
Ifo Icon 9{czusCe.tter
No. 28 — October 15,1988

For New Readers

W e are repeating here, for the benefit of new
readers, some general information about Icon.

Program material distributed by the Icon Project is
in the public domain. You may use it and provide
copies to others without permission or restriction.
Documents distributed by the Icon Project also may be
copied freely, provided they do not bear a copyright
notice. Permission is required to make copies of
copyrighted documents.

The Icon 9{$zvsfetteris free and available to anyone
who wants to receive it. If you know persons who
might like to receive the (hfezvsCetter, send us their
names and addresses.

We do not sell the mailing list that we use for the
9{ezvsfetter. Occasionally, we provide mailing labels
to other organizations for some purpose related tcr
Icon.

We also prepare a printed list of our subscribers
thaf s available free to persons who want to locate
others with common interests. If you do not want us
to include your name on this printed list, let us know,
and we'll take care of it.

Odds and Ends
Correction

Chris Fraser noted and Dave Hanson confirmed
that the Department of computer Science got a

PDP-11 late in 1977, not in 1979 as reported in the last
9{ezvsfetter{"'A Brief History of Icon"). While this may
not strike you as important, it caused us to wonder
why the first UNIX implementation of Icon was so
long in getting started.

We're Flattered

In his keynote address at ICEBOL3 (See "ICEBOL3",
Icon tyzosfetter No. 27, p. 2), Paul Abrahams dis­

cussed the history and characteristics of several
programming languages. The following quotation,
printed here by permission of Paul and Dakota State
College, is from his address:

The culture of Icon is the culture of shared connois-
seurship. I think of Icon as being like a fine small
French restaurant that not many people know
about, where the clientele is loyal and appreciative,
the chef is devoted to producing creative cuisine of
the highest quality, and the assistant chefs are
themselves talented and devoted to their craft. Icon
is a language where everything fits together, and
its design is enhanced by careful attention to small
details. Many of Icon's syntactic niceties such as the
use of newlines to terminate most statements,
would be useful even in other languages quite dif­
ferent from Icon.

Unlike all the other languages I have talked about
with the possible exception of Algol 60, Icon has
been entirely noncommercial. Tucson has been the
Rome of Icon and the University of Arizona its
Vatican. The University of Arizona is the seat of
Icon learning and expertise and the source of all im­
plementations of Icon, which are available for noth­
ing more than the cost of distribution and can be
freely copied.

Copies of the proceedings from ICEBOL3 are still
available for $20 from:

Division of Liberal Arts
114 Beadle Hall
Dakota State College
Madison, SD 57042

Icon Workshop

Northern Arizona University hosted a workshop
on the Icon programming language on July 27-29

in Flagstaff, Arizona. Fifteen persons closely involved
with Icon attended and exchanged information and
ideas.

Many topics were discussed, including object-
oriented features, global program organization, con-

The Icon 9\[ezostetUr

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon tywsUtur is published aperiodically,
at no cost to subscribers. For inquiries and
subscription information, contact:

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(602)621-2018

FAX: (602) 621-4246

Electronic mail may be sent to:

icon-project@arizona.edu

... [uunet, allegra, noao)!arizona!icon-project

) 1988 by Madge T. Griswold and Ralph E. Griswold

All rights reserved.

currency, pattern matching, user interfaces, and im­
plementation.

Copies of the workshop report are available, free of
charge, from the Icon Project. Ask for IPD61.

Icon "Clip Art"

As you'll see in this O^ezosfetter, we continue to get
contributions of art work related to Icon. It's fun

for us, and we hope readers enjoy seeing some visual
variety in the 9{ezvsfetter. We'll continue to offer $15 in
credit at the "Icon Store" (books excluded) for each
piece of art published in the 'Hezvsfe.tter.

Implementation News
MS-DOS Icon for 386 PCs

We now have an implementation of Icon that runs
on 386 PCs such as the PS/2 Model 80. It requires

2MB of RAM and will use more. This implementation
is fast — nearly twice as fast as the standard MS-DOS
Microsoft C version of Icon for many programs and
up to eight times as fast as the MS-DOS Lattice C ver­
sion of Icon. (See "Benchmarks" later in this tytosfet-
ter.) MS-DOS/386 Icon is available on both 3.5" and
5.25" diskettes. See the order form at the end of this
tyzvsfetter.

Bob Goldberg provided this implementation; our
thanks to him.

MS-DOS Icon under Turbo C

We've finally managed to get Icon to compile and
run under Turbo C. (The problems were ours,

not Borland's.) Our thanks to Clint Jeffery and
Terasalei Hiroyasu for solving the problems. Support
for Turbo C is now included in the current distribu­
tion of the MS-DOS Icon source.

Downloading Icon Material

Several of the implementations of Icon are
available for downloading electronically:

BBS: (602) 621-2283

FTP: arizona.edu (/usr/ftp/icon)
(128.196.6.1 or 192.12.69.1)

mailto:icon-project@arizona.edu
http://arizona.edu

XENIX V/386 Icon

We now have a 386 version of Icon for XENIX. Both
3.5" and 5.25" diskettes are available. See the

order form at the end of this 9&zi>sfetter. Thanks to
Ronald Horence for this implementation.

Icon for the IBM 370 Architecture

Icon for IBM 370 computers using VM is now up and
running thanks to Cheyenne Wills, Robert Knight,

and the Princeton University Computer Center. Test­
ing, debugging, and documentation remain to be
done. We don't have a firm release date yet, but unless
there are unexpected delays, early 1989 is probable.

Amiga Icon

We've lost touch with the person who previously
provided executable files for Icon on the Amiga.

If you have an Amiga with at least 1MB of RAM, the
Lattice 3.04 C compiler, and are willing to compile and
test Version 7 of Icon for public distribution, please get
in touch with us.

Implementation Updates

We're in the process of updating the present Ver­
sion 7.0 implementations to Version 7.5. The lan­

guage changes in Version 7.5 are minor; there is no
need for persons who presently have Version 7.0 in ex­
ecutable form to update. The changes to the im­
plementation, however, are significant and persons
working with the source code should consider
upgrading as Version 7.5 becomes available.

So far, only the MS-DOS executables and source
have been updated. The UNIX and VMS implementa­
tions are scheduled for updating later this fall. Up­
dated distributions are noted in the ordering
information at the end of this 'Hezosfetter.

From Our Mail

|OON
After reading your remarks
about the possibility of a
commercial version of Icon,
I heard a rumor that some­
thing really is in the works.
Is that true?
Yes. Catspaw, Inc. plans to market a Macintosh im­
plementation of Icon. It will be a stand-alone applica­
tion with a standard Macintosh interface and some
new language features. Delivery is scheduled for the
first quarter of 1989. For more information, contact:

Catspaw, Inc.
P.O. Box 1123
Salida, CO 81201

719-539-3884

Does Version 7 of Icon run under VMS 5.0?
Yes.

Do you have a version of Icon for OS/2 yet?
We're testing a pre-release version.

I have Icon source for MS-DOS, but I think it's out of date.
I'd like to get the most current version of the source. How
do I do this?
We update the distributed version of the MS-DOS
source code for Icon when there are major changes,
once or twice a year. There is an update subscription
service for MS-DOS that provides an update and tech­
nical notes every three or four months. The cost of the
subscription service is $30 for five updates ($15 addi­
tional for airmail postage overseas). To subscribe, send
payment and the serial number of your source-code
diskettes.

Does Icon compile with Mark Williams Let's C under MS-
DOS?
Yes, but the Let's C preprocessor does not do every­
thing Icon needs, so a stand-alone preprocessor is re­
quired.

I'm using Icon for MS-DOS and am having troubles read­
ing single characters typed from thekeyboard. Itseemseven
readsO requires a carriage return before it will produce
input.
Function readsO was designed for reading files in
"stream mode", not for reading single characters from
the keyboard, where buffering prevents input until
there is a "line". In MS-DOS, use the function getch()
(or getcheO if you want characters echoed). You may
want to use these functions in combination with
kbhitO, which succeeds if there is a keyboard charac­
ter waiting. These functions are part of the extended
function package of MS-DOS.

How can I integrate Icon with my existing C programs?
At present, the only way to do this is to write C func­
tions for Icon that call your C programs. To do this, you
need to have the source code for Icon and compile it

with the new C code. The method for doing this is
described in the Icon implementation book.

I just downloaded Version 5.9 of Icon from a bulletin board.
Is there a more recent version? If so, how do I get it?
Version 7 of Icon is current. There have been many ad­
ditions to the language since Version 5.9 and a lot of
implementation improvements as well. It seems in­
evitable that old versions of Icon will be around
forever, but the most recent version is always available
from the Icon Project.

A Contribution from Users
Run-Time Record Definition

by Andy Heron and Carole Thornton,
Government Communications Headquarters, England

Editors' Note: This is the first part of a long contribu­
tion that we'll continue in subsequent 9^ezcsfetteis as
space permits.

Here we describe some work that is part of a
database project written in C and Icon. Our ex­

perience with Icon (50,000 lines and growing) shows
that it is an excellent prototyping language. The plan
is to rewrite the most heavily used parts in C, for per­
formance reasons, but a large body of Icon code will
remain, as maintenance is also easier with Icon.

Uppercase names have been used for general-pur­
pose functions and procedures to avoid clashing with
future Icon functions.

The Icon procedure COMPLETEJMAGE is a
debugging aid that prints a description of an arbitrary
data structure — a generalised version of the Icon
function image. Consider the following fragment of
Icon code.
record address(no,street,city)

procedure debugO
COMPLETE_IMAGE([1,"abc",address(1,"high street",

"Toytown")])
end

The procedure debug will write the following to
standard error.
var 1: list(3)
var 1 [11:
var 1 [21:
var_1 [31:
var 1 [31. no:
var 1 [3].street:
var_1 [3].city:

1
"abc"
record address(3)
1
"high street"
"Toytown"

inmliljil

RMrm [piMn

The leading identifier is created by COM-
PLETEJMAGE (z'.e., var_1) and the numeric part is in­
cremented by one each time COM PLETEJ MAGE is
called. However the user can specify an idenHfier (e.g.,
the name of the variable being imaged) and request
output on another file. In addition, COM-
PLETEJM AGE returns its first argument so that it can
be used on partial expressions.

COMPLETEJMAGE can describe structures of ar­
bitrary depth and it checks for cycles that would cause
it to go into an infinite loop. We and other users of Icon

at GCHQ have found this
procedure to be extremely
useful, and far superior to
Icon's image for debug­
ging-

COMPLETEJMAGE re­
quires some simple exten­
sions to the Version 6.0

implementation of Icon to preserve field names until
run-time. It was a simple task to include a list of field
names in each Icon record constructor and this exten­
sion supports the function FIELD that generates the
field names of a specified record constructor. The
function RECORD_CONSTRUCTOR returns the
record constructor of any record, and this pair of func­
tions is all that is needed for COMPLETEJMAGE.

First we examine how Version 6.0 of Icon accesses
fields of a record. Each field name in an Icon program
is assigned a unique number and references to a field
name in the source code are converted to its numeric
identifier in the compiled program (i.e., in the icode
read by the interpreter). Each record type in an Icon
program is also assigned a unique number (stored in
the record constructor) and the linker builds a table
with a row for each record type and a column for every
field name, using their numeric identifiers as indices.
Entries in this table specify where in the record a field
is to be found (-1 means it is not present in the record).

Thus, to form a new record constructor one must
add another row to the record/field table. The fields
of the new record type need not be defined in the ex­
isting program, but any field references must be
defined in a record declaration or the linker will com­
plain (e.g., x.y requires y to be in some record declara­
tion).

A complete list of the field names used in the
program is formed and retained as part of the program
by a simple extension to the Version 6.0 implementa­
tion of Icon. The function FIELD with a null argument

will generate all field names in the order needed. Thus
one can form a new row of the record/field table in
Icon code provided a simple function is used to up­
date the table itself, and in this way one can create
records at run-time and access them in the normal
way. However we keep the name of the function a
closely guarded secret, and provide more user friend­
ly ways of creating new record types.

Sometimes the record is completely unknown until
run-time, including the fields needed. The function
RECORD_FIELD_POSreturns the position of a named
field in the record and then Icon will allow us to access
the field by position.

Editors' Note: The listing of COMPLETE J MAGE is too
long to include here. Copies are available, free on re­
quest, from the Icon Project. Ask for IPD60.

Inside Icon

Occasionally
we're asked

how we keep track
of the source code
for all the different
implementations
of Icon. Fortunate­
ly, almost all of
Icon is written in
C. There is just one
master copy of the
C source code in
Icon. All the
variants for the
different im­
p lemen ta t ions ,
ranging from UNIX to MS-DOS, are obtained
mechanically from the master copy. This enables us to
make changes at only one place and to keep track of
differences among implementations without having
to synchronize many versions of the same files.

Maintaining a single master source may seem
simple enough on the surface, but it's really rather
complicated. The source for Icon must account for dif­
ferences in operating systems, differences in C com­
pilers, and even differences in the syntax of path
names for include files. We use several techniques
(none novel) to handle all of this.

As far as possible, we use conditional compilation,
via the C preprocessor, to configure Icon for specific

operating systems and C compilers. If you look at the
source code, you'll see a number of segments of the
form:

/*
* The following code is operating-system dependent
* [@fsys.12|. Perform system call. Should be
* RunErr(-121, NULL) if not supported.
*/

#if PORT
RunErr(-121,NULL);

#endif I* PORT*/

#ifATARI_STIIVMS
Makelnt(system(systemstring), &ArgO);
Return;

#end if /* ATAR l_ST 11 VM S */

#ifHIGHC_386
RunErr(-121,NULL>;

#endif

#if MACINTOSH
RunErr(-121,NULL);

#endif

/* HIGHCJ386 */

/* MACINTOSH */

#if AMIGA II MSDOS II UNIX II MVS II VM
Makelnt((long)((system(systemstring) > 8) & 0377), &ArgO);
Return;

#endif /* AMIGA II MSDOS II UNIX...*/

/*
* End of operating-system specific code.
*/

The names like AMIGA and VMS refer to operating
systems. PORT is a hook for new systems. Exactly one
of these names is defined to be 1; the rest are defined
to be 0. This allows conditional compilation to be
phrased in terms of logical expressions that the
preprocessor understands. Within the conditional
compilation for a particular operating system, there
are similar names for different C compilers to handle
the code that is compiler-dependent. The root of the
definitions for the names is an include file define.h,
which is different for each operating system and com­
piler.

It's here that a single master file is not sufficient. In
addition to define.h, there are a few other files that
vary from implementation to implementation. Ex­
amples are assembly-language files needed for the co-
expression context switching and arithmetic overflow
checking. These files are contained in a hierarchy, or­
ganized first by operating system and then by C com­
piler, when thaf s necessary.

To put together the source code for a particular im­
plementation, a copy of the master source is made first.
Next, any files specific to the particular implementa­
tion are added. Unfortunately, that's not all there is to

it. As mentioned above, path syntax for include files
varies. To handle this, edit scripts are applied to the
source-code files. Some C preprocessors do not sup­
port "splicing" that Icon needs to concatenate strings.
For this, a macro processor is used. Finally, some
operating systems do not support hierarchical file sys­
tems. For such cases, all this has to be adapted to a flat­
tened version of the source.

This process is all controlled by a make utility and a
system of Makefiles that start at the top of the Icon
source hierarchy.

What we have now works automatically. To con­
figure a particular version of the source, we just "push
a button". That button pushes other buttons, and so
on. Eventually the desired version of the source code
comes out the other end.

Perhaps this makes it sound simpler than it is. En­
gineering the overall system, crafting the buttons,
writing the scripts for the various processors, and get­
ting all the details right has taken a lot of work. But,
now that it works, it's very satisfying to see it in action.

Our problem is that things are always changing. In
order to get Icon running on a new C compiler or,
worse, operating system, a lot of changes have to be
made, and files specific to the new implementation
have to be added. It's also easy to forget how things
work. If some "button" needs changing, it make take
a while to figure out how it relates to other "buttons"
— or even why it's there, documentation not­
withstanding.

Bugs

Several persons
have commented

that the function Int86 for MS-DOS is very slow and
causes many garbage collections.

While this is not really a "bug" in the sense of
producing the wrong results, it's enough of a practical
problem to MS-DOS users of Icon to discuss here.

The problem really is one of design. The argument
to Int86 is a nine-element list that specifies an inter­
rupt number and the values of eight registers. The
value returned is a similar list containing flags and
new values of registers.

These two nine-element lists are typically allocated
for every call of I nt86. Icon lists carry a certain amount
of storage overhead to support stack access and queue

access — they're relatively large. Thus, calling Int86
frequently produces a lot of "storage throughput".

Storage allocation in Icon is fast, but garbage collec­
tion to reclaim unused storage can be time consuming.
(The amount of time depends more on how much
storage is in use than on how much is "garbage".)

If you need to use Int86 frequently, you can cut the
expense of storage throughput in half by reusing a list
rather than creating a new one. Thus,

while ... do
L:=lnt86([...])

creates a new list with each call of Int86 in the loop,
but

L1 := [...]

while...do {
L1 [1 | : - . . .
L1 [2] := ...

L2:=lnt86([L1l)
)

creates only one list, L1, for the argument to I nt86 and
reuses it in the loop. This still doesn't avoid the list
produced by Int86 each time it returns.

While lists are natural enough for the Icon program­
mer using Int86, a nine-argument function would
have avoided the allocation for the call altogether. The
best solution for returning the nine results of Int86 is
not as obvious.

For the time being, users of Int86 will have to live
with it as it is.

Icon Benchmarks

Every so often someone asks how fast Icon runs on
a particular computer or ho w its performance com­

pares when compiled with two dif­
ferent C compilers on the same com­
puter. Complaints about poor perfor­
mance of the expandable-region
version for MS-DOS also are common.

Benchmarks are, of course, easily
misinterpreted. It's easy to give a lot of
figures without regard for the many
factors that may affect them or their
real meaning. Nonetheless, taken with
appropriate reserve, benchmark
results can be helpful in providing
general ideas about performance.

Benchmarking is time consuming and, for us, rela­
tively unrewarding. We don't have the stomach for
doing hundreds of benchmarks, but we've done a few.
We picked four programs that are relatively repre­
sentative of Icon applications:

i pxref. This program, similar to the one in Version
6 of the Icon Program Library, produces a cross
reference listing of an Icon program. It does lots of
text processing and some list manipulation.

queens. This program produces the solutions to
the non-attacking n-queens problem, including
producing board representations for all solutions.
It does a lot of generation and backtracking, as
well as text synthesis. For testing purposes, n was
9.

rsg. This program, similar to the one in Version 6
of the Icon Program Library, generates randomly
selected sentences. The program uses tables and
lists extensively and synthesizes text. For testing,
it was given a grammar for short poems and asked
to produce 100 samples.

sieve. This program implements the sieve of Eras-
tothenes, using set manipulation. The test
produces the primes in the integers to 2000.

AT/Microsoft

AT/Turbo

AT/Lattice

PS2/Microsoft

PS2/Turbo

PS2/Lattice

PS2/HighC

VAX 8650

MacII/MPW

Sun-2/120

Sun-3/110C-4

ipxref

45.0

46.0

175.0

23.0

23.0

100.0

11.0

5.4

17.4

37.8

13.4

queens

216.0

227.0

924.0

110.0

143.0

526.0

56.0

27.4

87.0

179.0

64.7

rsg

25.0

27.0

106.0

14.0

20.0

61.0

7.0

3.0

10.9

21.7

7.8

Timings in seconds (some clocks have only
resolution).

sieve

10.0

11.0

35.0

7.0

7.0

20.0

3.0

1.2

4.7

9.4

3.2

ane-second

The table that follows gives timings for several dif­
ferent computers, operating systems, and with Icon
produced under different C compilers.

Output was suppressed in all tests to avoid dif­
ferences due to factors like disk access speed. This also
suppresses differences in performances of different
input/output libraries. Tests without suppressing
output show minor differences in some cases, but
nothing major. All tests were done with 65K string and
block regions; none required region expansion.

The first two groups of tests were run under MS-
DOS. "AT" refers to a turbo AT clone with a Norton
computing index of 9.7. "PS2" refers to a PS/2 Model
80 with a Norton computing index of 17.6. The C com­
pilers used to produce Icon for the MS-DOS tests were
Microsoft C 5.0, Turbo C 1.5, Lattice C 3.22, and
Metaware HighC (32-bit protected mode). The VAX
8650 tests were run under UNIX 4.3bsd with Icon built
using the standard "cc" compiler.

The only figures that might be surprising are those
for MS-DOS Icon compiled under Lattice C, which
averages about four times slower than Icon compiled
under Microsoft C. One of the problems here is that
Lattice C is doing 32-bit pointer arithmetic, rather than
just offset arithmetic. What you get in return is the
ability to address a large amount of memory and also
support for expandable memory regions in Icon — but
at a very substantial penalty.

Documents Related to Icon

Several recently published papers and technical
reports related to Icon are available from the Icon

Project. Reprints of papers are free but they are in
limited supply. There is a charge for the technical
reports, as noted, to recover the cost, of printing and
shipping. (We used to be able to offer technical reports
without charge and absorb the costs. That was when
we had 200 subscribers to the 0\[g.zvsfetter. We now
have over 2,700 subscribers.) However, we'll provide
one technical report free for every $15 of purchases of
programs or books, provided the request for reports
accompanies the order.

Reprints (free, limited supply). Order by title.

"Seque: A Programming Language for Manipulating
Sequences", Ralph E. Griswold and Janalee O'Bagy,
Computer Languages, Vol. 13, No. 1 (1988), pp. 13-22.

"Programming with Generators", Ralph E. Griswold,
The Computer Journal,Vo\. 31, No. 3 (1988), pp. 220-228.

"Garbage Collection of Strings and Linked Data Struc­
tures in Real Time", Kelvin Nilsen, Software—Practice
& Experience, Vol. 18, No. 7 (1988), pp. 613-640.

Technical Reports. Order by TR number.

A Type Inference System for Icon, Kenneth Walker, TR
88-25.31 pages. $2.50.

The Design and Implementation of a High-Level Program­
ming Language for Pattern Matching in Real Time (doc­
toral dissertation), Kelvin Nilsen, TR 88-30.126 pages.
$6.50.

The Implementation of Generators and Goal-Directed
Evaluation in Icon (doctoral dissertation), Janalee
O'Bagy, TR 88-31. 93 pages. $5.50.

Quick Reference Sheets for Icon
We've been asked several times for a brief summary

of Icon operations — something that would fit on a
couple of pages and that could be used for quick
reference. We never saw quite how all that informa­
tion could be arranged in a small space.

Well, it's been done for us. The reference sheets on
pages 9 and 10 of this 9{ezvsfetter were provided by
Bob Alexander (using MacDraw II). Our thanks to him
for this "labor of love".

Clip Art Credits

Graphics that first appeared in ^ezusfetter No. 26
and O^zosfetter No. 27'are credited in those issues.

Page 1. EPS clip art from Kwikee's Potpourri.

Page 3. Jacques Nel, Superpaint bitmap graphic,
autotraced with Illustrator '88.

Page 4. Charles Richmond, Atari ST printed output,
scanned and drawn over with Illustrator '88.

Page 5. Water drawing machine. Scanned image from
The Various and Ingenious Machines ofAgostino Ramelli,
Dover Publications and Scolar Press, 1987.

Page 6. Australostoma opacum, Stenopelmatidae,
scanned image.

Page 6. Alan Davis, trukese love stick, pencil drawing,
scanned and autotraced with Illustrator '88.

Page 8. Charles Richmond, Atari ST printed output,
scanned and autotraced with Illustrator '88.

Icon Programming Language
Reference Sheet

abs(n)
any(c,s,i,j)
bal(c1,c2,c3,s,i,j)
center(s1,i,s2)
char(i)
close(f)
collect ()
copy(x)
cset(x)
delete(x1,x2)
detab(s,i1,i2,...,in)
display(i.f)
entab(s,i1,i2 in)
errorclear()
exit(i)
find(s1,s2,i,j)
get(a)
getenv(s)
iand(i.j)
icom(i)
image(x)
insert(x1,x2,x3)
integer(x)

Functions

ior(i.j)
ixor(i.j)
ishift(i.j)
Ieft(s1,i,s2)
list(i.x)
many(c,s,i,j)
map(s1,s2,s3)
match(s1,s2,i,j)
member(x1,x2)
move(i)
numeric(x)
open(s1,s2)
ord(s)
pop(a)
pos(i)
proc(x)
pull(a)
push(a.x)
put(a.x)
read(f)
reads(f.i)
real(x)
remove(s)

rename(s1 ,s2)
repl(s.i)
reverse (s)
right(s1.i,s2)
runerr(i.x)
save(s)
seek(f.i)
seq(i.j)
set(a)
sort(a)
sort(t.i)
stop(x1,x2 xn)
string(x)
system(s)
tab(i)
table(x)
trim(s,c)
type(x)
upto(c,s,i,j)
where(f)
write(x1,x2 xn)
writes(x1,x2,...,xn)

Escape Sequences
\b
\d
\e
\f
\l
\n
\r
\t
\v
V
V
\\
\ddd
\xdd
\Ac

backspace
delete (rubout)
escape (altmode)
formfeed
linefeed (newline)
newline (linefeed)
carriage return
horizontal tab
vertical tab
single quote
double quote
backslash
octal code
hexadecimal code
control code

&ascii
&clock
&co I lections
&cset
¤t
Sdate
&dateline
&digits
&error
&errornumber
Serrortext
Serrorvalue

Keywords
Serrout
Sfail
&features
&flle
&host
&input
&lcase
&level
&line
&main
&null
Soutput

&pos
Srandom
®ions
Ssource
&storage
Ssubject
&time
&trace
&ucase
&version

Data Types
null
integer
real
string
cset
file

co-expression
procedure
list
table
set
record types

Reserved Words
break
by
case
create
default
do
dynamic
else
end
every

fail
global
if
initial
link
local
next
not
of
procedure

record
repeat
return
static
suspend
then
to
until
while

soof
Icon Programming Language

Reference Sheet

Express ons by Precedence

all high precedence expressions

all prefix expressions

\
@

A

*

1
%
**

+

++

II
III

ii
ii

I
I

I
I

I
I

I
I

II
I
I

I
I
 V

V

II

A

A

I
I

 11 I
I

V

V

I
I
 A

A

I
V

V

I
I
 A

A

1

I
I

i

limitation
transmit to co-expression

raise to power

multiply
divide
remainder
set intersection

add
subtract
set union
set difference

string concatenation
list concatenation

numeric comparisons

string comparisons

value comparisons

| alternation

to-by

<—

<—>
augmented:=

?

&

integer sequence

assignment
reversible assignment
exchange
reversible exchange
augmented assignment

string scanning

conjunction

all low precedence expressions

High Precedence
Expressions

(expr)
{expr1;expr2;...}
[x1,x2,...]
x. field
x[i\ x[i+:j]
x[i:j\ x[i-:j]
x(x1,x2,...)
(x1,x2,...)

parenthesized
compound
list creation
field reference
subscripting

invocation
mutual evaluation

not

I
i

*
+
-
.
/
\

=
?
~
@
A

Prefix Expressions

reversal of success/failure
repeated alternation
element generation
size of
numeric value
negative
value of (dereference)
succeed if null
succeed if non-null
match-tab
random selection
cset complement
activate co-expression
refresh co-expression

Low Precedence
Expressions

create expr
return [expr]
suspend [expr] [do expr]
fail
break [expr]
next
case expr of {

expr: expr

[default: expr]
)

if expr then expr [else expr]
repeat expr
while expr [do expr]
until expr [do expr]
every expr [do expr]

10

Ordering Icon Material
Shipping Information: The prices listed at the

end of this section include handling and shipping in
the United States, Canada, and Mexico. Shipment to
other countries is made by air mail only, for which
there are additional charges as follows: $5 per disk­
ette package, $10 per tape or cartridge package, and
$10 per documentation package. UPS and express
delivery are available at cost upon request.

Payment: Payment should accompany orders
and be made by check or money order. Credit card
orders cannot be accepted. Remittance must be in
U.S. dollars, payable to The University of Arizona.
There is a $10 service charge for a check written on
a bank without a branch in the United States. Or­
ganizations that are unable to pre-pay orders may
send purchase orders, but there is a $5 charge for
processing such orders.

What's Available
Icon is available for several personal computers,

UNIX, VMS, and also for porting to other comput­
ers. Source code is available in most cases.

The UNIX package contains source code, docu­
mentation in printed and machine-readable form,
test programs, and related software - everything
there is. It can be configured for most UNIX systems.
The documentation includes installation instruc­
tions, an overview of the language, and operating
instructions. It does not include either of the Icon
books. Program material is available on magnetic
tape, cartridge, or diskettes.

The VMS package contains everything the UNIX
package contains except UNIX configuration infor­
mation and UNIX-specific software. However, the
UNIX and VMS systems are configured differently,
and neither will run on the other system. The VMS
package also contains object code and executables,
so a C compiler is not required. The VMS package is
distributed only on magnetic tape. Note: VMS Ver-
sion4.6 or higher is required to run Version 7 of Icon.

Source-code distributions for personal comput­
ers generally are provided separately from the ex­
ecutables. Each package contains printed documen­

tation that is needed for installation and use. Note:
Icon for personal computers requires at least 512KB
of RAM.

Icon for porting is distributed on MS-DOS for­
mat diskettes. There are two versions, one with a flat
file system and one with a hierarchical file system.
Both versions are available in either plain ASCII
format or compressed ARC format.

There are two documentation packages that
contain more than is provided with the program
packages: one for the language itself and one for the
implementation.

Program Material
Note: All the distributions listed below are for

Version 7 of Icon. Earlier Version 6 implementations
that are not supported for Version 7 are still avail­
able. If you wish to order a Version 6 implementa­
tion, ask for a Version 6 order form, which is free.

Legend: The following symbols are used to indi­
cate different types of media:

O 9-track magnetic tape
I3S DC 300 XL/P cartridge
H 360K (2S/DD) 5.25" diskette
y 400K (IS) 3.5" diskette
H 800K (2S) 3.5" diskette

All cartridges are written in raw mode. All 5.25"
diskettes are written in MS-DOS format.

When ordering tapes, specify 1600 or 6250 bpi
(1600 bpi is the default). When ordering diskettes
that are available in more than one size, specify the
size (5.25" is the default).

The symbol tS" identifies material that is new
since the last A&zpsfetter. The symbol «•* identifies
material that has been updated since the last 9{ezos-
fetter.

Use the codes given at the beginning of the
descriptions that follow when filling out the order
form.

Icon for UNIX:

UT-T: Q

UT-C: O

UC-T: @g

UC-C: gg

UD-M: 9 (5)

tar format

cpio format

tar format

cpio format

cpio format

$25

$25

$40

$40
$40

Icon for VMS:

VT: O

Icon for the Atari ST:

ATE: O executables

$25

$15

11

Icon for MS-DOS:
(• 'DE:
(C D S :

9 (2) executables

9 (2) source

Icon for MS-DOS/386:
BS*DS-386 9 o r H executables

Icon for the Macintosh/MPW
ME:
MS:

h-J executables

|m| (2) source

Icon for the UNIX PC:
UPE: H executables

Icon for XENIX:
XE: 9 executables

Icon for XENIX/386:

C^XE-386- 9 o r H executables

$20

$25

$15

$15

$25

$15

$15

$15

Icon Source for Porting:

PF-A: 9 (4) flat system, ASCII $35

PF-K: 9 (2) flat system, ARC $25

PH-A: 9 (4) hierarchical system, ASCII $35

PH-K: 9 (2) hierarchical system, ARC $25

Documentation
LD: Language documentation package. The Icon
Programming Language(Prentice-Hall, 1983) and two
technical reports. $30.

ID: Implementation documentation package. The
Implementation of the Icon Programming Language
(Princeton University Press, 1986) and update. $40.

NL: Back issues of the Icon 9{ezosfetter:$.50 each for
single issues (specify numbers). $6.00 for a com­
plete set (Nos. 1-27). There is no charge for overseas
shipment of single back issues, but there is a $5.00
shipping charge for the complete set.

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621-2018

name

address

city

(country)

state zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

. . , , , , . T , , , , . . purchase-order processing
Make checks payable to The University of Arizona

other charges

total

total

*The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

12

