
TTte Icon9{ezvsCeUer
No. 36 - July 1,1991

For New Readers
If this is the first issue of the Tjezvsfetter that you've

received, we'd like to welcome you to our readership,
which now numbers more than 5,100.

If you're new to Icon, coming in at Issue 36 of the
'Hezosfetter may be a bit bewildering. If you find this
issue interesting, you can get back issues at a nominal
cost. See the order form at the end of this 'tfg.zusfetter.

If this is your first issue of the Newsletter and you
didn't ask for it, you may wonder why you got it.
Perhaps a friend told us you might be interested. Or
maybe you inquired about a commercial version of
Icon or SNOBOL4. Of course, if you're not interested,
we'll be glad to remove your name from our mailing
list.

If what's here looks interesting, but you know little
or nothing about Icon, we'll be glad to send you a short
technical report that describes the main features of
Icon. Just ask for the "Icon Overview". You can reach
us by telephone, postal mail, electronic mail, or fax as
listed in the publication box on page 7.

The Icon Compiler
In previous Newsletters we've mentioned progress

on Ken Walker's implementation of an optimizing
compiler for Icon. This compiler is now running on a
variety of UNIX platforms and work is under way on
porting it to other operating systems.

Advantages of the Compiler

The main advantage of the Icon compiler is faster
execution of Icon programs than with the interpreter.
The increase in execution speed varies considerably

from program to program. A factor of about three
seems typical, but users have reported factors up to 10.

Another advantage of the Icon compiler is that it
produces "stand-alone" executable files. These execut­
able files do not need the separate run-time system that
interpreter files do.

Compiled programs also generally require less
memory during program execution than interpreted
one, since an executable file produced by the compiler
only includes the run-time routines the program needs,
while the interpreter includes the entire run-time sys­
tem (including the interpreter proper).

Since the Icon compiler generates C code, it's also
relatively portable.

Disadvantages of the Compiler

The main disadvantage of the Icon compiler, com­
pared to the interpreter, is the time required for com­
pilation. With the interpreter, a program gets into
execution quickly, since no real code is generated, no
optimizations are done, and no linking of run-time
routines is required. The compiler, on the other hand,
does extensive analysis of the source program in order
to optimize the executable code. For most programs,
the Icon compiler itself is reasonably fast. But it pro­
duces C code, which then must be compiled and linked
to form the executable file. This can be a time-consum­
ing process.

The Icon compiler requires a substantial amount of
memory — so much so that it probably will not run on
MS-DOS platforms without extended memory.

The generation of C code by the Icon compiler is a
disadvantage as well as an advantage. It's necessary to
have a C compiler to use the Icon compiler. This is not
a problem for most UNIX users, since C usually is
bundled with the UNIX operating system. The need
for a C compiler (and a robust one) may be a problem
on some other operating systems and for some per­
sonal computer and workstation UNIX platforms.

Using the Icon Compiler

Using the Icon compiler is very similar to using the
Icon interpreter. The Icon compiler supports almost all

of the features of that the interpreter does, although
some esoteric features like string invocation have to be
specified with a command-line option. Such features
also may defeat compiler optimizations and adversely
affect program running speed.

The Icon compiler supports linking, but by inclusion
of the source code rather than pre-compiled modules.

The main features the compiler does not support at
present are error conversion and large-integer arith­
metic.

Getting the Icon Compiler

A preliminary version of the Icon compiler is avail­
able via FTP network transfer. It is available both in
source form and in executable form for several UNIX
platforms. See the article on page 4 about getting Icon
material via FTP.

The compiler is only available via FTP at the present
time. We plan to have a distribution on magnetic tape
ready later this year.

Looking Ahead

As indicated above, the Icon compiler presently only
runs on UNIX platforms. It should run on almost any
UNIX platform on which the Icon interpreter runs,
although building the compiler on a new platform
takes a bit of work.

We expect porting the compiler to VMS to be rela­
tively straightforward, and we plan to attempt that
this fall. Porting to 370 mainframe platforms will be
more difficult, but should be feasible.

The Icon compiler probably will not run on most
personal computers because of the amount of memory
it requires. However, it's possible to cross-compile,
generating C code on some platform for use on an­
other. We'll be exploring this and other possibilities.

As with any optimizing compiler, there are lots of
things that could be done to produce faster code. We
have a rather long list...

Icon News Group
It's been a while since we've mentioned our elec­

tronic news group in this 9\tjezi>sfetter. Since we have
many new subscribers, we think it's time to point out
that those of you who have Internet access can partici­
pate electronically in discussions and the exchange of
information about Icon.

The news group is like electronic mail, except that
mail is automatically distributed to all subscribers to
the group.

The news group's address is

icon-group@cs.arizona.edu

To subscribe (or unsubscribe), send your request to:

icon-group-request@cs.arizona.edu
(not to icon-group).

Please remember that mail to icon-groupisredistrib-
uted to many persons. If s not the place to send per­
sonal mail or requests for specific information about
Icon. Use

icon-project@cs.arizona.edu

for that.

%\\t ,3lcan <Analrjat

The ̂ nalgat has completed its first year of publica­
tion and is starting into its second. The first six issues
included 23 articles, ranging in length from one to five
pages, plus programming tips and short notes.

We plan to keep the same format and publication
schedule for the upcoming year — a 12-page newslet­
ter every two months. Articles planned include ones
on string synthesis, variant translators, result se­
quences, procedure libraries, understanding expres­
sion evaluation, writing efficient programs, getting
started with Prolcon, program visualization, a series
on the Icon optimizing compiler, and several more.

If you don't subscribe to the jAnatgst but are inter­
ested, we'll send you a free sample copy on request. If
you're placing an order for other Icon material, just
make a note on your order form. Or contact us as listed
in the publication box on page 7.

Back issues of the ̂ Analgat are available while sup­
plies last. See the order form at the end of this "Hizosfet-
ter.

vCrV

mailto:icon-group@cs.arizona.edu
mailto:icon-group-request@cs.arizona.edu
mailto:icon-project@cs.arizona.edu

shrub

X-Window Facilities for Icon
Recent research in the Icon Project has focused on

program visualization: the presentation of images de­
picting program behavior.

Naturally, we wanted to use Icon to develop our
visualization tools. Such tools are experimental and
problematical in nature, and Icon has proved to be an
excellent prototyping language. And we admit to a
certain bias. But Icon has no graphic capabilities.

Clint Jef fery decided to rectify this deficiency in Icon.
The result is an experimental extension to Icon that
provides access to
many of the capa­
bilities of X Win­
dows.

You might ask
"Why X Windows?
Why not Microsoft
Windows or the
Macintosh?" Well,
X has the capabili­
ties we need, it is
widely available,
especially on UNIX
platforms that we
use for program de­
velopment, and it's
not much worse
than most other
graphics/ window
systems. (The nega­
tive tone here is in­
tentional. All pres­
ently available
graphic/window
systems have prob­
lems and all are
hard to program.)

The X facilities
that we've added to
Icon (we call the result X-Icon) are cast in terms of the
low-level Xlib routines, not the higher-level X toolkits.
The facilities don't match Xlib exactly; we've taken
advantage of features of Icon such as generators and
variable-length argument lists. X-Icon also automati­
cally handles refreshing the contents of windows.

Although X-Icon does not support all the functional­
ity of Xlib (which has hundreds of routines), X-Icon
does provide what's needed for most graphic applica­
tions:

• Text fonts: write() and writes() can employ fonts
with arbitrary typefaces and sizes, including propor­
tional-width faces.

a

shoygrapK)

aygraph)

{fullnunbemodes)

• Raw keyboard input: Keystrokes can be retrieved as
they occur, instead of waiting for the user to press the
enter key.

• Mouse input: The mouse interface allows programs
to use menus, text selection, and other graphical screen
entities.

• Graphics: Points, lines, arcs, smooth curves, and
polygons can be freely intermixed along with text.

• Colors: Color can be used to enhance the presenta­
tion of both text and graphics. The color map can be
changed dynamically if the hardware allows this.

Most window system interfaces use an event -driven
model, in which
events such as
mouse clicks are
handled at every
instant by the pro­
gram. In X-Icon,
this event-driven
model is optional
— if s quite pos­
sible to write in­
teresting and use­
ful graphic appli­
cations in X-Icon
using very ordi­
n a r y - l o o k i n g
code.

X-Icon also does
not enforce any
particular look-
and-feel. Indi­
vidual programs
or collections of
programs, how­
ever, can provide
a consistent look-
and-feel.

It turns out to
be quite easy to
program many

graphic applications in X-Icon. And, as is typical of
Icon, programs are short. A program that you'd think
should require 100 lines of code can be done in 100
lines, not 10 times that many, as is typical of C.

We're just beginning to use X-Icon. Some applica­
tions so far are:

• An "etch-a-sketch" program that allows two users
to write on the same screen using their mice.

• A "colorizing" text browser.

• A bit map editor.

• Several tools for visualizing the execution of Icon

nuwbemodes)

cowputeuidth)

ccmputcwaxchilcD

r wnJflf &r aph j

programs, including procedure activation trees, pro­
cedure call graphs, program histograms, and the inter­
nal structures of lists.

A snapshot of the visualization of the call graph of an
Icon program is shown above. A "caterpillar" crawls
along call paths between procedures, turning from
black on call to red on return. The speed with which the
caterpillar moves can be controlled by the person
viewing the visualization. The user also can rearrange
the procedure nodes to get a better layout than is
provided automatically.

Whaf s shown here doesn't really convey the full
nature of the visualization — if s just a black-and-
white snapshot of a color animation. We're working on
videos, but that's a bit in the future yet.

X-Icon is still somewhat experimental and if s not yet
available for distribution. We are considering includ­
ing the X-Icon extensions as part of a combined release
of the Icon compiler and interpreter for UNIX.

A technical report describing X-Icon is available free
of charge with any order of Icon material of $15 or
more. Just ask for the X-Icon report. Or you can pur­
chase a copy of the report separately for $2, which
includes the cost of mailing.

Getting Icon Material Via FTP
If you have access to FTP, that is by far the fastest and

most reliable way to get Icon material.

FTP to cs.arizona.edu. When you are asked to log in,
enter anonymous. When you are asked for a password,
enter any non-empty string. Then

cd /icon

Downloading

Start by getting a guide to whaf s available:

get READ.ME

Look through READ.ME to see what to do next and for
information about downloading.

There are several subdirectories in /icon:

• compiler: program material related to the new
optimizing compiler for Icon.

• contrib: user-contributed material.

• doc: documentation.

• interpr: program material related to the Icon
interpreter.

• library: Icon program library material.

• misc: Odds and ends that don't fit any other
category.

• newsgrp: Archived electronic mail from the Icon
newsgroup.

• tools: Programs useful for processing program
material.

The subdirectory compiler has two subdirectories:
packages and source. The subdirectory packages con­
tains pre-packaged versions of the Icon compiler for
several UNIX platforms. These packages are in object-
code format, so that they can be installed at user-
specified locations. As the name implies, source con­
tains source code for the Icon compiler. At present it's
available only for UNIX platforms.

The documentation in docs generally comes in two
forms: for printing on PostScript devices and for listing
on monospaced devices, such as computer terminals
and line printers.

In some cases, documents contain figures and dia­
grams that do not lend themselves to printing on
monospaced devices. For such documents, only
PostScript is available.

Uploading
You also can upload material and deposit it on our

system. Just

cd /incoming

and put the files you want to upload.

If you upload files to our system, send electronic
mail to icon-project@cs.arizona.edu so that we'll know
the material is there and can copy it to another area
before it's automatically deleted after five days.

File Transfer

File transfer via FTP usually goes well, but occasion­
ally there are problems. These usually can be traced to
transfer in the wrong mode. If you're transferring a
"binary" file, such as an archived package, be sure to
put FTP in image (binary) mode before the transfer.

Different versions of FTP vary in the command to do
this. Try image or binary; you'll get a message that tells
you if you've accomplished what you wanted. For text
files, on the other hand, use the ASCII mode. Try ascii
or text.

http://cs.arizona.edu
mailto:icon-project@cs.arizona.edu

ICEBOL5
The Fifth International Conference on Symbolic and

Logical Computing was held at Dakota State University
on April 18-19,1991.

The conference, organized by Eric Johnson, was held
in the Karl E. Mundt Library, which has excellent
facilities for small conferences. Digital Equipment
Corporation provided financial assistance for the con­
ference.

About 50 persons attended. As is typical for this
conference, a wide range of interests and backgrounds
was represented—from computing in the Humanities
to programming language design and implementa­
tion.

The talks covered a similar range of interests. Several
programming languages were featured, including Icon,

i.

i

' 4 • 3t

Prolog, Rexx, and SNOBOL4. Of the 20 papers, seven
related directly to Icon:

• "Digitized Voice Management with Icon" by Jerry
Nowlin and Rick Fonorow, AT&T Bell Labs and Iconic
Software, Inc.

• "Making Reason out of Rhyme", Phillip Thomas,
Borneo Literary and Historical Manuscript Project.

• "Database Tools for Navajo Lexicography", Kip
Canfield, University of Maryland.

• "An Optimizing Compiler for Icon" by Ken Walker
and Ralph Griswold, The University of Arizona.

• "X-Icon: An Icon Windows Interface" by Clint
Jeffery and Ralph Griswold, The University of Ari­

zona.
• "An Icon Program to Assist Writing for the Re-

Abled", Marilyn Mantel-Guss, Goodwill Industries.

• "Icon String Scanning for Parsing Chemical For­
mulas and Equations" by Robert Freemen, Oklahoma
State University.

I c o n i c
Software,
Inc. also
d e m o n ­
s t r a t e d
their voice
m a n a g e ­
ment prod­
ucts, which
have been
developed
using tools
written in
Icon.

Copies of
the confer­
ence pro­
c e e d i n g s
are $35,
pos tpa id ,
and may be
o r d e r e d
from:

ICEBOL Proceedings
114 Beadle Hall
Dakota State University
Madison, South Dakota 57042-1799

Icon from ISI
Iconic Software, Inc. provides this information about one

of their upcoming products:

ISIcon Does Modules

ISI's Icon implementation for UNIX systems will
support module level scoping. The 386 version will be
available before the end of the year. This new level of
variable scoping falls between global and local, and
should make Icon more attractive for large program­
ming projects.

Modules were originally conceived as a means for
solving the difficult problem of separate compilation
in the ISI Icon Compiler, and while it is true that a
module will be the "unif' that can be compiled sepa­
rately, this extra scoping level is proving to be an
intriguing and a valuable addition to the Icon lan­
guage.

Prior to modules, global variables were known "ev­
erywhere", and this could cause name conflicts and
associated program malfunctions, especially when an
undeclared local variable had the same name as the
global variable.

Modules help solve this problem, since names can
now be known among associated procedures that
make up the module, and nowhere else. It is now
possible to protect Icon code in ucode libraries so that
an undeclared local variable will not unintentionally
reference a global variable used in the library.

The beauty in ISIcon modules is that they are com­
pletely upward compatible with Version 8.0. Anyone
writing the standard "one-shot" Icon program won't
have to worry about modules. They shouldn't even
notice them. However, any programming effort that
requires the use of ucode libraries, or coordination
among several software developers will find module-
level scoping a valuable asset.

Modules have the form

module identifier
declarations

end

The declarations include import, export, and local.
Modules can contain procedure and record declara­
tions, which can be either local (by default) or ex­
ported. An import declaration is of the form

import import-list

Items in an import list are separated by commas and
are either identifiers or identifiers followed by paren­
theses to indicate an imported procedure. These are

variables and procedures that must be supplied by
something outside the module. Built-in functions can
be imported but it is not necessary. An example is:

import van, proc1(), proc2()

There are two kinds of export declarations. One is a
list of variables following the word export, and the
other is either a procedure or record declaration fol­
lowing the word export. These items are added to the
program's global name space, but are read-only out­
side the module. (Read-write variables can be declared
global outside the module and imported). Examples
are:

export x, y

export procedure foo()

end

Local identifiers have a global lifetime (because
modules have a global lifetime), but are not visible
outside the module. Local identifiers include those
declared with local, and procedures and records de­
clared without export. Examples are:

local a, b

procedure bar()

end
For more information on the availability of ISIcon,

contact Iconic Software, Inc. by electronic mail at

uunetlisidevlisi

or write to:

Iconic Software, Inc.
318 North Center Street
Piano, IL 60545

ISI

Programming Corner
Lots of interesting things
come across our "elec­
tronic desk". Here's an
exchange that dates
back to 1987 that
we've just unearthed.
It's a bit on the bizarre
side, but you may find
it worth a chuckle.

Steve Wampler: I suspect
you've seen this kind of

thing before, but if s the first time a student has come
up with it. After talking about lists, stacks, and queues,
I gave as part of an assignment the problem of writing
a file out with the lines displayed last-to-first. One
student wrote:

procedure main()
if line := read() then {

main()
write (line)
}

end

Oh well . . .

Ken Walker: This can of course be written more com­
pactly:

procedure main()
write(read(), main())
return

end

By the way, didn't something like this come up before?

Dave Gudeman: How about a more Icon-like solution:

procedure main()
write(read(), main() |"")

end

Steve Wampler: Compare these two programs:

procedure main()
(write(read(), main()))
return

end
procedure main()

(write(read()), main())
return

end
(The returns aren't really needed, but one of them
would have to be modified slightly to work properly
— destroying the similarity.)

On a saner note, Steve Wampler also contributes the
following procedure:

sleep (restlessly) for n seconds

procedure sleep(n)
local start
start := &time
while &time < start + n * 1000
return

end
He comments "The nice thing about it is that it can
'sleep' for fractions of a second — sleep(0.5) sleeps for
half a second". Note that this depends on adequate
clock resolution.

ihe Icon 0\[ewsCetter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon 9*feu>sfetter is published three times a
year, at no cost to subscribers. To subscribe,
contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-8448

fax: (602)621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

ThE UNIVERSITY OF

«

ARIZONA
TUCSON ARIZONA

and

H The Bright Forest Company
I I Tucson Arizona

) 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

mailto:icon-project@cs.arizona.edu

From Our Mail
You have been so kind to con
tinue to keep me on your Icon
Newsletter list that I feel I
should reciprocate with
some old-time stories when
the occasion presents it­
self. "Saddle stitching" on
page 7 of No. 34 is such an
occasion.

When a car turns, thewheels on the insideofthe turn should
be turned more sharply than those on the outside since they
must follow a smaller turning circle. This is relatively
unimportant if the tires are steel as on a wagon, since the
slippage is moreorless not noticed. But the different amount
of turn for the inside and the outside wheels is very impor­
tant if the tires are rubber and resist slipping.

Near the turn of the century two Yankee brothers named
Sheldon invented and patented a lever system for wagons
that provided this differential turning. It was just at the
beginning of the Automobile Revolution and all automobile
manufacturers had to pay them for their patent. They were
devoted to inventing and one of the pair decided to invent a
machine that would do saddle stitching, then (and perhaps
now) done only by hand. He retired to a barn for a year and
came out with his invention only to discover that in the
meantime stapling had been invented and there was no
market for his machine.

All this is told by the other brother, or a descendant, in a
stapled pamphlet called " Unscrewing the Inscrutable", which
is somewhere on my shelves. The story is my personal
reminder that successful inventions and innovations must
be more than clever; they must be needed. I have been
involved in several clever enterprises that did not meet this
last criteria.

I started this letter with the intention of amusing you with
anoldtimestory.Iseenowthatitcouldbereadasacomment
onlcon.l donotsomeanit.Hasmy sub-conscious takenover
my word processor?

Yours,

Eric A. Weiss.

Amazing! Thank you for passing this along to

Pleasesendmesourceforthelconprogramminglanguageto
my e-mail address at the head of this message. If it's too big
for one message, please break it up into smaller pieces.

Electronic mail is fine for messages and for sending
small files, but it's impractical for sending large and
complex programs. The source for Icon is too large to
send by electronic mail. Just the code alone, not allow­
ing for all the scripts and programs that are needed to
compile and test it, amounts to about 1.4MB and
consists of about 4,800 lines. It's also organized in a
hierarchy thaf s not easy to package for flat file trans­
fer.

us.

Finally, we're willing to make Icon freely available for
interested persons to pick up from our RBBS or by FTP.
We also provide physical copies for a nominal charge.
But we don't have the resources to initiate file transfers
or handle special requests.

SNOBOL4 Corner
Catspaw, Inc., has en­

hanced itsSPITBOL-386 prod­
uct to be compatible with the
new 32-bit DOS Protected
Mode Interface (DPMI) stan­
dard now becoming popular.

Formerly, SPITBOL-386has
included a DOS Extender fromPharLap
Software that permitted 32-bit SPITBOL to use all
available memory on 80386 and 80486 MS-DOS sys­
tems. This DOS Extender was compatible with native
DOS and with expanded memory managers imple­
menting the Virtual Control Program Interface (VCPI).
It was not compatible with Microsoft Windows En­
hanced mode, and licensing restrictions prevented the
generation and free distribution of EXE files.

SPITBOL-386'snewDPMI-compliant DOS Extender
allows it to run both on native MS-DOS systems and
under environments such as Windows Enhanced mode
thatsupportDPMI.UsingthisDOSExtender,SPrrBOL-
386 now can generate stand-alone, royalty-free execut­
able files. In addition, a built-in virtual memory man­
ager enlarges SPITBOL's workspace to 4 gigabytes,
limited only by free disk space.

SPITBOL-386 now includes both VCPI- and DPMI-
compliant versions, allowing users to select the sys­
tems appropriate for their operating system environ­
ments.

Contact Catspaw, Inc. for pricing and upgradeinfor-
mation:

Catspaw, Inc.
P.O. Box 1123
Salida, CO 81201

voice: 719-539-3884
fax: 719-539-4716

©
Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602)621-2283

FTP: cs.arizona.edu (cd /icon)

http://cs.arizona.edu

Ordering Icon Material

What's Available

There are implementations of Icon for several per­
sonal computers, as well as for CMS, MVS, UNIX, and
VMS. Source code for all implementations is available.
Program material is accompanied by installation in­
structions and users' manuals in printed and machine-
readable form.

There also is a program library that contains a large
collection of Icon programs and procedures, as well as
an object-oriented version of Icon that is written in
Icon.

In addition to users manuals that are included with
program material, there are three books and two news­
letters about Icon.

Icon Program Material

The current version of Icon is 8. All the program
material here is for Version 8.

All program material is in the public domain except
the MS-DOS/386 implementation of Icon, which is a
commercial product that carries a standard software
license.

Personal Computers: Executables, source code, and
the Icon program library for personal computers are
provided in separate packages. Each package contains
documentation in printed and machine-readable form.
Note: Icon for personal computers requires at least
640KB of RAM; it requires more on some systems.

CMS and MVS: The CMS and MVS packages con­
tain executables, source code, test programs, the Icon
program library, and documentation in printed and
machine-readable form.

UNIX: The UNIX package contains source code but
not executables, test programs, related software, the
Icon program library, and documentation in printed
and machine-readable form. UNIX Icon can be config­
ured for most UNIX systems. Note: executables for Xenix
and the UNIX PC are available separately.

VMS: The VMS package contains object code, ex­
ecutables, source code, test programs, the Icon pro­
gram library, and documentation in printed and ma­
chine-readable form.

Porting: Icon source code for porting to other com­
puters is distributed on MS-DOS format diskettes.
There are two versions, one with a flat file system and
one with a hierarchical file system.

Update Subscriptions: Updates to the Icon source
code and the Icon program library are available by
subscription.

Source-code updates are distributed on MS-DOS
diskettes in ARC format for hierarchical file systems,
and are suitable for compilation under MS-DOS or for
porting to new computers. Each update usually pro­
vides a completely new copy of the source. A source-
code subscription provides five updates. Updates are
issued about three times a year.

Icon program library updates are distributed on MS-
DOS diskettes in plain ASCII format. A library sub­
scription provides four updates. Updates are issued
about three times a year.

Documentation

In addition to the installation guides and users'
manuals included with the program packages, there
are three books on Icon. One contains a complete
description of the language, the second describes the
implementation of Icon in detail, and the third is an
introductory text designed primarily for programmers
in the Humanities.

There are two newsletters. The Icon Hs-zusfetter con­
tains news articles, reports from readers, information
of topical interest, and so forth. It is free, and is sent
automatically to anyone who places an order for Icon
material. There is a nominal charge for back issues of
the 0\[ezi)sfetter.

I&ty (Slcon (Analgat contains material of a more tech­
nical nature, including in-depth articles on program­
ming in Icon. There is a subscription charge for the
jAnalgst.

Payment

Payment should accompany orders and be made by
check, money order, or credit card (Visa or Master­
Card). The minimum credit card order is $15. Remit­
tance must be in U.S. dollars, payable to The University
of Arizona, and drawn on a bank with a branch in the
United States. Organizations that areunable to pre-pay
orders may send purchase orders, subject to approval,
but there is a $5 charge for processing such orders.

Prices
The prices quoted here are good

until August 1,1991. After that, prices
are subject to change without further
notice. Contact the Icon Project for
more current pricing information.

Ordering Instructions

Media: The following symbols are
used to indicate different types of
media:

O 9-track magnetic tape

[£9 DC 300 XL/ P cartridge
B 360K 5.25" diskette
y 400K 3.5" diskette
L J 800K 3.5" diskette

All cartridges are written in raw
mode. All diskettes are written in
MS-DOS format except for the Amiga,
the Atari ST, and the Macintosh.

CMS and MVS tapes are available
onlyat 1600 bpi. Whenordering UNIX
or VMS tapes, specify 1600 or 6250
bpi (1600 bpi is the default). When
ordering diskettes that are available
in more than one size, specify the size
(5.25" is the default).

Shipping Charges: The prices
listed include handling and shipping
by parcel post in the United States,
Canada, and Mexico. Shipment to
other countries is made by air mail
only, for which there are additional
charges as noted in brackets follow­
ing the price. For example, the nota­
tion $15 [$5] means the item costs $15
and there is a $5 shipping charge to
countriesother than the United States,
Canada, and Mexico. UPS and ex­
press delivery are available at cost
upon request.

Ordering Codes: When filling out
the order form, use the codes given in
the second column of the list to the
right (for example, AME, ATE,...).

Icon Executables

Amiga
Atari ST
MS-DOS
MS-DOS/386
Macintosh (MPW)
OS/2
UNIX PC
Xenix
Xenix/386

Icon Source

Amiga
Atari ST
MS-DOS and OS/2
Macintosh (MPW)
Porting (flat, ASCII)
Porting (hier., ARC)
Source Updates (5)

AME
ATE
DE
DE-386
ME
OE
UE
XE
XE-386

AMS
ATS
DS
MS
PFS
PHS
SU

Icon Program Library

Amiga
Atari ST
MS-DOS and OS/2
Macintosh (MPW)
Porting (ASCII)
UNIX (cpio)
Library Updates (4)

Complete Systems

CMS
MVS
UNIX (cpio)
UNIX (cpio)
UNIX (cpio)
UNIX (tar)
UNIX (tar)
VMS

Books

AML
ATL
DL
ML
PL
UL
LU

CT
MT
UT-C
UC-C
UD
UT-T
UC-T
VT

The Icon Programming Language (2nd ed.)
The Implementation of Icon + update
Icon Programming for Humanists + disk

Newsletters

u
y
B (2) or
B o r H
y
HorU
HorU
B (2) or
HorU

u
y
H (2) or
y
fl (5) or
H (2) or
H (2) or

U
y
HorU
y
H (2) or
H (2) or
HorU

0
0
0

@g
H (9) or

O

m
0

LB
IB
HB

The Icon tyzosfetter(a\\ back issues, 1-35) INC
The Icon tyzvsfetter (single issues, each)
•airie^lcnn^natgeta year, 6 issues)
"uTrje ,31 con ^nalget (single issues, each)

INS
IA
IAS

y

u

y

H(2)
y
y

y
y

U(4)

$15
$15
$20
$25
$15
$15
$15
$15
$15

$15
$15
$20
$15
$40
$20
$50

$15
$15
$15
$15
$15
$15
$30

$30
$30
$30
$45
$40
$30
$45
$30

$34
$50
$30

$15

$1
$25
$5

[$5]
[$5]
[$5]
[$5]
[$5]
[$5]
[$5]
[$5]
[$5]

[$5]
[$5]
[$5]
[$5]
[$8]
[$5]

[$15]

[$5]
[$5]
[$5]
[$5]
[$5]
[$5]

[$12]

[$10]
[$10]
[$10]
[$10]
[$8]

[$10]
[$10]
[$10]

[$13]
[$14]
[$10]

[$5]
[$2*]
[$10]
[$2*]

Per order, regardless of the number of issues purchased.

10

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-8448 • Fax: (602) 621-4246

name
address

city

(country)

O check if this is a new address

state zipcode

telephone

qty. code description price shipping*

subtotal

Make checks payable to The University of Arizona s a l e s t a x (Arizona residents)
extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-Order processing

It is 5% for all other residents of Arizona.
other charges

Payment • Visa • MasterCard 0 check or money order total

total

I hereby authorize the billing of the above order to my credit card: ($15 minimum)

card number exp. date

name on card (please print)

signature

'Shipping charges apply only to addresses outside the United States, Canada, and Mexico

11

