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1. Icon Distribution Policy 

The Icon programming language is a product of a research program in the Department of Computer Sci­
ence at The University of Arizona, and its development has been supported in part by the National Science 
Foundation. The results of this work are freely available to anyone who requests them. 

At present the only charge is for the media needed to distribute the software. This means that Icon distri­
bution is an expense to the Department. We prefer to handle it this way to facilitate the free distribution of 
research results within the computing community. However, the more interest there is in Icon, the more 
expensive this policy becomes. At some future time, it may be necessary to add charges for the printing of 
documentation, handling, and shipping. But, for now, the distribution of Icon material is free. 

The implementations of Icon distributed by The University of Arizona are in the public domain. There are 
no warranties of any kind associated with this material — it is simply freely available to interested persons. 
The software may be used and copied without restriction or permission. We prefer, however, that persons 
interested in Icon obtain material directly from us. This allows us to keep track of users and inform them of 
updates and new developments. 

2. Implementation News 

Icon for the Sun Workstation 

Bill Mitchell has completed an implementation of Icon for the Sun Workstation. This implementation is 
known to work on Sun's Release 1.2 and should work on releases back to 0.4, but these have not been tested. 
This implementation is included in our "generic" distribution of UNIX Icon and may be requested using the 
form provided at the end of this Newsletter. 

This implementation may or may not work on other systems with 68000 processors — C compiler compa­
tibility is essential to the proper functioning of this implementation. Bill Mitchell provides the following 
information: 

(1) C ints must be 32 bits. 

(2) The leftmost argument to a function must be at a6@(8). 

(3) The first-declared local must be at a6@(-4). 

(4) Locals must be allocated in a fifo manner; locals must appear in the frame whether or not they are 
used. 

UNIX is a trademark of AT&T Bell Laboratories. 



(5) The instruction at a routine's entry point must be link a6,#C, where C is a constant with any 
value. 

(6) Registers a3-a5 must be preserved across calls. 

(7) Routines must return using unlk a6; rts. 

The following program attempts to detect the presence of the above characteristics. Compile it on the 
68000 system in question with CC -S . . . . 

f(i, P, j) 
int i, j ; char *p; 

register int *p1 
int x, y, z; 

0, *p2 = 0, *p3 = 0; 

} 
f1(i, j , p, x, z); 

The resulting .S file should look something like this: 

.text 

.globl 

link 
addl 
moveml 
movl 
movl 
movl 
movl 
movl 
movl 
movl 
movl 
jbsr 
lea 
moveml 
unlk 
rts 

_f 

a6, #0 
#-211, sp 
#0x3800, sp@ 
#0, a5 
#0, a4 
#0, a3 
a6@(-12), sp@-
a6@(-4), sp@-
a6@(12), sp@-
a6@(16), sp@-
a6@(8), sp@-
_f1 
sp@(20), sp 
a6@(-2fy, #0x3800 
a6 

Create call frame 
Make space for locals and registers 
Save registers d6 and d7 
p1 = 0 
p2 = 0 
p3 = 0 
Push z 
Push x 
Push p 
Push j 
Push i 
Call f1 
Pop arguments from stack 
Restore a3-a5 
Remove call frame 
Return to caller 

- u | 

ri 

Icon for the AT&T 3B20 

O. Rick Fonorow has Version 5.9 of Icon running on the AT&T 3B20. The implementation is complete, 
except for co-expressions, which he plans to add later. Contact him for more information about future plans 
for this implementation: 

Mr. O. Rick Fonorow 
AT&T Bell Laboratories 
1100 East Warrensville Road 
1W2X-361 
Naperville, IL 60655 

(312)979-7173 

... ihnp4!ihu1e!orf 

A preliminary version of this implementation is available from The University of Arizona. See the form at the 
end of this Newsletter. 



Version 5.9 of Icon for V A X / V M S 

Bob Goldberg has completed the implementation of Version 5.9 of for V A X / V M S . This implementation 
resolves the problems with input /output buffers in Version 5.8 and includes recent language extensions. 

Use the form at the end of this Newsletter to request this implementation. 

3. Contributions from Users 

The Programming Language (Pascal-Icon) 

A programming language called n is being developed by Erick Gallesio under the direction of Olivier 
Lecarme of the Laboratoire d'Informatique at the University of Nice, France. Here is Gallesio's description 
from a recent letter: 

The programming language n (Pascal-Icon) is an attempt to embed goal-directed evaluation and generator 
mechanisms in Pascal. The choice of Pascal was principally motivated by the relative facility of implementing it. 
Our main aim is in fact to demonstrate that goal-directed evaluation and generators are not necessarily ineffi­
cient, and that they are fully compatible with Pascal-like languages (including Algol 68, Ada,...). Therefore, this 
experience should serve as a framework for embedding these features into other imperative programming 
languages (or, perhaps, for defining new ones). Briefly stated, the syntax of n is an extension of Pascal syntax 
and the expression evaluation is as close as possible to Icon; a similar mechanism is also provided for allowing 
"goal-directed execution" of some statements. As in Icon, and unlike Cg, there is no special syntactic construct 
for initiating backtracking (i.e., backtracking is fully automatic). 

An implementation for this language is in progress on a VAX 780 running under UNIX. This implementation is 
intended to be portable, and is based on the P4 implementation of Pascal (with some major changes to the inter­
mediate language). In a first step, only an interpreted version is anticipated. All the components of the n system 
are, or will be, written in Pascal. 

Generators in Smalltalk 

Tim Budd, at the University of Arizona, described his Smalltalk implementation in Newsletter #15. Here 
is more from him on that subject: 

Object oriented languages, such as Smalltalk, provide a rather easy and natural means of implementing genera­
tors. In Smalltalk, everything is an object. An object consists of a small amount of local memory (accessible 
only to the object) and a list of messages to which the object will respond. Associated with each message are a 
set of actions that will be initiated upon receipt of the given message. Because each object maintains its own 
memory, there is no need to manipulate the process stack in an extraordinary fashion, as is required in Icon or 
Cg. 

We can define a generator to be any object that responds to the messages first and next. Associated with each 
generator is a sequence of values, although how the sequence is constructed or what the values represent need 
not be made precise. In response to first, the object returns the first element in its sequence. In response to next 
it returns each subsequent item in turn, or the special value nil to indicate no new element is available. There is 
no need to define how each element is to be produced; they can simply be an enumeration of values kept in 
memory, as, for example, from an array, or they may be constructed as needed, as with a list of random 
numbers. 

Assuming no more than this simple protocol, it is possible to define techniques for combining and manipulating 
arbitrary generators. An experimental Smalltalk system, called "Little Smalltalk", as been constructed for 
experimenting with these and other related issues. The generator paradigm just described has been used 
throughout Little Smalltalk in the representation and manipulation of collections of objects. Work on defining 
pattern matching and other goal-directed techniques using generators in Smalltalk is being carried out. 

The Little Smalltalk system has recently been made available for distribution. Currently it works on the VAX 
780 with Berkeley 4.2 bsd UNIX, PDP 11/70 and 11/44 with Version 7 UNIX, the Ridge with ROS 3.0, and the 

Editor's footnote: This n is different from the n (Production Icon) described by Steve Wampler in Newsletter #15. 



HP 9000 with HP-UX. For more information on Little Smalltalk, contact: 

Timothy A. Budd 
Little Smalltalk Distribution 
The Department of Computer Science 
The University of Arizona 
Tucson, Arizona 85721 

Logicon: An Integration of Prolog into Icon 

Guy Lapalme and Suzanne Chapleau, at the University of Montreal, discuss their incorporation of Prolog 
into Icon in the abstract that follows. The complete paper appears at the end of this Newsletter. 

We describe the coupling of logic programming with Icon. We show that Icon and Prolog have many similari­
ties and that their integration is feasible and desirable, since the weaknesses of one can be compensated by the 
strengths of the other. In our case, a Prolog interpreter was written as an Icon procedure that can be linked and 
called by an Icon program. This interpreter deals with all Icon data types and can be called in the context of the 
goal-directed evaluation of Icon. We give an example showing the power of this symbiosis between these two 
languages where a Prolog call in Icon is a generator and an Icon call in a Prolog clause is an evaluable predicate. 

An Application for Linguistic Analysis 

Persons often ask what Icon is used for. One application that Icon shares with SNOBOL4 is linguistic 
analysis. An example is Glenn David Blank's research described in his doctoral thesis Lexicalized Metaphors: 
A Cognitive Model in the Framework of Register Vector Semantics, completed at the University of 
Wisconsin-Madison in 1984 under the direction of Peter Schreiber. The abstract reads as follows: 

Lexicalized (alias 'dead' or 'frozen' or 'familiar") metaphors are those that receive predictable interpretations, 
wholly from the context of predication. The likes of precious seconds, angry letter, happy home, reviving a 
romance, grasping a theory are virtually as familiar and sensible as 'literal' expressions, yet on closer examina­
tion seem to involve violations of predicative constraints. Their predictability may be accounted for by either of 
two strategies: 1) full lexicalization, where the figurative sense is entered as part of literal meaning; and 2) sense 
extension, where it is derived from literal meaning by a semantic rule sensitive to local predication. An experi­
ment, designed to detect lexical access times for systematic metaphors vs. literal and anomalous controls, shows 
that two processing strategies do seem to be involved. Sense extension implies a stage model, but the second 
stage may be obligatory upon failure of the first, and hence an automatic process. 

A computational model of lexicalized metaphors is described and demonstrated in the framework of Register 
Vector semantics. This is a componential approach that insists upon the standardization of feature vectors and 
lexical structure. Standardization eliminates the complexity of symbol-manipulation, and paves the way for a 
compact, finite semantics with fast, predictable operations. It also allows for the formalization of data struc­
tures that apply to the lexicon as a whole — directories for efficient semantic research, as well as the sense exten­
sion rules. Thus natural language semantics, including lexicalized metaphors, may be processed by a computa­
tional model in real, linear time. 

4. Use of Icon in Computer Science Courses 

In Newsletter #15, we reported on the use of Icon in Computer Science classes at CMU. Here is a report 
from Thomas Christopher at Illinois Institute of Technology: 

Last semester I provided a number of compiler writing tools in and for Icon for my compiler writing class. More 
students got more of their compilers done than ever before. Now I've reorganized the class around the tools. 
Students should be generating code before the middle of the semester for a minimal subset of Pascal, and then 
add more constructs every week to the end of the semester. We have started doing all our compilers this way — 
prototype in Icon, get a subset going first, and augment the already working compiler. 



Students in the undergraduate programming languages course got a large dose of Icon last semester. Several 
came to ask me if they could use it in the compiler writing course this semester, so they seem to have become 
fans. 

5. Programming Corner 

Old Business 

A number of readers objected that the following two expressions from the last Newsletter are not 
equivalent: 

if not (1 <= i <= *s) then ... 

if *s < i < 1 then ... 

Actually, no claim of equivalence was made. As an exercise, determine in what situations the two expres­
sions are equivalent. 

New Business 

Since this Newsletter is full of other material, the Programming Corner is abbreviated. Here is one new 
problem to work on, however. 

Anagramming: 

There is an easy way in Icon, given a string S, to produce another string that contains the characters of s in 
alphabetical order with duplicate characters removed: 

string(cset(s)) 

Problem: Write a procedure anagram(s) that produces a string consisting of the characters in s in alphabeti­
cal order, but without the deletion of duplicates. For example, 

anagramf'hello") 

should produce ehllo. 

Experiment with different techniques to try to find the fastest method. 



Logicon: an Integration of Prolog into Icon 

Guy Lapalme and Suzanne Chapleau 

Departement d'informatique et de recherche operationelle 
Universite de Montreal 

C.P. 6128, Succ. A 
Montreal, Quebec, Canada H3C 3J7 

1. Integration of Prolog into Icon 

The proof of a Prolog request and the execution of an Icon expression have the following similarities: 

• Prolog solves one request at a time and Icon evaluates one expression at a time. 

• A Prolog request can refer to other requests, each of which is capable of giving more than one result. 
An Icon expression can be decomposed into many sub-expressions, each of which can possibly gen­
erate more than one result. 

• A Prolog system can give all solutions of a request by doing a depth-first search with backtrack on 
the different alternatives. Icon uses a similar strategy to generate the sequence of results. 

• A Prolog request and an Icon expression terminate by failing when their sequence of results is 
exhausted. 

The integration of Prolog and Icon is done on these grounds of similarity, but the "personality" of each one is 
kept. A Prolog request in Icon acts as a generator, and Icon code in a Prolog request is used as an evaluable 
predicate that has the same attributes as another Prolog goal. 

One major difference between these languages is the way results are generated. In Prolog, results are given 
back as the final values of the variables (which is why Prolog interactive systems often show the final values of 
the variables after a request has succeeded). On the other hand, in Icon the result is the final value of the 
expression. Assignments made to variables have no direct consequences on the final result of an expression. 

We have implemented a Prolog interpreter as an Icon generator that deals with the partially defined vari­
ables that can be completed during a proof. However, these effects are undone automatically by backtracking. 
The variables get values by unification with a data base of facts that has to be maintained. Chapleau [1] shows 
how this can be implemented. We only present here how to insert Prolog code into an Icon program as a gen­
erator (we call it the external interface) and how to put Icon code in Prolog to behave as a goal (internal inter­
face). All this is done without any preprocessing whatsoever. This is "standard" Icon code calling precompiled 
procedures and using predefined Icon record types. 

1.1 Prolog Term Representation 

For constant terms, the following Icon types can be used: real, integer, string, cset, table, files, procedure, 
and co-expression. Lists will be dealt with later. The last five types are not usually found in Prolog, so we 
might ask what are the consequences. In pure Prolog, the only operation is the unification that we chose to 
implement as the Icon equality test (already defined for all Icon types). The types of the values only matter in 
the evaluable predicates that are defined outside of Prolog anyway, so this has no consequence for the Prolog 
interpreter. 

One of the main originalities of Prolog is the logical variable what can only be defined once but which can 
have still undefined parts that can be filled in later. To represent them, the following Icon record has been 
predefined: 

record logical(value) 

A free variable has &null as the value of its component. Thus, the Prolog interpreter procedure can differen­
tiate between variables and constants by testing the type of the value of the variable. 



The complex terms of Prolog are composed of a functor with a fixed number of components. These 
correspond exactly to the record structure of Icon. The only implication for the Prolog programmer is that he 
has to declare all functors he will use in his program. 

The only Icon type remaining is the list. It can be defined easily using a binary functor that links the head 
and the tail of the list. This notation is quite cumbersome, and the implementation of this very useful con­
struct can be much more efficient with a linear structure instead of a tree one. Moreover, Icon has a very 
extensive set of predefined operators and functions operating on Icon lists. As a result, we chose to represent 
the Prolog lists as Icon lists. This is very useful and convenient for the programmer (the Icon list notation is 
almost the same as the DEClO-style Prolog lists). This has the unfortunate consequence that the unification 
algorithm will be more complicated, but this is hidden from the programmer. 

1.2 External Interface 

To enter facts or relations in the Prolog data base, we define the following Icon procedure: 

assert(head, goals) 

and, to execute a request, the following Icon procedure is used. 

prolog(request) 

Entering Relations 

For each relation to be entered in the Prolog data base, the user must 

• Declare a record type for the relation. 

• Declare a logical variable used in the relation. 

• Call the assert procedure. 

For example, to enter the following classical Prolog append procedure, 

append([], L, L). 
append([Car|Cdr], C, [Car|L ]) :- append (Cdr, C, L). 

the user declares the following: 

record append (f1, f2, f3) 

and executes the following assignments: 

I := logical() 
car := logical() 
cdr := logical() 
c := logical() 

These global variables will be used for getting the results of the Prolog expression in Icon. Finally, 

assert(append ( [ ] , I, I)) 
assert(append ([car, cdr], c, [car,l]), append (cdr, c, I)) 

will save the append definition in the Prolog database of facts. The Icon procedure assert checks the syntax 
of the clause and keeps an internal structure binding the same variable occurrences within a clause but keeping 
the ones between two clauses separate (i.e., in our example, variable 1 is used in both clauses but internally is 
not the same one). The final results of a Prolog goal are given back in the global variables named in the clause 
but with all substitutions made so that a programmer does not have access to the internal structures of the 
interpreter. As the "prolog" procedure behaves like an ordinary Icon generator, all control mechanisms can 
be applied: for example, 

every prolog(append (a, b, [do, re, mi[ ]]) do { ... } 

will execute the statements in braces for each possible binding of a and b such that their concatenation gives 



the list [do, re, mi, [ ]]. (The list has to terminate by [ ].) We can even use the "prolog" generator in a co-
expression. 

Cone := create prolog (append (a, b [do, re, mi[ ]])) 

and call it with @Conc. In this way, we can even have more than one Prolog execution going on in parallel! 

Internal Interface 

This part deals with the integration of Icon code within a Prolog clause so that the Icon code behaves as an 
evaluable predicate. Ideally, we would like to be able to only put Icon code in place of another Prolog goal. 
For example, 

assert(append (x, y, z), z.value := x.value ||| y.value) 

supposing that x and y were already instantiated to lists. Unfortunately, in this case the expression will be 
evaluated before giving its result to assert. If we use 

assert(append(x, y ,z), create z.value := x.value 111 y.value) 

we will have captured the expression, but unfortunately the bindings between the logical variables and the 
ones of the co-expression will not be available to the assert procedure. The bindings will have to be given by 
the programmer using an intermediary call like the following: 

assert(append (x, y, z), icon(create z.value := x.value ||| y.value, [x, y, z])) 

Any expression can appear in such a request, even a generator. 

2. Uses of Logicon 

This scheme has been implemented using the VAX/VMS Icon interpreter. Chapleau [1] shows how this 
scheme can simplify the expression of the now-classical, Master-Mind Prolog Program. The main interaction 
loop is done in Icon, but the heart of the algorithm is done with one prolog Clause, which can be used to gen­
erate tries, test tries, and tabulate the scores. 

For now, the only drawback is the efficiency of the scheme, but we think that by modifying the interpreter 
itself, we could speed things up considerably. 
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Version 5.9 UNIX Icon Distribution Request 

Note: This system can be configured for PDP-1 Is with separate I and D spaces, VAX-1 Is, and Sun Worksta­
tions. 

Contact Information: 

name 

address 

telephone 

electronic mail address 

computer 

operating system 

All tapes are written in 9-track tar format. Specify the preferred tape recording density: 

• 1600 bpi • 800 bpi 

Return this form to: 

Icon Project 
Department of Computer Science 
The University of Arizona 
Tucson, AZ 85721 

Enclose a magnetic tape (at least 600') or a check for $20 payable to The University of Arizona. 

#17 



Request for Version 5.9 of Icon for the AT&T 3B20 

Contact Information: 

name 

address 

telephone 

electronic mail address 

computer 

operating system 

All tapes are written in 9-track cpio format. Specify preferred tape recording density: 

O 1600 bpi • 800 bpi 

Return this form to: 

Icon Project 
Department of Computer Science 
The University of Arizona 
Tucson, AZ 85721 

Enclose a magnetic tape (at least 6000 or a check for $20 payable to The University of Arizona. 

#17 



Request for Version 5.9 of Icon for VAX/VMS 

Contact Information: 

name 

address 

telephone 

electronic mail address 

computer 

operating system 

All tapes are written in 9-track tar format. Specify preferred tape recording density: 

• 1600 bpi • 800 bpi 

Return this form to: 

Icon Project 
Department of Computer Science 
The University of Arizona 
Tucson, AZ 85721 

Enclose a magnetic tape (at least 600^ or a check for $20 payable to The University of Arizona. 

#17 


