
^Ihe Icon 9{ezvstetter
No. 30 - June 4,1989

Credit Card Orders

W e can now accept MasterCard and Visa for the
purchase of Icon material. See the ordering in­

formation at the end of this 9{ezvsfetter. If you place an
order by telephone, be sure to have your card handy.

Icon Program Library

V - ersion 7 of the Icon program library is now avail­
able - at least the first part of it. See the order form

at the end of this 9{ewsfetter.

Part 1 of the Icon program library contains both
complete programs and collections of procedures that
may be useful in composing other programs. There are
45 complete programs and 137 additional procedures.
The programs range from simple utilities to sophisti­
cated text generators.

While the library is useful in its own right, it also
provides many examples of Icon programming tech­
niques that may be particularly helpful to persons
who are new to Icon or who want to improve their Icon
programming skills.

Part 2 of Version 7 of the Icon program library is in
preparation. It will contain larger and more complex
program packages as well as some programs designed
for specific operating systems.

Contributions to the Icon program library always
are welcome. Guidelines for submission of new mate­
rial are contained in the documentation that accompa­
nies Part 1 of the library.

Implementation News

Version 73
We've brought several more implementations of

Icon into the Version 7.5 "stable": the Amiga, the Atari
ST, Macintosh MPW, the UNIX PC, XENIX, and

XENIX/386. Version 7.5 source code also is now avail­
able for the Atari ST and Macintosh MPW.

Since the differences between 7.0 and 7.5 are minor
as far as the language itself is concerned, there is no
compelling reason to upgrade if you have an earlier
Version 7. If you encounter a problem, however, you
may need to get 7.5, so that we can provide help. If you
are working with the source code, however, you should
get Version 7.5, since there are many changes and
improvements in the 7.5 implementation.

Thanks to Bob Alexander, Mic Bowman, Ronald
Horence, Clint Jeffery, and Steve Wampler, who helped
with Version 7.5 upgrades.

3.5" Diskettes
We can now provide 3.5" diskettes (720K) for MS-

DOS executables, MS-DOS source, and UNIX source.
The default for filling orders still is 5.25" diskettes; if
you want 3.5" diskettes, be sure to specify them when
ordering.

Communicating with the
Icon Project

You can communicate with the Icon Project in sev­
eral ways. Electronic communication often is fast­

est and easiest. In fact, most Icon program material
and some documentation is available electronically.

Getting Material Electronically
There are two methods for getting program material

and documents electronically: network file transfer
(FTP) and our electronic bulletin board (RBBS).

Network File Transfer

If you have access to FTP,
that is by far the fastest and
most reliable way to get Icon
material. FTPtoarizona.edu.
When you are asked to log in,
enter anonymous. When you
are asked for a password,
enter any non-empty string.
Then

http://FTPtoarizona.edu

cd icon
get README

Look through README to see whaf s available.

If arizona.edu does not work for you, there are two
numerical network addresses that you can use:
128.196.128.118 and 192.12.69.1.

Electronic Bulletin Board

RBBS access is via the telephone. It provides
Xmodem, Xmodem(CRC), windowed Kermit (which
includes unwindowed Kermit), and plain ASCII trans­
fers.

The RBBS number is (602) 621-2283. It uses a Hayes
2400-baud modem. You can connect at either 1200 or
2400 baud. RBBS asks for your first and last names and
the city and state from which you are calling. It is set to
reject certain names it recognizes as bogus, so you
should give your real name. After getting on, using the
bulletin board is simply a matter of navigating through
the menus.

For the greatest flexibility in using the file down­
loading capabilities, once you've logged on, set your
serial port to 8-bit characters, no parity, and 1 stop bit.

RBBS is normally available from 5 p.m. to 8 a.m.
Mountain Standard Time on weekdays and all day on
weekends and national holidays. It may be available at
other times, but it is subject to unscheduled interrup­
tion then.

Notes: RBBS is available only for downloading Icon
material. Uploading is not supported and messages
are not answered.

The Icon 9{ezusCetter

Madge T. Griswold and Ralph E. Griswold
Editors

The Icontywsktur is published aperiodically, at no
cost to subscribers. For inquiries and subscription
information, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

© 1989 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

RBBS contains several files that are much too large
for general downloading. These files are there for
compatibility with the contents of our FTP area and
for persons in our local calling area who can download
large files via telephone successfully. Use your own
judgement about the practicality of downloading large
files.

Most problems related to file transfer from RBBS
seem to be related to bad telephone connections. In
some cases there may be problems with modem in­
compatibilities. If you experience persistent problems,
you probably should get Icon material another way,
such as by ordering physical copies — it's usually less
expensive and faster in the long run.

Electronic Mail
Electronic mail is the fastest way to get information

and help. We do not, however, provide program
material or documentation by electronic mail.

Our electronic mail addresses are:

icon-project@arizona.edu (Internet)

...{uunet,allegra,noao}!arizona!icon-project (uucpnet)

Electronic mail addressed to icon-project is usually
answered the day it is received.

Although the reliability of electronic mail has im­
proved considerably over the last few years, there still
are failures. In addition, the mail path back for re­
sponses sometimes fails. If you send electronic mail to
icon-project and do not get a prompt response, you
should assume it was not received or that the answer
did not reach you. The first time you send electronic
mail to the icon-project, you should include a postal
mailing address in case we are unable to reach you
electronically. This will also put you on the list for a
free subscription to the Icon 'Hezosfetter, if you're not
already on it.

Responses to electronic mail addressed to icon-proj­
ect may come from one of several persons who handle
various aspects of Icon. You may wish to exchange
subsequent electronic mail about a specific topic with
that person rather than with icon-project, but later
mail on a different topic should be addressed to icon-
project to assure it reaches the appropriate person and
to get a prompt response in case an individual is away.

Electronic Newsgroup

We provide an electronic newsgroup for the redis­
tribution of electronic mail to persons who are inter­
ested in Icon.

To become part of this newsgroup, send a request to
icon-group-request in place of icon-project in the ad­
dresses given for electronic mail previously. You should

http://arizona.edu
mailto:icon-project@arizona.edu

also use icon-group-request to unsubscribe to the
newsgroup.

All electronic mail sent to icon-group at Arizona is
automatically distributed to newsgroup subscribers.
Any subject of general interest related to Icon is suit­
able for the newsgroup. However, since mail to icon-
group is redistributed widely, that address should not
be used for requests for information that the Icon
Project can handle. Use icon-project for this.

Voice Contact

Information of a nontechnical nature about Icon may
be obtained by calling (602) 621 -2018. This number also
can be used for credit card orders of program material
and books. Be sure to have your credit card handy for
such orders. You can also leave messages for individu­
als at this number.

Facsimile Transmission

Our FAX number is (602) 621-4246. FAX may be used
for technical matters and for credit-card orders. For
credit-card orders, provide the card type, card num­
ber, expiration date, cardholder name, and signature,
stating that you authorize the order to be charged to
your credit card. See the order form at the end of this
'Hezus fetter for an example of what is required.

Postal Correspondence

Postal correspondence to the Icon Project should be
addressed as follows:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

We answer all postal correspondence, usually within
one week of receipt. Persons who request routine
information about Icon may receive an appropriate
document rather than a letter.

Summary of Addresses and Numbers:

FTP:

arizona.edu (128.196.128.118 or 192.12.69.1)

RBBS:

(602) 621-2283

Electronic mail:

icon-project@arizona.edu
...{uunet,allegra,noao)!arizona!icon-project

Newsgroup subscription:

icon-group-request@arizona.edu

...{uunet,allegra,noao}!arizona!icon-group-request

Newsgroup mai l :

icon-group@arizona.edu

...{uunet,allegra,noao}!arizona!icon-group

Voice contact:

(602) 621-2018

FAX:

(602) 621-4246

From Our Mail
I'm trying to read binary data in Icon
on my IBM AT clone. I'm
using reads(f.n) as rec­
ommended in the last
tyzvsfetter, but char­
acters with hexadeci­
mal code Od vanish.
What's wrong?

Our answer to a related question in the last 'Hg.zusfetttr
was incomplete. The reason to use reads(f ,n) to read bi­
nary data is to enable you to read fixed-sized blocks
and also not have linefeeds discarded as read(f) does.
On an MS-DOS system, you must also open f in un­
translated (binary) mode; as in

f := open(fname, "u")

Otherwise, by default the file is considered to be text
and line terminations (carriage return/line feed) are
converted into linefeeds on input and conversely on
output. This default translation is a property of C I/O
libraries on MS-DOS. This is also true for the Atari ST.

Will Version 7.5 of Icon compile and run under the MS-
DOS MIX C compiler? (We're repeating this question from
'Hezosfetter 29 to provide a more complete answer.)

No. Icon requires 32-bit pointers, like those found in
the large memory model. MIX C does not provide this
model.

Why can't I get The Icon 9{ezvsfetUr electronically? It
seems to me it would save you a lot of money.

The way the 9{ezosfetter is prepared does not permit
electronic distribution. In the first place, it's done using
a desktop publishing system. While the material in the
9^ezusfetteris in machine-readable form, it requires the
desktop publishing system to format and print it.
Some persons recognize that Icon is printed on a
PostScript printer and have asked for the PostScript
electronically. The PostScript file would be very large.
More important, it contains code, copyrighted by others,
that we cannot distribute.

http://arizona.edu
mailto:icon-project@arizona.edu
mailto:icon-group-request@arizona.edu
mailto:icon-group@arizona.edu

I've just gotten a copy of Icon, but unfortunately the Pren­
tice-Hall book I need is out of print. Can you help me?

The Prentice-Hall book (The Icon Programming Lan­
guage) is not out of print. Once or twice in the past few
years it has been temporarily out of stock at the pub­
lishers because of unexpected demand. If you can't
find a copy locally, you can order it from the Icon
Project as described at the end of this eH$zusktter.

When is Icon for VM/CMS going to be available?

We don't know for sure. There are a couple of prob­
lems that need fixing and there's no user documenta­
tion yet. Unfortunately, we don't have the facilities to
work on it locally. We are getting outside help and
hope to have something available by this fall.

Will VM/CMS Icon run under MVS?

We think it will be fairly simple to transport VM/CMS
Icon to MVS, but no one has tried it yet.

I want a copy of the source code for Icon. Please break it up
in small pieces and send it to me by e-mail.

We're happy to make Icon material available elec­
tronically. However, you'll have to download it from
our RBBS or use FTP, as we don't undertake to initiate
transfers. Incidentally, the source code for Icon is too
large to send via electronic mail.

Professor Donald Knuth has developed a language pre­
processor, WEB, that significantly aids both program devel­
opment and documentation. There are public-domain ver­
sions of WEB for C and Pascal. Is there an Icon version?

Not as far as we know. Perhaps one of our readers will
respond if such a thing is in the works.

What's the status of the "extension interpreter" for Icon? I
have an Atari ST and would like to be able to access system
routines for graphics and sound from Icon programs.

We have the code that will allow Icon programs to
access C library routines. However, we have not incor­
porated it into Icon yet. We hope to get to this; it's one
of several projects that are pending, waiting for time
and resources. However, accessing library routines
for Icon has two significant problems. One problem is
passing data, which in many cases is different in for­
mat between Icon and library routines. The other
problem is that overhead in communication may be so
large that operations using low-level library functions
will not run acceptably fast.

Why do I have to pay for Icon material in US dollars? It's
a lot of trouble for me; can't you just convert my currency
(pounds)?

The problem is the cost of conversion. It can be $30 or
more, regardless of the amount converted, and it's
also unpredictable. In fact, our bank refuses to to
handle conversion in many cases. Credit cards, which
we now can accept, provide a good way around this
problem.

Object Icon
Editors' Note: Object-oriented programming continues to
receive a lot of attention and we're frequently asked about
such features for Icon. This article is contributed by Bill
Griswold at the University of Washington. It describes
experimental work he's done on the subject.

Object Icon is an extension of Icon that permits defin­
ing types so that a value can carry its operations with
it. This permits users to define polymorphism per
type rather than per procedure. It does not support
encapsulation. It is fully compatible with Icon. The
additions to the translator using the variant translator
facility were simple, and no changes were required in
the interpreter. Many features and aspects of the im­
plementation are imperfect; Object Icon is only a proto­
type.

To define a good object-oriented Icon might require
creating a new language, rather than extending Icon.
For example, a raw record type is a little out of place in
Object Icon. Also, decisions regarding existing (i.e.,
non-object oriented) types in Icon require careful
thought. A language with two type models is a little
awkward, but so are integers implemented in an object-
oriented style.

The New Features

A new user type (class) is defined by the class
declaration

class type(field1,field2,...)

This defines type as a class possessing each f ield[i] as an
attribute. For example, the following definition de­
fines a stack class with attributes rep, push, pop, size,
and init.

class stack(rep,push,pop,size,init)

Each attribute is actually an instance variable. Any
value can be stored in an instance variable, including
class procedures (methods). The syntax for defining a
method is

procedure type::name(arg1 ,arg2,...)

If name is an attribute of type, creating an instance
(object) of type causes the instance variable name to be
initialized to the procedure defined by type::name.
When called, a class procedure has an implicit local
variable self that contains the value of the instance that
is invoking the operation. This permits a class proce­
dure to access the instance variables of the invoking
instance. Consider the following method:

procedure stack::push(value)
push(self.rep, value)
return self

end

This method uses self to access the instance variable
rep to perform a push operation on the list stored in it.
A method is accessed through the $ operator. For ex­
ample

mystack$push("hello")

invokes stack::push for mystack, pushing the value
"hello" on it. A class method can also be accessed
directly with the :: syntax. For example

mystack.pop := stack::pop

assigns the method stack::pop to the pop field of
mystack. The operation can also be invoked directly,
as in

stack::push("world")

However, this is unlikely to be meaningful if the push
operation accesses the self variable (which in this case
would be null). However, this syntax is useful for the
object-creation operation:

mystack := stack: :stack()

The self variable in stack::stack is null on entry to the
method but is initialized during its execution. Here is
the implementation of the constructor stack::stack.

procedure stack::stack()
self := new_stack()
self, rep := []
return self

end

The method new_stack is defined implicitly by the
system. It calls the allocation function stack, and ini­
tializes all the instance variables to the methods that
are defined for them (based on the correspondence of
type and field names).

There is no inheritance declaration such as

class stack : aggregate (...)

which would declare that a stack has all the instance
variables and procedures of aggregate, plus any
additionally defined by stack. This might be forth­
coming, but to be effective it must be general, allowing
multiple superclasses and redefinition of inherited
procedures. This sharing can be handled in Object
Icon explicitly by overlapping instance variable names
and assigning a borrowed procedure directly into the
overlapping instance variable. See the implementa­
tion section for details on how it might be imple­
mented.

Using Object Icon

Icon's field access operations are polymorphic. This
means that the field reference x.y is defined as long as
the value x is a record that has a field y. The same i s true

for class instances. This means that instance variables
of the same name in different classes are implicitly and
automatically shared (it cannot be prevented). In
many cases this overlap is meaningful. For example
consider a class array and the above class stack.

class array(rep,size,in,out,clear)

Both classes define a procedure size that returns an
integer representing the size of the invoking object:

array::size()
return *self.rep

end

stack ::size
return *self.rep

end

If some variable in the program knows it has an
aggregate of some kind, but does not care which kind,
it can invoke the size method and find its size, regard­
less of whether it's an array or stack:

agg_size := some_agg$size()

Not only can actual fields be shared, but code imple­
mentations can as well. For example, if the stack and
array were actually implemented as above, the sharing
would be easy. Suppose array just reused the implem­
entation of stack::size by borrowing it in its construc­
tor function:

procedure array::array()
self := new_array()
self.rep := []
self.size := stack::size
return self

end

This works as expected.

Implementation

The implementation is accomplished with a variant
translator. The variant translator facility, available
only under UNIX, is an Icon-source-to-Icon-source
translator that can be modified easily to accept Icon
variants and generate Icon code to support the vari­
ants. A variant is described by modifying the grammar
and actions of the Icon Yacc description, and adding
any necessary semantic processing routines. This is
aided by macro processors that take a high-level de­
scription of actions and map it into the actual descrip­
tion.

The Object Icon source is translated into Icon and
then compiled as an Icon program. This translation
results in a number of names being changed, possibly
obfuscating tracing. Line numbers can be preserved,
but currently are not.

The class declaration is translated directly to a rec­
ord declaration of the same name. This means that
type(mystack) == "stack". It also means that calling the
constructor function stack directly does not initialize
stack instances meaningfully. This is why class object
constructors such as stack::stack call the object initial­
izer defined by the variant translator when class stack
is declared:

procedure new_type()
return type(type_field1,...)

end

If type_field1 is undeclared, it has the null value as
expected.

The system does not check that a defined procedure
actually corresponds to a class definition. For ex­
ample, the procedure stack::stack defined above does
not have a corresponding attribute in the class stack
declaration. This means spurious procedures can be
defined, but it also allows for definition of the con­
structor without actually storing it in each instance.

Defining the method type::name(arg1,arg2,...) re­
sults in defining the Icon procedure

type_name(self,arg1 ,arg2,...)

Defining a procedure of type_name directly can result
in a compile-time error due to the multiple definitions.

The call expr$name(arg1,arg2,...) results in defining
the call

(_self_temp := expr).name(_self_temp,arg1,arg2,...)

or some equivalent expression.

Example

This is a complete Icon program implementing a
stack class.

class stack(rep,push,pop,size,init)

procedure main()
mystack := stack::stack()
mystack$push("hello")
mystack$push("world")
size := mystack$size()
writefMy stack is size ",size)
write("popping ",mystack$pop(),

"", mystack$pop())
end

procedure stack::stack()
self := new_stack()
self.rep := []
return self

end

procedure stack::push(value)
push(self.rep, value)
return self

end

procedure stack::pop()
return pop(serf.rep)

end

procedure stack::size()
return *serf.rep

end

procedure stack::init()
self.rep := []
return self

end

Implementing Inheritance

To implement class inheritance, such as in a decla­
ration like

class type : supertypel : supertype2 :... (field1,field2,...)

it is feasible to substitute the fields of supertype in
front of the fields defined for type. Redeclaring a field
could cause an error, or mask the old field (i.e., its
initial value). Masking initial method values can be
done in the new_type operation as follows:

procedure new_type()
return type(\type_field1

end
\supertype_field1

resulting in taking the "closest" implementation to
the type being defined. This type of sharing does not
prohibit the sharing of class attributes exploited in the
current definition of Object Icon, meaning that there
are two ways to share. This can compromise clarity. It
may be better to leave Object Icon the way it is. Also,
note that the current technique permits sharing class
procedure implementations across types, independ­
ent of field names. This means a procedure can be
borrowed without the names being the same. This is
important, since type is considered to be independent
of implementation.

Another problem with inheritance is that inherited
instance variables must get initialized in some way.
For variables holding methods this is not difficult, but
it is for normal values. Usually this should be done by
the constructor of the superclass, but the current
method does not allow for this in a transparent fash­
ion. However, any solution could be used to initialize
method variables as well, and the above method
could be abandoned.

Note: Object Icon is an experimental system. It is not
available for distribution.

file:///supertype_field1

Programming Corner

Pointer Semantics,
Graphs, and Sets

Icon uses pointer se­
mantics for structure val­
ues. What this means is
that a list, for example, is a

pointer to a collection of the
values that the list contains. A

pointer, which is a memory address in implem­
entation terms, is small and fixed in size, even though
the collection of values in the list may be arbitrarily
large.

An assignment in Icon, such as

L:=list(1000)

merely copies the pointer produced by list(1000) into
L; the 1,000 values are irrelevant as far as the assign­
ment is concerned — they are not even referenced.

The use of pointer semantics has several conse­
quences. Some are good (efficiency in handling struc­
ture values) and some are (at least potentially) bad,
such as unintentional sharing of structure values via
pointers. These issues are discussed in the Icon lan­
guage book.

What may not be obvious is how pointers to struc­
tures in an Icon program can be used to reflect, in a
natural way, structures that exist in the problem
domain. Consider, for example, a simple directed
graph:

In order to perform computations on such a struc­
ture, it is necessary to represent them in some way in
a program. One way to do this is to represent each
node in the graph by a set. Then the values in the set
are pointers: arcs to the nodes to which the node
points. For example, the program structures for the
graph shown above are:

A := set()
B := set()
C := set()
insert(A.B)
insert(A.C)
insert(B,B)

The important conceptual point is that a set is a
pointer to a collection of pointers to other sets. A

slightly different visualization of the structures in the
programming domain illustrates this:

A

Thus, an arc is represented by a (pointer to) a set and
a node is represented by the values in the set.

The ease of manipulating this program representa­
tion of graphs is illustrated by procedures to compute
the transitive closure of a node (the node and all nodes
reachable from it by a succesion of arcs):

procedure closure(n)
S := set()
insert(S.n)
return more(S.n)

end

start with the node itself

process reachable nodes
then { # skip ones already in

add new node
recurse

procedure more(S.n)
every n1 := !n do

if not member(S,n1)
insert(S,n1)
more(S,n1)
}

return S
end

Note that a set is used to keep track of nodes already
accumulated.

There are several problems that arise in computa­
tions on graphs that may require a somewhat more
sophisticated representation of structures. For example,
if the values are associated with arcs (or if there may
be more than one arc between two nodes), the set-of-
sets approach is inadequate. In such cases, a record
type can be used for arcs, as in

record arc(value.node)

where the value field contains the value associated
with the arc and the node field contains the set to
which the arc points. Suppose, for example, that the
arcs in the example above are weighted:

Then the graph can be represented in the program as
follows:

insert(A,arc(2.0,B))
insert(A,arc(1.5,C))
insert(B,arc(3.7,B))

Exercise: Modify the procedure closure given above to
handle this representation of directed graphs.

Two-Way Tables

Programs that manipulate graphs generally need to
be able to read a representation of a graph in string
form and write results in string form. For example, the
(unweighted) form of the graph above might be repre­
sented as

A->B
A->C
B->B

Exercise: Write a procedure to read this representation
of unweighted graphs and build the corresponding
program structures.

One problem is associating labels for the nodes with
corresponding program structures. The natural solu­
tion in Icon is to use a table in which the keys (entry
values) are the labels and the assigned values are the
corresponding sets. Written out explicitly for the graph
above, this might be:

Node := table()
Node["A"] :« A
Node["B"] := B
Node["C"] := C

Consequently, Node["A"] produces the node (set)
labelled A. Such a table might be used, for example, in
constructing a graph from its string representation as
posed in the exercise above.

On the other hand, the converse may be needed. For
example, in writing out the results of a computation on
a graph (such as the transitive closure of a node), the
labels associated with nodes may be needed.

Since any kind of value can be used as a key into a
table, a table like the one above, with the keys and
entry values reversed, can be used:

Label := table()
Label[A] := "A"
Label[B] := "B"
Label[C] := "C"

It is not necessary to have two tables, however. Since
the keys in a table need not all be of the same type, the
same table can be keyed with both the labels and the
nodes (sets):

Graph := table()
Graph["A"] := A
Graph["B"] := B
Graph["C"] := C

Graph[A] := "A"
Graph[B] := "B"
Graph[C] := "C"

Such a "two-way" table keeps all the information
needed to associate labels with nodes and vice versa
in one structure. Subscript it with a label to get the cor­
responding node and subscript with a node to get the
corresponding label.

llSira EjUMJI fej|| Klffllu| luElfiflfl jplSlfl

The Prolcon Group Announces
First Language Release

Prolcon, the first commercially produced version of
Icon, was released May 8 for Apple Macintosh com­
puters. The language is produced by The Prolcon
Group, which is a cooperative effort of Catspaw, Inc.,
Salida, Colorado and The Bright Forest Company,
Tucson, Arizona.

Prolcon is an enhanced version of Icon Version 7.5.
It is integrated into the Macintosh environment and
does not require MPW to run. It features an environ­
ment that allows program development, testing, and
debugging without leaving the application. Prolcon
also has many features not available in standard Icon,
including function tracing, an optional termination
dump, and several new functions, including ones for
manipulating the screen and windows. Finished ap­
plications may be distributed to others using a roy­
alty-free run-time system.

For more information, contact

The Prolcon Group
P.O. Box 1123
Salida, Colorado 81201-1123
U.S.A.

719-539-3884

Graphics Credits
Graphics that first appeared in earlier 9^ezvsfetters

are credited there.

Page 8. Charles Richmond, Atari ST, printed out­
put, scanned and traced with Illustrator 88, converted
to PostScript font with Keymaster.

Page 10. Ralph Griswold, Planet Icon, section of
graphic on back page "spherized" in Graphist II;
gray-scale editing done in ImageStudio.

Back page. Ralph Griswold, Icon Fractal Space, Illus­
trator 88, based on a design by Mark Emmer of
Catspaw, Inc.

Ordering Icon Material

What's Available

There are implementations of Icon for several per­
sonal computers, as well as UNIX and VAX/VMS.

Source code for Icon is available. There also is a
program library and documentation both on the Icon
programming language itself and on its implementa­
tion.

The current version of Icon is 7. All the program
material here is for Version 7.

Icon Program Material

Personal Computers: Executables and source
code for Icon for personal computers are provided
separately. Each package contains printed documen­
tation that is needed for installation and use. Note:
Icon for personal computers requires at least 512KB
of RAM; it may require more on some systems.

UNIX: The UNIX package contains source code
(but not executables), documentation in printed and
machine-readable form, test programs, and related
software. It can be configured for most UNIX sys­
tems. The documentation includes installation in­
structions, an overview of the language, and operat­
ing instructions. It does not include either of the Icon
books. Program material is available on magnetic
tape, cartridge, or diskettes. Note: executables for
XENIX and the UNIX PC are available separately.

VMS: The VMS package contains everything the
UNIX package contains except UNIX configuration
information and UNIX-specific software. However,
the UNIX and VMS systems are configured differ­
ently, and neither will run on the other system. The
VMS package also contains object code and execut­
ables, so a C compiler is not required. The VMS
package is distributed only on magnetic tape.

Porting: Icon source code for porting to other
computers is distributed on MS-DOS format disk­
ettes. There are two versions, one with a flat file
system and one with a hierarchical file system. Both
versions are available in either plain ASCII format or
compressed ARC format.

Icon Program Library

The Icon program library consists of Icon pro­
grams, collections of procedures, and data. Version 7
of Icon is required to run the library. The Icon pro­
gram library is being issued in parts. Part 1 presently
is available. Note: Version 7 of the Icon program
library is available only on diskettes. The UNIX tape
and cartridge packages and the VMS tape package
presently contain an older version of the Icon pro­
gram library.

Documentation

There are two documentation packages that con­
tain more than is provided with the program pack­
ages: one for the language itself and one for the
implementation.

Except as noted, the prices listed include handling
and shipping in the United States, Canada, and
Mexico. Shipment to other countries is made by air
mail only, for which there are additional charges as
follows: $5 per diskette package, $10 per tape or
cartridge package, and $10 per documentation pack­
age. UPS and express delivery are available at cost
upon request.

Payment

Payment should accompany orders and be made
by check, money order, or credit card (Visa or Master­
Card). Remittance must be in U.S. dollars, payable to
The University of Arizona. There is a $10 service
charge for a check written on a bank without a branch
in the United States. Organizations that are unable to
pre-pay orders may send purchase orders, subject to
approval, but there is a $5 charge for processing such
orders.

Ordering Instructions

Legend: The following symbols are used to indi­
cate different types of media:

Q 9-track magnetic tape
@g DC 300 XL/P cartridge
H 360K (2S/DD) 5.25" diskette
y 400K (IS) 3.5" diskette
H 800K (2S) 3.5" diskette

All cartridges are written in raw mode. All 5.25"
diskettes are written in MS-DOS format. 3.5" disk­
ettes are written in the format appropriate for the
system for which they are intended.

When ordering tapes, specify 1600 or 6250 bpi
(1600 bpi is the default). When ordering diskettes that
are available in more than one size, specify the size
(5.25" is the default).

Use the codes given at the beginning of the de­
scriptions that follow when filling out the order form.

- 9 -

C®>

The symbol i®* identifies material that is new
since the last tyrvskuer. The symbol <&* identifies
material that has been updated to Version 7.5 since
the last 9{$zvsfetter.

$15

$15

$20

$15

$25

$20

$25

$15

$15

$25

$25

$40

$40

$40

$15

UNIX - XENIX:

XE: H o r f l executables $15

UNIX - XENIX/386:

XE-386: H o r f l executables $15

VMS:

VT: Q $25

Source for Porting:

PF-A: H (5) flat system, ASCII $35

PF-K: H (2) flat system, ARC $25

PH-A: H (5) hierarchical system, ASCII $35

PH-K: H (2) hierarchical system, ARC $25

Program Material

Amiga:

AME: H

Atari ST:

ATE: y

ATS: H

Macintosh/MPW:

ME: H

MS: H

MS-DOS:

DE: H(2)orH
DS: H(2)orH

MS-DOS/386:

DE-386 H o r f j

OS/2:

OE: Horfl

UNIX:

UT-T: O

UT-C: O

UC-T: @g

UC-C: m

UD-M: H(6)orH(4)

UNIX - UNIX PC:

UPE: H

executables

executables

source

executables

source

executables

source

executables

executables

tar format

cpio format

tar format

cpio format

cpio format

executables

Icon Program Library (Part 1)

Amiga:

*& AML-1: H

Atari ST:

" ^ ATL-1: y

Macintosh/MPW:

^ ML-1: H

MS-DOS and OS/2:

*& DL-1: H o r H

UNIX:

"3* UL-1: H o r H

Others:

*& PL-1: H

Documentation

cpio format

ASCII

$15

$15

$15

$15

$15

$15

LD: Language documentation package. The Icon
Programming Language (Prentice-Hall, 1983) and
three technical reports. $32.

ID: Implementation documentation package. The
Implementation of the Icon Programming Language
(Princeton University Press, 1986) and update. $40.

NL: Backissuesof Ifie IconJ&zostetter. $.50eachfor
single issues (specify numbers). $7.00 for a complete
set (Nos. 1-29). There is no charge for overseas
shipment of single back issues, but there is a $5.00
shipping charge for the complete set.

10

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621-2018

name

address

city

(country)

slate zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

Make checks payable to The University of Arizona
other charges

total

total

'The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

Payment • Visa • MasterCard
• check or money order

.Y.ISA..,.

I hereby authorize the billing of the above order to my credit card:

card number exp. date

name on card (please print)
signature

1 1 -

icon icon
oo oo
UOJI UOJI

— t mtm •

icon icon
oo oo
UOJI _ UOJI

icon
o o
UOJI

icon icon
oo oo
UOJI mtU0Dl

icon icon
oo oo
UOJ[UOJI

icon icon
oo oo
UOJI -.UOJI

icon
0 0
UOJI

icon
0 0
UOJI

icon
o o
UOJI

icon
o o
UOJI

icon
o o
UOJI

o o
UOJI

icon icon
oo oo
UOJI UOJI

icon icon
oo oo
UOJI UOJI

icon
0 0
UOJI

xon" '
0 0
ixai

icon
o

UOJI

icon
o o
UOJI

• » .
icon
o o
UOJI

icon
o o
UOJI

icon
o o

UOJI

icon
o o
UOJI

icon
o o
UOJI

icon icon
oo oo

JWP -.UOJI

icon
o o

icon
o o
UOJI

icon'm Icon"
oo oo
UOJI UOJI

icon
o o

UOJI

icon
o o
UOJI

icon
o o

« - UOJI

icon
o o

UOJI

icon
o o
UOJI

icon
o o
UOJI

icon
o o
UOJI

icon
o o
UOJI

icon
o o

_ UOJI

icon icon
oo oo
UOJI UOJI

icon Icon
oo oo
UOJI UOJI

icon
o o
UOJI

icon icon
oo oo
UOJI UOJI

