
The Icon Newsletter
No. 29 - February 14,1989

Implementation News

Icon for OS/2

We now have an OS/2 version of Icon.

It is a large-memory-model implementation, which
limits region sizes to slightly less than 65K. (We're
working on a huge-memory-model implementation
that will remove this restriction.) OS/2 Icon is avail­
able on either 3.5" or 5.25" diskettes. See the order form
at the end of this O^pzusfetter.

Cheyenne Wills developed this implementation; our
thanks to him.

Implementation Updates

We are continuing to update implementations of
Icon from Verion 7.0 to 7.5. The latest updates are for
UNIX, VMS, and the source for porting. See the order
form at the end of this tyzvsfetter.

As mentioned in the last O^ezosfetUr, the source-lan­
guage differences between 7.0 and 7.5 are minor, and
there is no reason to upgrade if you're using Version

7.0. (If you're using an earlier
version, you definitely should
upgrade.) However, we no
longer support Version 7.0 for
implementations that have
been upgraded to 7.5, so if
you run into a problem, you
may need to upgrade.

There are a lot of internal
differences in the implementation between Version 7.0
and 7.5, and if you're working with the source code,
you should upgrade.

Since we only charge for the costs of producing and
distributing Icon material, we don't offer special prices
to persons who upgrade from an earlier version. How­
ever, we've been distributing Version 7.5 for the sys­
tems mentioned above since early January, so if you've
obtained a copy recently, you should already have
Version 7.5.

Letter from an "Old Icon Hand"
Editors' Note: Shortly after Icon 9^zpsfetter2Swas dis­

tributed, Ralph Griswold received this letter from Walt
Hansen, who participated in the early development of Icon.

I just got a copy of the latest Icon 9{ezos fetter. Under
"Odds and Ends" you wonder why the UNIX im­
plementation took so long to get started. I think I
remember. Maybe it's easier for me because my par-
ticiation in the project ended just as the UNIX implem­
entation was getting off the ground.

I recall the department got the PDP11 /70 in Decem­
ber 1977. I distinctly remember playing with it for the
first time following the Christmas party at Dick Or-
gass's house. Only the DEC writer II console was func­
tioning. It was a hell of neat new toy.

I joined the Icon project in January 1978.

The two implementations I worked on were the
ones done in Ratfor on the DECSystem-10. The first
implementation was done by Dave Hanson, Tim Korb
and me. I did the front end, Tim & Dave the runtime.
You were doing documentation and QA. Steve
Wampler participated in the second implementation.
He was doing the port to the CDC machine(s) — the
computer center was transitioning from the 6400 to
the Cyber 176 (?) about this time. Cary Coutant came
on board toward the end of the second implementa­
tion. I don't recall if he had any implementation
responsiblities for this release.

The first implementation was strictly an interpreter.
The details seem vague now, but I recall the entire
runtime was always present. It was a pig: fat and
slow. We had this working pretty quickly. But the

performance penalty prompted us to try a new ap­
proach. This led to the second implementation which
took up the whole summer of '78. Our target was to
have a working system by the start of the Fall term for
a class you were teaching.

The second implementation was a "compiled" in­
terpreter. The front end generated FORTRAN code
including function calls to the runtime. The generated
mess was then compiled and linked. It was a lot
faster. We got it built on time and the class liked using
it. Of course they also found a lot of bugs. Fixing bugs
and adding features took up the remainder of my
participation through the next year. I left in August
1979.

T/te Icon O^tzustttttr

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon CN^zOsfetter is published aperiodically, at
no cost to subscribers. For inquiries and subscrip­
tion information, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602) 621-2018

FAX: (602)621-4246

Electronic mail may be sent to:

icon -project@arizona .ed u

or

...{uunet,allegra,noao)!arizona!icon-project

© 1989 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

We weren't using UNIX for a number of reasons.
First, we already had the momentum of the first im­
plementation and the goal of building a working inter­
preter by the start of the class. Second, it was just too
new. None of us (with the exception of Dave) had used
UNIX before. Third, we were all very familiar with the
DECSystem-10. Why did it take a couple of years to
get the first UNIX implementat ion star ted?
Momemtum.

Now I have a couple of recollections of your opin­
ions from that time that may have influenced events.
I don't think you were sold on UNIX as god's gift to
programmers and I think you had severe reservations
about C. I don't think you liked the language. Of
course C wasn't available outside UNIX in those days
so portability was out. The FORTRAN on UNIX was
F77. We were assuming a Ratfor targeted to FOR­
TRAN 66. Maybe that had some influence; I recall
Steve having conniptions converting to FORTRAN 77
on the Cyber. One last thing. I suggested using YACC
in the front end to generate a Ratfor parser. Your
experience with SL5 using a tempermental parser
generator (whose name eludes me now) that lacked
portability discouraged the use of YACC at this time.
It seems funny now to think that back then UNIX and
UNIX tools were considered hinderances to portabil­
ity.

I hope this helps. Maybe it will only muddy the
waters. Whatever. I enjoyed my time on those proj­
ects. I have fond memories of working with you, Tim,
and Dave on that first implementation. The give and
take in the meetings and commeraderie were unique
in my experience. It really spoiled me.

Walt

P.S. Icon is now over ten years old. It's about the
same age SNOBOL4 was when Icon was born (and
post SL5). Icon is now fairly stable. Radical changes
might screw u p a lot of existing code. So, any plans to
launch a new research language in the near future?

Downloading Icon Material

Several of the implementations of Icon are
available for downloading electronically:

BBS: (602)621-2283

FTP: arizona.edu (/icon)
(128.196.6.1 or 192.12.69.1)

http://arizona.edu

A Contribution from Users (cont'd)
Editors' Note: This is the conclusion of a contribution from

Andy Heron and Carole Thorton that started in the last
'Xs.zvsfetUr. It describes some modifications the authors
made to Icon for a database project.

Run-Time Record Definition

New facilities have allowed us to develop Icon proce­
dures to store and retrieve structured data from disk.

Consider the following fragment of Icon code.

count := table(O)
every item := get_item() do

countTitem.type] +:= item.number

One can deduce that the procedure get_item gener­
ates a sequence of records that include the fields "type"
and "number". The fragment of code is making a table
of the totals for each type.

If get_item were reading data from a file that in­
cluded not only the data but also a description of the
record, then the format of the data is not hard-wired in
the procedure. The user of get_item must have some
idea of the data to be read (i.e. the fields "type" and
"number") but complete knowledge is not necessary.

We have used a database to hold our items, which are
almost arbitrary structures (no loops) made up of lists,
records, strings and integers (reals and csets are not yet
implemented). The database items consist of a packed
form of the Icon data structure as stored in the memory
of the executing Icon program. The items are accessed
by key in the database in the following manner.

This procedure adds one to every member of the list
counts in the database item with key item_key

record bump_counts_references(counts)

procedure bump_counts(item_key)
local item
item := READ_DB_RECORD(item_key)
every !(item.counts) +:= 1
UPDATE_DB_RECORD(item,item_key)

end

The variable item_key must be the string key of the
database item and then READ_DB_RECORD will re­
turn the Icon structure that was stored in packed form
on the database. This can be used in the normal way as
shown above. In our implementation, the formats of
items are stored in the database and each database item
contains the key of its format, thus avoiding unneces­
sary repeated storage of format information. These
format definitions are called Layouts, and an example
of the source form is given below.

-<nu^
1 namechar(30)
1 address

2 no int(4)
2 street char(30)
2 city char(20)

1 remarks[*]
2 comment text
2 date char(6)

only 30 characters for name

only 4 digits for house number

no limit on string recorded
yymmdd

The style of this description owes much to our
earlier PL/I background, and the example should be
self explanatory for the most part. Data using this
Layout is a record with three fields: "name", "ad­
dress" and "remarks". Similarly the "address" field is
a record with three fields: "no", "street" and "city".
The field "remarks" is an unlimited size list of records
(specified by the "*"). The field "comment" is a text
field, which is an unlimited length string. The concept
of unlimited size objects is quite natural to the Icon
programmer, but we have also used the types char and
int, which are Icon strings and integers respectively
and these are checked for size at various points in our
system. When formatted output is required, the sizes
may be used; and when a string that is described as a
char field is stored in the database, its length is checked
to avoid storing unintentionally long strings on the
database (i.e., spot bugs wasting disk space).

Provision is made for modifying a Layout without
changing all the items on the database that use this
Layout. If an item is stored using an old Layout, then
it is converted to the new Layout before it is presented
to the application program and, since this conversion
is rare, this work is done in Icon. Converting items
between Layouts allows small changes, such as add­
ing or deleting fields in a record, but more drastic
structural changes will need a different approach.

Database items may be viewed or edited by writing
them to a file in External Format, which describes both
the data and its format in an easily understood form.
For example a record in the earlier Layout would look
like:

[name P. Pat
[address
[2no 20
[2street Puddle Lane

[2city Greendale
[remarks
[2comment
This entry is just an example for later reference.
[2date 880213

Some items are just lists of simple records (e.g. each
field of the record is of typecharor int) and then a more
compact form is possible, which uses the maximum
size of the fields. For example, a list of addresses can
be displayed as follows:

[address
..no street

1 High Street
20 Puddle Lane

, city
Toytown
Greendale

From Our
Mail
fust a compliment
from a satisfied
reader of the 'Hg.zus-
fetter.

It is a very infor­
mative and attrac­
tive publication.
What took are you using to produce it? I didn't notice any
description (at least in the October 15 issue).

Congratulations again, and thanks.

And we thank you! While producing this Newsletter is a lot
of work, it certainly helps to be appreciated.

We use a variety of tools in the preparation of the
Icon 9&zosfetter. Recent issues prior to this one were
composed using Xerox Ventura Publisher on an IBM
XT clone. Starting with this issue, we're using Aldus
PageMaker on a Macintosh II. We use several pro­
grams for preparing graphics, most notably Adobe
Illustrator '88. We also have an Abaton scanner for
converting printed graphics to machine-readable form.

Do I need OS/2 to run MS-DOS/386 Icon?

No. In fact, MS-DOS/386 Icon will not run under OS/
2. It uses a memory extender product and only runs
under standard MS-DOS.

J need large memory regions for some of my MS-DOS
programs. I can get them with the expandable regions
version of Icon, but it's much slower than the fixed regions
version. Is there any way I can get larger regions with the
fixed regions version?

The fixed regions implementation of Icon for MS-DOS
is a large memory model program. This limits regions
to slightly less than 65K. While there currently is no
way to get around this limitation, we're working on a
huge memory model version of the fixed regions
implementation. The huge model will allow regions to
be as large as available memory will accomodate.

Will Version 7.5 of Icon compile and run under the MS-
DOS MIX Power C compiler?

We don't know. However, since Version 7.5 of Icon
works with Lattice C, Microsoft C, Turbo C, and Let's
C, there's a good chance it will work with other high-
quality C compilers.

In Iconrtfezosfetter26you noted that Version 6 of Icon was
going to be available for Prime computers. I've seen nothing
since. Whatever became of this implementation?

This implementation was being done by a person at
Prime. We've never received it and don't know what
its current status is.

I just got my first Icon 'Hg.zvsfe.tu.r and would like to get
more information about Icon. Isaw references toIPDSO and
61. Would you please send me a list of all IPDs and tell me
how to get them?

Most IPDs (Icon Project Documents) are installation
and user manuals that accompany the various imple­
mentations of Icon. These are available only as part of
the distribution packages for these implementations.
Most other IPDs are out of date and no longer avail­
able. The best way to find out more about Icon is to get
back issues of the Icon tyzusfetter, where you'll find
mention of various documents that are available.

What's the status of Version 7 of Icon for the Amiga?

A couple of folks have expressed an interest in imple­
menting Version 7.5 of Icon for the Amiga. We don't a
working version yet, though.

Any more word on Icon for IBM 370 mainframes?

It's presently being tested.

How do I do binary input/output in Icon?

Icon doesn't provide specific functions for binary input
or output. It can be done on most systems using other
built-in functions (starting with Version 7), though it is
a bit tedious.

The built-in function reads(f.i) reads exactly i bytes
from filef, giving no special interpretation to newlines
or nulls or anything else, ord(s) converts a byte to its
integer value, and multibyte integers can be built
using ishift(i,j) and ior(i.j).

Output can be done similarly, breaking integers into
8-bit values using ishift(ij) and iand(i,16rFF), then
converting to character using char(i).

seek(f ,i) is also useful for reading binary files; keep in
mind that Icon numbers the bytes of a file beginning at
1 and not 0.

Programming Corner

Table Keys

If T is a table, IT
generates the val­
ues in the elements
of T, not the keys
(entry values). This
probably was a
design mistake,
since it's possible
to get the values
from the keys, but
not the other way around. So ...

Problem: Write a procedure key(T) that generates
the keys from table T.

Comment: The only way to do this is to convert T to
a list.

Approach 1: Create a list of key/value lists:

procedure key(T)
L := sort(T)
every pair := !L do

suspend pair[1]
end

Whenever a suspend appears in the do clause of an
every expression, look to see if both are needed, since
suspend also forces its argument to generate all its
results. Thus,

procedure key(T)
L := sort(T)
suspend (!L)[1]

end

Note the parentheses: !L[1] groups as !(L[1]), not
what you want.

One more refinement: get rid of the identifier L and
just put the call of sort in the suspend expression:

procedure key(T)
suspend (!sort(T))[1]

end

Approach 2: Create a list of alternate key/value
pairs:

procedure key(T)
L := sort(T,3)
while x := get(L) do {

suspend x
get(L)
}

end

get key

discard value

Observation: The while/suspend construction
suggests a more compact technique as in every/
suspend. Use the "make a generator from a non-
generator" paradigm:

procedure key(T)
L := sort(T,3)
every x := |get(L) do {

suspend x
get(L)
}

end

get key

discard value

Now the every/suspend can be collapsed as usual:

procedure key(T)
L := sort(T,3)
suspend |get(L) do

get(L)
end

Note the use of the optional do clause for suspend.

This could also be written more compactly (but
opaquely) as

procedure key(T)
L := sort(T,3)
suspend |1(get(L),get(L))

end

However, it's not possible to get rid of the identifier
L, since the list must be an argument of two separate
function calls.

Which approach is best? At the bottom line, both are
obscure and make hard reading. The first approach
produces the most compact code and with no auxilary
identifier. However, the list of lists produced by the
default option for sorting takes up a lot of room, which
may be a practical consideration.

Note also that both of these methods do something
more than generate the keys - they generate them in
sorted order, which is different from IT.

Unique Values in a List

Here's another problem: Write a procedure
uniquelem(L) that returns a list containing only the
distinct values of L - that is, filtering out duplicates.

Approach 1: If order doesn't matter, there's a very
simple way:

procedure uniqelem(L)
return sort(set(L))

end

This takes advantage of the fact that distinct values
can be members of a set only once.

This procedure, in fact, produces the elements in
sorted order (since the only way to convert a set to a list
is to sort it).

Although simple, this method requires both con­
structing a set that is discarded and also sorting it
(perhaps unnecessarily).

Approach 2: If you want to preserve the order of
the elements of the list, you have to do something
like this:

procedure uniqelem(L)
local L1, x
L1 := []
every x := !L do

if x === !L1 then next else put(L1,x)
return L1

end

Of course, this can be very slow if L is large and has
mostly distinct elements.

Note that it won't do to rephrase the test and addi­
tion of an element as

if x -=== IL1 thenput(L1,x)

since the test succeeds if x is not the same as (say)
the first element of L1 but is the same as (say) the
second. Be careful of inverting logic in expressions
that contain generators.

Also, never do something like

while x := get(L) do ...

since this destroys the list L, a pointer to which is
passed in as an argument and "belongs" to someone
else, who may not appreciate having the list trashed.

Can you think of a better method?

Data Backtracking

We were recently asked the following question:
Why are

while move(1) do {.. .}
and

every |move(1) {...}
different?

The difference has to do with data backtracking.
move(1) increments & pos, but it suspends (like find(s)).
It does this not so that it can produce another result if
it's resumed (there is only one way to increment &pos
by 1), but instead to restore &pos to its previous posi­
tion (data backtracking). See p. 126 in the Icon book.

On other hand, the control clause of while-do is
bounded (that particular term is not used in the Icon
book, but see p. 119 there). In a bounded expression,
suspended generators are discarded, once a result is
produced. Thus, in

while move(1) do {...}

the change to &pos by move(1) is irreversible, since
move(1) won't be resumed.

In every-do, on the other hand, the control clause is
not bounded - in fact, the control clause must be able
to generate a sequence of results for every-do to have
the effect it does. Thus, in

every |move(1) do {.. .}

move(1) is resumed after the do clause is evaluated.
It restores 8ipos, and then repeated alternation
causes move(1) to be evaluated again, with the same
value of &pos as before - an endless loop.

The problem in understanding this probably is not
in what while-do does - most folks find that to be what
they expect. It's in every-do that the problem with
understanding arises. A simple prescription that will
do for most cases is "don't use every-do in string
scanning". That may keep you out of trouble, but a
deeper understanding of expression evalation in Icon
will show you both why you usually don't want to use
every-do in string scanning and also why you some­
times might want to use it.

Quiz: Assuming s := "Hello world!", what does the
following expression write?

every write(s ? move(1 to 10))

Demography
Subscribers to this 9fezi>sfetter sometimes ask if there are other persons interested in Icon who live nearby.

We've wondered ourselves what the geographical distribution of the Icon 9{$zvs fetter is, and so we fed our
mailing list database into a program that plots "sites" according to ZIP Code cenrroids. The result for the
United States, except Alaska and Hawaii, is shown below. While you can't pick the individual dots out of
the picture, and the boxes with crosses in the center mark multiple entries, it does give an overall impression
of the distribution.

We're working on getting a "world view" for a future O^ezosfetter.

What's in the Works
We're often asked what we're doing, what new

features are being planned for Icon, and so on.

As always, we have more things we want to do than
we can possibly handle. There are "little" things, like
bringing all the existing implementations of Icon up to
Version 7.5, pushing new implementations (like the
one for VM/CMS) out the door, revising the Icon
language book, completing the Version 7 Icon pro­
gram library, and so on.

As to the Icon programming language itself, we
don't have any plans for major new features or a new
version in the near future. Of course, we could sur­
prise ourselves, as we have in the past.

One present project of importance is the develop­
ment of a true optimizing compiler for Icon. This is a
research project at the moment (and a hard one), but

we hope that eventually it will provide the basis for a
high-performance implementation of Icon.

A few things that we've been working on for some
time should be available for public distribution within
the year. These include tools for measuring the per­
formance and behavior of Icon programs and the Icon
implementation.

For example, we've instrumented storage allocation
and garbage collection and can produce allocation
history files that tell a lot about how Icon programs use
memory. We also have programs that use allocation
history files to produce graphical displays of Icon's
allocation and garbage collection. On color graphic
devices, the displays are truly spectacular.

We aren't making any promises yet of what or
exactly when, but there are all kinds of things in the
works.

Faculty Positions
The Department of Computer Science at the Univer­

sity of Arizona invites applications for faculty posi­
tions at all ranks to begin in August, 1989. Applicants
must have a doctorate in Computer Science or a closely
related field. Applicants for senior positions should
have made substantial research contributions to the
field, while applicants for junior positions should
show promise of future excellence.

The Department of Computer Science at Arizona
emphasizes excellence in research and teaching. There
are currently 12 faculty members, with plans to ex­
pand over the next few years as the department
institutes a selective undergraduate major. Research is
currently conducted in a variety of areas including
programming languages, software systems, parallel
and distributed computing, logic programming, and
theory of computation. Qualified individuals working
in these areas as well as other areas such as artificial
intelligence, computer architecture, scientific compu­
tation, and performance analysis are encouraged to
apply.

The research program is supported by numerous
grants to individual faculty as well as a department-
wide NSF grant for Coordinated Experimental Re­
search (CER). Computational facilities include a VAX
8650, dozens of Sun workstations, an Intel iPSC Hyper-
cube, and an HP 9000 graphics workstation. Also

available are high-resolution color
terminals, microcomputers, laser
printers, and an L-300 Imagesetter.
A soon-to-expand instructional
laboratory contains two VAX 11/
785s.

Send a complete resume and the
names of at least three references to
Richard D. Schlichting, Faculty
Recruiting Committee Chairman,
Department of Computer Science,
The University of Arizona, Tucson,

AZ 85721. Applications will be reviewed until the
positions have been filled. The University of Arizona
is an equal opportunity/affirmative action employer.

ICEBOL4 in October
Once again, Dakota State College is hosting the

annual ICEBOL conference. This year, it's October 5-6.
We've included material from their flyer below.

ICEBOL4, the International Conference on Sym­
bolic and Logical Computing, is designed for teachers,
scholars, and programmers who want to meet to ex­
change ideas about non-numeric computing. In addi­
tion to a focus on SNOBOL, SPITBOL, and Icon, ICE-
BOL4 will feature introductory and technical presen­
tations on other dangerously powerful computer lan­
guages such as Prolog and LISP, as well as on applica­
tions of BASIC, Pascal, and FORTRAN for processing
strings of characters. Topics of discussion will include
artificial intelligence, expert sytems, desktop publish­
ing, and a wide range of analyses of texts in English
and other natural languages. Parallel tracks of concur­
rent sessions are planned: some for experienced com­
puter users and others for interested novices. Both
mainframe and microcomputer applications will be
discussed.

For further information, contact:

Eric Johnson
ICEBOL Director
114 Beadle Hall
Dakota State College
Madison, SD 57402 U.S.A.

(605) 256-5270

eric@sdnet flritnet)

Art Credits

Graphics that first appeared in earlier CNszvsfetters
are credited there.

Page 3. Benton Carter, pencil drawing, scanned and
autotraced with Illustrator '88.

Page 6. Ralph Griswold, iconopod, pencil drawing,
scanned and autotraced with Illustrator '88.

Page 7. U.S. map, GeoQuery.

Page 8. Heming Rembish, pen and ink monogram,
scanned and traced with Illustrator '88.

Page 8. Charles Richmond, Atari ST, printed output,
scanned and traced with Illustrator '88, converted to
a PostScript font with KeyMaster; border entered as
text.

Back page. Bob Alexander, Wallpaper 2, MacDraw II.

0|0|0|OIO|0|0|0|0|

Ordering Icon Material
Shipping Information: The prices listed at the

end of this section include handling and shipping in
the United States, Canada, and Mexico. Shipment to
other countries is made by air mail only, for which
there are additional charges as follows: $5 per disk­
ette package, $10 per tape or cartridge package, and
$10 per documentation package. UPS and express
delivery are available at cost upon request.

Payment: Payment should accompany orders
and be made by check or money order. Credit card
orders cannot be accepted. Remittance must be in
U.S. dollars, payable to The University of Arizona.
There is a $10 service charge for a check written on
a bank without a branch in the United States. Or­
ganizations that are unable to pre-pay orders may
send purchase orders, subject to approval, but there
is a $5 charge for processing such orders.

What's Available

Icon is available for several personal computers,
UNIX, VMS, and also for porting to other comput­
ers. Source code is available in most cases.

The UNIX package contains source code, docu­
mentation in printed and machine-readable form,
test programs, and related software - everything
there is. It can be configured for most UNIX systems.
The documentation includes installation instruc­
tions, an overview of the language, and operating
instructions. It does not include either of the Icon
books. Program material is available on magnetic
tape, cartridge, or diskettes.

The VMS package contains everything the UNIX
package contains except UNIX configuration infor­
mation and UNIX-specific software. However, the
UNIX and VMS systems are configured differently,
and neither will run on the other system. The VMS
package also contains object code and executables,
so a C compiler is not required. The VMS package is
distributed only on magnetic tape. Note: VMS Ver­
sion 4.6 or higher is required to run Version 7 of Icon.

Source-code distributions for personal comput­
ers generally are provided separately from the ex­
ecutables. Each package contains printed documen­
tation that is needed for installation and use. Note:

Icon for personal computers requires at least 512KB
of RAM.

Icon for porting is distributed on MS-DOS for­
mat diskettes. There are two versions, one with a flat
file system and one with a hierarchical file system.
Both versions are available in either plain ASCII
format or compressed ARC format.

There are two documentation packages that
contain more than is provided with the program
packages: one for the language itself and one for the
implementation.

Program Material

Note: All the distributions listed below are for
Version 7 of Icon. Earlier Version 6 implementations
that are not yet supported for Version 7 are still
available. If you wish to order a Version 6 implem­
entation, ask for a Version 6 order form, which is
free.

Legend: The following symbols are used to indi­
cate different types of media:

Q 9-track magnetic tape
$3 DC 300 XL/P cartridge
H 360K (2S/DD) 5.25" diskette
y 400K (IS) 3.5" diskette
H 800K (2S) 3.5" diskette

All cartridges are written in raw mode. All 5.25"
diskettes are written in MS-DOS format.

When ordering tapes, specify 1600 or 6250 bpi
(1600 bpi is the default). When ordering diskettes
that are available in more than one size, specify the
size (5.25" is the default).

The symbol BS* identifies material that is new
since the last 9{?zvsfetter. The symbol «•* identifies
material that has been updated since the last tyzos-
fetter.

Use the codes given at the beginning of the
descriptions that follow when filling out the order
form.

Icon for UNIX:
** UT-T: Q

** UT-C: Q
** UC-T: @a

«•* UC-C: ^
«•* UD-M: H (6)

tar format

cpio format

tar format
cpio format
cpio format

$25

$25

$40
$40
$40

Icon for VMS:

VT: Q

Icon for the Atari ST:

ATE: y executables

$25

$15

Icon for MS-DOS:

DE: 9 (2) executables

DS: H (2) source

Icon for MS-DOS/386:

DE-386: H o r H executables

Icon for OS/2:

OE: HorEJ executables

Icon for the Macintosh/MPW:

ME: Inl executables

MS: H (2) source

Icon for the UNIX PC:

UPE: 9 executables

Icon for XENIX:

XE: 9 executables

Icon for XENIX/386:

XE-386: florQ executables

$20

$25

$15

$15

$15

$25

$15

$15

$15

Icon Source for Porting:
MT PF-A:

« * PF-K:

MT PH-A:

MT PH-K:

| (5) flat system, ASCII $35

| (2) flat system, ARC $25

| (5) hierarchical system, ASCII $35

| (2) hierarchical system, ARC $25

Documentation
LD: Language documentation package. The Icon
Programming Language (Prentice-Hall, 1983) and
two technical reports. $30.

ID: Implementation documentation package. The
Implementation of the Icon Programming Language
(Princeton University Press, 1986) and update. $40.

NL: Back issues of the IconO^zvsfetter. $.50 each for
single issues (specify numbersT HS5U0" for-a-com
plete set fjslos. 1-28). There is no charge for overseas
shipment of single back issues, but there is a $5.00
shipping charge for the complete set.

10

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621-2018

name

address

city

(country)

state zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

Make checks payable to The University ot Arizona purchase-order processing

other charges

total

total

'The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

11

