
Hfic Icon 9{ezissCetter
No. 32 - January 15,1990

Address Change
Our Internet electronic mail address now has an

additional qualification, cs, to distinguish our depart­
ment from other organizations at The University of
Arizona. For example, to send electronic mail to the
Icon Project via Internet, you now should use

icon-project@cs.arizona.edu

The old address (without the cs) will continue to
work for a while, but to be safe, you should use the new
one. The same change applies to other addresses in our
organization. For example, use cs.arizona.edu for FTP
and address the Icon newsgroup as

icon-group@cs.arizona.edu

Uucp addresses are not affected by this change.

From Our Mail
I just received the C source
code for Icon and I want to
compile it on my MS-DOS
system. Unfortunately,my
C compiler, Let's C from
Mark Williams, is not one
of those supported for Icon.
I've read your documenta­
tion and would prefer not to do all
the work needed for a new C compiler. But I notice bench­
mark figures for Icon under Let's C in your recent newslet­
ter. Can you put me in touch with the person who did the
Let's Cwork?

We did the Let's C benchmarks here at the Icon Project.
There is considerable work needed to get this implem­
entation fully functional and into our distribution
system. Recent additions to Icon for MS-DOS, how­

ever, are available well ahead of the regular distribu­
tion via our source update subscription service. See the
order form at the end of this V^zvsfetter. Support for
Let's C was included in the last update.

I have an Icon program that uses the systemQ function on
an MS-DOS system. All of a sudden, when I added some
new procedures to the program, the system() function dis­
appeared. What's wrong?

By "disappeared" we assume you mean "stopped
working". This probably is the result of insufficient
memory. As your program gets larger, it takes up more
memory. The systemQ function executes
command.com. If there is not enough memory for this,
it fails silently. There is really nothing Icon can do
about this — it's an operating-system and environ­
ment problem. You might try removing unnecessary
drivers and resident programs that occupy memory.
Even this may not work; the MS-DOS memory limit of
640KB is simply not enough for many large applica­
tions.

Sometimes Icon hangs my XT. Do you know why this
happens ? Is there anything I can do about it?

You may be getting stack overflow, which can wipe
out important data and cause your system to malfunc­
tion in a variety of ways. On some implementations of
Icon, the size of the stack can be specified on the
command line when you run Icon. Check the user's
manual for the version of Icon you are using to see how
to do this. There is a more extensive discussion of this
problem in an article on bugs later in this 'Hg.zosktter.

Icon is a terrific language — powerful, rich, and most
interestingly, intuitive. Modern interpreted languages,such
as APL and Icon, demonstrate enormous flexibility that
compiled languages cannot match. When will we have
silicon that can execute this stuff?

Thanks for the compliments. As to "Icon in Silicon",
we doubt you'll ever see that. In fact, the trend is away
from casting software in silicon; the result is too hard
to change and RISC architectures can offer comparable
performance.

I was VERY disappointed when you discontinued the Icon
compiler. Compilers are great for developers who want to
distribute their software. I want the compiler back! I never
used 5.0 or 6.0.

mailto:icon-project@cs.arizona.edu
http://cs.arizona.edu
mailto:icon-group@cs.arizona.edu
http://command.com

There was a compiler of sorts for Icon through Version
5, but only on a couple of computers running under
UNIX. We didn't have the resources to maintain the
compiler implementation, much less transport it to a
wide range of computers. Instead, we opted for porta­
bility with the interpreter.

We realize that a compiler version of Icon would offer
advantages in addition to speed. We are working on a
compiler that generates C code (thus partially solving
the portability problem).

Does Icon run on the NeXT machine?

Our current development version of Icon runs on the
NeXT, as well as on several of the newer workstations,
such as the Sun SPARCstation and the DecStation
3100. Support for these computers will be included in
the next release of Icon, later this year.

I am trying to run Version 7.5 of Icon on my 512K Amiga
1000. When I attempt to compile even small programs, my
machine issues a nasty "Software Error" message. Icon
runs on my 512K MS-DOS machine with no problems.

You do not have enough memory on your Amiga to
run Version 7.5 of Icon. AmigaDOS is larger than MS-
DOS and the C compiler used for Amiga Icon gener­
ates somewhat larger code than the one for MS-DOS.
You may be able to get some programs to compile by
using environment variables to reduce the size of
Icon's storage regions, but you'll probably just run out
of memory when you try to execute programs.

I tried to download MS-DOS/386 Icon from your bulletin
board, but it's not there.

That's a casualty of a misunderstanding about soft­
ware licensing requirements. MS-DOS/386 Icon is
built using "DOS extender" software that requires
licensing. We were originally told that the DOS exten­
der could be incorporated into public-domain soft­
ware, but now we're told it cannot. Catspaw, Inc. has
graciously offered to provide us with licensed copies
of MS-DOS/386 Icon at a nominal price. See the order
form at the end of this 9&u>sfetter. We cannot, how­
ever, provide the licensed product electronically.

I'd like to get a copy of the Yacc grammar for Icon to try on
my PC.

The Yacc grammar for Icon presently is included only
for UNIX systems. If s too large for most PCs. We've
had several requests for it recently, however, and
we're planning to make it available as part of all future
source-code distributions.

ICEBOL4
The Fourth International Conference on Symbolic and

Logical Computing was held at Dakota State University
in Madison, South Dakota on October 4-5,1989.

Twenty-two papers were presented, covering topics
ranging from applications in the Humanities to pro­
gramming language design and implementation. At­
tendance was good (more than 200 persons) and di­
verse in backgrounds and interests.

An increase in the presence of Icon was notable.
Several of the papers related to Icon. Many attendees
used Icon and several were expert Icon programmers.

Copies of the ICEBOL4 Proceedings (390 pages) are
available for $35. Some copies of the earlier ICEBOL3
Proceedings ($20) and the ICEBOL86 Proceedings ($18)
also are available. Orders should be sent to:

Conference Department
114 Beadle Hall
Dakota State University
Madison, SD 57042

The Icon 0\[ezvsCetter

Madge T. Griswold and Ralph E. Griswold
Editors

TfU Icon 9fewsfetteris published three times a
year, at no cost to subscribers. For inquiries and
subscription information, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-4049

FAX: (602)621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...(uunet,allegra,noao}!arizona!icon-project

© 1989 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

mailto:icon-project@cs.arizona.edu

Object-Oriented Icon
Editors' Note: An article by Bill Griswold on object-oriented
features for Icon appeared in tyzusfetUr 30. The following
article by Clint feffery at The University of Arizona de­
scribes his recent work on the subject.

Idol is a preprocessor for Icon that implements a
means of associating a piece of data with the proce­
dures that manipulate it. The primary benefits to the
programmer are thus organizational. The Icon pro­
grammer may view Idol as providing an augmented
record type in which field accesses are made not di­
rectly on the records' fields, but rather through a set of
procedures associated with the type.

Motivation
In Icon, after a program reaches a certain size it

becomes difficult to understand and/or modify a data
structure manipulated by one portion of the program
without breaking the code somewhere else. When the
structure in question is one of the built-in data types,
even cross-referencing tools can be of little help. The
Idol preprocessor assists the programmer in manag­
ing the larger-scale structures used in Icon programs.

Classes

Since Idol implements ideas found commonly in
object-oriented programming languages, its terminol­
ogy is taken from that domain. The augmented record
type is called a "class". The syntax of a class is:

class foo(field1, field2, field3,...)

procedures to access class foo objects
[code to initiahze class foo objects]

end

In order to emphasize the difference between ordi­
nary Icon procedures and the procedures which ma­
nipulate class objects, these procedures are called
"methods" (the term is again borrowed from the ob­
ject-oriented community). Nevertheless, the syntax of
a method is that of a procedure:

method bar(param1, param2, param3,...)

Icon code that may access fields of a class foo object

end

Since execution of a class method is always associated
with a given object of that class, the method has access
to an implicit variable self, which is a record contain­
ing fields whose names are those given in the class
declaration. References to the self variable look just
like normal record references; they use the dot (.)
operator.

Objects
Like records, instances of a class type are created

with a constructor function whose name is that of the
class. Instances of a class are called objects, and their
fields may be initialized explicitly in the constructor in
exactly the same way as for records. For example, after
defining a class foo(x, y), one may write:

procedure main()
f:=foo(1,2)

end

The fields of an object need not be initialized by the
class constructor. For many objects it is more logical to
initialize their fields to some standard value. In this
case, the class declaration may include an initially
section after its methods are defined and before its end.
For example, suppose one wished to implement an
enhanced table type which permitted sequential ac­
cess to elements in the order they were inserted into the
table. This can be implemented by a combination of a
list and a table, both of which would be initialized to
the appropriate empty structure:

class taque(l, t) # pronouned "taco"

e.g. insert, lookup, foreach...

initially
se l f . l > []
self .t > table()

end

In such a case one can create objects without including
arguments to the class constructor:

procedure mainQ

mytaque := taque()

end

Object Invocation

Once one has created an object with a class construc­
tor, one manipulates the object by invoking methods
defined by its class. Since objects are both procedures
and data, object invocation is similar to both a proce­
dure call and a record access. The dollar ($) operator
invokes one of an object's methods. It is used similarly
to the dot operator used to access record fields. Using
the taque example:

procedure main()
mytaque := taque()
mytaque$insert("greetings", "hello")
mytaque$insert(123)
every write(mytaque$foreach())
if \(mytaque$lookup("hello"))

then write(", world")
end

Note that direct access to an object's fields using the
usual dot operator is not possible outside of a method
of the appropriate class. Attempts to reference my stack.l
in procedure main() would result in a runtime error
(invalid field name). Within a class method, the im­
plicit variable self allows access to the object's fields in
the usual manner. The taque insert method is:

method insert(x, key)
/key > x
put(self.l, x)
self.t[key] := x

end

Inheritance

In many cases, two classes of objects are very similar.
In particular, many classes can be thought of simply as
enhancements of some class that has already been
defined. Enhancements might take the form of added
fields, added methods, or both. In other cases a class is
just a special case of another class. For example, if one
had defined a class f raction(numerator, denominator),
one might want to define a class inverses(de nominator)
whose behavior was identical to that of a fraction, but
whose numerator was always 1.

Idol supports both of these ideas with the concept of
inheritance. When the definition of a class is best ex­
pressed in terms of the definition of another class or
classes, we call that class a subclass of the other classes.
This corresponds to the logical relation of hyponymy,
or special-casing. It means an object of the subclass can
be manipulated just as if it were an object of one of its
defining classes. In practical terms it means that simi­
lar objects can share the code that manipulates their
fields. The syntax of a subclass is

class foo : superclasses (fields ...)

methods
[optional initially section]

end

Multiple Inheritance

There are times when a new class might best be
described as a combination of two or more classes. Idol
classes may have more than one superclass, separated
by colons in the class declaration. This is called mul­
tiple inheritance.

Invoking Superclass Operations

When a subclass defines a method of the same name
as a method defined in the superclass, invocations on
subclass objects always result in the subclass' version
of the method. This can be overridden by explicitly
including the superclass name in the invocation:

object$superclass.method(parameters)

Public Fields

Sometimes it would be really nice to access fields in
an object directly, as with records. An example from
the Idol program itself is the name field associated
with methods and classes — it is a string which is in­
tended to be read outside the object. One can always
implement a method that returns (or assigns, for that
matter) a field value, but this gets tedious. Idol cur­
rently supports read-only access to fields via the public
keyword. If public precedes a fieldname in a class
declaration, Idol automatically generates a method of
the same name which dereferences and returns the
field. For example, the declaration

class sinner(pharisee, public publican)

generates codeequivalent to the following class method
in addition to any explicitly defined methods:

method publican()
return .(serf.publican)

end

Miscellany

Idol supports some shorthand for convenient object
invocation. In particular, if a class defines methods
named size, foreach, and random, these methods can
be invoked by a modified version of the usual Icon
operator:

$*x is equivalent to x$size()
$?x is equivalent to x$random()
$!x is equivalent to x$foreach()

Other operators may be added to this list. If x is an
identifier it may be used directly; if it is a more com­
plex expression (such as a function call) it should be
parenthesized, as in, $*(complex_expression()). Pa­
rentheses are also required in the case of invoking an
object produced by a complex expression:

(classes$lookup("theClass"))$name()

These requirements are artifacts of the first implemen­
tation and are subject to change.

Running Idol

Idol requires version 7.5 or higher of Icon. It runs
best on UNIX systems. It has not been ported to all the
various micros and operating systems on which Icon
7.5 runs. In particular, if your version of Icon does not
support the system() function, or your machine does
not have adequate memory available. Idol will not be
able to invoke icont to complete its translation and
linking.

Since Idol is untested on many systems, you may
have to make small changes to the source code in order
to port it to a new system.

Getting a Copy

Idol is in the public domain. It is available electroni­
cally from the Icon RBBS and by anonymous ftp from
cs.arizona.edu. It is not available by mail from the Icon
Project. Interested parties may contact the author
(cjeffery@cs.arizona.edu):

Clinton Jeffery
Department of Computer Science
Gould-Simpson Building
University of Arizona
Tucson, AZ 85721
U.S.A.

Bugs
Stack overflow can cause prob­

lems with some Icon programs.
You probably think of this possi­
bility for recursive procedure
calls, but it also can happen as the
result of many simultaneously
suspended generators and dur­
ing garbage collection.

Icon actually has two stacks: a
system stack used by C, in which
Icon is implemented, and an
evaluation stack used for inter­
mediate Icon results.

Procedure calls use space on the evaluation stack.
There's an overflow check that usually is effective and
causes program termination with an error message. If
evaluation stack overflow is not detected, Icon data
usually is overwritten.

Suspended generators use space on both stacks.
There is no overflow check on the system stack on most
implementations of Icon. It's possible on some sys­
tems, but it significantly slows program execution. If
the system stack overflows, important system data

usually is overwritten. A personal computer may crash
if this occurs.

Garbage collection also takes space on the system
stack, especially if Icon data contains long chains of
pointers from structure to structure. The likelihood of
overflow during garbage collection depends on how
much space is in use on the system stack at the time and
hence is hard to predict.

On systems with a large amount of memory, system
stack overflow rarely is a problem. While Icon for PCs
is configured so that most programs run without
problems, overflow should be suspected if your com­
puter hangs while running Icon.

Co-expressions add another complication. Every
co-expression has its own evaluation stack and system
stack. Space for these stacks must come from available
memory. Since memory is a limiting factor on many
systems, the stacks for co-expressions generally are
smaller than the main evaluation and system stacks.
It's also more difficult to test for overflow in a co-ex­
pression. All this adds up to increased problems with
stack overflow when evaluating in co-expressions.

What does all this mean? If you're using Icon on a
system with a lot of memory, you probably won't have
to worry about overflow, except in co-expressions. If
you use co-expressions simply to control the produc­
tion of results of generators, you probably won't have
any trouble with them either. However, if your co-
expressions perform recursive procedure calls or
contain many simultaneously suspended generators,
you may have problems and may need to modify your
use of co-expressions.

If you are using Icon on a system with a small
amount of memory (MS-DOS is typical), watch out not
only for the kind of co-expression usage described
above, but beware of complex mutual evaluation. This
is most likely to occur in string scanning, as in

line ? {
tab(upto (space)) &
tab(many(space)) &
move(1) & # and many more conjunctions

}

Bounded expressions release space used by sus­
pended generators they bound. For example, it may be
possible to rephrase the scanning expression above as:

if tab(upto(space)) then {
tab(many(space))
move(1)

}

On some systems, the size of the system stack can be
set when Icon is run. See user manuals for the default
size and the method of changing it.

http://cs.arizona.edu
mailto:cjeffery@cs.arizona.edu

Language Corner

Returning from Procedures

The control structure fail causes a procedure call to
return without producing a value — in other words,
the procedure call fails just as the call of a function such
as integer(x) can fail.

If the computation that a procedure performs is a
conditional one (such as integer(x)), then the use of fail
is quite natural. An example is:

procedure posint(x)
if integer(x) & (x > 0) then return x
else fail

end

Flowing off the end of a procedure body also causes
a procedure call to fail. This feature is partly motivated
by the view that unless a value is explicitly returned,
a procedure call returns no value at all — and hence
fails.

Some procedures perform unconditional computa­
tions but have no meaningful value to return. An
example is:

global pcount

procedure print(s)
initial pcount := 0

write(s)
pcount +:= 1

end

Since there is no explicit return, a call of print() fails.
Often this makes no difference, as in:

while line := read() do
print(line)

However, if this loop is written in a
more compact form, such as

while print(read(line))

the failure of print() terminates the
loop after the first line is read. While
the problem is easy to see here, if s
often difficult to find in more com­
plicated situations, especially if a
small change to a program that was
working correctly introduces this
kind of problem.

For this reason, it is good practice
to place an explicit return at the end
of such a procedure, as in:

procedure print(s)
initial pcount:- 0

write(s)
pcount +:= 1
return

end

The omitted argument of return defaults to the null
value, which usually is a safe value to return in con­
texts where no specific value is expected.

This problem would not exist if flowing off the end
of a procedure body returned the null value instead of
failing. However, this would cause another problem,
and it has to do with generators. Consider the follow­
ing procedure, which generates the elements of L1 and
L2 that are the same:

procedure geneq(L1, L2)
suspend !L1 ««« !L2

end

If flowing off the end of a procedure body returned the
null value, such a generator would have to be written
with a fail at the end to avoid producing a final,
spurious value.

In other words, either interpretation for flowing off
the end of a procedure body leads to potential prob­
lems. The interpretation is the way it is for the reason
mentioned earlier — no value is synonymous with
failure.

Generators

We're sometimes asked why a function like read()
does not generate lines instead of returning one each
time it is called.

The basic language design criterion in deciding if an
operation should be a generator is whether or not the
operation naturally has more than one result. The
function upto(c, S) typifies such an operation.

Of course, it is not always clear whether this criterion
applies. There also are pragmatic considerations. For
example, the function many(c, s) is not a generator,
although it is easy to see how it could have more than
one result. In fact, at one point in the design of Icon,
many(C, S) was made into a generator, first returning
the position at the end of the longest initial substring of
S consisting of characters in C, and then generating
successively smaller positions. The result was a prac­
tical disaster, largely because failure of a subsequent
expression produced all kinds of unwanted results in
the contexts in which many() usually is used.

Economy suggests that an operation should not be a
generator if there is an easy way to construct a genera­
tor from it. For example, to turn read() into a generator,
just use |read(). Similarly, |?X turns the random-ele­
ment operation into a generator.

Another reason for not making an operation a gen­
erator unless there is a good reason is the possibility of
unexpected results from generation. For example,
novice Icon programmers sometimes write loops like
this one:

while read() ? expr do ...

The problem with such a formulation lies in the possi­
bility of ambiguous failure: The loop terminates on an
end-of-file but also if the scanning expression fails.
Perhaps the scanning expression is not supposed to
fail. Nevertheless, unexpected things happen. If read()
were a generator, the loop above would be cast as

every read() ?expr do ...

This would (in some sense) have worse consequences
if the scanning expression failed. The loop wouldn't
necessarily terminate, and more (perhaps all) lines
would be read, with mysterious results.

In some sense, a generator "goes off" in the presence
of failure. Since if s generally easy enough to make a
non-generator into a generator, if s prudent to avoid
generation unless there is a good reason for it.

Graphic Credits
Graphics that first appeared in earlier tyzi/sfetters

are credited there.

Page 5: Petrognatha gigas F., scanned image.

Page 6: Scanned image from Music; A Pictorial Ar­
chive of Woodcuts and Engravings, Dover Publications,
1980.

Back cover: Ralph Griswold, Illustrator 88; Icon logo
filled with pattern from Adobe Collector's Edition —
Patterns and Textures.

Faculty Positions
The Department of Computer Science at The Uni­

versity of Arizona invites applications for faculty po­
sitions at all ranks to begin in August, 1990. Applicants
must have a doctorate in computer science or a closely
related field.

Applicants for senior positions should have made
substantial research contributions to the field, while
applicants for junior positions should show promise
of future excellence.

There are currently 14 faculty members, with plans
to expand over the next few years.

Research is currently conducted in a variety of areas
including algorithm design and analysis, complexity
theory, databases, distributed and parallel comput­
ing, graphic and user interfaces, operating systems,
programming languages, and scientific visualization.

Qualified individuals working in these areas as well
as other areas, such as artificial intelligence, computer
architecture, and performance analysis, are encour­
aged to apply.

The research program is supported by numerous
grants to individual faculty as well as a second depart­
ment-wide NSF infrastructure grant.

Computational facilities are diverse, including a
Sequent Symmetry, dozens of Sun workstations, a
VAX 8650, an Intel iPSC Hypercube, color graphics
workstations, a NeXT machine, and dozens of Macin­
toshes. Other equipment includes numerous laser
printers, a QMS color PostScript printer, and an L-300
imagesetter.

Send a complete resume and the names of at least
three references to:

Udi Manber
Faculty Recruiting Committee Chairman
Department of Computer Science
The University of Arizona
Tucson, AZ 85721

Applications will be reviewed beginning January
15,1990, but the positions will remain open until filled.

The University of Arizona is an equal opportunity/
affirmative action employer.

Downloading Icon Material
Several implementations of Icon are available for
downloading electronically:

BBS: (602)621-2283

FTP: cs.arizona.edu (cd /icon)
(128.196.128.118 or 192.12.69.1)

http://cs.arizona.edu

Programming Corner

Correction

In the programming corner in the last 'Xg.wsU.tttr,
the procedure checkstr2() contained the line

t := table(O)

This should have been

t : - table()

since the null default value is used in the code that
follows.

Cset Operations

Dave Cargo poses the following problem:

J wanted to know if the intersection of two csets is empty
and wrote

if d * *c2 =="then ...

but then I realized I wasn't sure if== was the right operator
to use.

The best operation for comparing two csets is

d === c2

This operation compares the bit vectors used to repre­
sent the characters in csets; it is fast and direct. The
operation

d == c2

first converts d and c2 to strings and then compares
the resulting strings. The conversion is time-consum­
ing and unnecessary.

To determine if the intersection of two csets is
empty, another formulation is

if *(c1 **c2) = 0then...

Black Holes

In almost every programming language, it is pos­
sible (even easy) to get into an endless loop. While no
one would intentionally write something like

while 1

in a real program, its equivalent happens to us all from
time to time. Such problems are easy to understand if
not always easy to find.

Icon with its generators has the potential for a some­

what subtler kind of problem — endless generation
within the expression-evaluation mechanism. Con­
sider, for example, the following suggested method
for writing all the values in the list L:

every write(L[seq()])

(The function seq() generates an endless sequence of
integers, 1,2,3,... .)

The problem here is that when the end of the list is
reached, the every expression does not stop even
though the list reference fails; seq() continues to
generate, l_[seq()] continues to fail, and so

Fortunately, such evaluation "black holes" rarely
occur in Icon programs. If they were common, Icon
would be a useless programming language. Inciden­
tally, if s this problem that motivated the special termi­
nation condition for \expr, which stops if expr ever fails
to produce a single result. Otherwise, evaluation of an
expression such as |read() would never stop.

Records
Steve Wampler writes:

I just discovered that

record t(a, b, c)

procedure main(args)
tmp:- t ()
every Itmp > get(args)
every wrrte(rtmp)

end

works just fine. How nice! I just figured out a use for that.

Yes, even though records usually are accessed by
their field names, their components can be subscripted,
as in tmp[1], and generated as you've observed. In fact
the operations X[i], !X, ?X, and *X apply to all structure
types with the exception of X[i], which does not apply
to sets, since there is no concept of order for the
members of a set (although we could invent one ...).

Idiomatic Icon

Anthony Hewitt wrote this clever little program to
filter out adjacent duplicate lines in a file:

procedure main()
write(s := !&input)
every write(s - = - : .

end
!&input)

Trivia Corner

What's the shortest complete Icon program that will
compile and execute without error?

Confusing hint: It's not

procedure main()
end

file:///expr

Ordering Icon Material

Whafs Available

There are implementations of Icon for several per­
sonal computers, as well as MVS, UNIX, VAX/VMS,
and VM/CMS.

Source code for Icon is available. There is also a pro­
gram library, as well as documentation both on the
Icon programming language itself and on its implem­
entation.

The current version of Icon is 7.5. All the program
material here is for Version 7.5.

Icon Program Material

All program material is in the public domain except
the MS-DOS/386 implementation of Icon, which is a
commercial product that carries a standard software
license.

Personal Computers: Executables and source code
for Icon for personal computers are provided sepa­
rately. Each package contains printed documenta­
tion that is needed for installation and use. Note: Icon
for personal computers requires at least 640KB of
RAM; it requires more on some systems.

MVS and VM/CMS: The MVS and VM/CMS pack­
ages contain executables, source code, and documen­
tation in printed and machine-readable form.

UNIX: The UNIX package contains source code
(but not executables), documentation in printed and
machine-readable form, test programs, and related
software. It can be configured for most UNIX sys­
tems. The documentation includes installation in­
structions, an overview of the language, and operat­
ing instructions. It does not include either of the Icon
books. Program material is available on magnetic
tape, cartridge, or diskettes. Note: executables for
XENIX and the UNIX PC are available separately.

VAX/VMS: The VMS package contains everything
the UNIX package contains except UNIX configura­
tion information and UNIX-specific software. How­
ever, the UNIX and VMS systems are configured dif­
ferently, and neither will run on the other system. The

VMS package also contains object code and execut­
ables, so a C compiler is not required. The VMS pack­
age is distributed only on magnetic tape.

Porting: Icon source code for porting to other com­
puters is distributed on MS-DOS format diskettes.
There are two versions, one with a flat file system and
one with a hierarchical file system. Both versions are
available in either plain ASCII format or compressed
ARC format.

Source Updates for MS-DOS

Updates to the Icon source code for MS-DOS are
available by subscription. A subscription provides
five complete updates. Updates are released about
three times a year.

Icon Program Library

The Icon program library consists of Icon pro­
grams, collections of procedures, and data. Version 7
of Icon is required to run the library. The Icon pro­
gram library is being issued in parts. Part 1 presently
is available. Note: Version 7 of the Icon program
library is available only on diskettes. The UNIX tape
and cartridge packages and the VMS tape package
presently contain an older version of the Icon pro­
gram library. The Icon program library is not yet
available for MVS or VM/CMS.

Documentation

There are two documentation packages that con­
tain more than is provided with the program pack­
ages: one for the language itself and one for the
implementation.

Shipping
Except as noted, the prices listed include handling

and shipping in the United States, Canada, and
Mexico. Shipment to other countries is made by air
mail only, for which there are additional charges as
follows: $5 per diskette package, $10 per tape or
cartridge package, and $10 per documentation pack­
age. UPS and express delivery are available at cost
upon request.

Payment

Payment should accompany orders and be made
by check, money order, or credit card (Visa or Master­
Card). Remittance must be in U.S. dollars, payable to
The University of Arizona, and drawn on a bank with

a branch in the United States. Organizations that are
unable to pre-pay orders may send purchase orders,
subject to approval, but there is a $5 charge for process­
ing such orders.

Ordering Instructions

Legend: The following symbols are used to indicate
different types of media:

O 9-track magnetic tape
O DC 300 XL/P cartridge

B 360K (2S/DD) 5.25" diskette
y 400K (IS) 3.5" diskette
Lj 800K (2S) 3.5" diskette

All cartridges are written in raw mode. All 5.25"
diskettes are written in MS-DOS format. 3.5" diskettes
are written in the format appropriate for the system for
which they are intended.

MVS and VM/CMS tapes are available only at 1600
bpi. When ordering UNIX or VMS tapes, specify 1600
or 6250 bpi (1600 bpi is the default). When ordering
diskettes that are available in more than one size,
specify the size (5.25" is the default).

Use the codes given at the beginning of the descrip­
tions that follow when filling out the order form.

Program Material

Amiga:

AME: H

AMS: H
AML-1: Q

Atari ST:

ATE: U

ATS: H
ATL-1: H

Macintosh/MPW:

ME: H

MS: H
ML-1: H

MS-DOS:

DE: H (2) o r H
DS: H (2) o r H

DL-1: H o r f l

DU: 9

executables

source

library

executables

source

library

executables

source

library

executables

source
library

source updates

MS-DOS/386: (not public-domain)

DE 386 H o r Q executables

$15

$15

$15

$15

$20

$15

$15

$25

$15

$20
$25

$15

$50

$25

MVS:

MT:

OS/2:

OE:

UNIX

UT-T:
UT-C:
UC-T:
UC-C:

UD-M:
UL-1:

Q entire system

HorkJ executables

O entire system (tar)

O entire system (cpio)

13S entire system (tar)

tag entire system (cpio)

B (6) or t,-J (4) entire system (cpio)

B ° r H library (cpio)
UNIX - UNIX PC:

UPE: 9

UNIX-XENIX

XE: BortJ

UNIX - XENIX/386:

XE-386: B o r Q

VAX/VMS:

VT: Q

VM/CMS:

CT: Q

executables

executables

executables

entire system

entire system

$30

$15

$30

$30

$45

$45

$40

$15

$15

$15

$15

$30

$30

Other systems (for porting):

PF-A: H (5) flat system (ASCII) $40

PF-K: H (2) flat system (ARC) $30

PH-A: a (5) hierarchical system (ASCII) $40

PH-K: B (2) hierarchical system (ARC) $30

PL-1: B library (ASCII) $15

Documentation

LD: Language documentation package. The Icon Pro­
gramming Language (Prentice-FIall, 1983) and six tech­
nical reports. $33.

ID: Implementation documentation package. The Im­
plementation of the Icon Programming Language (Prince­
ton University Press, 1986) and update. $45.

NL: Back issues of the Icon tyiosUtter. $.50 each for
single issues (specify numbers). $7.50 for a complete
set (Nos. 1-31). There is no charge for overseas ship­
ment of single back issues, but there is a $5.00 ship­
ping charge for the complete set.

10

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621 -4049

name

address

city

(country)

state zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

Make checks payable to The University of Arizona purchase-order processing

other charges

total

total

"The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

Payment • Visa • MasterCard

• check or money order

I hereby authorize the billing of the above order to my credit card:

card number exp. date

name on card (please print)

signature

11

