
TTte Icon 0\[czvsCctter
No. 33 - May 15,1990

Version 8 of Icon is Here!
Version 8 of Icon is complete, and implementations

are available for most systems on which previous
versions of Icon run. The new version includes both
new features and improvements in the implementa­
tion. There's also a new Icon program library and a
second edition of the Icon book describing Version 8.

New Language Features

Version 8 of Icon includes a set of functions for
mathematical computations. These have been an op­
tional "extra" in some previous versions of Icon. Now
they are available in all implementations.

Functions for keyboard input and output also are
included. These functions are available for most per­
sonal computer implementations of Version 8, but not
for UNIX, VMS, or IBM 370 systems.

There also is a function that generates the keys from
a table, and functions for getting the string name of a
variable and vice versa.

Version 8 has a form of invocation that allows a
function or procedure to be applied to an Icon list so
that the number of arguments for invocation can be
determined when a program runs.

Version 8 also supports arithmetic on "large" inte­
gers that are not limited in magnitude. Since this
feature significantly increases the size of Icon's run­
time system, it is not included for some personal
computer implementations of Version 8.

Icon structures (lists, set, tables, and records) are
now serialized, and different instances of structures
can be identified.

Version 8 includes facilities for calling C functions

from Icon programs, and vice versa. Calling can even
be recursive. The calling interface is primitive. Persons
who use it must provide for data conversion between
Icon and C formats.

Implementation Changes

Structures in Version 8 are somewhat smaller than in
previous versions of Icon. This will be of particular
help to persons who manipulate large sets and tables
on personal computer systems with limited memory.

Dynamic hashing techniques now are used for sets
and tables (see Icon tyzosktter 31 for a discussion of
dynamic hashing). This change greatly improves look­
up speed for large sets and tables.

And, of course, a variety of bugs have been fixed.

Memory Monitoring

The implementation of Version 8 of Icon is instru­
mented so that a history of storage management —
allocation and garbage collection — can be written to
a file during program execution. This file can be proc­
essed to summarize or display relevant information
about storage management.

Available Implementations

Most implementations of Icon have been upgraded
to Version 8. See the order form at the end of this CSfezvs -
fetter.

The UNIX implementation of Version 8 adds sup­
port for several systems, including the Sun Sparcsta-
tion, the DecStation, the NeXT, the DG AViiON, and
the Cray-2.

There's one casualty: the huge-memory model
implementation of Icon for MS-DOS. Early versions of
Lattice C supported this model in a very general way.
The resulting code, however, was very slow. Recent
versions of Lattice C have improved the performance
of generated code at the expense of making the huge
memory model more difficult to configure. To date,
we've not been able to get the huge memory model i m-
plementation of Icon to work under Lattice C (or under
any other MS-DOS C compiler). The problems may
well lie in our code, but whatever the reason, Version

8 of Icon is now available only for the large memory
model and hence its allocated data regions are limited
to 65K. Two versions of the Icon executor are included
for MS-DOS. One supports large-integer arithmetic
while the other does not. The two versions are pro­
vided because large-integer arithmetic increases the
size of the executor so much that it may not run on
systems with limited memory.

The Icon Program Library
Version 8 of the Icon program library has many new

programs and collections of procedures. It also in­
cludes Idol, an object-oriented version of Icon (written
in Idol). See Icon9^fu>sfetter32 for a description of Idol.

Thank You!

Many persons have helped with Version 8 of Icon
and its implementation. We're pleased to express our
appreciation for major contributions by Bob Alexan­
der, Alan Beale, Mark Emmer, Ronald Horence, Clint
Jeffery, Daniel Kopetzky, Sandra Miller, Chris Smith,
Gregg Townsend, and Cheyenne Wills—as well as to
the many other persons who made suggestions, found
bugs, and just plain provided encouragement.

Books, Books

Second Edition of the Icon Language Book

The second edition of the Icon language book, which
describes Version 8 of Icon, is now available:

77ie Icon Programming Language, second edi­
tion, Ralph E. Griswold and Madge T. Griswold,
Prentice Hall, 1990.367 pages, $29.95. ISBN 0-
13-447889^1.

The new edition is organized so that the interesting
and important aspects of Icon are presented first. For
example, generators are described in Chapter 2 and
string scanning is described in Chapter 3. This organi­
zation gets to the "meat" of Icon right at the beginning,
encourages good Icon programming style, and simpli­
fies many of the programming examples. It also makes
it easier for persons teaching Icon to cover the impor­
tant points in a short period of time. For a complete list
of the contents, see the box on page 3.

The second edition includes more material on run­
ning Icon programs, provides more reference mate­
rial, has more exercises (and some harder ones), and
also includes several examples of large, complete
programs.

You can order the second edition of the Icon lan­
guage book from the Icon Project or any full-service
bookstore. See the order form at the end of this tyzos-
fetter.

Another Icon Book

There's another new book on Icon:

Icon Programming for Humanists, Alan D. Corre,
Prentice Hall, 1990.157 pages, $26.80, ISBN 0-
13^50180-2.

This book is designed for persons with little pro­
gramming experience and emphasizes programming
in the Humanities. Many examples are drawn from
statistics. For a complete list of the contents, see the box
on page 5.

An MS-DOS diskette with program material is in­
cluded with the book.

You can order this book from the Icon Project or any
full-service bookstore.

T/te Icon9{eTVsCetter

Madge T. Griswold and Ralph E. Griswold
Editors

1IU Icon T^zvsfetter is published three times a
year, at no cost to subscribers. To subscribe, con­
tact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-2018

FAX: (602)621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

.. .{uunet,allegra,noao} larizonalicon-project

© 1990 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.
THE UNIVERSITY OF

ARIZONA
TUCSON ARIZONA

mailto:icon-project@cs.arizona.edu

Newsletter Change — Important
The number of subscribers to Ihe Icon tyivsfttter

now exceeds 4,300. Since subscriptions are free, the
publication of eIfu Icon tyivsktUrhas become a sub­
stantial financial problem for the Icon Project.

Past surveys have indicated that while many sub­
scribers are willing to pay a modest amount for a
subscription, putting the tiffu/sfetteron a paying basis
would cut off the flow of information about Icon to
many persons who are interested but who are unable
or unwilling to pay a subscription fee.

We could reduce the size of our subscription list by
requiring present subscribers to confirm their interest.
This would eliminate most of the persons with a mar­
ginal interest in Icon, but when we've done this in the
past we've also lost many subscribers who really are
interested in Icon, but who, for one reason or another,
failed to return the confirmation form.

We've decided to try a different approach to solving
this problem. We will shift the content of The Icon
tyivstetter toward news and matters of topical inter­
est, such as contributions from readers and reports of
work in progress. We also will reduce its frequency of
publication.

At the same time, we will start a new newsletter on
a paid-subscription basis. This newsletter will focus on
technical matters such as programming techniques
and in-depth analyses of specific topics related to Icon.
It will contain material of interest to all Icon program­
mers from novice to expert.

The new newsletter, called 'Erje ,3lcon ,AnaIgBt, will
be published six times a year and consist of 12 pages
per issue (the same as The Icon tyxvsUtter). The first
issue will appear in August.

A one-year subscription to f&\\t Qtan (Analyst is $25
in the United States, Canada, and Mexico and $35 else­
where. These prices include first-class mail (air mail
overseas).

If you are really interested in Icon and especially if
you program in Icon, we encourage you to subscribe to
tEi\e {Stan (Analyst. See the last item on the order form
on page 10.

^ ^ -

[iflijpnflijpgfcBnflgifljPiii

The Icon Programming Language,
Second Edition

Ralph E. Griswold and Madge T. Griswold,
Prentice Hall, 1990.367 pages. $29.95. ISBN 0-13-
447889^1.
Chapters:

1. Getting Started
2. Expressions
3. String Scanning
4. Csets and Strings
5. Arithmetic and Bit Operations
6. Structures
7. Expression Evaluation
8. Procedures and Variables
9. Co-Expressions

10. Data Types
11. Input and Output
12. Running an Icon Program
13. Programming with Generators
14. String Scanning and Pattern Matching
15. Using Structures
16. Mappings and Labelings
17. Programming with Strings and

Structures

Appendices:
Syntax
Characters
Reference Manual
Error Messages
Implementation Differences
Sample Programs
Solutions to Selected Exercises

References

Index

From Our Mail
Does Icon run under OS-9?

Yes, for OS-9/68k V2.2
upwards. For informa­
tion, contact

Steven Weller
Windsor Systems
2407 Lime Kiln Lane
Louisville, KY 40222
U.S.A.

502^125-9560

Is there a version of Icon that has a window interface?

Prolcon for the Macintosh uses the standard Macin­
tosh interface with all its window and menu capabili­
ties. See Icon 9{g.ivsUtters 31 and 32 for information
about Prolcon. We recently received a version of Icon
with an interface to NeWS, but we've not yet had time
to examine it. We've heard of work on a Microsoft
Windows interface for MS-DOS Icon and we've done
some work locally with X Windows. Except for Pro-
Icon, however, there's nothing yet available for users.

I tried to buy the new book on Icon programming for the
Humanities, but I was told it is out of print. What's going
on?

That book was withdrawn from sale for a while be­
cause the publisher forgot to include the program
diskette that comes with it. The book is now back on
sale. You may, however, have encountered a different
problem. Clerks in bookstores sometimes don't want
to go to the trouble of ordering a book that is not on
their shelves. It's easier just to say the book is out of
print. They also mistake the terms "out of print",
which means that the book is no longer available, and
"out of stock", which means supplies of the book have
temporarily run out but that more will be printed.

Does Icon run on the new IBM S/6000 workstation?

This workstation has not been out long and we've not
yet heard of anyone running Icon on it. Since the
S/6000 runs ADC, a version of UNIX, and Icon already
runs on over 55 different UNIX systems (including the
IBM RT Workstation running AIX), we expect it will be
easy to get Icon running on the S/6000.

Is Icon a 4GL?

The term 4GL (fourth-generation language) was coined
to refer to programming languages that supposedly
are more advanced and sophisticated than earlier ones.
The term 4GL usually implies a very high level of
expressiveness as well as a declarative style of pro­
gramming in which computations are performed more
or less automatically from problem specifications. The
term 4GL has been badly abused and used to hype all

kinds of products, good, bad, and indifferent. Not
surprisingly, you'll now see 5GL. We've even seen
7GL! Rubbish. Labels like these tend to be misleading.
We'd prefer not to label Icon. It has some characteris­
tics of 4GLs and lacks others. Take a look at Icon and
decide for yourself if if s a good tool for what you want
to do.

Why aren't co-expressions supported on the Sun4 implem­
entation of Icon?

Almost all of Icon is written in C and hence easily
implemented on many different computers. Co-ex­
pressions, however, require a context switch that has
to be written in assembly language and hence requires
extra work for each different kind of computer. In the
case of the Sun 4, the context switch is much more
difficult to write than for most other computers. So far
no one has managed to get it to work.

Does Icon compile under the new MS-DOS Microsoft C
6.0?

Yes, with only minor modifications. We expect to pro­
vide support for Microsoft C 6.0 in the next source
update. Incidentally, Icon runs at the same speed
when compiled under versions 5.1 and 6.0 of Micro­
soft C.

Has there been a significant change to the details of the
workings of the Icon system since the Icon implementation
book was published? If so, is there a new edition of the book
planned?

Yes, quite a few things have changed in the implemen­
tation of Icon since the book (which describes the im­
plementation of Version 6) was written. Dynamic
hashing for sets and tables is an example. The general
structure of the implementation has not changed,
however, and most of the book still is relevant. Revis­
ing a book is not as simple as it might seem. A book is
a major investment (in time) for the authors and (in
capital) for the publisher. Even if a revision is needed,
it may not be warranted economically. We've tried to
mitigate the documentation problem for the implem­
entation of Icon by providing a technical report that
lists recent changes. This report is free — ask for IPD
112.

v O . O '

Icon Documentation
We frequently are asked for "everything published

on Icon". Thaf s a tall order. The first technical report
on Icon appeared in 1978. Over the years, there have
been literally hundreds of documents of one kind or
another related to Icon. Most of these have been pub­
lished as technical reports by the Icon Project.

Some of these documents are, of course, obsolete and
out of print. Many, however, are still available.

We've compiled a list of available Icon documents. If
you're interested, ask us for IPD117, "Documentation
Related to the Icon Programming Language". This
report, which is free, lists everything that is available
from the Icon Project: books, reprints of papers, techni­
cal reports, and The Icontyzvstetter. If you're placing
an order for Icon material, just add a note to your order
form. Or you can request the list by telephone, elec­
tronic mail, or even write us a letter. Provide a postal
address—the list is not available electronically (you'll
see why when you get a copy).

Getting Icon Material By FTP
Now that Version 8 of Icon is here, we've reorgan­

ized the FTP area for Icon to make it easier to find
things. After connecting to cs.arizona.edu by anony­
mous FTP, cd to /icon to get to the main Icon area.
There's a READ.ME file in this area with basic naviga­
tional instructions. Icon material is in subdirectories:

• v8 Version 8 Icon material

• v7.5 Version 7.5 Icon material

• tools Tools for handling files

• misc Odds and ends

Most Version 7.5 material is obsolete and has been
replaced by Version 8 material. In fact, we hope v7.5
will be nearly empty by the time you read this. You'll
probably find what you're looking for in v8.

Icon Programming for Humanists

Alan D. Corre, Prentice Hall, 1990.157 pages and
a diskette. $26.80. ISBN 0-13^50180-2.

Chapters:

1. Introduction
2. Distributions
3. Files
4. Graphs
5. Measures of Central Tendency
6. Foreign Language Fonts
7. Standard Deviation
8. Correlation
9. Pearson's Coefficient of Correlation

10. Programming a Nursery Rhyme
11. Creating a Data Base
12. Conclusion

Appendices:
Computer Character Sets
Custom-Designed Character Sets
The EDLIN Editor
Some Hints on Running Icon Programs

Index

http://cs.arizona.edu

SNOBOL4
Some persons who subscribe to

this tyivsUtter also are subscrib­
ers to the SNOBOL4 Information
Bulletin. Every so often we're
asked what became of the Bulle­
tin.

The last issue of the Bulletin was 31,
published in 1987. We haven't published one since
then for several reasons. One reason is the relative lack
of activity in the SNOBOL4 community and hence lack
of material for the Bulletin. Another reason is that our
own efforts are concentrated on Icon, and one lan­
guage is about all we can handle.

Many persons still use SNOBOL4, however, so we've
decided to devote space in The Icon tyxuslttttrlrom.
time to time to cover matters of interest to SNOBOL4
users.

One thing that has not lost momentum in the SNO-
BOL4 community is new implementations. There are
now implementations of Macro SPITBOL for The
Macintosh, MS-DOS/386, as well as for the Sun-3 and
Sun-4 workstations. For information on these imple­
mentations, contact:

Catspaw, Inc.
P.O. Box 1123
Salida, CO 81201-1123
U.S.A.

719-539-3884

A Compiler for Icon
In previous O^ezDsCetters we've mentioned in passing

a project to develop a true compiler for Icon (as op­
posed to the present interpreter). This compiler, which
is being designed and implemented by Ken Walker
here at The University of Arizona, is now well along. It
supports almost all the features of Icon and success­
fully compiles the largest and most complicated Icon
programs we have. Much work remains, however,
before this compiler can be used in production.

Overview

The primary goal of the compiler project is to pro­
vide an implementation of Icon in which programs
execute considerably faster than under the present
interpreter. A secondary benefit of compilation is the
production of executable files that stand alone and do
not require a separate executor and run-time system.
In principle, at least, it also should be possible to link
other functions written in C along with an Icon pro­
gram and hence more easily extend the function reper­
toire of Icon.

The potential efficiency improvements that result
from compilation come primarily from three sources:
elimination of the overhead of interpretation, elimina­
tion of much of the type checking that occurs at run
time with the interpreter, and optimization of expres­
sion evaluation.

The overhead for interpretation comes primarily
from having to simulate a CPU in software: instruction
and operand fetches and selection of appropriate code
to carry out the corresponding computation. Compila­
tion, by its nature, eliminates this overhead.

Since Icon has no compile-time type system, type
checking occurs repeatedly during program execu­
tion. This can be very expensive. On the other hand,
most programs use variables and operations in a type-
consistent manner. Consequently, type usage can be
determined in most cases during compilation. Such
type inference can provide the information needed to
generate code for run-time type checking only where
it is needed. Type inference in Icon is more difficult
than in most programming languages because of back­
tracking, heterogeneous structures, and pointer se­
mantics.

Generators and goal-directed evaluation lie at the
heart of Icon's expression evaluation mechanism. Many
expressions, however, are simple and do not require
the complete generality of Icon's expression evalu­
ation. There are several possible optimizations that can
simplify the code generated by a compiler.

As with any compiler, there are numerous possibili­
ties for other optimizations. None may have a major
impact in itself, but the overall effect on program exe­
cution speed can be significant.

Compiler Organization

The compiler generates C code. This provides flexi­
bility during development of the compiler. It also
provides portable output and facilitates cross compila­
tion (generating code on one kind of computer for use
on another). The compiler's code generator could,
however, be adapted to generate machine language
for a specific computer.

The information needed to generate code and per­
form optimizations is contained in a database. This
provides a systematic method for making changes and
improving code generation without making major
changes in the compiler itself.

The overall organization of the compiler is shown in
the following figure. The portion of the system above
the dotted line relates to building the files needed by
the Icon compiler. The compilation process itself is
below the dotted line.

Three files are needed to produce executable code
from an Icon program: rt.db, rt.h, and rt.lib. The file rt.db
is a database that contains information about Icon
functions, operators, and keywords. The file rt.h con­
tains declarations and definitions that are needed to
compile the C code that the compiler produces. The file
it lib is a library of object code for run-time routines that
may be necessary to execute the compiled program.

As shown, the portion of the system above the dotted
line builds rt.db and rt.lib. The program rtt ("run-time
translator") takes specifications for Icon run-time rou­
tines written in a language specifically designed for
this purpose. This language is a superset of C and
contains constructions for describing attributes of Icon's
run-time system, such as Icon types. The output of rtt is
C code which, when compiled, produces object mod­
ules for rt.lib. The portion of the system above the
dotted line is executed only when the system is in­
stalled or when modifications are made to the run-time
system.

The portion of the system below the dotted line is
executed whenever an Icon program is compiled. The
program toonc calls the C compiler and linker. All
thaf s needed to compile foo.icn is

iconcfoo

There's a lot to be said about iconc, the compiler
itself. Even if it performed no optimizations, the pro­
duction of code for generators and goal-directed evalu­
ation is not trivial. Type inference is a substantial
problem in itself, and the allocation of storage for the
temporary results of expression evaluation is more
complex than for more traditional programming lan­
guages. There's not space here to describe all the prob­
lems, let alone their solutions. This material will be
published in technical reports when the compiler is
finished.

Several matters remain to be resolved. For example,
we don't know yet how fast compiled Icon programs
will run once all the planned optimizations are imple­
mented. If s also uncertain how large the compiler will
be, how fast it will run, or even what resources will be
necessary to compile and link the C code it generates.
And while we're trying to make the compiler and the
code it generates portable, it probably will be a sub­
stantial job to install it in a new environment.

We expect the compiler to be workable on UNIX
systems with large memory spaces, but if s unlikely it
will run on personal computers.

grrttin.h

oasgn.rtt

fstructs.rtt

r -\
rmemmgt.c

rt.db

Object
Files

Library
Maintenance
Program

rt.lib

foo.icn iconc
foo.c
foo.h

C
Compiler/
linker

-foo

Programming Corner

Trivia
Last time we

asked for the short­
est complete Icon
program that will
compile and execute
without error.

Several persons
suggested

procedure main() end

That seems logical, but the correct answer is

record main()

The resulting record constructor provides the main
"procedure" that every Icon program needs to exe­
cute. When this program runs, it creates a single
record of type main and then terminates normally.

Scope
We recently received a program via e-mail from a

programmer who had installed Version 8 of Icon and
thought he'd found a ghastly bug in Version 8 or in his
C compiler. We had a few bad moments, since the
program in question produced very different results
when run under Versions 7.5 and 8. However, the dif­
ference was so marked that we had some faith that
nothing so radically wrong could have gotten by our
Version 8 testing process. On the other hand, there
wasn't anything obvious in the program that would
account for the difference in results between Version
7.5 and 8. When we did find the problem, we were
reminded to practice what we preach.

Here's a simplified version of the procedure that
caused the problem:

procedure print(x)
args := x
every i > 1 to *args do

if type(args) — "list" then print(args[i])
else wr'rte(image(args))

end

This procedure looks innocuous — why should it
behave differently in Versions 7.5 and 8?

The problem is that Version 8 of Icon has a new
function, args(p). The names of functions are global.
Since there is no declaration for args in the procedure
print(), args is global in Version 8. In Version 7.5,
however, there is no args() functions and args defaults
to local in this procedure, which was what was in­
tended. Since args is global in Version 8, the recursive

call of print() changes the value of args in the middle
of the loop.

So much for "upward compatibility".

Not having to declare local identifiers is a conven­
ience, but a dangerous one, as this case clearly shows.
The moral is, of course, to play it safe and declare all
local identifiers. And if you have a program with a
puzzling bug, check for local declarations and add
them if they are missing before spending a lot of time
trying to find the precise location of the problem.

You might fault us for using the name args for a
function, since that name certainly is appealing for use
as a program identifier. On the other hand, it's handy
to have reasonable mnemonics for functions and the
problem cannot be completely avoided in any case,
incidentally, another name that sometimes causes this
problem is tab.

You might also question Icon's handling of default
scoping. It's too late to change it now, however.

Graphic Credits
Graphics that first appeared in earlier 9^pzvsfetters

are credited there.

Page 3: Icon ideogram designed by Charles Richmond
(see 9{en>sfetter 28); scanned and "spherized" using
Graphist II, autotraced in Illustrator 88 with circle
effect in Smart Art I using a Keymaster font.

Page 5: Reading machine. Scanned image from The
Various and Ingenwus Machines ofAgostino Ramelli, Dover
Publications and Scolar Press, 1987.

Back cover: Illustrator 88 using the official Icon logo.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602)621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

http://cs.arizona.edu

Ordering Icon Material

What's Available

There are implementations of Icon for several per­
sonal computers, as well as for CMS, MVS, UNIX, and
VMS. Source code for all implementations is avail­
able. Program material is accompanied by installa­
tion instructions and users manuals in printed and
machine-readable form.

There also is a program library that contains a large
collection of Icon programs and procedures, as well
as an object-oriented version of Icon that is written in
Icon.

In addition to users manuals that are included with
program material, there are three books and two
newsletters about Icon.

Icon Program Material

The current version of Icon is 8. All the program
material here is for Version 8.

All program material is in the public domain except
the MS-DOS/386 implementation of Icon, which is a
commercial product that carries a standard software
license.

Personal Computers: Executables, source code, and
the Icon program library for personal computers are
provided in separate packages. Each package con­
tains documentation in printed and machine-read­
able form. Note: Icon for personal computers requires
at least 640KB of RAM; it requires more on some sys­
tems.

CMS and MVS: The CMS and MVS packages
contain executables, source code, test programs, the
Icon program library, and documentation in printed
and machine-readable form.

UNIX: The UNIX package contains source code but
not executables, test programs, related software, the
Icon program library, and documentation in printed

and machine-readable form. UNIX Icon can be con­
figured for most UNIX systems. Note: executables for
Xenix and the UNIX PC are available separately.

VMS: The VMS package contains object code, ex­
ecutables, test programs, the Icon program library,
and documentation in printed and machine-readable
form.

Porting: Icon source code for porting to other com­
puters is distributed on MS-DOS format diskettes.
There are two versions, one with a flat file system and
one with a hierarchical file system.

Source-Code Updates: Updates to the Icon source
code are available by subscription. These updates are
in MS-DOS ARC format for hierarchical file systems,
and are suitable for compilation under MS-DOS or for
porting to new computers. Each update usually pro­
vides a completely new copy of the source. A sub­
scription provides five updates. Updates are issued
about three times a year.

Documentation

In addition to the installation guides and users
manuals included with the program packages, there
are three books on Icon. One contains a complete
description of the language, another is an introduc­
tory text designed primarily for programmers in the
Humanities, and a third describes the implementa­
tion of Icon in detail.

There are two newsletters. The Icon O^ezosfetter
contains news articles, reports from readers, and in­
formation of topical interest, and so forth. It is free,
and is sent automatically to anyone who places an
order for Icon material. There is a nominal charge for
back issues of the 'Hg.wsfe.tter.

•SErje £Rcon Analyst contains material of a more
technical nature, including in-depth articles on pro­
gramming in Icon. There is a subscription charge for
the Analyst.

Payment

Payment should accompany orders and be made
by check, money order, or credit card (Visa or Master­
Card). Remittance must be in U.S. dollars, payable to
The University of Arizona, and drawn on a bank with
a branch in the United States. Organizations that are
unable to pre-pay orders may send purchase orders,
subject to approval, but there is a $5 charge for proc­
essing such orders.

Ordering Instructions

Media: The following symbols are used to indicate
different types of media:

o
L3H

H

9-track magnetic tape
DC 300 XL/P cartridge
360K (2S/DD) 5.25" diskette
400K (IS) 3.5" diskette
800K (2S) 3.5" diskette

All cartridges are written in raw mode. All diskettes
are written in MS-DOS format except for the Amiga, the
Atari ST, and the Macintosh.

CMS and MVS tapes are available only at 1600 bpi.
When ordering UNIX or VMS tapes, specify 1600 or 6250
bpi (1600 bpi is the default). When ordering diskettes
that are available in more than one size, specify the size
(5.25" is the default).

Shipping Charges: The prices listed include handling
and shipping by parcel post in the United States, Can­
ada, and Mexico. Shipment to other countries is made by
air mail only, for which there are additional charges as
noted in brackets following the price. For example, the
notation $15 [$5] means the item costs $15 and there is a
$5 shipping charge to countries other than the United
States, Canada, and Mexico. UPS and express delivery
are available at cost upon request.

Ordering Codes: Use the codes given at the beginning
of the descriptions that follow when filling out the order
form.

Program Material

AME

AMS

AML

U
U
y

Atari ST:

ATE: (mJ executables

ATS: LrJ source

ATL: y library

CMS:

CT: O

MS-DOS:

D E: H (2) or Q executables
DS: 9 (2) o r Q source

DL: H o r f l library

MS-DOS/386: (not public-domain)

DE-386: H o r H executables

executables $15 [$5]

source $15 [$5]

library $15 [$5]

$15 [$5]

$15 [$5]

$15 [$5]

entire system $30 [$10]

$20 [$5]

$20 [$5]

$15 [$5]

$25 [$5]

MVS:

MT: o
Macintosh/MPW:

ME:

MS:
ML:

OS/2:

OE:

UNIX:

UT-T:

UT-C:

UC-T:

UC-C:
UD:

UL:

u
Q
H

HorH

O
o
m
m

entire system

executables

source
library

executables

complete (tar)

complete (cpio)

complete (tar)

complete (cpio)

H (9) or H (4) complete (cpio)
H(2)orH

UNIX PC:

UP:

VMS:

VT:

HorH

O

Xenix/386:

XE-386 HorH

library (cpio)

executables

entire system

executables

Other Systems (for porting):

PFA:

PHK:

PL:

Source

SU:

H(5)orH(2)flat(ascii)
H(2)orH
H(2)orH

hierarchical (arc!

library (ascii)

Update Subscription:

H(2)orH 5 source updates

$30

$15

$15

$15

$15

$30

$30

$45

$45

$40

$15

$15

$30

$15

$40

$20

$15

$50

[$10]

[$5]

I$5]

[$5]

[$5]

[$10]

[$10]

[$10]

[$10]

[$8]

[$5]

[$5]

[$10]

[$5]

[$8]

[$5]

[$5]

[$15]

Documentation

LB: The Icon Programming Language, 2nd ed., Griswold
and Griswold, Prentice Hall, 1990,367 pages:

$30 [$13]

IB: The Implementation of the Icon Programming Language,
Griswold and Griswold, Princeton University Press,
1986,336 pages + update: $45 [$14]

HB: Icon Programming for Humanists, Corre, Prentice
Hall, 1990,185 pages + program disk: $27 [$10]

NL: The Icon 9(eu/s(etUr. Back issues complete (1-33):
$15 [$5]

Single issues (specify numbers) each: $1 [$0]

IA: l3rh* «3lc0n Analyst, 1 year (6 issues): $25 [$10]

10

Order Form

Icon Project • Department of Computer Science
Gould-Simpson Building • The University of Arizona • Tucson AZ 85721 U.S.A.

Ordering information: (602) 621-2018 • Fax: (602) 621-4246

name
address

city

(country)

• check if this is a new address

state zipcode

telephone

qty. code description price shipping*

subtotal

Make checks payable to The University of Arizona s a l e s t a x (Arizona residents)
extra shipping charges*

The sales tax for residents of the city of Tucson is 7%. purchase-Order processing
It is 5% for all other residents of Arizona.

other charges
Payment • Visa 0 MasterCard D check or money order total

total

I hereby authorize the billing of the above order to my credit card:

card number exp. date

name on card (please print)

signature

'Shipping charges apply only to addresses outside the United States, Canada, and Mexico

11

' ^
.j-sr

m

: I 1

i# fes

ft
M

i0:

• • •

* V v*

CI £5
% ^ ^

• • •

J?°& J%s J?°<>s

^OJO ^OJO ^OJO
> > ; > > ; > > ;

