
MS-DOS updates (5)

Complete Systems

CMS (8.0)
MVS (8.0)
UNIX (8.7)
UNIX (8.7)

UNIX (8.7)

VMS (8.7)

Program Library
MS-DOS
Macintosh
UNIX
Macintosh updates (4)
MS-DOS updates (4)
UNIX updates (4)

Books
The Icon Programming Language
The Implementation of Icon + update
Icon Programming for Humanists + diskette HB

Newsletters
The IconHezusfetter (complete, 1-39)
The IconNezosfeturdoacV. issues, each)
tMp ,31am .ArtalrjBt (1 year, 6 issues)
%\r[t 3lcott ^nalrrst (back issues, each)

'400K.
21.44M.
3 Per order, regardless of the number
of issues purchased.

10

ARE

AME

ATE

DE * •

DE-386 +•

MET

MEM +•

OE * •

AMS

ATS

DS «•

MST

MSM * •

SU

CT

MT

UD

UT

UC

VT «•

DL

ML

UL

LU-M

LU-D

LU-U

orB

orU
orfl

orU

orU

o r B

B o r B
B
B o r B
B

B o r B

B 2

LB

IB

INC
INS
IA
IAS

$15 [$5]
$15 [$5]
$15 [$5]
$15 [$5]
$15 [$5]

$15 [$5]

$15 [$5]

$15 [$5]

$15 [$5]
$15 [$5]
$30 [$5]

$15 [$5]
$25 [$5]
$60 [$15]

$30 [$10]
$30 [$10]
$25 [$5]

$30 [$10]

$45 [$10]

$32 [$11]

$15 [$5]
$15 [$5]
$15 [$5]
$30 [$12]
$30 [$12]
$30 [$12]

$40 [$13]
$53 [$14]
$36 [$10]

$18 [$5]
$1 [$23]

$25 [$10]
$5 [$23]

name

address

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-8448 • Fax: (602) 621-4246

city

(country)

• check if this is a new address

state zipcode

telephone

qty. code description price shipping*

subtotal

Make checks payable to The University of Arizona s a l e s t a x (Ariz°na residents)
extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-order processing

t is 5% for all other residents of Arizona.
other charges

D Visa D MasterCard • Discover • check or money order total

total

I hereby authorize the billing of the above order to my credit card: ($15 minimum)

card number exp. date

name on card (please print)

signature

(MostwGordh

'Shipping charges apply only to addresses outside the United States, Canada, and Mexico
O H O * *

u

