
T H E U N I V E R S I T Y OF A R I Z O N A

TUCSON, ARIZONA 85721

DEPARTMENT OF COMPUTER SCIENCE

I7te Icon 9{czvsCettcr
Number 24 — June 13,1987

Welcome to New Subscribers
We've added many new names to our Icon Newsletter

subscription list in recent months. If this is the first copy of
the Icon Newsletter that you have received, welcome!

A typical issue of the Icon Newsletter includes informa­
tion about new and existing implementations, reports on
applications of Icon, questions and answers from our mail, a
programming corner, and announcements of new publica­
tions.

The Icon Newsletter is published aperiodicaUy, three or
four times a year. At present, subscriptions are free, and we
hope keep it that way.

Tabulation of Questionnaires
We have now tabulated the questionnaires returned

from Icon Newsletter #22 (686 in all, more than 34% of
those sent out). When interpreting the information that fol­
lows, keep in mind that it comes only from persons on our
mailing list last fall. There is no reason to suppose that it is
representative of Icon users in general. For example, it
tends to emphasize personal-computer users. Most
personal-computer users of Icon probably are on our mail­
ing list, while die opposite probably is true of large multi­
user computers.

Also, many persons received this questionnaire in
response to a request for information about Icon and had no
prior experience with it Such persons were not then Icon
users and were unable to answer many questions.

1. What are your interests in Icon?

applications:
language design:
implementation:
teaching:

498
345
286
172

Other interests that were mentioned overlapped significantly
with the responses to Question 3 and are included there.

2. Do you have access to Icon?

yes: 512 no: 148

What version?

Version 2: 23
Version 5: 433
Version 6: 276

We asked persons to specify the systems on which they
used Icon. Many responses were incomplete and ambiguous
(our fault for not being more specific). It appears that 298
responders are using Icon on computers running MS-DOS,
94 on VAXes running UNIX, 106 on on other kinds of com­
puters running UNIX, and 80 on VAXes running VMS,
with the rest scattered over a variety of computers and
operating systems.

3. Do you use Icon?

yes: 423 no: 232

What is the level of your use?

high: 80 medium: 97 low: 223

Note: The question was misformatted, making the replies
potentially ambiguous. Where the replies were not clearly
marked, we tried to interpret them from other information,
and we split the difference when there was no basis for
interpretation. In any event, the results shown above are

What me your applications?

The responses here were many and diverse. The following
list includes almost all of them, although some have been
paraphrased: AI research, BASIC substitute, CAD/CAM
applications, DNA and protein sequencing, DOS batch
alternative, SNOBOL4 substitute, algorithm design, algo­
rithmic research, analysis of German literature, analysis of
word forms, analysis of writing by disabled children,
arbitrary-precision arithmetic, audio software, authoring
software, automated testing, automatic program generation,
automatic programming, avionics development tools, awk
substitute, bibliographical data base processing, bit-mapped
graphics, business applications, chess editor, class work,
command interpreters, compiler design, computational lexi­
cography, computational linguistics, computer algebra, con­
cordances, cross-reference generation, cryptography and
cryptanalysis, customer systems, data base conversion, data

- 1 -

base front ends, data base management, data flow genera­
tion, discrete event simulation, document maintenance,
document preparation, educational software, experimental
psychology, expert systems development, file processing,
filters, front-end interfaces, fuzzy set applications, games,
genealogies, genetic map specification, grammar process­
ing, historical research, idea management, image process­
ing, industrial automation, intelligent human interfaces,
interpreters, label processing, labor tracking systems,
language implementation, library automation, library
maintenance, list processing, logic programming, mailer
software, matrix manipulation, menu systems, music com­
position, natural language interfaces, natural language pro­
cessing, natural language translation, networking, office
automation, office reports, one-shot applications, operations
research, order entry systems, parsing, preprocessors, pro­
cess control, processing musical scores, programming in the
Humanities, prog* amoving language translation, prototyp­
ing, psycholinguistics, quantitative language analysis, real­
time information retrieval, report writing, scientific data
analysis, scripts, sed substitute, shell substitute, simulation
and modeling, software implementation, software tools,
source-code decomposition, statistics gathering, stock
market research, symbolic mathematics, syntactic analysis,
tables of contents, teaching, test data generation, text utili­
ties, typesetting applications, writing tools.

How do you rate your level of competence as a program­
mer?

The choice of classification was left to the responders; we
have interpreted the responses according to the scale given
below. Of course, the results are highly subjective.

In general:

high: 367 medium: 205 low: 23 novice: 9

In Icon:

high: 40 medium: 145 low: 198 novice: 174

The Icon tyrvsUtUT

Madge T. Griswold and Ralph E. Griswold

Publishers and Editors

The Icon Newsletter is published three or four times a year, at no
cost to subscribers. For inquiries and subscription information,
contact:

The Icon Project
Department of Computer Science
Gould-Simpson Science Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

© 1987 by Madge T. Griswold and Ralph E. Griswold.

All Rights Reserved.

What features of Icon do you find the most difficult to under­
stand or use?

Co-expressions came in high with 54 citations, followed by
generators and goal-directed evaluation with 39. Various
aspects of string scanning came in a close third with 38 cita­
tions. 22 persons cited the syntax of Icon, ranging from the
large number of operators to problems with precedence and
associativity. 12 persons cited backtracking. Other features
mentioned included failure, pointer semantics, tables, and
csets.

4. Do you use the Icon program library? Responses were
tabulated only for persons who indicated they use Icon.

yes: 151 no: 165

5. Do you need Icon for a computer for which it presently is
not available?.

Almost every computer we'd ever heard of was mentioned,
as well as many that were new to us. The most frequently
mentioned computers were the Macintosh (68), the IBM
370 (36), the Amiga (19), the Atari (10), the Prime (7), and
the DG MV series (6). Note that the Macintosh, Amiga, and
Atari implementations became available after the question­
naire was distributed.

6. What extensions or enhancements to Icon would you like?

Folks had a lot of fun with this one. The phrasing
varied a lot, but the main needs clearly are for an interactive
debugger, interfaces with other programming languages
(everything from COBOL to Forth), the ability to access
system-specific capabilities like graphics and screen han­
dling, and more sophisticated input and output.

Other general aspects mentioned included a faster
implementation and a compiler or at least stand-alone object
files.

Here is a sampling of requests for language features: a
data abstraction mechanism, bit strings, block structure,
complex output formatting, control over table organization,
conventional arrays, customized character sets, deletion of
entries from tables, dyrutAiic linking, indirect referencing in
the style of SNOBOL4, named constants, object-oriented
constructions, patterns in the style of SNOBOL4, regular
expressions in string scanning, reverse string scanning,
shared variables among co-expressions, system calls, virtual
data structures.

Several persons commented that Icon already is a very large
language and that adding to it would detract from its general
quality. One person suggested removing (unspecified)
features.

7. Is the available documentation for Icon adequate for your
needs?

yes: 465 no: 49

If not, what additional material would you like?

There is a clear need for more in-depth material, ranging
from case studies of large programs to algorithms cast in

• 2 -

Icon — a book on advanced Icon programming techniques,
if you will. Of the 49 'no' responses, 22 fell in this
category. Other needs mentioned were a book on the imple­
mentation (since published), a teaching text, a tutorial, and a
reference manual.

8. What material from the Icon Newsletter do you find most
useful?

The programming comer was the clear winner here, with
209 citations. Next came implementation news with 110.
Questions and answers from our mail was third with 45. It is
worth noting that many persons said everything was useful,
although we did not tabulate the number of these remarks.

The least useful?

The programming comer got 17 citations here, 10 of which
specifically found puzzles and arcane techniques annoying.
Two wags suggested the only feature of the Newsletter that
is not useful was the page numbers.

9. What additional material would you like to see in the
Icon Newsletter?

Here the largest number of mentions went to descriptions of
applications of Icon (47 citations), with more material in the
programming comer second (35). The sentiment there was
for greater depth and 'more code!' (we thought we detected
heavy breathing in spots). There were many other specific
suggestions, most of which we will try to accommodate
(although we pass on the person who wanted color print­
ing).

10. Would you be willing to pay a nominal subscription fee
for the Icon Newsletter?

yes: 484 no: 98 maybe: 18

Applications of Icon
As noted in the tabulation of returned questionnaires

above, one point of interest for many persons is what appli­
cations there have been for Icon. Here are two reports from
commercial organizations.

Prototyping at AT&T Information Systems

Owen R. Fonorow, Member of the Technical Staff at
AT&T, provides the following description of their use of
Icon for software prototyping:

Icon has been used by AT&T Information Systems, Computer
Technology Laboratory, Software Technology Group to prototype a
Urge UNIX application. Most of the system has now been con­
verted to C, although a substantial amount of code remains in Icon.
The system is held in high regard by our 'customers' (UNIX
development projects) judging from the low number of complaints
we have received since the December 1986 production release.

Prototyping in Icon provided, among other things, a way to have a
completely functional system test suite before one line of C code
was written. We also avoided writing English high/low level design
documents, and instead used the Icon code as die 'blue print' for
our developers to use when converting the system to C.

The issue our management faces now is whether it is 'cost effec­
tive' to turn the rest of die system into C. The conversion itself
doesn't cost much. The problem is that once the code is converted
to C, maintenance costs increase and our ability to make changes in
the code is reduced. Here is a quote from a report on the subject:

Finally, the question: "Why prototype in Icon and convert to C
later?" has probably occurred to the reader. Part of this question
("Why prototype in Icon?") is best answered in the development
history. The five Icon releases (0.0 through 0.4) were produced
within nine months, while the single C release spanned six months.
The second portion ("Why convert to C later?") must be answered
by management. The purpose of this study has been to provide
information to help answer that question.

Test Generation at Tartan Laboratories

Bill Wulf, Chairman of Tartan Laboratories Incor­
porated, provides the following information:

My Christmas project (I tic;.; myself to a coding orgy every year)
was a rather sophisticated automatic test-generation system. It's
about 15K lines of Icon, and took about a month; frankly, I doubt if
I could have done it at all in the Pascal/Ada family of languages.

The system is called TG (Test Generator, imaginative, huh?). It
generates a suite of "300,000 tests for our Ada compilers. Unlike
the ACVC tests, they are not designed to test language features so
much as die code-generator and run-time system - in other words,
the new components when we retarget/rehost to a new system. As
such it is complementary to die ACVCs.

It's fast. I was surprised, frankly, but also quite pleased. The stan­
dard mode of operation is to regenerate tests as needed rather than
bum the disk space to save them. Right now, our Ada compile
speed is respectable, but TG is like a factor of 20 faster — so regen­
erating the tests adds only '5% to testing time. Moreover, there is
pretty fine-grained control on which tests are generated, so a
developer can (re)generate only those tests that pertain to a new (or
changed) part of the compiler, tests that failed last time, etc.

It's probably not like many Icon programs — specifically almost no
string scanning except in the command line analysis, and a bit in
substituting variants of a test into a template. I do make heavy use
of iterators, tables, and string names for procedures. Garbage collec­
tion, of course, simplifies my life enormously.

Note: If you have an interesting application of Icon,
send us a description of it for inclusion in a future Icon
Newsletter.

Report from a Conference
lerry Nowlin, Member of the Technical Staff at AGS

Information Services, currently working as a consultant to
AT&T Bell Laboratories, sends the following report from a
meeting he attended:

I attended the second half of an International Telegraph and Tele­
phone Consultative Committee (CCIl'l) conference from January
19 through January 23. This conference was a full meeting of
Cui ' l Study Group X. Study Group X is made up of four separate
Working Parties. I was invited to give a special presentation on the
Icon programming language on January 20 by the chairman of
Working Party 2.

The objective of Working Party 2 is to define standards for Systems
Support Environments (SSE) for telecommunications systems. The
chairman felt that the Icon programming language would be of
interest to the members of his working party and to the members of

- 3 -

the other working parties in Study Group X.
During the week I was in Geneva, I attended CCTTT Working Party
2 sessions and listened to the presentations on various models being
used to define System Support Environments. It takes a great deal
of patience and diplomacy to get a consensus from a group of 30 to
40 people from a number of different countries. The formulation of
international standards is a long drawn-out process. An actual
working session lasts for four years and is composed of several
working parties, rapporteurs, and experts meetings per year.

The final two days of this meeting were taken up with plenary ses­
sions. In these sessions the chairmen of the four working parties
explained the progress their groups had made during the working
party meetings and presented the papers their groups had generated
for the entire study group to discuss. The plenary sessions were
conducted in English and simultaneously translated into French,
German, Russian, Italian and Chinese. It was an interesting experi­
ence.

My presentation on Icon was at an after-hours session- Whilr thtre
were no official translations during the presentation, two delegates
from China attended and brought their own translators. The presen­
tation consisted of about 30 view graphs and a 50 minute talk fol­
lowed by a question and answer session. The presentation was
attended by about 50 CCTTT delegates. There were many requests
for further information on Icon after the presentation. In addition to
giving copies of the language directly to several attendees, I was
able to provide information on ordering further copies of the
language and documentation to all interested delegates.

Implementation News

New Implementations

Several new implementations are available from the
Icon Project (use the form at the end of this Newsletter to
order them):

The Amiga: Rob McConeghy recently completed an
implementation of Icon for the Amiga . It requires at least
512K of memory and runs under Version 1.2 of the operat­
ing system. Executable files are available now. Source code
and the Icon program library will be available later.

The Atari ST: Executable files for the Atari 520 ST and
1040 ST implementation of Icon done by Rick Fonorow and
Jerry Nowlin are now available on a distribution diskette
that includes Version 7.0 of Jerry Nowlin's public-domain
shell, ASH. Source code and the Icon program library will
be available later.

The Macintosh: Source code for the MPW implementation
of Icon is now available.

MS-DOS: Cheyerme Wills has provided several new func­
tions for the MS-DOS implementation of Icon that allow
users to access operating-system and hardware features.
These include console input functions, generation of
hardware interrupts, storage allocation outside of Icon's
regions, access to environment variables, file positioning,
and so forth. These new functions take a fair amount of

space and are available only for the LMM implementations.
To accommodate the variety of user requirements, the LMM
distribution of MS-DOS Icon now contains four versions of
the Icon run-time executor fixed versus expandable
memory regions, each with and without the additional func­
tions. This distribution now comes on two diskettes.

UNIX PC: Dave Slate has completed an implementation of
Icon for the UMX PC. This implementation has been tested
on the AT&T 7300 and also should run on the 3B1. The
Icon program library is included. Source code is not avail­
able on UNIX PC diskettes, but can be obtained from the
basic UNIX distribution or in XENIX format as described
below.

XENIX Icon Source Code: Source code for the UNIX
implementation of Icon in XENIX tar format diskettes is
now available. Since configuration files for all supported
UNIX systems are included, these diskettes may be useful
for transferring Icon source code to systems other than
XENTX.

Summary of Existing Implementations

Some interested persons are not aware of all the imple­
mentations of Icon that are available. This showed up in
responses to the questionnaire, where several persons indi­
cated they needed an implementation that was not available,
when in fact the implementation was readily available.

For reference, here's a list of the implementations that
are presently available (all are Version 6): The Amiga, the
Atari 520 and 1040 ST, computers running MS-DOS 2.0 or
higher (IBM compatibility is not required), the Macintosh
with 512K or more memory running MPW, and VAX run­
ning VMS 4.2 or higher.

There are UNIX implementations for many different
computers. The presently supported systems are the
Amdahl 580 (UTS), the AT&T 7300 and 3B1 (UNIX PC),
the AT&T 3B2/5/15/20, the Codata 3400, the Diab3, the
Gould Powemode, the HP 9000 (HP-UX), the IBM
PC/XT/AT (PC/TX and XENIX), the IBM RT PC (ACTS
and ATX), the Masscomp 5500, the Microport , the
Motorola 80003, the Plexus P60, the PDP-11 (Version 7 and
2.9bsd), the Pyramid 90x, the Ridge 32, the Sperry 73003,
the Sun Workstation, and the VAX-11 (4.nbsd, Ultrix, Sys­
tem V, and 9th Edition3).

Stand-Alone Icon for the Mac

The response to the MPW implementation of Icon on
the Macintosh has been less than enthusiastic. Some folks
are reluctant to pay for a programming environment just to
be able to run Icon. Others just don't want to use a different
environment from the one they usually use. Others probably
bogged down in the process of getting MPW.

1 Another implementation for the Amiga by Scott Ballantyne
and Gary Sarf is available for downloading from BIX; see
listings/amiga there.

UNIX is a trademark of AT&T Bell Laboratories.
These implementations are fairly recent and are not

supported in our current UNIX distribution. If you are
interested in one of these, contact the Icon Project.

- 4 -

Bob Alexander, who implemented Icon under MPW,
contributes the following discussion of the problems
involved in producing Icon as a stand-alone application on
the Mac:

One solution to the problem of needing MPW to run Maclcon is a
public domain mini-shell. It would have to accept and parse com­
mands, load and execute programs in such a way that it can regain
control when the program is finished, and provide a run-time
environment expected by MPW tool-type programs such as Mac-
Icon (mainly some sort of console). Also helpful would be support
for environment variables and the ability to execute commands
from a disk file (icont for Mac depends on the latter capability).
Unfortunately, I suspect that it's anything but simple to replicate the
MPW environment

Another possibility would be to make each of the Icon tools a
double-clickable Mac application. The MPW tool libraries seem to
already provide a sort of very primitive console capability. They
seem to be oriented toward doing the minimum required to allow
error messages to be visible. Stand-alone capabilities of MPW
tools are totally undocumented (at least in Version 1.0). The Mac
finder passes (via a different mechanism from that used by C's argc
and argv) a list of data files that were selected at the time the appli­
cation (i.e. icon tool) was invoked. There is no way to pass options
short of displaying a dialog box with option selections. Same for
environment variables.

I don't immediately see an easy way to make icont work in this
environment. (There probably are ways, but I don't really under­
stand what they are.) Each tool would have to be invoked individu­
ally. Files mat are selected at the same time as the tool have to be
in same window, which equates to same folder (an inconvenience).

For run time, it might be annoying to users to always see a dialog
box asking for the memory region sizes, etc., even though all they
would have to do is click an OK box. With some additional effort,
it could be rigged so that once options have been specified for a pro­
gram, they could be saved with the icode file (in the Mac's resource
fork). The dialog box could be skipped, but could be displayed if
the users wanted it, which they could indicate by holding the option
key (or something) as they double-clicked (this method is used by
some other Mac programs). Also, for run time, arguments would
have to be parsed and passed to the program.

The Mac user interface is really neat for many uses, but it falls short
for program development That's probably why Apple decided to
make their deluxe development environment (MPW) command-line
oriented. There is one development environment called LightSpeed
C that Mac folks have taken quite a liking to, but I'm not very fami­
liar with it. It's user interface is supposedly very Mac-like. One
thing I'm sure of is that a lot of effort went into its creation.

Documents Related to Icon

Implementation Documentation

The book The Implementation of the Icon Programming
Language, by Ralph E. Griswold and Madge T. Griswold,
first in the new Princeton Series in Computer Science, is
now available from the Icon Project as part of a package of
implementation documentation. In addition to the book, the
package contains a list of changes to the implementation
that have been made since the book was written, informa­
tion that is useful in using the book in conjunction with the
source code listings, and corrections to errors in the book.

The price of the package is $40, which includes ship­
ping in the United States. Persons who already have the
book and just want the supplementary documentation can
obtain it at no cost as described in the next section.

Technical Reports

Three new technical reports related to Icon are now
available:

TR 87-2 A Recursive Interpreter for Icon, by Janalee
O'Bagy. This report describes a new model for
the implementation of generators and goal-
directed evaluation. For more information, see
'Implementing Generators and Goal-Directed
Evaluation' in the section on research in pro­
gress.

TR 87-6 Programming in Icon; Part II — Programming
with Co-Expressions, by Ralph E. Griswold.
This is the second in a series of reports that
treats various aspects of Icon in some depth and
with an emphasis on programming techniques.

IPD29 Supplementary Information for the Implementa­
tion of Version 6 of Icon, by Ralph E. Griswold.
This report supplements the Icon implementa­
tion book as described in the preceding section.

Single copies of these reports are available, free of
charge. To get copies, simply list the report numbers as
given above on the order form at the end of this Newsletter
and write 'free' in the price column. There is no charge for
shipping.

Back Issues of the Icon Newsletter

In response to numerous requests, we have reprinted
back issues of the Icon Newsletter. They are available on a
per-issue basis or as a complete se t See the order form at
the end of this Newsletter. A word of caution: The first issue
consists only of a brief announcement of the inception of
the Newsletter. Other early issues contain material that is
now obsolete and only of historical interest On the other
hand, here's your chance to be the first person on your block
with a complete run of this elusive serial.

From our Mail
How about revising the Icon programming language book to bring
it up to date with Version 6?

We have told the publisher that the book needs revising and that we
are prepared to do it The decision is, however, the publisher's, not
the authors'. The publisher considers economic matters as well as
ones of content

What about a French translation of the Icon book?

We'd love it Contact the publisher if you are interested in under­
taking such a project

Can't you advertise? Icon is worth it.

We're not a commercial organization and we don't have an
advertising budget In fact, we can't handle much more 'business'
than we have now.

- 5 -

Would you please send me a list of all Icon documents?

That's a tall order. Over the years, there have been literally hun­
dreds of documents related to Icon, ranging from books through
articles in journals and technical reports. Of course, much of the
early material on Icon is out of date (and out of print). We provide
the most relevant material in our distribution packages and
announce new documents in these newsletters. There also is a
bibliography of documents related to the SNOBOL, SL5, and Icon
programming languages, which lists about everything. If you'd like
a copy of this bibliography, you can get it, free of charge, by asking
for TR 85-13 on the order form at the end of this Newsletter.

Is there an Icon interest group in the United Kingdom?

Not as far as we know. If you'd like to start one, we'd be happy to
place a notice in the next Newsletter.

The Icon programming language book is not readily available in
the United Kingdom. Is there some problem?

There is no specific problem that we know of. However, relatively
few bookstores maintain a large inventory of computer books, so it
often is necessary to place an order. This may take some time, and
some bookstores may not welcome special orders. This book is
available from the Icon Project as noted on the order form at the end
of this Newsletter. However, the delay and cost of shipment prob­
ably does not make this an attractive alternative.

Isn't $15 a bit much for a diskette of public-domain software?

The cost reflects more than just the diskette. All our diskettes are
accompanied by printed documentation, and mailing is provided at
no additional cost in the United States. In addition to these costs,
we have to recover the costs of hardware and software that is
devoted solely to producing distribution material. Anything that is
left over after that goes to support new distributions and documen­
tation. We don't (and aren't permitted to) make a profit

Is there an MS-DOS pop-up window utility that can be used with
Icon?

Yes there is — Flash-Up Windows from the Software Bottling
Company. You load it into RAM and issue commands from a run­
ning Icon program to manipulate windows and menus. A caveat: it
requires IBM hardware compatibility. The package lists for $90.
The best price we've seen is from Catspaw, Inc. See the section
titled 'A SNOBOL's Chance' for their address.

Why can't you just distribute one version of the Icon source code
that will compile on all the computers for which Icon has been
implemented?

Although the basic source code for all implementations of Icon is
the same, there are many additional components of the Icon system
that are specific to individual operating systems. The differences
between operating systems vary all the way from directory structure
to path syntax, and each system has a number of system-specific
files that augment the basic source code. In the case of UNIX,
which has many variants, we have made it possible to configure any
variant from the same distribution. However, the Icon distribution
for UNIX systems cannot be used to build a VMS version of Icon,
and vice versa. Similarly, one cannot build an MS-DOS system
with only the files provided in the UNIX distribution. While it
would be possible to build a 'super system' from which all imple­
mentations of Icon could be configured (we, in fact, have such a
system), it would be very large, complicated, and the configuration
process itself would be system-specific. Since most users want Icon
only for a single system, we have decided to tailor our distribution
in this way and not burden everyone with unnecessary size and
complexity.

Are you going to produce a LMM MS-DOS Icon with 80286 code,
or do I have to do it myself?

We have no plans to add a 80286 (or 80386) version of MS-DOS
Icon to the already large number of versions that we distribute.
There are many possibilities along these lines and we do not have
the resources to pursue them. What we try to do is give priority to
providing systems that the largest number of persons can use. The
source code is available, so that persons such as yourself can create
tailored versions.

Are you doing an implementation of Icon for OS/2?

We're sure there will be a lot of interest in Icon for the new IBM
Personal Computer/2 and the facilities it will offer through OS/2.
We have no present plans for such an implementation, however —
we don't have the necessary hardware or software. If someone
would like to provide them for us

/ have Icon source code for MS-DOS Icon but seem to be missing
the file dos.mac. Would you please send it to me?

The file dos.mac is used in the assembly-language portions of Icon
(the co-expression context switch and arithmetic overflow check­
ing) when building Icon under Lattice C. If you are using the Lat­
tice 3.2 C compiler, you should have the file. If you are using
another compiler, you may have to provide different assembly-
language routines. You can skip die assembly-language portions of
the implementation altogether by adding

#deflne NoCoexpr
#define NoOver

to config.h.

/ obtained Icon on a data cartridge to install on our Altos 1086.
We were unable to read the cartridge on the 1086 or on an IBM RT
PC (admittedly, our RT cartridge drive is a non-standard one). Can
you help me?

There should be no trouble reading the cartridges we distribute on
an RT PC with a standard cartridge drive or on a Sun Workstation.
Beyond that, it's really an experimental question, since there are a
variety of cartridge formats and incompatibilities are common.
Most persons use cartridges for local backup rather than for
transferring information between different computers.

/ am interested in a version of Icon for MS-DOS that produces
stand-alone load modules (e.g., .COM or EXE files). Is such a ver­
sion in the works?

We understand the need for producing stand-alone executable files
from Ice. pi-&g.i.i.s. Tla. p,cscni irupisiiciUauon emphasizes porta­
bility (which is why there is an MS-DOS version at all) but does not
lend itself to the production of stand-alone executables. We are
working on several approaches to overcoming this limitation, but it
is presently premature for us to make any projections about availa­
bility.

What is the Icon Project?
We sometimes wonder what image the Icon Project

evokes. Is it one of a software house within a university,
complete with professional programmers working at rows of
workstations, secretaries busily answering telephones, and
clerks assembling implementation packages? Is it an image
of a dark cubbyhole in the basement of an ancient academic
building, with only the glow of a PC illuminating the face of
a bleary-eyed hacker? Is it one of a professor's desk littered
with books, diskettes, and unopened mail?

- 6 -

You would have to visit us to find out what the Icon
Project really is like, but perhaps we can dispel some
misconceptions, by describing briefly the Icon Project's ori­
gins and activities.

For more years than we care to admit, we have been
designing and implementing high-level programming
languages. This work began at Bell Laboratories in 1962
(There! We admitted it) and moved to The University of
Arizona in 1971. The first programming language was
SNOBOL, followed by SNOBOL3, SNOBOL4, SL5, and
finally Icon. Implementations of all of these languages are
in the public domain and copies have been distributed to all
interested persons.

Over a period of time, these activities became larger
and more complicated. At some point a few years ago, it
seemed Eke a good idea to attach names to these activities,
so that persons would have recognizable organizations to
contact and also so that we could more easily identify and
segregate incoming mail. We chose two names: the SNO-
BOL4 Project and the Icon Project

So, in part these names are just labels. What do these
projects really do?

It's easy to dispense with the SNOBOL4 Project. It
serves only to send out occasional copies of documents and
program material related to SNOBOL4. About once a year,
it publishes a bulletin that contains recent implementation
news and other topical information. The SNOBOL4 Project
is not dead, but it is not initiating anything new.

The Icon Project is more active and complicated. It
serves primarily to disseminate information and program
material about Icon. Unlike the SNOBOL4 Project, the
Icon Project is actively producing new material. Icon is an
evolving and changing language while SNOBOL4 (at least
at The University of Arizona) is not

As mentioned earlier, both SNOBOL4 and Icon are
byproducts of an ongoing research program. The word
byproduct is important — the research program is not a part
of the project although there is a close relationship between
the two and the results of research are reflected in new ver­
sions of Icon and its implementation. ,- •

The other important point is that the Icon Project is not
an organization in the formal sense. It has no official status
at The University of Arizona and no employees of its own,
nor does it have any officially assigned space, although it
has all of these resources in an unofficial way.

What then, does the Icon Project actually do? It distri­
butes documentation and program material. It answers tele­
phone inquiries and responds to electronic mail. It supports
an electronic bulletin board and other forms of electronic
access. It publishes this Newsletter. And so on. In short, it
provides a conduit between the Icon user community and
the research program that spawned Icon.

The Icon Project is not large. It does not have the
resources of a commercial operation. It cannot solve pro­
gramming problems that users may have, nor can it guaran­
tee software support (although it tries to do so). It cannot
produce new language features on demand nor can it mount

major development programs. It does make Icon available
in a way that is affordable to most persons and it tries to do
it in a professional way.

This is just part of the story of the Icon Project In the
next Newsletter, we'll talk a little about the persons who are
associated with the Icon Project and what their roles are.

Research in Progress
Icon is a byproduct of research related to the design and

implementation of high-level programming language facili­
ties that focus on non-numerical computation. That research
program is an on-going one. Here are brief descriptions of
four current research projects at the University of Arizona:

Implementing Generators and Goal-Directed
Evaluation

Implementation techniques for traditional languages
like Pascal or C are well developed and understood. But this
is not true of Icon and other languages with novel expres­
sion semantics. The goal of this research is to find elegant
and efficient models for implementing generators and goal-
directed evaluation. The models should be sufficiently gen­
eral to apply to languages with similar properties, such as C
with generators, the SNOBOL4 pattern-matching mechan­
ism, and so on.

Implementations of traditional languages typically con­
sist of a compiler that translates source code into assembly
language for a given machine. The existing implementations
of Icon are different in that the translator emits not assembly
code, but rather code for a 'virtual' machine; an interpreter
is then written to interpret the virtual machine code. Thus
there are three points of interest in the implementation of
Icon: the design of the virtual machine; the interpreter or
compiler for the virtual machine; and static analysis tech­
niques used for improving generated code.

This research focuses on the last two issues. Currently,
a new interpreter has been developed that simplifies the
implementation of control flow for generators and goal-
directed evaluation. Based on the methods used in the inter­
preter, a compiler is now under development The compiler
is unusual in that it generates C code and not assembly
code. The compiler makes use of information about expres­
sions given by a static analyzer, such as whether generators
are present and how much space an expression requires dur­
ing evaluation, in order to improve its generated code. —
Janalee O'Bagy

Type Inference

Variables in Icon are untyped. That is, a variable may
take on values of different types as the execution of a pro­
gram proceeds. In the following example, X contains a
string after the read, but it is then assigned an integer or
real, provided the string can be converted to a numeric type.

x := read()
if numeric(x) then x +:= 4

- 7 -

In general, it is impossible to know the type of an
operator's operands at translation time, so some type check­
ing must be done at run time. This type checking may result
in type conversions, run-time errors, or the selection among
alternate operations (for example, the selection of integer
versus real addition). In the current implementation of Icon,
all operators check all of their operands. This incurs
significant overhead.

Much of this run-time type checking is unnecessary.
An examination of typical Icon programs reveals that the
type of most variables remains consistent throughout execu­
tion (except for the initial null value) and that these types
can often be determined by inspection. Consider

if x > read() then
y :- X || -;"

Clearly both operands of || are strings, so no checking or
conversion is needed.

The purpose of the type inference project is to explore
various methods for gathering, at translation time, informa­
tion about the types of values variables may have at run
time. This information will allow the translator to omit
type-checking code in some places where it is not needed,
thus producing more efficient code. Different type inference
schemes offer trade-offs in terms of the quality of informa­
tion they gather and in the cost of gathering that informa­
tion. — Ken Walker

Pattern Matching in Real Time

Motivated by a desire to provide the power and flexibil­
ity of SNOBOL4 and Icon to the application area of com­
munications programming, this work undertakes to analyze
and suggest modifications to Icon's current goal-directed
evaluation mechanisms in order that these mechanisms
might execute with real-time response. In this context
real-time response is defined as response that is bounded by
a small constant (any operation that might invoke Icon's
garbage collector does not for example, meet this criterion).

The challenge of providing goal-directed pattern match­
ing inside a real-time environment is to bound execution
times of built-in language primitives by small constants and
to facilitate analysis of user-defined language capabilities in
terms of worst-case response time. This research focuses on
three distinct areas:

Integration of Pattern-Matching Hardware — The use
of special-purpose hardware frequently speeds the matching
of common patterns. Research efforts here are dedicated to
providing a clean interface between existing language
mechanisms and available hardware.

Control Structures — Icon's goal-directed evaluation
traverses the search tree of possible solutions in a depth-first
manner. The goal of this research is to provide language
mechanisms that allow programmers to prune the search
tree without violating the general paradigm of goal-directed
evaluation or complicating an understanding of a program's
behavior.

Data Structures — In many real-time applications, pat­

tern matching is performed on a potentially endless stream
of characters arriving from some remote source. This
research attempts to determine whether special data struc­
tures might facilitate the representation of this stream of
characters and simplify pattern matching operations on the
data represented by the stream. — Kelvin Nilsen

A New Language?

Icon is called a 'high-level language' because it sup­
ports many operations that have no close correspondence at
the machine level. Some of these operations involve Icon's
expression-evaluation mechanism, which is completely dif­
ferent from the evaluation mechanism of the underlying
machine. The purpose of high-level languages is to free
programmers from die details of the machines they are
working on and to allow them to express higher-level
abstractions clearly. Icon has proven very useful in this
area, as have a number of quite different languages.

Other languages of interest are FP and Prolog. FP is a
functional programming language. Programs in FP consist
of a set of function definitions; there are no procedures, only
functions. Prolog is a logic programming language, where
programs consist of logical assertions and questions. FP
and Prolog are different from Icon in that programs in these
languages are more declarative. That is, programs in FP
and Prolog do not specify how to get the answer, they
specify what the answer is.

There are a lot of problems that are easier to solve in
Icon than in FP or Prolog, but there are a lot of other prob­
lems that are easier to solve in FP or Prolog than in Icon.
This research is aimed at finding ways to combine the
advantages of the three types of language in a way that is
simple and powerful. The goal is to make a programming
language that is good for solving a very large class of prob­
lems. The language will contain some aspects of Icon's
evaluation mechanism, some of FP's notation for defining
functions, and unification, Prolog's very powerful form of
assignment — Dave Gudeman

The Icvn (Project

For general information and ordering, call (602) 621-6613 and
ask for Beth. For technical help, write to

The Icon Project
Department of Computer Science
Gould-Simpson Science Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

or send electronic mail to:

icon-proiact@arizona.EDU
or

... (allegra, ihnp4, noao) I arizona I icon-project

To get program material electronically, download from our BBS,

(602) 621-2283, or FTP from /usr/ftp/icon on arizona.EDU.

8 -

mailto:icon-proiact@arizona.EDU
http://arizona.EDU

The Icon Program Library-
Judging from questions that we have received, we

haven't done a very good job of describing the Icon pro­
gram library. The library consists two parts: programs and
collections of procedures. The programs are diverse and
include everything from demonstrations and games to text-
processing utilities. One of the more elaborate and interest­
ing programs in the library is a random sentence generator
that takes grammatical specifications as input and produces
randomly-selected sentences from the corresponding
language. The uses of this program range from the genera­
tion of test data to poetry. There also are more mundane
programs, such as ones for formatting mailing labels and
sorting address lists by ZIP codes. Persons developing Icon
programs may find the Icon cross-reference and procedure
sorting programs of interest

The collections of procedures provide a way of extend­
ing the built-in repertoire of Icon. They include a math
library, procedures for doing bit operations, radix conver­
sion, performing complex arithmetic, operating on strings
and structures, — you name it.

Several persons who responded to the questionnaire
indicated they found the Icon program library valuable in
learning to program in Icon, although one person noted,
fairly, that the programs presently are not well documented.

Material in the Icon program library comes from many
authors and is a kind of communal enterprise. Contributions
are welcome. We require material in machine-readable
form. Adequate documentation is required; sample data or
test programs should be provided also. The final decision
on the inclusion of contributions rests with the Icon Project
In the past we have accepted most contributions, although
lack of adequate documentation frequently delays inclusion.

Electronic mail, for persons who have access to it is
probably the easiest way to submit material. We also can
handle most magnetic media from UNIX, MS-DOS, and
Atari ST systems.

We presendy are accumulating material for a new ver­
sion of the Icon program library. This is going slower than
we hoped, and it looks like the new release will be late this
calendar year. There still is plenty of time to submit new
material.

Programming Corner
As indicated by responses to the recent questionnaire,

the programming corner is one of the most popular parts of
the Icon Newsletter. It seems, however, that everyone has
different ideas about what it should contain. Some want
simpler programs. Others want more complicated ones.
Some want larger programs. 'Puzzles' are the most contr­
oversial; some readers are turned off by them, while others
thrive on them.

Obviously we cannot please everyone simultaneously.
Also, the size of the programs that we can present here is
limited by our publication format not to mention the time
and effort it takes to explain larger programs. We will con­
tinue to present program material here that covers a range of

difficulty — and hope that our readers will be tolerant of
those things that don't suit their particular interests.

Correction

An initial clause was omitted from one of the pro­
cedures in the program for dealing bridge hands in the last
Newsletter. The beginning of the procedure display should
have looked like this:

procedure display()
local layout, i
static bar, offset

initial {
bar :-
offset
}

"\n" || replf-"
> replf ",10)

33)

The procedure works properly without the initial clause
enclosing the assignments to bar and offset, but the assign­
ments are performed every time display is called, rather
than just on the first call.

It's worth noting that this kind of error is fairly com­
mon, as is the less benign error of omitting the static
declaration while using the initial clause.

Processing Command-Line Options

In the last Newsletter, there was a discussion of using
command-line arguments to Icon programs to provide
options that could be used to control program execution. For
example, the program for dealing bridge hands might have
options for specifying the number of hands to deal as well
as the seed for random-number generation. Using the UNIX
style for specifying options, the program might be called as
follows to produce 10 hands with an initial seed of 17:

deal -h 10 -s 17

Of course, there is nothing sacred about the UNIX style
for communicating options, although we've found it handy
in the Icon program library to have a relatively uniform
method.

In the present Icon program library, tvsry program that
has command-line options handles them in its own way.
Bob Alexander has provided a procedure that avoids this
duplicate code and provides more uniformity to the han­
dling of options. It is patterned after the UNIX getopt
facility and is called as getopt(arg,optstr), where arg is the
argument list as passed to the main procedure and optstr is
a suing of allowable option letters.

If a letter is followed by ":", the corresponding option is
assumed to be followed by a suing of data, optionally
separated from the letter by space. If instead of ":" the letter
is followed by a "+", the parameter is converted to an
integer or if a *.", to a real. If optstr is omitted, any letter is
assumed to be valid and to require no data.

The procedure getopt returns a list consisting of two
items. The first is a table of the options specified, where the
entry values are the specified option letters. The assigned
values are the data following the options, if any, or 1 if the

- 9

option has no data. The table's default value is null. The
second item in the returned list is a list of remaining param­
eters on the command line (usually file names). A "-" that is
not followed by a. letter is taken as a file name rather than an
option.

If an error is detected, stop() is called with an appropri­
ate error message. After calling getopt() the original argu­
ment list arg, is empty.

Not every program that has command-line options
needs all the generality that this procedure provides. For
example, the program for dealing bridge hands in the last
Newsletter needs only the table in the first element in the list
returned by getopt:

link getopt

procadurs main(args)
local s, hands, opts

hands > 5

opts :- getopt(args,"h+s+")[1]
hands :- \opts[*h"]
&random > \opts["s"]

make the program fit into the space available. With apolo­
gies to Bob, we also shortened an identifier here and there
and rearranged things somewhat toward the same cause.

Efficient Programming in Icon

Since many of Icon's features have no direct correspon­
dence in the underlying architecture of the computers on
which Icon is implemented, there often is no way of know­
ing, from the language itself, whether a particular operation
is efficient or inefficient For example, we have been asked
several times whether computing the size of a string (*s) is
fast or slow.

The ultimate source of such information is in the imple­
mentation itself. Persons who are interested in implementa­
tion techniques may want to study the implementation book
or even the source code. Of course, an Icon programmer
should not hav« to be ?™ expert ir the implementation of the
language in order to know how to program efficiendy.
While a general treatment of this subject is complicated and
extensive, a few specific suggestions go a long way toward
providing the information needed most frequently.

This section of the Programming Corner is devoted to
such issues. More material on efficient coding techniques
will appear on a more or less regular basis in future
Newsletters.

The option suing indicates that the allowable option names
are h and s and that both require integer arguments. The
default values of hands and &random are changed only if
the corresponding values are non-null (that is, they are
specified on the command line).

Here's the code for the procedure itself:

procedure getopt(arg, optstr)
local x, i, c, otab, flist, o, p
/optstr > string(&lcase ++ &ucase)
otab :- table()
flist > []
while x > get(arg) do

x ? if -"-" & not pos(O) then
while c > moved) do

if i > find(c, optstr) + 1 then
otab[c] :• if any(':+.',o > optstrfj]) then {

p :- - - , - tab(O) | get(arg) | stop(...)
case o of {

}
}

: integer(p) | stop(.
real(p) | stop(...)

else 1
else stop(...)

else put(flist.x)
return [otab, flist]

end

In the actual procedure, the calls to Stop contain
appropriate error messages. The text was elided here to

The size of an object: Let's start with the answer to the
question above: 'Is detenrurung the size of a suing fast or
slow?'. The answer to this one is simple: It is fast. The rea­
son is that the size of a string is stored as part of the string
value and is immediately accessible. (This is in contrast to
C, where it is necessary to count the characters every time
the size of a string is needed.)

In fact the sizes of all objects are stored with them and
are quickly available. For objects that may change in size,
such as lists, sets, and tables, the size is updated whenever it
is changed. So *x is fast regardless of the type of X.

Don't get carried away with this, however:

*S • 0
: - -!..—„*« . « . . .
L i a i u n v i U l u i l

simply because the former requires two operations.

Augmented assignment: Icon provides augmented assign­
ment operations such as

i +:- 1

as shorthand for

i :- i + 1

In fact there are augmented assignment versions of all
binary operations except assignments themselves, although
many are rarely used.

Augmented assignments are not just abbreviations; they
are more efficient that the non-augmented forms, since the
variable to which the assignment is made is only referenced

10-

once. With just a simple variable like an identifier, the
difference is minor. With a computed variable, such as a
table reference, the difference may be quite significant

For example, if t is a table, it is better to write

t[x] + > n

than to write

t[x] : - t[x] + n

While the amount of time it takes to look something up in a
table is hardly obvious on the face of it (but will be dis­
cussed in a subsequent Newsletter), it does not take a lot of
imagination to realize that it must depend on the size of the
table and possibly what's in it — and if the table is huge,
the time to find something in it may be considerable.

Operations on list::: Since lists can be accessed both by
position and as deques (stacks and queues in combination),
it is worth thinking about alternative possibilities when per­
forming list operations. Consider, for example, the problem
of circularly rotating the elements in a list left by one. The
typical code for this for a Pascal-like language, cast in Icon
is:

first > a[1]
every i : • 1 to *a - 1 do

a[i] > a[i + 1]
a[*a] > first

Looping though the list like this is certainly straightforward,
if a bit tedious. If you want to get more idiomatic, it can be
rewritten more concisely. But what about thinking of the list
as a deque and writing

put(a,get(a))

That is, take an element off the left end of the list and put it
on the right end.

Certainly the second approach is more concise, but what
about efficiency? To begin with, it seems plausible that the
looping approach takes an amount of time that is approxi­
mately proportional to the size of the list . But what about
taking an element off one end of a list and putting it on the
other end? Does Icon go through the looping approach inter­
nally? Or does it do something cleverer and more efficient?
(This question might lead another: How would you go about
implementing lists with both positional and deque access?)

The answers to some of these questions are given in
some detail in the Icon implementation book. Suffice it to
say here that Icon uses a fairly sophisticated method for
implementing lists that balances the costs of the different
kinds of access. Both put and get are fast In fact get(a)
is slightly faster than a[i]. Furthermore, the rotation above,
using put and get, is essentially independent of the size of
the list.

To get an idea of the difference between the looping
and deque methods, here are comparative timings for rotat­
ing a list created by list(n), where n has the values 100 and
1000:

loop
deque

100

35.76
0.16

1000

356.81
0.16

This is true if the list is constructed all at once. The situation
is more complicated if the list is built by pushQ or put(). See
the Icon implementation book.

The moral should be clear When you're programming in
Icon, think in Icon.

Pattern Words

We recently received a list of available publications
from Aegean Park Press, which publishes a wide variety of
material related to cryptography. Among their current
offerings are two books of 'pattern words'. The. pattern
word for a word is obtained by replacing all instances of the
first letter of the word by A, all instances of the second letter
by B, and so on. For example, proposals has the pattern
word ABCACDEFD. (Can you find another word with the
same pattern word?)

So, here's a small problem: Write an Icon procedure
patword(s) that returns the pattern word corresponding to
the value of s. For simplicity, you can assume that s may
contain characters other than letters, that upper- and lower­
case letters are distinct and that there are (say) no more
than 26 different characters in s. Think about different pro­
gramming techniques, keeping in mind the moral given at
the end of the preceding section. Strive for a solution that is
both efficient and elegant We'll leave the definition of
elegant to you; our ideas on this will be included with solu­
tions, which will appear in the next Newsletter.

Using Pipes — for UNIX Users

One of the most elegant and powerful features of UNIX
is the pipe, which allows the output from one program to be
fed as input to another program. Some other operating sys­
tems 'fake' this by writing all the output of the first program
to a temporary file, and then using that temporary file as
input to the second program. That's not the real thing (sup­
pose the first program produces an enormous amount of out­
put or even does not terminate), but this is not a forum for
arguing about operating systems. If you are not familiar
with pipes, however, you might want to study this feature.

UNIX implementations of Icon support the reading and
writing of pipes. The real power of pipes in Icon lies in
being able not only to access UNIX commands (which can
be done with the system function) but also to pass data
between the program and the commands. The technique is
very similar to opening a file for reading or writing, except a
command string instead of a file is opened. In the case of
reading, output from the pipe becomes input to the Icon pro­
gram, while in the case of writing, output from the Icon pro­
gram becomes input to the pipe.

Here's an example:

names > openfls", "pr")

The first argument is the command, and the p in the second

1 1 -

argument indicates the first argument is a command, not the
name of a file. The file assigned to names can then be read
like any other file; each read produces a line of output from
Is. For example, the following loop writes out the names of
the files as produced by Is:

while write(read(names))

The loop terminates when the output from Is terminates,
exactly as if a file had been read.

The command that is opened as a pipe can be any UNIX
command. For example,

path :• read(openfpwd","p"))

assigns to path the path to the present working directory.
Notice that since opening for reading is the default the r
need not be specified in the option.

Pipes can be opened for writing also, as in

sortout :- openf sort >out.sort", "pw")

which causes output written to sortout to be sorted and
written to the file outsort.

Like other files, pipes should be closed when they are
no longer needed.

Here's a problem for UNIX gurus: Write an Icon pro­
cedure getenv(s) that returns the value of the environment
variable S if it is set but fails if it is not If you manage to
distinguish between environment variables that are not set
and those that are set to the null value, we'd like to see how
you did it.

Puzzles and Such

Andrew Appel at Princeton University sent us this pro­
gram and asked us if we could guess what it does:

procedure main()
every wr'rte((i : - 2 | (|i > i + 1)) &

(not(i - (2 to i) * (2 to i))) & i)
end

Ken Walker contributes the shortest self-reproducing
Icon program that we know of:

procedure mainOac-'procadure mainOpo \nx[21]:-lmage(x);wrt1e(x);8rKr

x [21l>lmaae(x) ;wrlte<x) ;end

We had to set that one in 6-point type to make it fit within
our double-column format. We figure 6 points is about what
it deserves.

Upcoming in the Newsletter
The following topics are scheduled for inclusion in the

next Newsletter

• The first in a series of articles on the history of Icon.

• A discussion of what is involved in adding new func­
tions to Icon.

• What's in the works for extensions and improvements
to Icon.

• More about the Icon Project.

• More contributions from our readers (we hope).

Our Army
We have mentioned in previous newsletters that many

persons have contributed to Icon. These persons are scat­
tered over the world and provide support to the Icon Project
freely. Without this 'volunteer army'. Icon would not have
been nearly as successful as it is. It is a practical impossibil­
ity to acknowledge every contribution here — sometimes
we do not even know who the contributors are. However,
here are a few of the most significant contributions in recent
months:

Corrections and improvements to Icon source code:
Bob Alexander, Rick Fonorow, Andy Heron, Jerry Nowlin,
Rob McConeghy, and Charles Richmond; Porting to new
computers: Bob Alexander, Rick Fonorow, Rob
McConeghy, Jerry Nowlin, and Charles Richmond;
Configuration files for new UNIX implementations: Bob
Alexander, Rob Asen, Andy Heron, Kevin Johnson, Andy
Puchrik, and Dave Slate; Additions to Icon's function reper­
toire: Bob Alexander, Andy Heron, and Cheyenne Wills;
Contributions to the Icon program library: Bob Alexander,
Jerry Nowlin, Kenneth Sykes, Steve Wampler, Kurt Wel-
gehausen, and Cheyenne Wills; Other technical assistance:
Bob Alexander, Tom Hicks, Dave Slate, Steve Wampler,
and Cheyenne Wills.

This list does not include persons at the University of
Arizona who are directly associated with the Icon Project or
the many persons who have sent helpful suggestions via
electronic and postal mail.

A SNOBOL's Chance
Many persons who receive this newsletter also receive

the SNOBOL4 Information Bulletin published by the SNO-
BOL4 Project and are familiar with that language. Some of
you, however, may never have heard of SNOBOL4, Icon's
ancestor. If you don't know about SNOBOL4 or only think
of it as an old, archaic programming language, you may be
missing something.

SNOBOL4 defies description in a few words. To give
some idea of what it's about it has string pattern matching
at a higher level of abstraction than Icon's string scanning, it
has sophisticated data structures, it has all the run-time
flexibility of Icon and then some — even die ability to
create and execute new program text during execution, and
it has automatic storage management In many respects,
SNOBOL4 is a higher-level language than Icon, and more
powerful.

If you're a SNOBOL4 fan already, or if we've piqued
your interest you should know about another newsletter, A
SNOBOL's Chance, which is published by Mark Emmer of
Catspaw, Inc. The first issue of this newsletter appeared last
fall, followed by the second this spring. The next issue is

- 1 2 -

scheduled for publication in July.

A SNOBOL's Chance contains a variety of information
about SNOBOL4 and related topics. To give you an idea of
its content, here are some of the subjects that were covered
in the second issue: the announcement of an electronic bul­
letin board, a national SNOBOL4 electronic conference,
coverage of the ICEBOL '86 conference on the applications
of SNOBOL, a discussion of SNOBOL4's unevaluated
expressions, the announcement of the availability of a fast
implementation of SNOBOL4 for the Motorola 68010, a
discussion of string-processing philosophy, a description of
the Proximity board for approximate pattern matching, and
a discussion of new ideas about right-to-left pattern match­
ing. A SNOBOL's Chance also contains a listing of pro­
grams, books, and machine-readable text that are available
from Catspaw.

Above all, the newsletter is very well done. If you have
an interest in SNOBOL4 or text processing in general, we
encourage you to investigate A SNOBOL's Chance. Free
sample copies are available on request from

Catspaw, Inc.
P.O.Box 1123
Salida,CO 81201

(303) 539-3884; BBS: (303) 539-4830

Ordering Icon Material
Shipping Information: The prices listed on the order form
at the end of this Newsletter include handling and shipping
in the United States, Canada, and Mexico. Shipment to
other countries is made by air mail only, for which there are
additional charges as follows: $5 per diskette package, $10
per tape or cartridge package, and $10 per documentation
package. UPS and express delivery are available at cost
upon request

Payment: Payment should accompany orders and be made
by check or money order. Credit card orders cannot be
accepted. Remittance must be in U.S. dollars, payable to
The University of Arizona. There is a $10 service charge
for organizations that are unable to pre-pay orders may send
purchase orders, but there is a $5 charge for processing such
orders.

What's Available

Icon Program material falls into four categories: UNIX,
VMS, personal computer, and porting.

The UNIX program package contains source code, the
Icon program library, documentation in printed and
machine-readable form, test programs, and related software
— everything there is. It can be configured for all the UNIX
systems mentioned in the summary earlier in the Newsletter,
and new configurations generally are easy to develop. The
documentation includes installation instructions, an over­
view of the language, and operating instructions. It does not
include either of the Icon books. Program material is pro­
vided on magnetic tape or cartridge.

The VMS program package contains everything the
UNIX implementation contains except UNIX configuration
information and UNIX-specific software. However, the
UNIX and VMS systems are configured differently, and nei­
ther will run on the other system. The VMS package is dis­
tributed only on magnetic tape.

Icon for personal computers is distributed on diskettes.
Because of the limited space that is available on diskettes, in
most cases there are separate packages for the different
components: executable files, source code, and the Icon pro­
gram library. Each package contains printed documentation
that is needed for installation and use.

Icon for porting is distributed on MS-DOS format
diskettes. There are two versions, one with a flat file system
and one with a hierarchical file system. Both versions are
available in either plain ASCII format or compressed 'ARC
format.

There are two documentation packages that contain
more than is provided with the program packages: one for
the language itself and one for the implementation. These
documentation packages contain the language and imple­
mentation books, respectively, together with supplementary
material.

When ordering, use the codes given in parentheses at
the ends of the descriptions that follow.

Program Material

UNIX Icon: Tapes are $25; specify cpio or tar format and
1600 or 6250 bpi (UT). Cartridges are $40 (DC 300 XL/P,
raw mode only); specify cpio or tar format (UC).

VMS Icon: Tapes are $25; specify 1600 or 6250 bpi
(VT).

Icon for Personal Computers:

Amiga Icon executables: one 2S/DD 3.5" diskette, $15
(AME).

Atari Icon executables: one 1S/DD 3.5" diskette, $15
(ATE).

Macintosh Icon executables: one 1S/DD 3.5" diskette, $15
(ME).

Macintosh Icon source: one 2S/DD 3.5" diskette, $15 (MS).

MS-DOS SMM Icon executables: one 2S/DD 5.25"
diskette, $15 (DE-S).

MS-DOS LMM Icon executables: two 2S/DD 5.25"
diskettes, $20 (DE-L).

MS-DOS Icon source and test programs: two 2S/DD 5.25"
diskettes. $25 (DS).

MS-DOS Icon program library: one 2S/DD 5.25" diskette,
$15 (DL).

PC/K Icon executables: one 2S/DD 5.25" diskette, $15
(PCE).

PC/DC Icon source and test programs: four 2S/DD 5.25"
diskettes, $35 (PCS).

- 1 3 -

PC/IX Icon program library: one 2S/DD 5.25" diskette, $15
(PCL).

UNIX PC Icon executables and program library: one 2S/DD
5.25" diskette, $20 (UPEL).

XENIX Icon SMM executables: one 2S/DD 5.25" diskette,
$15 (XE-S).

XENIX Icon LMM executables: one 2S/DD 5.25" diskette,
$15 (XE-L).

XENIX Icon source and test programs: five 2S/DD 5.25"
diskettes, $40 (XS).

XENIX Icon program library: one 2S/DD 3.25" diskette,
$15 (XL).

Icon tor Porting:

Flat file system, ASCII format: four 2S/DD 5.25" diskettes.

$35 (PF-A).

Flat file system. ARC format: two 2S/DD 5.25" diskettes,
$25 (PF-K).

Hierarchical file system, ASCII format four 2S/DD 5.25"
diskettes, $35 (PH-A).

Hierarchical file system. ARC format: two 2S/DD 5.25"
diskettes, $25 (PH-K).

Documentation

Language documentation package: $29 (LD).

Implementation documentation package: $40 (ID).

Back issues of the Icon Newsletter $.25 each for single
issues (specify numbers), $5.00 for a complete set (#1-23)
(NL).

Order Form

Icon Project • Department of Computer Science • Gould-Simpson Building • The University of Arizona • Tuscon, AZ 35721 USA

(602) 621-6613 • BBS: (602) 621-2283

name

address

city

(country)

telephone

state zipcode

• check if new address

qty. code description prio»

subtotal

extra shipping charges

purchase-order processing

other charges

total

total

- 1 4 -

