
Tfo Icon 9{ewsCetter
No. 27 —June 11,1988

Logo

w e finally selected an official logo for Icon, and
here it is:

This logo was selected from among many competitors
and chosen for its simple elegance. Our thanks go to
Gregg Townsend, who designed it.

We will continue to use other artwork to identify
regular features of this 9{eivsfetter. We also welcome
additional contributions of artwork (recent arrivals
appear throughout this issue) and will provide credit
at the "Icon Store" for all artwork we print (see
Oiezosfetter-No. 25).

New Icon Implementations
"\ 7ersion 7 of Icon is now available for:

The Atari ST (executables only).

The Macintosh under MPW (executables and
source).

The UNIX PC (executables; source already is
available in the general UNIX distributions).

See the order form at the end of this issue.

Several other implementations are in the works:
Version 7 for the Amiga, Version 7 source for the Atari
ST, a 32-bit 386 protected-mode version for MS-DOS,
and a Xenix/386 implementation.

Commercial Support for Icon?

We are occasionally asked how we feel about the
possibility of a commercial version of Icon. These

questions usually have the flavor of "would it be okay
with you?" An example is the following electronic
mail from Richard Goerwitz:

A question that has been on my mind is this: Do
you want some commercial outfit to pick up Icon
some day? Or do you want to keep it "in house"?
Do you see Icon primarily as a research tool? Or do
you think of it as another, interesting and power­
ful, general-purpose programming tool?

In the first place, it really doesn't matter whether
we would approve or disapprove of a commercial Icon
venture. Icon is in the public domain. Furthermore, the
source code for it is also in the public domain and
anyone is free to use it as they like. Of course, we have
some ideas about what we would and wouldn't like
to have done with Icon, but we can't enforce them.

The main advantage of public-domain software is
its low cost and unrestricted availability. The disad­
vantages are that, in the absence of financial resources,
it can have only limited support and even its existence
is known largely by word of mouth. Mark Olsen
recently made the following comment in an electronic
news group:

I think that Icon is probably at the point in its life
where it could be reasonably picked up by a small
developer, like Catspaw or the developer of SPIT-
BOL for the PC, and given real support at a fair
price. I know academics are broke, but that does
not mean that we should really try to get something
for nothing.

We agree. And don't be surprised if you see such a
venture before long. If it's well done and priced fairly,
a commercial version of Icon could go a long way
toward making the language more widely available
and useful. If successful, such a venture could support
enhancements — faster execution, a programming en­
vironment, and so on.

ICEBOL3

The third "ICEBOL" conference, officially called
"The International Conference on Symbolic and

Logical Computing", was held at Dakota State College
in Madison, South Dakota on April 21-22 of this year.

The first conference focused on applications of
SNOBOL4 in the Humanities, but its coverage has
been broadened to include Icon, Prolog, and other
programming languages as well as a wider range of
applications.

This conference was well attended, with about 100
persons, including a good international repre-

7#f3 Icon 9{ezvsUtter

Madge T. Griswold and Ralph E. Griswold
Editors

'The Icon 9^euv(etier is published aperiodically,
at no cost to subscribers. For inquiries and
subscription information, contact:

[con Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

(6(12)621-2018

Electronic mail may be sent to:

icon-project@arizona.edu

... lallegra, ihnp4, noao|!arizona!icon-project

© 1988 bv Madge T. Griswold and Ralph E. Griswold

sentation. Interest in Icon was up. Of the twenty-five
or so papers and panels, ten related to Icon in one way
or another. Examples were "Elementary Cryptog­
raphy Using Icon", "Analyzing Program Structures
Using Icon", and "Programming with Sets in Icon".

Proceedings from the conference are in press and
should be available soon. Copies are $20 and may be
ordered from:

The Division of Liberal Arts
114 Beadle Hall
Dakota State College
Madison, SD 57042

A Brief History of Icon — Concluded

Until 1979, the implementation of Icon was done
using facilities provided by the computer center

at The University of Arizona — a DEC-10 and a CDC
6400. In 1979, the Department of Computer Science ac­
quired the first computer of its own — a PDP-11 /70
running UNIX. Compared to its current computer
facilities, this PDP-11 seems puny in retrospect, but at
the time it provided an environment that was much
more conducive to software development than the
university's computer center. The immediate effect of
this new computer was to stimulate interest in a new
implementation of Icon, written in C.

Along with this new implementation came new
ideas for the language: functions as data objects, a
generalization of expression evaluation, the fusion of
lists and stacks into a single data type, and so on.

One of the initial concerns with the C implementa­
tion of Icon was whether it could be made to fit within
the 128KB address-space limitation of the PDP-11 /70.
There are still remnants of this concern in the present
implementation. At the time, it also was not clear that
a C implementation would be useful beyond UNIX
systems, and there was not the focus on portability as
there had been in the earlier Fortran implementation.

Downloading Icon Material

Several of the implementations of Icon are
available electronically:

BBS: (602) 621-2283

FTP: arizona.edu (/usr/ftp/icon)

(128.196.6.1 or 192.12.69.1)

mailto:icon-project@arizona.edu
http://arizona.edu

With the success of the C implementation of Icon
(starting with Version 3 in 1980), new features were
added to Icon — repeated alternation, limitation, and
co-expressions.

As Icon became more widely used, it became ap­
parent that it was not just another interesting high-
level programming language whose use would be
limited to a small group of devotees; it was being used
for "serious" work by an increasingly large user com­
munity. In some sense, Icon crossed a threshold and
acquired a life of its own. As the user community in­
creased in size, better documentation was needed, and
the book describing Version 5 was published in 1983.

Soon folks were clamoring for implementations for
new computers and operating systems. By this time,
decent C compilers were available for many com­
puters and it was feasible to adapt the C implementa­
tion of Icon to run under systems other than UNIX.
One of the first of these was VAX/VMS. Many others
followed, with MS-DOS being the most widely used
(the implementation that proved, and still proves, the
most difficult and frustrating). From 1983 to the
present, much of the work on Icon has focused on im­
plementation: making it more portable and adapting
it to a variety of computer architectures, operating sys­
tems, and C compilers. With Version 6, most of the
major problems were solved and the book on the im­
plementation was published in 1987.

When the language book was written in 1983, it
seemed like Icon was sufficiently mature and stable
that few changes would be made to the language it­
self. However, the research program that originally
spawned Icon continued to generate new ideas and
the increasingly large user community asked (and still
asks) for new features. Programmer-defined control
operations came from research on control structures.
Sets came from a project in a graduate course on "lan­
guage internals". Many of the new features in Version
7 of Icon were provided in response to user requests
and the recognition that more facilities were needed
to support robust application programs.

Requests and suggestions for new features (as well
as changes in old ones) continue to come in. Most of
these would add to the size and complexity of the lan­
guage. On the other hand, size — both linguistically
and in terms of the implementation — tends to detract
from the utility of a language as well. Good language
design dictates compromises between facility, size,
and complexity. Icon would be a godawful mess if
everything everyone suggested were just thrown in.

Yet there are good new ideas and possibilities for
simplification as well.

On the other hand, the sheer size of the Icon user
community and the number of computer systems on
which it is implemented contribute a sizable amount
of inertia. Version 7 of Icon was a major undertaking
that took the better part of two years and still is in
progress. Just providing new documentation requires
a massive effort, since every system on which Icon is
implemented has its own idiosyncrasies. Further­
more, while many users want new features, every new
version creates work for users — installation, new
things to learn, programs to recompile, and so forth.
As the user community increases in size, the inertia in­
creases. At some point, things stop moving.

Version 7 may or may not be the last version of Icon.
Probably not. But there comes a time when, on
balance, stability becomes essential.

Furthermore, the resources for developing, im­
plementing, documenting, and distributing Icon
necessarily are taken away from other possible en­
deavors — things like a true compiler for Icon or an
Icon "machine" cast in silicon.

What all this means is that you may expect to see
some future improvements and refinements, but noth­
ing major, to Icon itself. However, there might be some
surprises too.

ICON

From Our Mail
I downloaded Version 5.9 of Icon from a local BBS. I can't
get it to run at all. Can you help me?
Not really. We hear of problems like this frequently.
Since Icon is in the public domain, we have no control
over its distribution. If the version you downloaded
doesn't run at all, it probably was corrupted in trans­
mission somewhere along the line. Also, Version 5.9 is
very old. The current version is 7. If you get a copy of
Version 7 from us and have problems with it, we'll try
to help.

I'm interested in using Icon in computer-assisted composi­
tion. I would be most interested in being put in contact with
others doing similar work.

While we know what some persons are doing with
Icon, we have no way of knowing everyone working
in a specific area. Furthermore, we do not give out in­
formation about persons without their permission.
Since the kind of question you ask comes up fairly fre­
quently, we've decided to provide a free "classified
ad" feature in future issues of the 9{ezvsfetter. Just let
us know that you're willing to have your name, ad­
dress, and interests published.

7s Version 7 of Icon available yet for the Atari ST? If so,
please have someone transmit it to my computer at.. .
Yes, Version 7 of Icon is available. However, we can't
undertake to transmit individual copies to other com­
puters. You can pick it up from us via FTP or from our
BBS. (See the Downloading Icon box on page 2 for
details.)

1 just got a copy of the book on the implementation of Icon.
Please tell me how I can get the source code for Version 6.2
as suggested in the book.
The implementation book describes Version 6 of Icon
and Version 6.2 corresponds most closely to the
material in the book. At the time the book was written,
it seemed like a good idea to suggest to readers that
they get Version 6.2 of the source code. However,
many improvements have been made to the source
code since then, and we now think it is better for
readers of the book to have the most current source,
which is presently Version 7.0. See the order form at
the end of this 9{eivsfetter for available formats. A
document describing the differences between Version
6.2 and 7.0 of the source code is available, free of
charge. Ask for IPD51.

Any progress on the "extension interpreter" described in
tyzvsfetterNo. 25?
Yes, we have modifications to Icon so that it can call
and be called by C functions. However, it's going to
take a while to get it into the versions we distribute.
We're presently estimating release some time early in
1989.

How's the next version of the Icon Program Library com­
ing?
We were afraid someone would ask us that. There
seem to be a bezillion things to do, and work on the
program library keeps getting interrupted. While it's
still possible that we'll get it out late this summer, don't
count on it.

I haven't seen anything about an implementation of Icon for
IBM 370 mainframes. Is anything in the works?
Quite a bit of work has been done to support such an
implementation, including most of the code necessary
to support the EBCDIC character set. However, there's
not been much progress on an actual implementation.
We've just recently been contacted by a person who

has the resources to do the job. Maybe there will be
good news by the time of the next newsletter.

Has anyone made any progress getting Icon to run on the
Apollo Workstation?
Yes. In fact, on the Apollo Workstation running UNIX
9.7 it's said to be straightforward to configure UNIX
Icon. We have the configuration files, but they're not
yet included in our present UNIX distribution. We'll
send them, if you like.

Does Version 7 of Icon run on the Sun-4 Workstation?
Yes. We recently got the configuration files, which are
similar to those for the Sun-3 (although co-expressions
and arithmetic overflow checking are not yet imple­
mented).

We're installing a CDC Cyber system and would like to get
Version 2 of Icon.
We no longer distribute Version 2 of Icon. Depending
on what model of Cyber you are installing, it may be
practical to port Version 7 of Icon to it.

Does Icon for MS-DOS compile under QuickC?
No; some modules are too large for QuickC.

Any progress getting Icon for MS-DOS to run under Turbo
C?
The answer is still "no". We're hoping someone in the
MS-DOS user community will tackle this one; we just
haven't had time.

7 want to run MS-DOS Icon on my PS/2, but it only has a
3.5" drive. Could you send me 3.5" diskettes instead of
5.25" ones?
We certainly understand your problem — we have it
too. The problem is partly one of managing our dis­
tribution (we offer a lot of different diskettes) and part­
ly one of media preparation. We're in an "in-between"
situation. We distribute so many diskettes that making
copies individually is painful, but we don't distribute
enough to use commercial duplication services. We
have a bulk diskette copier for 5.25" diskettes, which
makes their production manageable. Bulk diskette
copiers are very expensive, and we can't justify one for
3.5" diskettes. We'll do something about this, however,
probably offering 3.5" diskettes where there is the most
demand first.

Bugs

Like all complex software systems, Icon has bugs.
(SDI would be no different.) Some we know about

and, of course, some we don't. Some are longstanding
and some are new. Some we know how to fix and some
we don't (yet). Some we plan to fix and some we don't.
Some are so esoteric that you need an expert
knowledge of the implementation to understand
them. Some things you might think of as bugs we
prefer to think of as "features". This may make it
sound like Icon is really buggy. It's not. It's just that
it's large and complicated and some problems are in­
evitable.

We're starting a feature in the yfezvsfetterrelated to
bugs. There's no chance of running out of material, but
we may not have the stomach for some of the esoterica.
We'll start with a couple of problems of current inter­
est.

Leap-Year Woes

Several users have reported that MS-DOS ER Icon
gives the wrong date. This is a leap-year problem and
it is the result of an error in the Lattice C 3.20 runtime
library. There's nothing we can do about it until we
produce a new ER version with a corrected version of
the Lattice library.

String-Allocation "Botch"

There is a problem in Version 7 of Icon that can
produce error termination with the message "system
error: string allocation botch". Your chances of run­
ning into this problem are small, and if you do run into
it there is a workaround. To understand this, you need
to know how Icon allocates storage.

Each allocation request is preceded by a "predictive
need request", which assures that enough space will
be available when it's needed. A garbage collection
may occur when such a predictive need request is
made, but a garbage collection cannot occur when al­
location is actually performed. This strategy allows re­
quests to be made in advance at "safe" times, since at
the time allocation is done, things the garbage collec­
tor needs may be in disarray.

That's fine as long as every routine that needs to al­
locate space remembers to make a predictive need re­
quest and requests the right amount of space. If a
request isn't made or if the requested amount is too
small, nothing bad will happen as long as enough
storage is available when the allocation is done.
However, if there is not enough storage available, this
is detected as an internal error in Icon and the "botch"
message occurs. Note that a "botch" can only occur
when there is little space left to allocate. For more
detailed information, see the implementation book.

The bug in Version 7 of Icon is in the new function
char, which fails to make a predictive need request for
the one character of storage it needs.

The workaround is ad hoc, but amounts to adding
some operation that assures enough space is available.
The heavy-handed (expensive), but obvious approach
is to add a call of col lect to assure that plenty of space
is available. (Garbage collection always assures there
is extra space available.) A less-straightforward and
non-guaranteed approach is to add other operations
that allocate strings in the vicinity of the trouble spot
in the hope that these operations will trigger a garbage
collection when space gets low. Note that since char
only needs one character, the chances of a "botch" are
small. (But it's easy to write a program that always
shows this bug — try it.)

Another new function, detab, also has a problem
with predicting its storage needs. The situation that
causes it is obscure, and the resulting error message is
different. See if you can produce it.

These "predictive needs" bugs will be corrected in
the next release of Icon. No date for a new release has
been set yet.

Language Corner
Failure and Errors

T he concept of failure — that an expression may not
produce a result — is central to expression evalua­

tion in Icon (see Icon (h/ezissfetterNo. 25). Failure does
not mean that something is wrong or that an error has
occurred but rather that a computation cannot be per­
formed or that there is no reasonable result. Examples
are an end-of-file when attempting to read data and
an out-of-bounds list subscript.

Using failure to control computation and program
flow makes Icon programs compact and concise. An
example is

while write(output,read(input))

which copies input to output and terminates when an
end-of-file is encountered on input.

Icon discriminates between failure and errors,
which cause program termination. For example, an
error occurs if data cannot be written (usually because
of lack of space on the output device). Similarly, an at­
tempt to perform arithmetic on nonnumeric data is er­
roneous, as in

The distinction between failure and error is largely
a matter of language design. Some conditions, like an
end-of-file, are expected, do not indicate a program­
ming mistake, and are useful for controlling program
flow. Other situations, such as an attempt to perform
an arithmetic operation on nonnumeric data, indicate
a programming mistake. Similarly, the inability to
write data indicates a serious problem external to the
program itself.

Sometimes the distinction is not so clear. Should
repl(s,0) be an error, should it fail, or should it just
produce an empty string? What about repl(s,-1)? Icon
treats the former as a reasonable computation, since
the empty string is well-defined, but it treats the latter
an error. This is a fine distinction; while it probably
would not be a good idea to have repl(s,-1) produce

a result, failure is not un-
C reasonable. Some decision

has to be made, however.

One a d v a n t a g e of
failure over error termina­
tion is that failure at least
allows the program to
retain control. The disad­

vantage is that a programming mistake may go un­
detected. Different programmers have different views
about what should be treated as errors. You might
prefer to have "unusual" situations treated as errors
during program development and debugging, but
you probably would be annoyed if you wrote an ap­
plication program that simply crashed, because of lack
of disk space, in the middle of updating a user's
database.

Unfortunately the situation is complicated, and
there is no easy solution. There are a lot of places
where failure or error termination may occur in Icon's
large repertoire of functions and operations. At
present there are more than 400 places in the im­
plementation where failure is signaled and nearly 300
places where an error is signaled. It isn't really practi­
cal to give a programmer fine control over the distinc­
tion between failure and error termination. You can't
expect to say "I want an out-of-bounds list subscript
to be an error in this procedure, but I also want at­
tempts to add nonnumeric values to fail". (If you're
interested in programming language design and im­
plementation, you might think about how such a
facility could be provided.)

The most serious problem is having a program ter­
minate when you don't expect it to or want it to. As
suggested above, this is a particularly serious problem
in programs that modify files. It also is a general
problem in application programs that are used by per­
sons who may know nothing about Icon or its error
messages. To provide a way around some of these
problems, Version 7 of Icon has a method for convert­
ing errors to failure. This method is not subtle or
flexible, but it does allow a program to retain control
in all but the most extreme situations.

Errors are converted to failure using the keyword
&error. If the value of &error is nonzero when an error
occurs, the erroneous condition is converted into the
failure of the expression in which the error otherwise
would occur. This process is called error conversion.
When an error is converted, the value of &error is
decremented. Thus, it behaves in the same fashion as
&trace: assigning the value 2 to &error allows two er­
rors to be converted, after which error conversion is
turned off, while assigning -1 to &error allows un­
limited error conversion.

Suppose, for example, that you want to sum the
numbers from a file. You might write this as

i : = 0
while i +:• read(f)

If one of the lines in f is nonnumeric, your program
will terminate with a run-time error. You could
provide a test to avoid this and provide diagnostic out­
put in the following way:

i :=0
while x := read(f) do

if not(i +:= numeric(x)) then
write(x," is not numeric")

You could shorten this somewhat by using error con­
version:

-1 Sterror:
i :=0
while x := read(f) do

(i +:= x) I write(image(x),' is not numeric")

While this illustrates the use of error conversion, it
probably is not good programming style in this case.
After all, you don't really need error conversion to do
the job, as the previous procedure illustrates. Worse,
it is dangerous. Since error conversion applies to all er­
rors, if data cannot be written, the warning about bad
data will be lost. That probably isn't a practical
problem in this case, but consider what may happen
if error conversion is in effect in the following loop:

while write(output,read(input))

If there is not space to write the data, it is simply lost,
silently — one of the worst things that can happen.

Basically you should use error conversion only
when absolutely necessary, not just as a short-cut. If
you do use it, take extra care to detect failure that may
be induced by error conversion at places you normal­
ly would not expect to find it. For example, the loop
above might be recast as

while line := read(input) do
write(output,line) I stop("*** write failed")

In other words, if you use error conversion properly,
your programs should be longer and more detailed
than if you don't.

It's worth noting that the idea for error conversion
came from problems that resulted because write
formerly did not detect that data was not actually writ­
ten. This wasn't a practical problem on large computer
systems with a lot of secondary storage, but it was a
real problem with personal computers, where floppy
disks have very limited capacity and hard disks fill up
quickly. To handle this, problems with writing data
are detected and treated as Icon run-time errors in Ver­
sion 7 of Icon. But if this happens, the program loses
control. Failure, on the other hand, was too dangerous.

So error conversion was introduced as a means of
giving the programmer the control needed to detect
errors but maintain control of program execution.

There are several other keywords related to error
conversion:

• &errornumber is set to the error number when
an error is converted to failure.

• &errortext is set to the text for the error message
when an error is converted to failure.

• &errorvalue is set to the offending value when
an error is converted to failure. If there is no
relevant value, the evaluation of &errorvalue
fails.

The use of these keywords is illustrated by a proce­
dure, ErrorCheck, that could be called at places in a
program where errors may occur. An example of such
a situation might be

while line := read(input) do
write(output.line) I ErrorCheck(&line,&file)

The following version of this procedure could be used
to report errors to the person running a program and
giving that person the opportunity to terminate execu­
tion or let it continue:

procedure ErrorCheck(line,file)
write("\nError ",&errornumber," at line ",line, "in file ",file)
write(&errortext)
writeC'offending value: ",image(&errorvalue))
writes("\nDo you want to continue? (n)")
if map(readO) == ("y" I "yes") then return
else exitf&errornumber)

end

Inside Icon

Ideally, users of a programming language should not
have to know much, if anything, about its im­

plementation. In practice, some knowledge usually is
needed and more may be helpful, so we're starting yet
another semi- regular feature in the 9{ewsfetter
devoted to this aspect of Icon.

Our earlier remarks about how lists are imple­
mented (see Icon 9{ezvsfetter 25) prompted Dave

Gudeman to design and implement an alternative im­
plementation of lists, which is incorporated in Version
7 of Icon. What follows is his description of the
problem and the improved implementation.

The pushO and put() functions in Icon extend the
length of lists, so that the implementation of these
functions has to allocate memory space for new ele­
ments. Memory is allocated in "blocks". Each block
has sixteen words of memory allocated for various
bookkeeping data and two words for each list ele­
ment that it can hold. To save space, pushO and
put() formerly allocated blocks big enough for eight
elements so the next seven pushO or put() calls
didn't have to allocate any new memory. The
problem with these eight-element blocks is that half
of the memory allocated in list-element blocks was
just for bookkeeping data, essentially wasted
space.

Obviously we would like to save some of this
wasted bookkeeping space by allocating blocks
that hold more elements. We could just allocate
space for (say) twenty elements, but that means that
nineteen elements are wasted if there aren't any
more pushO or put() calls (that's nineteen unused
elements at two words per element). A better solu­
tion is to allocate blocks that get bigger as the list
gets bigger. Remember that half of the space is
wasted for the old method. So for the new method,
why not allocate a block that doubles the number
of elements in the list? This wastes a little more
space than the old method when new blocks are al­
located, but once a few more elements are put in
the new block, the new method becomes better than
the old one. And it continues to improve for each
putO until a new block is allocated again. So on the
average the new method uses less space than the
old one.

Another advantage of this method is that it makes
access faster for large lists that have been built up
by pushO and put(). For example, take a list that
started as an empty list and had all of its elements
added by putO. The blocks are chained together,
and to access the rth element we have to go through
all the blocks up to the block that contains the ele­
ment we are looking for. For the old method, this
means we have to traverse i/S blocks. For the new
method, we only have to traverse /ogO/4) blocks —
a considerable improvement. Experimentation
shows that access is already noticeably faster for a
list with less than five hundred elements. And the
bigger the list gets, the more speedup we see with
the new method.

There are a couple of details yet. First is the
problems that may show up for lists that are built
with both push() and putO instead of just one of
them. A lot of space can be wasted if there are huge

mostly empty blocks at both ends of the list. Ex­
perimentation shows that if we allocate new blocks
that are half the current size of the list, then we save
more space than we do with either the old method
or the method where we allocate blocks the full size
of the list. Also, the half-size method seems to be
just as fast as the full-size method for accessing list
elements.

The second detail involves what happens when a
program runs out of memory. Suppose a program
does a pushO to a large list that has to allocate a
large block, but there isn't enough memory. It
seems like a good idea to try a smaller block, hoping
that the program will be able to finish without al­
locating any more list blocks. So if we try to allo­
cate a large block and cannot do it, we divide the
size by four and try again. We keep trying this until
we can allocate a block or the block gets so small it
would be useless.

Here is the final algorithm for allocating a new list-
element block for list L. The procedure
new_block(i) allocates a block with i elements if
there is enough memory. If there isn't enough
memory, new_block(i) fails.

I : = (8<*L) I8
until block := new_block(i) do

not enough memory for i elements
i / :=4
if i < 8 then stopl'out of space")

Clip-Art Credits
Graphics that first appeared in O^zosfetter No. 26 are
credited in that issue.

Page 1. Gregg M. Townsend, using programmer-
defined Postscript font.

Page 4. Jacques Nel, using Cricket Draw.

Page 5. Blackburnium cavicolle, Geotrupidae, scanned
image.

Page 5. Jack Radley, using Adobe Illustrator.

Page 6. Jacques Nel, using Cricket Draw.

Page 7. From the Dover Pictorial Archive Series,
scanned image.

Once again, thanks to all who contributed. Credits
at the "Icon Store" have been sent as described in
C^ezosfetterNo. 25.

Ordering Icon Material
Shipping Information: The prices listed on the

order form at the end of this tyzusfetter include han­
dling and shipping in the United States, Canada, and
Mexico. Shipment to other countries is made by air
mail only, for which there are additional charges as
follows: $5 per diskette package, $10 per tape or
cartridge package, and $10 per documentation pack­
age. UPS and express delivery are available at cost
upon request.

Payment: Payment should accompany orders and
be made by check or money order. Credit card orders
cannot be accepted. Remittance must be in U.S. dollars,
payable to The University of Arizona. There is a $10
service charge for a check written on a bank without a
branch in the United States. Organizations that are un­
able to pre-pay orders may send purchase orders, but
there is a $5 charge for processing such orders.

What's Available

Icon program material falls into four categories:
UNIX, VMS, personal computer, and porting.

The UNIX package contains source code, the Icon
program library, documentation in printed and
machine-readable form, test programs, and related
software — everything there is. It can be configured
for most UNIX systems. The documentation includes
installation instructions, an overview of the language,
and operating instructions. It does not include either
of the Icon books. Program material is provided on
magnetic tape, cartridge, or diskettes.

The VMS package contains everything the UNIX
implementation contains except UNIX configuration
information and UNIX-specific software. However,
the UNIX and VMS systems are configured different­
ly, and neither will run on the other system. The VMS
package also contains object code and executables, so
no C compiler is required. The VMS package is dis­
tributed only on magnetic tape. Note: VMS Version 4.6
or higher is required to run Version 7 of Icon.

Icon for personal computers is distributed on dis­
kettes. Because of the limited space that is available on
diskettes, in most cases there are separate packages for
the different components such as executable files and
source code. Each package contains printed documen­
tation that is needed for installation and use. Note: Icon
for personal computers requires at least 512KB of
RAM.

Icon for porting is distributed on MS-DOS format
diskettes. There are two versions, one with a flat file
system and one with a hierarchical file system. Both
versions are available in either plain ASCII format or
compressed ARC format.

There are two documentation packages that con­
tain more than is provided with the program pack­
ages: one for the language itself and one for the
implementation. These documentation packages con­
tain the books The Icon Programming Language (Pren­
tice-Hall, 1983) and The Implementation of the Icon
Programming Language (Princeton University Press,
1986), respectively, together with supplementary
material.

When ordering, use the codes given at the begin­
ning of the descriptions that follow.

Program Material

Note: All the distributions listed below are for Ver­
sion 7 of Icon. Earlier Version 6 implementations that
are not supported for Version 7 are still available. If
you wish to order a Version 6 implementation, ask for
a Version 6 order form, which is free.

UNIX Icon:

UT-T: Tape, tar format (specify 1600 or 6250 bpi). $25.

UT-C: Tape, cpio format (specify 1600 or 6250 bpi). $25.

UC-T Cartridge, tar format, (DC 300 XL/P, raw mode
only). $40.

UC-C: Cartridge, cpio format, (DC 300 XL/P, raw
mode only). $40.

UD-M: cpio files: five MS-DOS formatted 2S/DD 5.25"
diskettes. $40.

UD-X tar files: seven XENIX formatted 2S/DD 5.25"
diskettes. $50.

VMS Icon:

VT: Tape, (specify 1600 or 6250 bpi). $25.

Icon for Personal Computers:

ATE: Atari ST Icon executables: one single-sided 3.5"
diskette. $15.

DE: MS-DOS Icon executables: two 2S/DD 5.25" dis­
kettes. $20.

DS: MS-DOS Icon source: two 2S/DD 5.25" diskettes.
$25.

ME: Macintosh (MPW) Icon executables: one 800K 3.5"
diskette. $15.

MS: Macintosh (MPW) Icon source and test programs:
two 800K 3.5" diskettes. $25.

UPE: UNIX PC Icon executables: one 2S/DD 5.25" dis­
kette. $15.

XE: XENIX Icon executables: one 2S/DD 5.25" dis­
kette. $15.

Icon for Porting:

PF-A: Flat file system, ASCII format: four 2S/DD 5.25"
diskettes. $35.

PF-K: Flat file system, ARC format: two 2S/DD 5.25"
diskettes. $25.

PH-A: Hierarchical file system, ASCII format: four
2S/DD 5.25" diskettes. $35.

PH-K: Hierarchical file system, ARC format: two
2S/DD 5.25" diskettes. $25.

Documentation

LD: Language documentation package. $30.

ID: Implementation documentation package. $40.

NL: Back issues of the Icon 9{ezosfetter. $.50 each for
single issues (specify numbers). $6.00 for a complete
set (Nos. 1-26). There is no charge for overseas ship­
ment of single back issues, but there is a $5.00 shipping
charge for the complete set.

10

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tucson, AZ 85721 USA

Ordering information: (602) 621-2018

name

address

city

(country)

state zipcode

telephone

• check if this is a new address

qty. code description price

subtotal

sales tax (Arizona residents*)

extra shipping charges

, , , _. .. , , . . . purchase-order processing
Make checks payable to The University of Arizona

other charges

total

total

"The sales tax for residents of the city of Tucson is 7%. It is 5% for all other residents of Arizona.

11

