
THE U N I V E R S I T Y OF A R I Z O N A
T U C S O N , A R I Z O N A 8 5 7 2 1

DEPARTMENT OF COMPUTER SCIENCE

^ht Icon 9{ezvstetter
Number 23 — February 3,1987

Questionnaires
By the end of January, 638 questionnaires from

Newsletter 22 had been returned to us. This amounts
to about 32% of the newsletters sent. We are presently
tabulating the results and will publish them in subse­
quent newsletters.

Status of the Newsletter
Everyone who returned the subscription

verification form from Newsletter 22, or who has
been added to our mailing list since that newsletter
was sent out, is scheduled to receive newsletters
through number 25 at no charge.

Each address label for the newsletter has a
number in brackets at the end of the top line that indi­
cates the last issue for which the subscription is
scheduled.

None of this indicates that we necessarily are
planning to charge for the newsletter. We'd prefer
not to, and we realize that payment would be adminis­
tratively complicated for persons who would sub­
scribe through organizations, as well as expensive and
cumbersome for persons outside of the United States.
However, the cost of printing and mailing the
newsletter is significant, when taken as a whole.

Incidentally, we should have made it clear what
we meant by a 'nominal' charge when we prepared
the questionnaire; several persons had concerns about
just how nominal it might be. To clarify the issue, we
were thinking of a dollar or two per newsletter.

For what it's worth, here is the tabulation of the
questionnaires received to date on the issue of will­
ingness to subscribe to the newsletter:

yes: 455 no: 89 maybe: 16 no answer: 78

The persons who indicated that their answers
depended on the definition of 'nominal* are tabulated

as yes .
Thus, approximately 80% of the persons who

answered this question expressed a willingness to pay
for their subscriptions.

All of this is academic at this point. There will be
no subscription charge for the next few issues and
there may never be.

Implementation News

Icon for the Macintosh

Bob Alexander has completed an implementation
of Icon for the Macintosh and has placed it in the pub­
lic domain. This implementation runs as part of the
Macintosh Programmer s Workshop (MPW)
integrated environment. MPW is required to run
Macintosh Icon — it cannot run as a stand-alone
application.

This is a large-memory-model implementation
that requires a 512K or larger Macintosh.

Icon for the Macintosh is distributed by the Icon
Project on the same terms as all other implementa­
tions it distributes. See the order form at the end of
this Newsletter, but do not order Icon for the Macin­
tosh unless you have MPW.

The Icon program library and source code for the
Macintosh implementation will be available at a later
date.

MPW is a window-oriented development system
that comes highly recommended to us. It consists of
the MPW shell (which is needed to run Icon), an
assembler, a linker, and a number of utilities. MPW
is available exclusively through:

Apple Developer's and Programmer's Association
290 SW 43rd Street
Renton.WA 98055

(206)251-6548

The fee to join APDA is $20 and MPW costs $150.
There also is an MPW C compiler, but it is not needed
to run Icon.

Icon for the Atari ST

O. Rick Fonorow and Jerry D. Nowlin report that
they have completed an implementation of version 6.3
for the Atari ST computer family. The Lattice C
compiler was used for the port (giving 32-bit ints).
This version takes all available memory, but uses
fixed-sized regions for Icon's data. It will run on the
520ST with no other programs (i.e. desk accessories)
resident This implementation is available on the Atari
Base BBS: (408) 745-4758.

MS-DOS Icon
Source Code: Source code for Icon for MS-DOS is
now available; see the order form at the end of this
newsletter.

So far, Icon for MS-DOS has been successfully
compiled under Version 3.2 of Lattice C (which has
not been officially released yet, but is due soon) and
Version 4.0 of Microsoft C. The source-code distri­
bution includes configurations for these two C com­
pilers and provisions for adding others. An update
service is provided so that persons who get this source
code can stay up to date with corrections and exten­
sions. Information about this service is included with
the distribution.

Icon Produced by Microsoft C: The small-memory-
model (SMM) implementation of Icon as produced by
the Microsoft C compiler is somewhat smaller and
faster than the one produced by Lattice C. The SMM

The. Icon 9{§.wsUtUr

Madge T. Griswold and Ralph E. Griswold

Editors

The Icon Newsletter is published three or four times
year, at no cost to subscribers. For inquiries an
subscription information, contact:

The Icon Project
Department of Computer Science
Gould-Simpson Science Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

version of Icon currently being distributed was com­
piled under Microsoft C.

The large-memory-model (LMM) situation is
more complicated. The one produced by Microsoft C
is smaller and runs about twice as fast, in our tests so
far, as the one produced by Lattice C. However,
Microsoft C does not allow Icon to expand its regions
for allocating strings and blocks in the way that Lat­
tice C does. Consequently, the LMM implementation
from Microsoft C may not be able to use all memory
that is available. The form of memory allocation in
which regions are not expandable is called fixed-
regions (FR).

The situation is further complicated by the fact
that each region presently is limited to 64k. For many
users, however, the FR implementation provides
sufficient memory (much more than the SMM) and its
speed advantage may outweigh its limitations. The
Microsoft FR implementation therefore is being
offered as a third MS-DOS Icon alternative; see the
order form at the end of this newsletter.

LMM Upgrade Offer: Early versions of the LMM
implementation of MS-DOS Icon had a number of
bugs in storage management. The symptoms range
from hung systems to trashed strings. These problems
have now been corrected.

Persons who wish to bring their LMM implemen­
tation up to date may do so by sending $4 ($7 outside
of the United States and Canada), together with the
serial number of their LMM diskette, to the Icon Pro­
ject. Do not send back the original diskette; we will
provide a new one. This offer applies only to LMM
serial numbers 1 though 173 (later ones already have
the corrections) and to persons who purchased their
LMM diskettes from the Icon Project.

Porting Icon to Other Computers

A form of the Icon source designed to facilitate
implementations on new computers is now available.
See 'Icon for porting' on the order form at the end of
this newsletter.

This form of die source does not require a
hierarchical file system like the usual version of the
Icon source. This source is otherwise identical to the
version of the source used for other implementations.

The distribution includes documentation on modi­
fying the source for new computers and test suites.

The Implementation Book
The 'Implementation book' is now available. The

book The Implementation of the Icon Programming

- 2 -

Language, by Ralph E. Griswold and Madge T.
Griswold, first in the new Princeton Series in Com­
puter Science, has just been released by Princeton
University Press. This book concentrates on the run­
time system and describes data structures, the Icon
virtual machine, how generators work, and the tech­
niques used for storage allocation and garbage collec­
tion. It contains information on modifying the source
code for Icon and includes both exercises and sug­
gested projects. The description of the implementation
corresponds to the source code that is now available.

The book, which is published in hard cover, may
be ordered from Princeton University Press for
$39.50. There is no shipping charge for orders sent
Fourth Class. For UPS delivery, an additional amount
of $1.50 is charged. Sales tax is charged for ship­
ments to California (6.5%) and New Jersey (6%). To
order your copy call (609) 896-1344 or write to

Princeton University Press
3175 Princeton Pike
Lawrenceville, NJ 08648

Please note: This book is not available from The Icon
Project

A clarification: There has been some misunder­
standing about this book. It describes the implemen­
tation of the language and is not a revision of The
Icon Programming Language (Prentice-Hall, 1983),
which describes the language itself. The two books
relate to different versions of Icon. The language
book refers to Version 5, while the implementation
book refers to Version 6. A technical report describ­
ing the Version 6 language supplements the language
book.

Access to the Icon Project
Since this newsletter is going to many persons

who have not received previous ones, we are repeat­
ing here the material on how to get information and
program material from the Icon Project

Our mailing address, telephone number, and elec­
tronic mail addresses are:

Icon Project
Department of Computer Science
Gould-Simpson Science Building
The University of Arizona
Tucson, AZ 85721
U.S.A.

(602)621-6613

The electronic mail addresses are:

icon-project@arizona.edu
... {allegra, ihnp4, noao}!arizona!icon-project

It is best to write or use electronic mail for technical
questions, bug reports, and so forth, since the tele­
phone usually is answered by a secretarial person who
is not familiar with technical matters.

When sending electronic mail to the Icon Project,
it is important to address it to icon-project, rather
than an individual. This will assure your message
gets prompt attention in the case that someone hap­
pens to be away.

Program Material via FTP

Icon program material is available to persons who
have access to Internet via anonymous FTP from
arizona.edu. The Icon material presently available
includes the UNIX, VMS, and MS-DOS implementa­
tions described on the order form at the end of this
newsletter, as well as the source for porting and even
some SNOBOL4 material. To see what is available
and how large the files are, cd to icon and get
README. For information on SNOBOL4 material,
cd to snobol4 and get README.

It is essential to use the binary ('image') mode
when getting program material via FTP.

Electronic Bulletin Board

Our electronic bulletin board is available to per­
sons who want to dial up and download program
material. The UNIX and VMS implementations are
not available, since their size makes downloading
impractical, but all the other material available via
FTP also is available on the bulletin board.

Both Kermit and Xmodem protocols are sup­
ported. There is also a limited message facility.

The telephone number of the bulletin board is
(602) 621-2283. Before dialing, set your computer's
telecommunication program to full duplex, 7 bits,
even parity, 1 stop bit, at a baud rate of 2400,1200, or
300. The initial answering baud rate is 1200. If you
dial in at another rate, you will need to cycle the baud
rate detection with break/carriage-return sequences
until your baud rate is recognized.

When you are properly connected, you should
receive the following message:

xenix286!login:

Respond to this with guest followed by a carriage
return and you will get a menu of the available ser­
vices. From there, the operation of the bulletin board
should be self-explanatory.

mailto:icon-project@arizona.edu
http://arizona.edu

The bulletin board normally is in operation from 5
pm MST to 8 am MST, as well as all day on week­
ends. It also is in operation during daytime hours
when the computer on which it runs is not otherwise
occupied, but service interruptions during daytime
hours may occur without warning.

This bulletin board is designed primarily for
downloading program material and does not have a
general message facility. It is, however, possible to
leave remarks and questions for the Icon Project
Answers are posted where all callers can read them.

BIX

The BYTE bulletin board BIX has a discussion
group for Icon and SNOBOL4. Information about
BIX can be found in any recent issue of BYTE. See,
for example, page 306 of the February 1987 issue. As
a BLX subscriber, you can enroll in this discussion
group by

join other.langs/icon.snobol

The MS-DOS implementations of Icon, including
source code, can be downloaded from BIX.

From our Mail
The returned questionnaires have given us enough

material for this feature of the Newsletter for years.
The problem has been selecting the questions of most
general interest Here are a few:
Can I get a printed listing of the source code for Icon?

Icon is a large program — four programs, actually — and its source
code totals about 27,000 lines. Even when printed in a reduced size
in a 'two-up' format, it runs several hundred pages. Listings are
bulky and expensive to produce. Consequently, we have not offered
to provide listings. If you really want one, we'll figure out what it
would cost to run one off and ship it to you. If enough persons ask,
we'll try to come up with a reasonably economical way to print
copies in quantity.

How can I get back issues of the Icon Newsletter?

We'll send you copies of recent issues at no charge. Most of the
early issues are out of stock and their contents are very stale. How­
ever, material from the 'Programming Comer' is collected in a
technical report (TR 86-2), which is available on request. If you
really want a complete set of Newsletters, we can have one made up
but would have to charge you for the cost of copying and shipping.

Will your SCO XENIX V implementation of Icon run on my IBM
XENIX 3 system?

We are told so, although the extent of binary compatibility among
different XENIX systems remains somewhat of a mystery to us.
We generate 8086 code and use the loader compatibility option.
Several persons with different flavors of XENIX have used our
SCO XENIX Icon successfully.

Can I FTP program material from your computer via BITNET?

No. FTP is a connection-oriented service, while BITNET is batch-
oriented.

/ don't have access to FTP. Can you send me a copy of Icon by
electronic mail?

Icon is too large to send by electronic mail, which was not designed
for that kind of transmission. Our electronic bulletin board is an
alternative.

Has there been any work on architectural support for Icon.

Not as far as we know. We have no plans to do work in this area.

Is there a symbolic debugger or programming environment for
Icon?

No. These are interesting projects and we've given some thought to
them, but we haven't done anything yet. If someone else is working
in these areas, we don't know about it

Is a library of mathematical functions going to be added to Icon?

We are considering this. However, it would increase the size of
Icon, which already strains the memory capacity of some comput­
ers. An alternative for the present is the package of mathematical
procedures in the Icon program library.

I've heard there are undocumented UNIX interfaces in Icon that
make it handy as an alternative to shell scripts.

No, everything is documented. However, Icon string-processing
facilities in conjunction with pipes and the system function make
Icon attractive for many tasks for which shell scripts often are used.

I'd like to be able to use the full graphics capabilities of my PC in
Icon. Even being able to read a single character would be very
helpful. Is there any hope here?

Cheyenne Wills is working on a set of functions for MS-DOS Icon
that will make it possible to do many such things. We expect these
enhancements to be available in a month or so. Source code is avail­
able for persons who want to do things like this themselves. As a
general remark, Icon is designed to run in a wide range of computa­
tional contexts where there are widely varying needs. The language
itself does not attempt to include all possibilities. Instead, enhance­
ments are added to different implementations to suit the environ­
ments. This takes a while.

Is it possible to get Cinema for MS-DOS?

[Cinema provides an animated display of string scanning, showing
the progression of states, the movement of the cursor, and so forth.]
It might be possible, but it would be a lot of work. Cinema, as
presently written, depends heavily on the facilities provided by the
Sun Workstation windowing system. It's also possible that the max­
imum amount of memory available under MS-DOS would not be
enough.

Programming Corner

A Program to Deal and Display Bridge Hands
The choice of data representations often is one of

the most important aspects in the design of programs
that perform nonnumerical computations. Not only
do data representations affect program speed and
space requirements, but they also may play a central
role in the difficulty or ease of writing the program.

Icon offers an unusually wide variety of data
types. While it provides more flexibility than is found
in some other programming languages, it also
presents the programmer with more choices. Some­
times the best choice is not the obvious one.

- 4 -

The following program, which is an adaptation of
one from the Icon program library, illustrates a com­
pact data representation that often is useful in pro­
grams that manipulate a small number of objects.
This data representation also gives computational
efficiency, since it allows the use of built-in opera­
tions that otherwise might have to be provided as pro­
cedures.

The problem is to produce and display hands in
the game of bridge. The basic operations are
shuffling the deck, dealing the cards to the players,
and displaying the results. Not surprisingly, display­
ing the results is the most difficult part of the pro­
gram.

In the game of bridge, the deck consists of 52
cards with 13 denominations in four suits. The suits
are clubs, diamonds, hearts, and spades, and the
denominations are 2 through 10, jack, queen, king,
and ace.

There are lots of possible ways of representing the
cards. Since a card has two attributes — its suit and
its denomination — a record type with these fields is a
possibility. This representation presents the problem
(among others) of how to represent the deck — that
is, how to keep track of the cards. A list of the records
is a possibility. A simpler, if less elegant, choice of
data representation is simply a list of 52 elements in
which the position encodes the attributes of the indivi­
dual card. In this case, the real representation of the
card is its index in the list. In other words, 52 integers
are all that are necessary, and the list is used to keep
them together. Other representations are possible. For
example, the string "8C" might represent the eight of
clubs, and so on.

There is clearly some advantage in having a sim­
ple object to represent a card. The method used in the
following program is to associate a unique character
with each card. This allows groups of cards to be
represented by strings, and cset operations can be
used to operate on groups of cards.

Since there are 52 cards, 52 different characters
are needed. For the program that follows, any 52
characters will do, but a convenient choice (purely by
coincidence) is

deckimage := &lcase || &ucase

This choice has the additional advantage of facilitat­
ing debugging.

The next question is which character corresponds
to which card. This decision can be made in many
ways. The one chosen here is to consider the deck to
be a concatenation of the suits in order, with the first
13 characters corresponding to the clubs, the next 13

to the diamonds, and so on. Thus, the characters abc
... m are clubs, the characters nop ... z are diamonds,
the characters ABC ... M are hearts, and the charac­
ters NOP ... Z are spades. Except for possible debug­
ging, however, these explicit correspondences never
come up. The specific order of denominations is
rather arbitrary, but it turns out to be convenient for
display purposes to rank the cards according to the
order of characters in the following string:

rank := "AKQJT98765432"

Thus, the character a is the ace of clubs, the character
z is the two of diamonds, and so on. Again, this never
comes up explicitly in the program.

It might appear that encoding the card deck as a
string of characters would introduce all sorts of prob­
lems, especially in figuring out which card is which
and producing output that gives an understandable
representation. Actually, most of the operations in the
program do not require such determinations. For
example, shuffling is insensitive to the suits or
denominations of cards — it simply is the rearrange­
ment of a number of objects that are as anonymous as
the backs of real cards are supposed to be.

Shuffling is a good place to start:

procedure shuffle(deck)
local i
every i := *deck to 2 by -1 do

deck[?i] :=: deck[i]
return deck

end

This procedure is an implementation of a method
given by Knuth in his book, Seminumerical Algo­
rithms. It operates by starting at the end of the deck,
exchanging that card with a randomly chosen one,
and then working down toward the beginning, chos-
ing the exchange card from the remainder of the deck.
Whether or not this produces a 'good* shuffle is
somewhat of an open question, but it seems to work
well in practice.

Once the deck is shuffled, it is customary to distri­
bute the cards to the four players by dealing them
one-by-one to the four players in turn. This method
of distribution is more of a convention than a neces­
sity and is motivated partly by social considerations.
If the deck really is shuffled properly, it is good
enough to give the first 13 cards to the first player, the
next 13 to the next player, and so on. It is also a lot
easier to program.

The real fun comes in displaying the results of the
deal. In bridge, it is customary to separate the cards in
each hand into suits and to arrange the cards in each

- 5 -

suit from higher to lower denomination. Here is
where Icon's cset and mapping operations can be
used to advantage. The idea is to extract from a hand
of 13 cards all of the cards of a given suit by mapping
the cards of the desired suit into themselves and map­
ping all other cards into a single character that is not
in the deck, effectively throwing away the cards that
are not in the desired suit The blank character is use­
ful for this elimination. For example, the mapping
string to discard all cards that are not clubs is con­
structed as follows:

denom := deckimage[1+:13]
blanks := replf ",13)
Cmap := denom || repl(blanks,3)

The strings denom and blanks are used here in place
of a more direct construction of Cmap, since they are
useful in producing maps for the other suits.

Now,

clubs := map(hand,deckimage,Cmap)

assigns to clubs a string in which all the characters
corresponding to clubs are left unchanged, while all
other characters are blanks. This string still is 13
characters long, and probably contains a lot of blanks.
The clubs can be obtained by constructing a cset with
the blank removed:

clubs —:= ' '

(There's an augmented assignment operation you
don't see very often. It does not appear in the actual
program, where the result is computed in a single
expression.)

At this point, clubs contains all the clubs in the
hand, but they are in a cset and unordered. The
desired string with the clubs in order and mapped into
their denominations is produced by

clubs := map(clubs,denom,rank)

The result comes out correctly, since the automatic
conversion of the cset to a string in the first argument
to map puts the characters in alphabetical order.

That's about all there is to it, except for the
mechanics of handling all of the suits in all of the
hands and formatting the output in a manner that is
customary, with the four hands arranged according to
the points of the compass. Here's the complete pro­
gram, arbitrarily set up to print five sets of hands.
Comments have been removed to save space.

global deck, deckimage, handsize
global suitsize, denom, rank, blanks

procedure main()
deck := deckimage := &lcase || &ucase
handsize := suitsize := *deck / 4
rank := "AKQJT98765432"
blanks := replf ".suitsize)
denom := &lcase[1+:suitsize]

every 1 to 5 do display()
end

procedure displayQ
local layout, i
static bar, offset

bar := "\n" || replf-",33)
offset := replf ",10)

deck := shuffle(deck)
layout := []
every push(layout,show(deck[(0 to 3) *

handsize + 1 +: handsize]))

write ()
every write(offset, !layout[1])
write ()
every i := 1 to 4 do

write(left(layout[4][i], 20), layout[2][i])
write()
every write(offset, !layout[3])
write(bar)

end

procedure shuffle(deck)
local i
every i := *deck to 2 by -1 do

deck[?i] :=: deck[i]
return deck

end

procedure show(hand)
static Cmap, Dmap, Hmap, Smap
initial {

Cmap := denom || repl(blanks,3)
Dmap := blanks || denom || repl(blanks,2)
Hmap := repl(blanks,2) || denom || blanks
Smap := repl(blanks,3) || denom
}

return [
"S
"H
"D
"C

end
]

|| arrange(hand.Smap),
|| arrange(hand, Hmap),
II arrangejhand, Dmap),
|| arrange(hand, Cmap)

procedure arrange(hand, suit)
return map(map(hand, deckimage, suit)

denom, rank)
end

An example of the output from this program is:

s
H
D
C

KQ987
52
T94
T82

S:
H:
D:
C

S
H
D
C

3
T7
AKQ762
QJ94

JT4
J9863
J85
K7

S
H
D
C

A652
AKQ4
3
A653

the main procedure of deal, as if the argument to
main were

["-h", "10", "-S", "17"]

Thus, the main procedure of the program above might
be rewritten as:

procedure main(a)
local s, hands

hands := 5
while s := get(a) do {

case s of {
"-h": hands := integer(get(a)) | use()
"-s": &random := integer(get(a)) | use()
default: use()
}

}

every 1 to hands do displayQ

A couple of things are left for you to consider,
including the use of denom for all suits and the
method used to provide the final layout.

Processing Command-Line Arguments

One final subject for this issue's programming
comer concerns the use of command-line arguments
and methods for processing them. In the program
above, for example, it would be useful to be able to
specify how many rounds of hands are to be produced
and possibly to be able to set the seed for random
number generation to produce different sets of hands.
One way to do this is to provide an interactive inter­
face, prompting the user for this information. An
alternative method, and one that often is handier, is to
allow the user to specify such matters as options on
the command line when the program is executed.

For example, if the program above is named deal,
it might be executed as

deal -h 10 -s 17

The argument following -h indicates that 10 rounds
of hands are to be produced and the argument follow­
ing - s indicates that the seed for random number gen­
eration is to be 17. The syntax shown here is the stan­
dard one for UNIX; other operating systems conven­
tionally handle it differently. Such differences are
inessential here. However, such command-line argu­
ments, in whatever form, should be optional and
defaults should be provided if they are omitted.

In the example above, there are four command-
line arguments. These are passed as a list of strings to

The procedure use terminates program execution
with an error message in case there is an erroneous
command-line argument. UNIX favors a terse style
for such error messages, and a version of use in this
style might be

procedure use()
stopfusage: deal [-h n] [-s n]")

end

Note that get(a) provides an easy and concise
way of obtaining the command-line arguments. Other
possibilities are using an explicit index, as in a[i], or
iterating over the list, as in la. Try rephrasing the pro­
cessing of the command-line arguments above to see
why the use of get is better. Of course, get consumes
the list That does not matter in the case here. How
could this be reformulated to avoid consuming the list
while retaining the advantages that get provides?

Upcoming in the Newsletter
In addition to the usual features of this newsletter,

we plan to include the following material in the next
one:

• a tabulation of responses to the questionnaire

• what the Icon Project is all about
• descriptions of research in progress

• tips on efficient programming techniques in
Icon

- 7 -

Ordering Information

General Information: The prices listed on the order form include media, printed documentation (but not the books
on Icon), handling and shipping in the United States, Canada, and Mexico. Shipment to other countries is made by
air mail only, for which there are additional charges as follows: $5 per diskette package, $10 per tape or cartridge
package, and $10 per documentation package. Commercial express delivery will be provided if authorization and
an account number to charge is given with the order.

Payment: Payment may be made by check or money order, but credit card orders cannot be accepted. Remittance
must be in U.S. dollars, payable to The University of Arizona. There is a $10 service charge for a check drawn on a
bank that does not have a branch in the United States. Payment should accompany the order. For organizations that
cannot provide pre-payment, purchase orders will be accepted, but there is a $5 charge for processing such orders.
The UNIX Package: The UNIX implementation of Icon can be configured to run on most computers with UNIX-
based operating systems, including the VAX, Sun Workstation, IBM RT PC, AT&T 3B, and Pyramid. The distribu­
tion contains source code, a test suite, the Icon program library, and documentation in machine-readable form.
Object and executable files are not included, since they depend on the target computer.

The VMS Package: The VMS implementation requires VMS Release 4.2 or higher. The distribution contains
source code, a test suite, the Icon program library, and documentation in machine-readable form. Object and exe­
cutable files are included.

Note: The UNIX and VMS packages contain different system-specific configurations and support material. Neither
will run on the other system.

The Macintosh Package: The Macintosh implementation runs as part of the MPW environment. It is not a stand­
alone application; do not order this package unless you have MPW. The diskette includes executable files, a few
sample programs, and documentation in machine-readable form. Source code and the Icon program library are not
yet available.

The MS-DOS Packages: The MS-DOS implementation of Icon runs on computers with 8086/88/186/286-family
processors. IBM hardware compatibility is not necessary. MS- or PC-DOS Version 2.0 or higher is required. There
are both SMM and LMM implementations, and there are two forms of the LMM one. The SMM implementation
uses 192k of memory. The LMM implementation requires at least 256k, but runs better with more. The SMM
implementation is faster and more compact than the LMM one, but it cannot handle programs that need large
amounts of storage. There are two forms of the LMM implementation, one that allows Icon's storage regions to
expand as needed (referred to as LMM/ER on the order form) and a 'fixed-regions' one in which the regions cannot
expand (referred to as LMM/FR on the order form). The LMM/FR implementation is considerably faster than the
LMM/ER one, but it may not be able to use all of the available memory. It is inadvisable to run more than over ver­
sion of Icon on the same computer because of file-naming conflicts. The SMM, LMM/ER, and LMM/FR diskettes
include executable files, a few sample programs, and documentation in machine-readable form.

The source code for MS-DOS has been compiled successfully under Microsoft C Version 4.0 and Lattice C Version
3.2. It may be possible to use other C compilers, but this has not been done yet and certainly will require some
work: caveat emptor. The distribution is in arc format and hence is suitable only for use on MS-DOS systems. It
includes source files, a configuration system for different C compilers, a set of tools, a test suite, and documentation
in machine-readable form.

The Icon program library for MS-DOS is the same for the SMM, and LMM/ER, and LMM/FR implementations and
is distributed on a separate diskette.

The PC/IX Packages: The PC/IX implementation of Icon is a SMM one. Source code and the Icon program library
are distributed separately. The source code diskettes contain configuration information and test suites for other
UNIX installations, such as the IBM RT PC. All PC/IX diskettes are written in dump/restore format, which is the
same format as backup/restore on the RT PC under AIX.

The XENIX Packages: The XENIX implementation of Icon is for SCO XENIX V. It will run on other XENIX
systems, although the full extent of compatibility is not known. There are both SMM and LMM/FR implementa­
tions. It is inadvisable to run both the SMM and LMM/FR implementations on the same computer because of file-
naming conflicts. The Icon program library is distributed separately. Source code for XENIX is not yet available.
All XENIX diskettes are written in tar format

#23 - 9 -

The Porting Package: This package is intended for porting Icon to operating systems and computers on which it
has not already been implemented. This version of Icon does not require a hierarchical file system. In addition to
the source code, there are porting instructions and suites of test programs. The distribution is in MS-DOS ASCII for­
mat for ease of file transfer. Individual files are packaged in larger files to reduce the effort of file transfer and a C
program for unpacking them is included. Note: Only 5-Vi" diskettes are available. Persons requiring 3-Vi" diskettes
will have to make arrangements for conversion.

The Documentation Package: This package contains a copy of the Icon language book, a description of recent
additions to the language, a compilation of material from the programming comers of previous Icon Newsletters,
and other material related to programming in Icon.

Order Form

Ship to:

Nam?.

Addrp.ss

Tp.lp.nhnnp.

Return this form with payment to:

Icon Project

Department of Computer Science

The University of Arizona

Tucson, AZ 85721

UNIX Icon (9-track magnetic tape) $25
options: • tar Dcpio • 1600 bpi • 6250 bpi

VAX/VMS Icon (9-track magnetic tape) $25
options: • 1600 bpi CI 6250 bpi

Macintosh Icon (3-W IS diskette) $15

MS-DOS Icon, SMM (5-V4" 2S/DD diskette) $15

MS-DOS Icon, LMM/ER (5-'/4" 2S/DD diskette) $15

MS-DOS Icon, LMM/FR (5-lA" 2S/DD diskette) $15

MS-DOS Icon, source code (2 5->/4" 2S/DD diskettes) $25

MS-DOS Icon Program Library (S-V*" 2S/DD diskette) $ 15

PC/IX Icon (5-VS 2S/DD diskette) $15

PC/IX Icon source code (4 5-lA" 2S/DD diskettes) $35

PC/IX Icon Program Library (5-'/4" 2S/DD diskette) $15

XENIX Icon, small-memory model (5-'/4" 2S/DD diskette) $15

XENIX Icon, large-memory model (5-Vi" 2S/DD diskette) $15

XENIX Icon Program Library (5-'/4" 2S/DD diskette) $15

Icon Porting System (4 5-'/4" 2S/DD diskettes) $35

Documentation Package $29

Other charges (see above)

Total

#23 10-

