

Graphics Programming in Icon

Ralph E. Griswold
Clinton L. Jeffery

Gregg M. Townsend

@ SM

PEER-TO-PEER
~ COMMUNICATIONS

QA76.73.I19G75 1998

This book originally was published by Peer-to-Peer Communications. It is out
of print and the rights have reverted to the authors, who hereby place it in the public
domain.

Publisher's Cataloging-in-Publication
(Provided by Quality Books, Inc.)

Griswold, Ralph E., 1934-
Graphics programming in Icon / Ralph E. Griswold, Clinton

L. Jeffery, Gregg M. Townsend -- 1st ed.
p. em.

Includes bibliographical references and index.
ISBN 1-57398-009-9

1. Icon (Computer program language) 2. Computer graphics.
3. Computer drawing. I. Jeffery, Clinton L. II. Townsend,
Gregg M. III Title.

005.133
QBI98-66640

© 1998 by Ralph E. Griswold, Clinton L. Jeffery, and Gregg M. Townsend

All rights reserved. No part of this book may be reproduced, in any form or by any means, without advance
written permission from the publisher.

Published by Peer-to-Peer Communications, Inc.
P.O. Box 640218
San Jose, California 95164-0218, U.S.A.
Phone: 408-420-2677 • Fax: 804-975-0790
E-mail: info@peer-to-peer.com • World Wide Web: http://www.peer-to-peer.com/

10 9 8 7 6 5 4 3 2

Peer-to-Peer offers discounts on this book when ordered in bulk quantities. For more information, contact the Sales
Department at the address above.

DISCLAIMER

This book and CD-ROM are provided "as is". The implied warranties of merchantability and fitness for a particular
purpose are expressly disclaimed. The programs contained herein have not been thoroughly tested under all
conditions. Therefore their reliability, serviceability, and function are not guaranteed.

The information contained herein was valid at the time it was written and conveyed as accurately as possible by the
authors. However, some information may be incorrect or may have changed prior to publication. The authors and
publisher make no claims that the material contained herein is entirely correct, and assume no liability for use of
the material contained herein.

A number of words that appear in initial capitalization in the text may be trademarks or service marks, or signify
other proprietary rights. No attempt has been made, however, to designate as trademarks or service marks all
personal computer words or terms in which proprietary rights might exist. The inclusion, exclusion, or definition
of a word or term is not intended to affect, or to express any judgement on, the validity or legal status of any
proprietary right that may be claimed in that word or term.

Contents
Preface

Acknowledgments

xi

xiii

1

2

3

Introduction

The Icon Programming Language 1

Graphics in Icon 1
Organization of the Book 2

How to Use This Book 5

Icon

Getting Started 7
Expression Evaluation 9
Types, Values, and Variables 18
Numerical Computation 21

Structures 23
Characters and Strings 29

Procedures and Scope 35
File Input and Output 39
Preprocessing 42
Running Icon Programs 44
The Icon Program Library 46
Special Topics 48
Library Resources 55
Tips, Techniques, and Examples 55

Graphics

Basic Window Operations 60
Window Attributes 62
Example - Random Rectangles 64
Events 66

1

7

59

ill

iv

4

5

6

Window Management 67

Library Resources 68

Tips, Techniques, and Examples 69

Drawing

Points 71

Lines 73

Rectangles 77

Polygons 79

Circles and Arcs 81

Smooth Curves 85

Line Attributes 85

Reversible Drawing 88

Coordinate Translation 88

Clipping 89

Library Resources 90

Tips, Techniques, and Examples 91

Turtle Graphics

The Turtle Graphics System 105

Implementing Turtle Graphics 110

Library Resources 116

Tips, Techniques, and Examples 116

Text

Window Input and Output 127
Positioning Text 128

Fonts 129

Text Width 133

Drawing Strings 134

Library Resources 135

Tips, Techniques, and Examples 135

71

105

127

7

8

9

Color

Specifying Colors 139

Color Correction 144

Portability Considerations 145

Color Maps 145

Mutable Colors 146

Monochrome Portability 148

Printing Color Images 149

Library Resources 150

Tips, Techniques, and Examples 150

Images

Drawing Images 155

Patterns 157

Image Files 161

Library Resources 163

Tips, Techniques, and Examples 163

Windows

The Subject Window 165

Opening and Closing Windows 166

Window Size and Position 166
Stacked Windows 167

Graphics Contexts 167

Canvas States 173

Copying Areas 174

Reading the Canvas 174

Customization 175
Tips, Techniques, and Examples 175

v

139

155

165

10 Interaction

Events 183

Processing Event Queues 184

Polling and Blocking 189

183

vi

Event Loops 190
Active Windows 191

Synchronization 191

Audible Alerts 192

Mouse Pointer 192

Dialogs 193

Library Resources 196

Tips, Techniques, and Examples 196

11 User Interlaces

An Example Application 205

Interface Tools 208

Callbacks 215

The Interaction Model 217

Tips, Techniques, and Examples 218

12 Building a Visual Interlace

Planning the Interface 221
A Visual Interface Builder 223

More About Vidgets 253
The Organization of a Program with a VIB Interface 254

Multiple VIB Interfaces 256

Tips, Techniques, and Examples 260

13 Completing an Application

Program Organization 268

Drawing the Kaleidoscope 274

The Complete Program 277

Tips, Techniques, and Examples 283

Other Applications 285

14 Dialogs

Standard Dialogs 287

Custom Dialogs 292

205

221

267

287

vii

Standard Dialogs Versus Custom Dialogs 296

Library Resources 296

Tips, Techniques, and Examples 296

15 A Pattern Editor 299

The Application 299

Program Design 301

Program Organization 305

The Complete Program 313

Tips, Techniques, and Examples 322

16 Facial Caricatures

The Application 327

Program Design 330

Program Organization 334

The Complete Program 347

Tips, Techniques, and Examples 362

327

The Appendices 365

A Syntax

B Preprocessing

Include Directives 371

Line Directives 372
Define Directives 372

Undefine Directives 372

Predefined Symbols 373
Substitution 373

Conditional Compilation 374
Error Directives 374

C Control Structures

367

371

375

viii

D Operators

Prefix Operators 379

Infix Operators 381

Other Operators 384

E Procedures

Graphics Procedures 387

Basic Procedures 409

F Keywords

G Window Attributes

Canvas Attributes 430

Graphics Context Attributes 431

Attribute Descriptions 432

H Palettes

Grayscale Palettes 441

The c1 Palette 442
Uniform Color Palettes 443

379

387

423

429

441

I Drawing Details

Lines 445

Rectangles 446

Polygons and Curves 446
Circles and Arcs 446

Filled Figures 447

Rectangular Areas 448

445

J Keyboard Symbols

K Event Queues

449

451

ix

L Vidgets 453

Vidget Fields 453
Vidget States and Callbacks 454
Vidget Activation 455

M VIS 457

The vm Window 457
Vidgets 459
The Application Canvas 461
Creating Vidgets 462
Vidget Attributes 463
Manipulating Vidgets 468
Custom Dialogs 471
Prototyping 472
Limitations 472

N Platform Dependencies 473

Microsoft Windows 473
The X Window System 475

0 Running an Icon Program 479

Running Icon from the Command Line 479
Input and Output Redirection 480
Command-Line Arguments 481
Environment Variables 481
Running Icon under Microsoft Windows 482
User Manuals 485

P Icon Resources 487

The CD-ROM 487
On-Line Access 487
Implementations 487
Documentation 488

x

Q About the CD-ROM

How to Use the CD-ROM 489

File Formats 490
External Links 491

References

Index

489

493

495

Preface

Graphics Programming

Images produced with the aid of computers seem to be everywhere:
video games, animated cartoons, special effects for television and motion
pictures, business presentations, multimedia, ... and as a component of most
computer applications. This is a book for programmers who want to create
images and incorporate visual interfaces in their applications.

Historically, graphics programming has been difficult, requiring expen­
sive equipment and a large amount of effort to produce even crude results.
Recent advances in hardware and software have put graphics within reach of
most programmers, but programming often remains much more difficult than
it should be. Part of the reason for this is that mostprogramming languages were
designed before graphics became generally accessible. As a result, graphics
facilities generally have been ad hoc appendages to programming languages
rather than integral parts of them. Furthermore, most graphics programming
has been done in relatively low-level programming languages, requiring te­
dious, time-consuming programming.

This book advocates graphics programming in a high-level program­
ming language, Icon, that integrates graphics with other features. Using Icon,
programs with graphics are faster and easier to write than in most programming
languages. If you're familiar with graphics programming in a lower-level
language, leaf through the book and look at the images and the code that
produced them.

About Icon

Ifyou don't already know Icon, you might wonder why you should take
the trouble to learn another programming language. We've already mentioned

xi

xii

the time and effort Icon can save in graphics programming. That alone will more
than reward the effort of learning Icon. There also is much more to Icon that
makes it worth knowing.

Icon has a large repertoire of operations for manipulating structures ­
records, lists, sets, and tables - and extensive capabilities for processing strings
of characters. At the heart of Icon is a goal-directed expression-evaluation
mechanism that simplifies many programming tasks. Storage is allocated auto­
matically - you never have to worry about allocating space - and garbage
collection reclaims unused space as necessary. It's not only easy, it's fun to
program in Icon.

Icon programs also are highly portable. You can, for example, take one
written on a UNIX platform and run it under Microsoft Windows with little or
no modification.

Graphics Programming Using Icon

To use this book, you should have some programming experience (not
necessarily a knowledge of Icon), some experience with applications that use
graphics (but not necessarily any experience in graphics programming), and
access to a PC running Windows or Windows NT, or a UNIX system running X
Windows.

This book includes Version 9.3 of Icon (for both Windows and UNIX) on
CD-ROM; see Appendix Q. Icon implementations and other resources also are
available on the Internet; See Appendix P. It's easy to install Icon; you can be up
and trying simple programs quickly.

There are many resources to help you. Icon comes with a large support
library that includes many examples of Icon programming, useful programs,
and many procedures that you can use in your own programs. There's also a
large community of Icon users, an electronic newsgroup, and many other
resources.

Acknowledgments

The Icon programming language is the result of the work of many persons in
addition to the authors of this book, including Cary Coutant, Dave Hanson, Tim
Korb, Bill Mitchell, Ken Walker, and Steve Wampler. The graphics portions of
Icon also have benefitted from contributions by Darren Merrill and Cheyenne
Wills.

The software interface tools that provide support for visual interfaces
were written by Jon Lipp. The initial version of the visual interface builder was
designed and implemented by Mary Cameron. Jason Peacock also contributed
to the interface tools.

The Windows implementationwas assisted bya software donation from
Microsoft Corporation.

Support came from the National Science Foundation, the Department of
Computer Science at The University of Arizona, and the Division of Computer
Science at The University of Texas at San Antonio (UTSA). A UTSA Faculty
Research Award was crucial to the success of this endeavor.

Lyle Raines designed the Icon "Rubik's Cube" that appears following
Chapter l.

The authors are particularly grateful to persons who have read and
commented on drafts of this book: Bob Alexander, Richard Goerwitz, Bob
Goldberg, Roger Hare, Bill Mitchell, and Steve Wampler. Special thanks go to
Madge Griswold for her thoughtful reading and editing of several drafts of this
book. We also would like to thank David Bacon for a perceptive and encouraging
review of an early draft of this book.

Special thanks go to students who used Icon and drafts of this book in
experimental courses on graphics programming. The problems they found and

xiii

xiv

the suggestions they made contributed to the graphics facilities and to the
presentation of those facilities in this book.

Some of the material that appears in this book is adapted from articles in
'Cirly.e ~con ~na:lU£d and is used here by permission of the editors.

Finally, we wish to thank members of the Icon user community for ideas,
suggestions, and most of all, encouragement.

��������	
�����
�� �
�������

��������	�
���
��������
�������
�����������
���������������������
������
��������
������	��
�������������	����������

�������
�����
����
 �
�������

������
�������������������
�	����������������������
�����
	��
��	�����

���
�����

���������	�
���
�

��� �
�
�����

����������	
��	����
�������
� 	� ���������������
��	����
�� �
������
�
�������

������������
�����
������� �
�
�����

���� ��������� ��
��	�� ����
���� ��
���� �	���� �
�
���� ����� 	��� ���
�����
���	����
����������	
���
������

���������	�
��
��
��
������ �
���
���

������������������	
�	����
�
�����������������
��
�����������������
����������
�	���

������
�������
�� �
���
���

�����
��������
����	����	���
������	�����������������
������	����
�
	���

����������		�
 ���	����

�����������	�
������������
�
�	���
����������	�����
�������������	�������
	���
�	�
�
�	���
�������	��������

����������	
����	
�����

����� �����	
� ��� 	
	��	���
��������������������	�����
����	����������������������
�	������������������������
������������	�����	���	��

�	���	���� ������� ����� ���
���������	�������������

���������

��� ���	
�����

��������	����������	��������
� ����������������!���������
"#����������������	�����������
��	����$�����������%��	�����
�����������������	�����	���
��������

���������

�������	
�����

��������	�����!������	����	�
���#&'�������!����
����������
��	���	���
��(���')#�����	��
�������	����������������
��
������	��
�

���������

���������	�
����
���� ��
�������

���������	
���	
�	
��������������������	�������������	��	����������
��	��	������	����		�����	������������	��		��������	
�
���	�	������
	�
������	�

��������
������
�� ��
�������

��	���������������������������
	����	�����	
��	������
��������������
���
����	
�������������	������������	������	��������	����	����	���

��������	�
�����
��
 ����������

��������	�
�� ��� ��
� ����
������
��
�
��
���
�
� ������ �����
��
�����
�����	�����

������	���� ����������

�
�
�
��
�	�����������������
����	�
�
��
������
�
�������������	�
��
�
�
��
������ �����
����	�������!��

���������	
����
��� ��
�������

����� ����	
������
	��	
��
	���������������������	����

����������������	���
����
����������������������
��
��
����
������������	�������

���	��������

���	���
�����
	�������	���
�����	�����������	�����	�
�
������
�����
����������������	����

Chapter 1

Introduction

The Icon Programming Language

Icon is a general-purpose programming language that emphasizes ease
of programming. Although similar in appearance to languages like Pascal and
C, Icon has much more to offer. Here are some of its distinctive aspects:

• Strings are atomic values, not arrays of characters. An extensive and
sophisticated set of operations supports analysis, synthesis, and
manipulation of strings.

• List operations generalize the conceptofan array to implement stacks,
queues, deques, and similar structures.

• True polymorphism allows values of any type in data structures,
argument lists, table indices, and other roles.

• Sets and tables provide quick lookup using index values of any type.

• Programmer-defined record types allow representation of complex
data relationships.

• Underneath Icon's conventional syntax lies a powerful goal-directed
evaluation mechanism that searches for a result among multiple
computational paths.

• Automatic storage management, with garbage collection, eliminates
tedious and error-prone manual allocation.

These features combine to make programming substantially easier in Icon than
in other languages.

Graphics in Icon

Icon's graphics facilities also emphasizeprogrammingease. Manygraph­
ics systems require that a program be able to redraw the contents of a window
upon demand - for example, when the user moves another obscuring window
out of the way. In Icon, this is handled automatically. Once something is drawn
to the window, it stays drawn, and any necessary refreshing is handled by the
Icon system without involving the application program.

1

2 Introduction Chapter 1

Many systems impose an event-driven paradigm in which a graphics
program acts only in response to user or system requests. While such an
approach is often best, there are many situations where a procedural view is
sufficient - and much simpler. Icon allows both approaches.

A friendly programming interface does not preclude a wide range of
features. From the perspective of a programmer, Icon offers the following kinds
of graphics capabilities:

• Windows can be opened and closed as desired.

• Points, lines, polygons, circles, arcs, curves, and text can be drawn.

• Color can be specified by numeric value or descriptive phrase.

• Windows can be treated as files for reading and writing text.

• Fixed and proportionally spaced type faces can be used.

• Characters from the keyboard can be processed as they are typed.

• Images can be read from files and written to files.

• Buttons, sliders, and other interface tools are available.

Organization of the Book

The Chapters

The body of the book explains how to construct graphics programs using
Icon. Similar features are grouped together, and the discussion generally moves
from the simple to the more complex. The chapters are arranged to minimize the
inevitable forward references to concepts not yet covered.

Two common sections appear at the ends of many chapters. Library
Resource sections point to components in the Icon program library, including
procedures related to the chapter topic and programs for experimenting with
related features. Tips, Techniques, and Examples sections show how the
features introduced in a chapter can be used, often in ways not obvious, to good
effect.

This introductory chapter outlines the book's framework and sets the
stage for the text to follow.

Chapter 2 introduces the Icon language. It presupposes only an under­
standing of programming concepts and does not assume any prior exposure to
Icon. Experienced Icon programmers may skip this chapter, although those who
are unfamiliar with the Icon program library should read that subsection.

Chapter 1 Introduction 3

Almost all of the Icon language is covered in Chapter 2. To keep things
simpler, we have omitted a few features that are used only in special situations
and are not needed for graphics. See The Icon Programming Language byGriswold
and Griswold (1996) for a complete description of Icon.

Chapter 3 discusses the basic concepts of Icon graphics: the coordinate
system, window attributes, and the input model. The structure of a graphics
program is outlined, and the customary "Hello World" program is presented.

The next five chapters cover fundamental aspects of graphical output to
a window. Chapter 4presents traditional drawing operations: lines, points, arcs,
and the like. Chapter 5 introduces Icon's "turtle graphics" procedures, inspired
by those of Logo (Abelson and diSessa, 1980). Chapter 6 discusses facilities for
reading and writing strings of text. Chapter 7 covers the use of color, and
Chapter 8 deals with patterns and images.

Chapter 9 discusses the use of multiple windows, the use and sharing of
graphics contexts, and interaction with the underlying graphics window sys­
tem.

Input events are described in Chapter 10. The chapter covers polling and
blocking, synchronization with output, and complications raised by multiple
windows. The use of higher-level dialog boxes for input is also discussed.

At this point, all of Icon's basic graphics operations have been presented,
and a complex interactive application with a nontrivial graphical interface can
be examined. The next three chapters illustrate the use of Icon's interface builder
by constructing a "kaleidoscope" program.

Chapter 11 begins with an overview of the program from the user's
perspective. It discusses the interface components (buttons, sliders, and so on)
available for building interfaces, and it explains how callbacks communicate
interface actions to the program.

Chapter 12 presents VIB, Icon's interactive interface builder. The kalei­
doscope interface is constructed, step by step, followed by a discussion of a few
issues that did not arise in that particular program.

Chapter 13 completes the program construction, showing how the
interface builder code is combined with additional Icon code to produce the
finished product.

Chapter 14 discusses additional dialogs - simple ones that can be
producedby procedurecalls and custom dialog boxes that are constructed using
the interface builder.

The final two chapters are case studies of two more actual applications,
complete with source code, discussing various issues that arise along the way.

4 Introduction Chapter 1

Chapter 15 presents a pattern editor, and Chapter 16 presents a caricature
generator.

The Appendices

A significant portion of the book is filled by the many appendices that
serve as a reference manual for the Icon language and its graphics facilities. In
contrastwith the sequential nature of the main text, the appendices are designed
for quick access.

The first six appendices cover Icon in general; most of the rest deal
specifically with aspects of graphics. Some standard nongraphical parts of Icon,
such as additional I/O procedures and keywords, are included for reference in
the appendices although they are not discussed in the body of the book.

Appendix A presents the syntax of the Icon language in outline form.
Control structures, operators, keywords, escape sequences, and reserved iden­
tifiers are listed.

The Icon preprocessor, which is used mainly for manifest constants and
conditional code, is described in Appendix B.

Appendices C and D describe control structures and operators in detail.

Appendix E covers predefined Icon procedures, including both built-in
and library procedures. Calling sequences, default values, return values, and
cross references accompany the procedure descriptions.

Icon keywords are described in Appendix F. (In Icon, keywords are
special global variables, not reserved identifiers.)

Appendix G summarizes all the graphics attributes in one place. Initial
and acceptable values are indicated where appropriate, alongwithbrief descrip­
tions and cross references. The two classes of attributes are distinguished, and
readable and writable attributes are so indicated.

The standard color palettes that are used for drawing pixel-based images
and optionally when reading images are described in Appendix H. Plate 8.1
shows the standard palettes in color.

Appendix I describes the details of exactly which pixels are set by the
drawing operations - and indicates the details that aren't guaranteed to be
consistent on all platforms.

AppendixJ lists the symbols used for encoding outboard keys suchas the
"page down" key in Icon events. Appendix K documents the structure ofan Icon
event queue for the rare program that accesses the queue directly.

Chapter 1 Introduction 5

Appendix L summarizes the fields, states, callbacks, and behavior of
interface vidgets. Appendix M is a reference manual for the interface builder.

The features that differ among implementations of Icon are listed in
Appendix N. Appendixa explains how to build and run Iconprograms, another
system-dependent topic.

Appendix P lists additional resources related to Icon - books, newslet­
ters, and the Icon home on the Internet.

Appendix Q describes the accompanying CD-ROM, which includes Icon
implementations, documentation, examples, the Icon program library, and
much more.

How to Use This Book

Nothing substitutes for actual programming experience. To get the most
from this book, you should run some Icon programs as you go along.

Implementations of Icon for Microsoft Windows and for UNIX, along
with installation instructions, are included on the CD-ROM that accompanies
this book. If Icon is not already installed on your machine, it will be worth the
time to take care of that now.

As you learn about Icon and read the examples, you may sometimes
wonder, "Butwhat if". That is a good time to run an experiment on your own.
Source code for all of the examples is included on the CD-ROM, and you can edit
it to try variations.

After you become somewhat comfortable with Icon, you maywish to see
more and larger examples. The Icon program library, again on the CD-ROM,
contains a large amount of code.

Don't forget the appendices - they are there for reference and they can
help answer questions that may arise as you read the text. In addition to the
language reference appendices, Appendices a (Running Icon) and Q (About
the CD-ROM) may be particularly useful at the start.

write a greeting

Chapter 2

Icon

This chapter addresses the basic concepts of Icon and describes many of its
features. The chapter lays a foundation for chapters that follow, which describe
Icon's graphics facilities. Some important aspects of Icon that do not fit well into
a general description of its facilities are given in the Special Topics section at the
end of this chapter. Be sure to read these.

You probably won't want to try to absorb everything in this chapter in
one reading. Try reading through the chapter once without worrying about all
the details, in order to get a "feel" for Icon. Later you may wish to read some
sections more carefully or refer to them when reading the rest of this book or
writing your own programs.

The appendices at the end of this book contain detailed reference
material, including parts of Icon's computational repertoire that are not de­
scribed elsewhere in this book. If you need to do something that we don't
describe here, look in the appendices on operations and procedures or pick up
a copy of The Icon Programming Language (Griswold and Griswold, 1996).

Getting Started

Icon is an imperative, procedural programming language, similar in
many respects to Pascal or C. A traditional first program that writes a greeting
looks like this in Icon:

procedure mainO

write("Hi there!")

end

The words procedure and end are reserved words that indicate the beginning
and ending of a procedure. Every program must have a procedure named main,

7

8 Icon Chapter 2

which is where execution begins. The word write is the name of a built-in
procedure. When it is called, as it is here, it writes out its argument. Parentheses
indicate a call and enclose arguments. In this case there is one argument, which
is a string of characters indicated by the delimiting quotation marks. The
character # begins a comment that continues to the end of the line.

Most Icon programs contain many procedures. The procedures declared
in a program are on a par with built-in procedures and are called the same way,
as in

procedure mainO

greet(IGeorge")

end

procedure greet(name)

write("Hi there!")
write("My name is ", name, ".")

end

which writes

Hi there!
My name is George.

The word name is a parameter of the procedure greetO; its value is set when
greetO is called. In the example above, "George" becomes the value of name in
greetO. Note that the second use of writeO has three arguments separated by
commas. When writeO is given several arguments, it writes them one after
another on the same line.

You may wonder why there are no semicolons following lines of code.
Icon allows them but doesn't require them - it supplies them automatically so
that you don'thave to worry about them. The procedure greetO could be written
as

procedure greet(name);
write("Hi there!");
write("My name is ", name, ".");

end;

but the semicolons are unnecessary.

We've been careful in our choice of words about semicolons. In Pascal,
semicolons separate statements that do things, while expressions perform compu­
tations.

Chapter 2 Icon 9

In Pascal, the following line is a statement:

if switch = on then write('on') else write('off');

In this statement, switch = on is an expression whose value determines what is
written.

Icon is different in this regard. Icon has no statements, only expressions.
Icon expressions look like statements in Pascal and do similar things. Every Icon
expression, however, returns a value, and the value often is useful. In Icon, that
statement could be cast as either of these expressions:

if switch = on then write("on") else write("off")
write(if switch = on then "on" else "off")

Although the second form is not better than the first from a stylistic standpoint,
it shows that even if-then-else is an expression.

For the most part, when writing Icon programs, you'll just use expres­
sions in natural ways without worrying about the difference between state­
ments and expressions.

Expression Evaluation

At first glance, expression evaluation in Icon may appear to be the same
as in other imperative programming languages. Although expression evalua­
tion in Icon has some aspects of expression evaluation in other imperative
languages, there's much more to Icon, as we'll show soon.

Sequential Evaluation

InIcon, as in most other imperative languages, expressions are evaluated
in the order in which they are given, as in

name1 := readO
name2 := readO
write("The first two names are ", name1, II and ", name2, ".")

which reads two lines of input and writes out an informative line containing the
results.

The sequential order ofevaluation canbe changed by a control structure,
as in

ffname1==name2~en{

scount := scount + 1
write("The names are the same.")
}

10

else {
dcount := dcount + 1
write("The names are different.")
}

Icon Chapter 2

The expression name1 == name2 performs string comparison on the values of
name1 and name2. Which count is incremented and what is written depends on
whether or not the values are the same. The braces enclose compound expres­
sions. In this example, there are two expressions to evaluate in each"arm" of the
control structure.

Success and Failure

If you are familiar with Pascal, you might think that the comparison
expression name1 == name2 produces true or false, which is then used by if­
then-else to determine what to do.

In Icon, such a comparison expression does not produce a logical value;
instead, it either succeeds orfails. The effect is the same in the example above, but
the difference between logical values and success or failure is fundamental and
important.

The idea behind success and failure is that sometimes a perfectly reason­
ably computational expression may not be able to produce a result. As an
analogy, imagine turning a doorknob to open a door. If it opens, your attempt
succeeds; it the door is locked, your attempt fails.

An example in programming is attempting to read a line from a file. In
Icon, such an attempt succeeds if there is a line remaining in the file but fails if
there are no more lines. For example,

while line := readO do
write(line)

reads and writes lines until the end of the input file is reached. At that point,
readO fails. When readO fails, there is no value to assign to line, no assignment
is performed, the assignment fails, and the while-do loop is terminated. Note
that the failure of readO is "inherited" by assignment - an assignment can't be
performed if there's nothing to assign.

Since failure is inherited, this loop can be written more compactly as

while write(read())

The do clause and the auxiliary identifier are not needed.

One of the advantages of using success and failure instead of logical
values to control the order of program execution is that any expression, not just

Chapter 2 Icon 11

a logical one, can be used in a control structure. In addition, the notion of
attempting a computation that may succeed or fail also is a natural analogy to the
way we carry out our daily activities in getting around in the world.

If you're used to using logical expressions in programming, the success­
and-failure approach may appear strange at first. As you get accustomed to it,
you'll find it both natural and powerful.

As you learn Icon, pay attention to the situations in which expressions
may fail. We've given two examples so far: comparison and reading input. There
are many others, which we'll mention as we go along.

The general criterion for expression failure is a computation that is
meaningful but can'tbe carried out in a particular instance. Some computations,
however, are simply erroneous. An example is

i :=i+"a"

which is an error and terminates programexecution because IIa II is not a number.

What Icon considers an error as opposed to failure is a matter oflanguage
design that tries to strike a balance between convenience and error detection.
Once you get used to Icon, you won't have to worry about this. Instead, you'll
find that failure is a convenient way of making decisions and controlling loops.

Success and failure of expressions in combination can be tested using
conjunction and alternation. Both have a familiar appearance. Conjunction is
expressed as

expr1 & expr2

which succeeds only if both expr1 and expr2 succeed. For example,

if (max> 0) & (min < 0) then write("The bounds are bracketed.")

writes a line only if max is greater than zero and min is less than zero.

Alternation is expressed as

expr1 I expr2

which succeeds if either expr1 or expr2 succeeds. For example,

if (pet < 0) I (pet> 100) then write("lnvalid percentage.")

writes a line only if pet is less than aor greater than 100.

Control Structures

Icon has several control structures that can be used to determine which
expressions are evaluated and in what order. Most control structures, including

12 Icon Chapter 2

if-then-else and while-do in the preceding section, use success or failure to
determine what to do.

There are two looping control structures in addition to while-do:

until expr1 do expr2
repeat expr

The control structure until-do is the opposite of while-do; it loops until expr1
succeeds. The control structure repeat evaluates expr repeatedly; it does not
matter whether exprsucceeds or fails.

You can terminate any loop by using break, which exits the loop and
allows evaluation to continue at the point immediately after the loop. For
example,

while line := readO do
if line == "stop" then break
else write(line)

writes lines until one that is "stop" is encountered, at which point the loop is
terminated.

It's also possible to go directly to the next iteration of a loop without
evaluating the remaining portion of the do clause. This is done with next. For
example,

while line := readO do
if line == "skip" then next
else write(line)

which doesn't write lines that are "skip". There's a better way to do this without
using next:

while line := readO do
if line -== ·skip· then write(line)

The operator -== is the opposite of ==; s1 -== s2 succeeds if s1 differs from s2
but fails otherwise. Although next is not needed in the loop shown above, in
more complicated situations next often provides the best method of getting
directly to the next iteration of a loop.

The control structure

not expr

succeeds if expr fails but fails if expr succeeds. In other words, not reverses
success and failure. This control structure could have been called cant to
emphasize the use of success and failure in expression evaluation in Icon.

Chapter 2 Icon 13

write("Hail to the chief!")
write("Throw the bum out!")
write("Who is this guy?")

Icon has one control structure in which the expression to evaluate is
based on a value rather than success or failure:

case expr of {
case clause
case clause

}

The value of expr is used to select a case clause and an expression to evaluate.
Case clauses are evaluated in the order they are given. A caseclause has the form

expr1 : expr2

where the value of expr1 is compared to the value of expr at the beginning of the
case expression. If the value of expr1 in a case clause is the same as the value of
expr, expr2 is evaluated and control goes to the point immediately after the end
of the case expression. Otherwise, the next case clause is tried. For example, in

case title of {
"president":
"umpire":
default:
}

if the value of title is "president" or "umpire", a corresponding line is written. If
the value of title is neither of these strings, the default case is selected. The default
case is optional; if it is absent and no case clause is selected, nothing happens.

Once a case clause is selected, no other case clauses are tried; unlike C's
switch statement, control never passes from a selected case to the next one.
Alternation can be used to let one of several values select the same case clause,
as in:

case title of {
"president" I "prime minister":
"umpire" I "referee" I "linesman":
default:
}

Generators

write("Haii to the chief!")
write("Throw the bum out!")
write("Who is this guy?")

Now for something fun: Imagine you are in a room with three closed
doors and no other way out. Suppose you try a door and find it locked. You'd
probably try another door. In other words, you are presented with three
alternatives. Ifyou try one and fail to get outofthe room, you'd try another door,
and, if necessary the third one.

14 Icon Chapter 2

Analogous situations are common in programming problems, but most
programming languages don't provide much help. Icon does.

Consider the problemoflocating the positions at which one string occurs
as a substring in another. Suppose you're looking for the string "the" in a line of
text. Consider three possible lines:

"He saw the burglar jump down."

"He saw a burglar jump down."

"He saw the burglar jump over the bench and climb the wall."

In the first line, there is one instance of "the", as shown by the underline. In the
second, there is none, but in the third, there are three.

If you are looking for "the" in the first line, you would be successful. In
the second line, you would fail- a situation we've already covered. But what
about the third line, where there are three instances of "the"? Certainly your
attempt to find "the" should be successful. Finding the first (left-most) one would
be natural. But what about the two remaining alternatives? Icon provides help
with this kind of situation with generators, which are expressions that can
produce more than one value.

Icon has a procedure for finding the location of substrings: find(s1, 52),
which produces (generates) the positions at which 51 occurs in 52. Suppose we
name the lines above Iine1, line2, and line3. Then find("the", line1) produces 8
(we'll explain how Icon numbers the positions in strings later). On the other
hand, find("the", line2) fails, since there is no occurrence of "the" in line2.
find("the", line3) produces 8, then 30, and finally 50.

A generator does not produce several values all at once. Instead, a
generator produces a value only when one is needed. For example, in

i := find("the", line1)

find("the", line1) produces 8 because a value is needed for the assignment. As a
result, 8 is assigned to i. On the other hand, in

i := find("the", line2)

since find("the", line2) fails, the assignment is not done, and i is not changed.
Incidentally, it's a good idea to provide a testwhen there is a possibility offailure;
otherwise you have no way of knowing if a computation was done.

Now let's consider the third line. In

i := find("the", line3)

the first position, 8, is assigned to i; findO works from left to right as you'd expect.
Since assignment needs only one value to assign, only one value is produced by

Chapter 2 Icon 15

findO. But what about the other two positions? Suppose you want to know what
they are?

Generators wouldn't be much good if there weren't ways to get more
than a first value. There are two ways, however: iteration and goal-directed
evaluation.

Iteration

The control structure

every expr1 do expr2

requests every value that expr1 can produce, evaluating expr2 for each one. For
example,

every i := find("the", line3) do
write(i)

writes 8,30, and 50. The loop is terminated when find() has no more values to
produce.

Generation, like failure, is "inherited". The loop above can be written
more compactly as

every write(find("the", line3))

You might try to write the equivalent computation in Pascal or C - that will
show you the power of generators.

Although every requests all the values of a generator, you can put a limit
on the number of values a generator can produce. The limitation control struc­
ture,

expr\ i

limits exprto at most i results. For example,

every write(find("the", line3)) \ 2

writes only 8 and 30.

A word of warning: It's easy to confuse while-do with every-do because
they appear to be so similar. The difference is that

while expr1 do expr2

repeatedly evaluates expr1, requesting only its first value each time through the
loop, while

every expr1 do expr2

requests all the values expr1 has. For example, if you write

16 Icon Chapter 2

while write(find("the", line3))

the value 8 is written over and over, in an endless loop. You'll probably not make
this mistake often, but it may be helpful to know what to look for ifyou get such
a symptom.

The other mistake is to use every-do when you want to repeatedly
evaluate an expression, as in

every write(read())

which writes (at most) one line, since readO is not a generator and can produce
only one value. (If you're wondering why readO is not a generator, there's no
need for it to be, since every time it is evaluated, it reads a line.)

Goal-Directed Evaluation

As mentioned earlier, there is a second way in which a generator can
produce more than one value. It's called goal-directed evaluation, and unlike
iteration, it's done automatically.

Suppose you choose a door in the imaginary room, but find that it opens
to a closet with no exit. What you'd normally do is back outand try another door.
You can imagine other, more complicated, situations in which you open a door
into another room, it also has several doors, and so on, but you eventually wind
up in a closet again.

The usual way to solve suchproblems is tobe goal-directed; ifsomething
doesn't work, try something else until you succeed or exhaust all alternatives. If
you are successful in solving a sub-goal (such as finding an unlocked door in the
room you're currently in), but that doesn't lead to your ultimate goal (such as
getting out of the place altogether), you go back and try another alternative
(called backtracking). Of course, you have to keep track ofwhat you've tried and
not wind up repeating the same futile attempts. This can quickly become a
problem, as in a maze.

In Icon, if a value produced by a generator does not lead to success in the
expression that needed the value, the generator is automatically requested to
produce another value (that is, to provide an alternative).

For example, suppose you want to know if "the" occurs in line3 at a
position greater than 10. You can write

if find("the", Iine3) > 10 then write("Found it!")

As shown above, find() first produces 8. Since 8 is not greater than 10, the
comparison fails. Things do not stop there, however. Goal-directed evaluation
seeks success. The failure of the comparison results in a request for another value

Chapter 2 Icon 17

from findO. In the case here, the next value is 30, the comparison succeeds, and
a notification is written. All this happens automatically; it's part of expression
evaluation in Icon.

You may have a lot of questions at this point, such as "What happens if
there is more than one generator in a complicated expression?" and "Can't goal­
directed evaluation result in a lot of unnecessary computation?"

We won't go into multiple generators here, except to say that all possible
combinations of generators in an expression are tried if necessary. This sounds
like an expensive process, but it's not a problem in practice. See Griswold and
Griswold (1996) for a detailed discussion of multiple generators.

Reversible Assignment

When goal-directedevaluation results inbacktracking, expression evalu­
ation returns to previouslyevaluated expressions to see if theyhave alternatives.

Backtracking does not reverse the effects of assignment. For example, in

(i := 5) & (find("the", line) > 5)

if findO fails, backtracking to the assignment does not change the value assigned
to i. It remains 5.

Icon provides reversible assignment, represented by <-. In

(i <- 5) & (find("the", line) > 5)

if findO fails, backtracking to the reversible assignment causes the value of ito be
restored to whatever it was previously.

Other Generators

As you might imagine, Icon has several generators as well as a way for
you to write your own. We'll mention generators that are specific to particular
kinds of computation as we get to other parts of Icon. There are two generally
useful generators that we'll describe here.

One is

ito j

which generates the integers from i to j in sequence. For example,

every i := 1 to 100 do
lookup(i)

evaluates lookup(1), lookup(2), ..., lookup(1 00). This can be written more com­
pactlyas

18 Icon Chapter 2

every lookup(1 to 100)

There is an optional by clause in case you want an increment value other
than I, as in

every lookup(O to 100 by 25)

which evaluates lookup(O), lookup(25),lookup(50),lookup(75), and lookup(1 00).

Alternation, described earlier, is a generator:

expr1 I expr2

This expression first generates the values of expr1 and then generates the values
of expr2. For example,

every lookup(1) I lookup(33) I lookup(57)

evaluates lookup(1), lookup(33), and lookup(57). This can be written more
compactly by putting the alternatives in the argument of lookupO:

every lookup(1 I 33 I 57)

In this example, the arguments of alternation are just integers and produce only
one value each. As suggested above, the expressions in alternation can them­
selves be generators. Going back to an earlier example,

every write(find("the", Iine1) I find("the", line2) I find("the", line3»

writes 8 (from line1), nothing from line2, and then 8,30, and 50 from Iine3. This
expression can be written more compactly by putting the alternation in the
second argument of findO:

every write(find("the", Iine1 I Iine2 Iline3))

Types, Values, and Variables

Data types

Icon supports several kinds of data. Integers and real (floating-point)
numbers are familiar. In Icon, strings - sequences of characters - also are a
type of data. Strings are a fundamental data type that can be arbitrarily long.
Strings in Icon are not arrays of characters as they are in most programming
languages. Icon also has a data type for sets of characters in which the concept
of membership is important. In Icon, several kinds of structures also are data
values. We'll say more about the different types of data as we go along.

Chapter 2 Icon

Variables

19

Most programming languages, including Icon, have variables to which
values can be assigned. Icon, unlike most programming languages, does not
limit a variable to one type of data. In Icon, variables are not typedbutvalues are.
That may sound a bit strange, but what we mean is illustrated by the procedure
typeO, which returns the name of the type of its argument. For example,

type(a + b)

returns either "integer" or "real", depending on the types of a and b. You might
want to make a mental note about typeO - it's handy for several purposes,
including debugging.

Since variables are not typed, a value of any type can be assigned to any
variable. For example, it's possible to assign an integer to a variable at one time
and a string to the same variable at another time, as in

x:= 1

x := "Hello world"

Although Icon lets you do this, it's generally better style to use variables
ina type-eonsistentway. There are situations, whichwe will describe later, when
the flexibility that Icon offers in this regard is very useful.

Keywords

Icon keywords, identified by names beginning with an ampersand, play
a variety of special roles. Some, such as &pi and &e, provide constant values­
in this case the mathematical constants 1t and e. Others, such as &date and
&version, supply environmental information. A few keywords can be assigned
values; an example is &random, the seed for random numbers. Keywords are
listed in Appendix F.

Assignment

As shown in earlier examples, := is Icon's assignment operator. Aug­
mented assignment combines assignment with another operation. For example,

i :=i+3

can be written as

i+:=3

Most binary operations can be combined with assignment in this manner.

20 Icon Chapter 2

The exchange operator, :=:, interchanges the values of two variables.
After execution of

x:=:y

x contains the previous value of y and y contains the previous value of x.

Type Checking and Conversion

Since variables are not typed, there are no type declarations in Icon. This
has advantages; it saves writing when you're putting a program together. On the
other hand, without type declarations, errors in type usage may go unnoticed.

Although Icon does not have type declarations, it's a strongly typed
language. During program execution, every value is checked to be sure that it is
appropriate for the context inwhich it is used. For example, as mentioned earlier,
an expression like

i:= i + "a"

results in an error when executed because "a" cannot be converted to a number.

Icon does more than just check types during program execution. When
necessary, Icon automatically converts a value that is not of the expected type to
the type that is expected. Real, integer, string, and character set values are
converted in this manner. For example, in

i:= i + "1"

the string "1" is automatically converted to the integer 1, since addition requires
numbers.

While you're not likely to write such expressions explicitly, there are
many situations in which automatic type conversion is convenient and saves
you the trouble of having to write an explicit conversion. We've used that earlier
in this chapter without comment. Suppose you want to count something and
then write out the results. You can do it like this:

count := 0
count items

write(count)

The procedure writeO expects a string, so the integer value of count is automati­
cally converted to a string.

It's also possible to convert one type to another explicitly, as in

i := integer(x)

Chapter 2 Icon 21

The procedure integerO converts its argument to an integer if possible. If the
conversion can't be performed, integerO fails, as you should expect from our
earlier discussion of the situations in which failure can occur.

There are similar procedures for other data types. See Appendix E.

The Null Value

The null valueisaspecial value that serves several purposes. It has a type
of its own and cannot be converted to any other type. The keyword &null has the
null value.

The null value can be assigned to a variable, but it is illegal in most
computations. Variables are initialized to the null value, so the use of a variable
before another value has been assigned to it generally results in an error.

The operations Ix and \x can be used to test for the null value. Ix succeeds
and produces x if x has the null value. \x succeeds and produces x if x has a
nonnull value. Since these operations produce variables, assignment can be
made to them. For example,

Ix:= 0

assigns 0 to x if x has the null value, and

\x:= 0

assigns 0 to x if x has a nonnull value.

Numerical Computation

Graphics programming, even for simple drawings, involves a lot of
numerical computation. Icon has the usual facilities for this.

Integer and Real Arithmetic

Integers in Icon are what you'd expect, except possibly for the fact that
there is no limit on the magnitude of integers. You probably won't have much
occasion to use integers that are a thousand digits long, but it may be helpful to
know that you don't have to worry about integer overflow.

Real numbers are represented by floating-point values, and hence their
magnitudes and precision depend somewhat on the platfonn you're using.

Integers can be represented literally in the ways we've shown earlier.
Real numbers can be represented literally in either decimal or exponential form,
as in 0.5 and 5E-1.

22 Icon Chapter 2

The standard mathematical operations are provided for both integer and
real arithmetic:

-n negative of n
n1 + n2 sum of n1 and n2
n1 - n2 difference of n1 and n2
n1 * n2 product of n1 and n2
n1 / n2 quotient of n1 and n2
n1 % n2 remainder of n1 divided by n2
n1 1\ n2 n1 raised to the power n2

In "mixed-mode" arithmetic, in which one operand is an integer and the
other is a real number, the integer is converted to a real number automatically
and the result is a real number.

It's worth noting that the sign of n1 % n2 is the sign of n1.

Arithmetic operations group in the usual way, so that a * b + C / d is
interpreted as (a *b) + (c/ d). Grouping is discussed in more detail under Special
Topics at the end of this chapter.

Division by zero is an error, as are expressions such as

-11\0.5

which would produce an imaginary result.

The standard numerical comparison operations are available also:

n1 =n2 n1 equal to n2
n1 > n2 n1 greater than n2
n1 >= n2 n1 greater than or equal to n2
n1 < n2 n1 less than n2
n1 <= n2 n1 less than or equal to n2
n1 -= n2 n1 not equal to n2

A successful comparison operation returns the value of its right operand.
Consequently, the expression

i < j < k

succeeds and produces the value of k if and only if j is strictly between i and k.

Mathematical Procedures

Many drawings, even simple ones, require mathematical computations.
Icon provides several procedures for performing trigonometric and other com­
mon mathematical computations:

Chapter 2 Icon

sqrt(r) square root of r

exp(r) e raised to the power r

log(r1, r2) logarithm of r1 to the base r2

sin(r) sine of r in radians

cos(r) cosine of r in radians

tan(r) tangent of r in radians

asin(r) arc sine of r in the range -rt/2 to rt/2

acos(r) arc cosine of r in the range 0 to rt

atan(r1, r2) arc tangent of r1 / r2 in the range -rt to rt

dtor(r) radian equivalent of r degrees

rtod(r) degree equivalent of r radians

See Appendix E for details.

Random Numbers

23

Random numbers often are useful for providing a Iittle variety or a touch
of the unexpected in otherwise mundane operations.

The operation ?i produces a random number. If i is positive, the result is
an integer in the range 1 ~ j ~ i. If i is 0, the result is a real number in the range 0.0
~ r < 1.0. Random numbers in this range provide a convenient basis for scaling
to any range.

Icon also has ways of randomly selecting from a collection of values.
We'll mention these in the sections that follow.

Structures

In Icon, a structure is a collection of values. Different kinds of structures
provide different organizations and different ways of accessing values. Icon has
four kinds of structures: records, lists, sets, and tables.

Records

Icon's records are similar in some respects to Pascal records and C
structs. A record has a fixed number offields whosevalues are accessed by name.
A record type must be declared, as in

record point(x, y)

which declares point to be a record type with two fields, x and y. This declaration
also creates a record constructor, which is a procedure that creates instances of the

24 Icon Chapter 2

record. For example,

P := point(O, 100)

creates a "point" whose x field is aand whose y field is 100 and then assigns the
result to P. A record declaration also adds a type to Icon's built-in repertoire, so
that you can tell what the type of a record is. For example,

write(type(P))

writes point.

A field of a record is accessed by following the record with a dot and the
field name, as in

P.x:= 300

which changes the x field of P to 300.

A record can contain any number of fields, and a program can contain
any number of record declarations. Different record types can have the same
field names, as in

record square(label, x, y, w, h)

Icon determines the correct field from the type at execution time. For
example, obj.x references the first field if obj is a point but the second field if obj
is a square.

Lists

In Icon, a list is a sequence of values - a one-dimensional array or a
vector. Icon's list data type is very flexible and is particularly useful in graphics
programming.

You can create a list by specifying the values (elements) that the list
contains, as in

colors := ["cyan", "magenta", "yellow", "black"]

which creates a list with the four elements shown.

You also can create a list of a specified size and provide a single value for
every element, as in

coordinates := list(1000, 0)

which creates a list of1000elements, all ofwhich are zero. List size is limited only
by the amount of available memory.

Both [] and list(O) create an empty list with no elements. We'll show why
you might want an empty list later.

Chapter 2 Icon 25

The operator *L produces the size of a list (the number of elements in it).
For example, *colors produces 4.

The value of an element can be obtained by subscripting it by position,
as in

write(colors[3])

which writes yellow, the third element of colors. Note that Icon numbers list
elements starting at 1. The value of an element of a list can be set by assigning to
the subscripting expression, as in

coordinates[137] := 500

which sets the 137th element of coordinates to 500. A subscripting expression
fails if the subscript is out of range. For example, colors[5] fails.

The element-generation operator, !L, generates all the elements in Lfrom
first to last. For example,

every write(!colors)

writes cyan, magenta, yellow, and black. You can even use the element-genera­
tion operator to set the elements in a list, as in

every !coordinates := 100

which sets all of the elements in coordinates to 100.

Another operation that sometimes is convenient is ?L, which selects an
element of the list L at random. For example,

write(?colors)

writes one of the elements of colors.

An unusualbutvery useful feature oflists in Icon is thatyou can use them
as stacks and queues, adding and deleting elements from their ends. When these
procedures are used, the size of a list increases and decreases automatically.

There are five procedures that access lists in these ways:

put(L, x1, x2, ... xn) puts x1, x2, ... xn on the right end of L. The
elements are appended in the order given,
so xn becomes the last element of L.

push(L, x1, x2, ... xn) pushes x1, x2, ... xn onto the left end of L.
The elements are prepended in the order
given, so that xn becomes the first element
of L.

get(L) removes the left-most element of Land pro­
duces its value. getO fails if L is empty.

26 Icon Chapter 2

pop(L)

pull(L)

~ pull()

popO is a synonym for getO.

removes the right-most element of Land
produces its value. pullO fails if L is empty.

The relationships among these procedures are shown in the following
diagram:

push()~

popO
get()~ ~ putO

L..-_-'--_--L_.....-I__.L-_....J-._---L._----I

We mentioned empty lists earlier. Ifyou want to implement a stack, you
can start with an empty list and use pushO and popO on it. You can tell the stack
is empty when popO fails. To implement a queue, you also can start with an
empty listbut use putO and getO. You do not need toworry about overflow, since
there is no limit to the size of a list.

These procedures also are useful evenwhen you're notthinking ofstacks
and queues. For example, suppose you want to create a list of the lines from a file.
All that's needed is

lines := []
while put(lines, read())

You don't need to know in advance how many lines are in the file.

Sets

A set in Icon is a collection of distinct values. In a set, unlike in a list, there
is no concept of order and no possibility of duplicate values; only membership
counts.

A set is created as follows:

shapes := setO

assigns to shapes an empty set (one with no members). Members can be added
to a set, as in

insert(shapes, "triangle")

which adds the string "triangle" to shapes. The size of a set increases automati­
cally as new members are added to it. Attempted insertion of a duplicate value
succeeds without changing the set. There is no limit to the size of a set except the
amount of available memory.

Chapter 2 Icon 27

81 ** 82

81 -- 82

You can determine if a value is a member of a set as follows:

member(shapes, "square")

succeeds if "square" is in shapes but fails otherwise. You also can delete a
member from a set, as in

delete(shapes, "triangle")

Attempting to delete a member that is not in a set succeeds but does not change
the set.

The following set operations are available:

81 ++ 82 produces a new set with the members that are in either
81 or 82 (union)

produces a new set with members that are in both 81
and 82 (intersection)

produces anew setwith themembersof81 thatarenot
in 82 (difference)

Many of the operations on lists also apply to sets: *8 is the number of
members in 8, !8 generates the members of 8 (in no predictable order), and ?8
produces a randomly selected member of 8.

Tables

Tables are much like sets, except that an element of a table consists of a
key and an associated value. A key is like a member of a set - all the keys in a
table are distinct. The values of different keys can be the same, however.

A table is created as follows:

attributes := tableO

which assigns an empty table (one with no keys) to attributes. Elements can be
added to a table by subscripting it with a key, as in

attributes["width"] := 500

which associates the value 500 with the key "width" in the table attributes. A new
element is created if the key is not already present in the table. Note that this is
much like assigning a value to an element of a list, except that the subscript here
is a string, not a position. A table automatically grows as values are assigned to
new keys. There is no limit to the size of a table except the amount of available
memory.

As you'd expect, you can get the value corresponding to a key by
subscripting. For example,

28 Icon Chapter 2

write(attributes["width"])

writes 500. You also can change the value associated with a key by assignment,
as in

attributes["width"] := 1000

A default value is associated with every table. This value is fixed at the
time the table is created and is specified by the argument to the tableO call. Ifno
argument is given, the null value is used for the table default.

When a table is subscripted by a value that does not match a key, the
expression does not fail, but instead produces the table's default value. Continu­
ing the example above,

attributes["height"]

succeeds and produces the null value because that is the table's defaultvalue. An
expression such as ff[k] can be used to test whether k has been used to assign a
value in T.

A default value of 0 is useful for tables that accumulate counts. For
example, if

count := table(O)

then an expression such as

count["angle"] +:= 1

increments the value associated with "angle" whether or not it is the first time
count is subscripted with this key.

The same operations that apply to lists and sets apply to tables: *T is the
number of elements (keys) in T, !T generates the values (not keys) in T (in no
predictable order), and ?T produces a randomly selected value from T. In
addition, key(T) generates the keys in T (in no predictable order).

Sorting Structures

A structure can be sorted to produce a list with elements in sorted order.
The details of sorting depend on the kind of the structure.

A list, set, or record can be sorted by sort(X), which produces a new list
with the elements of X in sorted order. Sorting for numbers is in order of
nondecreasing magnitude. Sorting for strings is in nondecreasing lexical (alpha­
betical) order. See Appendix E for details about sorting.

Sorting tables is more complicated because a table element consists of a
pair of values. The way a table is sorted depends on the second argument of
sortO:

Chapter 2 Icon

sort(T, 1)

sort(T,2)

sort(T,3)

sort(T,4)

29

produces a list of two-element lists, where each two­
element list corresponds to an element of T. Sorting of
the two-element lists is by key.

is like sort(T, 1) except that the two-element lists are
sorted by value.

produces a list of alternating keys and associated
values. The resulting list has twice as many elements as
T. Sorting is by keys.

is like sort(T, 3), except that sorting is by value.

Characters and Strings

Characters are the material from which text is formed. Icon uses an 8-bit
character set, which contains 256 characters. Characters are represented in a
computer by small nonnegative integers in the range 0 to 255. These numbers are
called the character codes. Although you ordinarily do not need to think of
characters in terms of the character codes that represent them, it's useful to know
that operations on characters, such as comparison, are based on the values of
character codes.

All modem computer systems use a superset of the ASCII character set.
As you'd expect, the code for B is greater than the code for A, and the code for
2 is greater than the code for 1. In ASCII, the codes for lowercase letters are
greater than the codes for uppercase ones. Codes for characters other than letters
and digits are somewhat arbitrary, and the meaning of codes greater than 127 is
system-dependent.

Some characters do not have symbols associated with them, but desig­
nate special functions; tabs, backspaces, and linefeeds are examples. Some
characters have no standard associations with symbols or functions but are used
for a variety of purposes depending on the application that uses them. All 256
characters can be used in Icon programs. Unlike C, the null character (which has
code 0), is not reserved for a special purpose.

Data Types Composed of Characters

Icon has two data types based on characters: strings and character sets
(csets).

A string is a sequence of characters. Strings are used for many purposes,
including printed and displayed text and text stored in files. Strings in Icon are
atomic data values, not arrays of characters. A string is a value in the same sense

30 Icon Chapter 2

an integer is a value. Strings can be constructed as needed during program
execution. Space for strings is provided automatically, and strings can be
arbitrarily long, limited only by the amount of available memory.

A cset is just a collection of different characters. Unlike strings, there is
no concept of order in a cset and a character can only occur once in a given cset.
Csets are useful in string analysis in which certain characters, such as punctua­
tion marks, are of importance, but no character is more important than another.

Strings are represented literally by enclosing a sequence of characters in
double quotation marks, as in

greeting := "Hello world!"

which assigns a string of 12 characters to greeting. Escape sequences are used for
characters that cannot be represented literally. For example, "\n" is a string
consisting of a linefeed character, "V'C" is a control-C character, and "\"" is a string
consisting of one double quotation mark. See Appendix A for a description of
escape sequences.

Csets are represented in a similar fashion, but with enclosing single
quotation marks, as in

operators := '+-*/"%'

which assigns a cset of 6 characters to operators.

Several keywords provide predefined csets. Two of the most useful are:

&digits the 10 digits
&Ietters all upper- and lowercase letters

See Appendix F for other cset-valued keywords.

Operations on Strings

Icon has a large repertoire of operations on strings. Some operations are
used to create strings, while others are used to analyze strings. We'll discuss
string analysis in the next section.

The mostfundamental way to construct a string is concatenation, s1 II s2,
which creates a new string by appending the characters of s2 to those of s1. An
example of concatenation is

salutation := greeting II " (I'm new here, myself.)"

which forms a new string consisting of the characters in greeting followed by
those given literally.

The empty string, which is given literally by"", is useful when you're

Chapter 2 Icon

building up a string by concatenation. For example,

31

text := 111I

while line := readO do
text := text" line" " "

builds up a string of all the lines of input with a blank following each line. (This
probably isn't something you'd actually want to do. Although Icon lets you
build long strings, a list of strings usually is easier to process.)

The operation *s produces the size of s - the number of characters in it.
For example, the value of *salutation as given above is 36. Incidentally, *s is fast
and its speed is independent of the size of s.

Icon provides several procedures that construct strings. The procedure
reverse(s) returns a copy of s with its characters in reverse order. The procedure
repl(s, i) produces the concatenation of i copies of s. The procedures left(s, i),
right(s, i), and center(s, i) position s in a field of a length i. The procedure trim(s)
removes trailing spaces from s. These procedures are described in more detail
in Appendix E.

Although strings in Icon are not arrays of characters, you can get the
individual characters of a string by subscripting it. For example,

write(text[1])

writes the first character of text.

In Icon, unlike C and other programming languages that represent
strings by arrays of characters, character numbering starts at I, not O. Character
positions actually are between characters. For example, the character positions
in "Medusa" are:

i
1

M e d u s
iii i
2 3 4 5

a
i i
6 7

Position 1 is before the first character and position 7 is after the last character.

In subscripting a string, sri] is the character following position i. The
substring consisting of the characters between two positions can be obtained by
subscripting with the positions separated by a colon. For example, the value of
"Medusa"[2:5] is "edu".

Nonpositive numbers can be used to identify the characters of a string
relative to its right end:

M e d usa
iii iii i
-6 -5 -4 -3 -2 -1 0

32 Icon Chapter 2

Thus, "Medusa"[-5:-2] is another way of specifying the substring "edu". In
subscripting, a position can be given in either positive or nonpositive form and
the positions do not have to be in order - it's the characters between two
positions that count.

You can assign to a substring of a string to change those characters.
Suppose, for example, the value of name is "George". Then

name[1 :3] := "J"

changes name to "Jorge". Assignment to the substring creates a new string, of
different length, which then is assigned to name. The expression above really is
just shorthand for

name := "J" II name[3:0]

Unlike programming languages in which strings are arrays of characters, Icon
doesn't really change the characters of a string; it always creates a new string in
such situations.

Strings can be compared in a manner similar to the comparison of
numbers, but the operators are different and comparison is by character code
from the left - by lexical order. The string comparison operations are:

s 1 == s2 s 1 lexically equal to s2
s1 » s2 s1 lexically greater than s2
s1 »= s2 s1 lexically greater than or equal to s2
s1 « s2 s1 lexically less than s2
s1 «= s2 s1 lexically less than or equal to s2
s1 -== s2 s1 lexically not equal to s2

The operation s1 == s2 succeeds if and only if s1 and s2 have the same
size and are the same, character by character. In determining if one string is
greater than another, the codes for the characters in the two strings are compared
from left to right. For example, "apple" is lexically greater than IIApple" because
the character code for "a" is greater than the character code for IIA". If two strings
have the same initial characters, butone is longer than the other, the longer string
is lexically greater than the shorter one: "apples" is lexically greater than "apple".

String Scanning

Icon has a high-level facility for analyzing strings, called string scanning.
String scanning is based on two observations about the nature of most string
analysis:

1. It is typical for many analysis operations to be performed on the same
string. Imagine parsing an English-language sentence, for example.

Chapter 2 Icon 33

write a character
skip a character

The parsing is likely to require many operations on the sentence to
identify its components.

2. Many analysis operations occur at a particular place in a string, and
the place typically changes as analysis continues. Again, think of
parsing a sentence. Parsing typically starts at the beginning of the
sentence and progresses toward the end as components are identified.
Of course, if an initial analysis proves to be incorrect later on, the
analysis may go back to an earlier position and look for an alternative
(backtracking).

To simplify string analysis, string scanning maintains a subject on which
analysis operations can be performed without explicitly mentioning the string
being analyzed. String scanning also automatically maintains a position that
serves as a focus of attention in the subject as the analysis proceeds.

A string scanning expression has the form

s? expr

where s is the subject string and expr is a scanning expression that analyzes
(scans) it. When a string-scanning expression is evaluated, the subject is set to s
and the position is set to 1, the beginning of the subject. The scanning expression
expr often consists of several subexpressions.

There are two procedures that change the position in the subject:

tab(i) set position to i

move(i) increment the position by i

Both of these procedures produce the substring of the subject between the
position prior to their evaluation and the position after their evaluation. Both of
these procedures fail and leave the position unchanged if the specified position
is out of the range of the subject. This failure can be used for loop control, as in

text? {
while write(move(1)) do

move(1)

which writes the odd-numbered characters of text, one per line.

It is good practice to enclose the scanning expression in braces, as shown
above, even if they are not necessary. This allows a scanning expression to be
extended easily and prevents unanticipated problems as a result of grouping
with other expressions.

You can'tdo muchwith justtheprocedures shown above. String analysis

34 Icon Chapter 2

find(s)

upto(c)

procedures, which produce positions that are set by tabO, are necessary for most
string scanning. The most useful analysis procedures are:

return the position at which s occurs in the subject

return the position at which a character of c occurs in
the subject

many(c) return the position after a sequence of characters of c

These procedures all examine the subject starting at the current position and
look to the right. For example, find("the") produces the position of the first
occurrence of litheII either at the current position or to its right. As you'd expect,
analysis procedures fail if what's being looked for doesn't exist.

Analysis procedures produce positions; they do not change the position
- tabO is used for this. For example, the "words" in a string can be written out
as follows:

text? {
while tab(upto(&letters)) do

write(tab(many(&Ietters)))
}

In this string scanning expression, upto(&letters) produces the position of the
first letter in the subject and provides the argument for tabO, which moves the
position to that letter. Next, tab(many(&letters)) moves the position to the end of
the sequence of letters and produces that substring of the subject, which is
written. (Our definition of a "word" is overly simple, but it illustrates the general
method of string scanning.)

Another useful scanning operation is

=s

which sets the position in the subject to the end of s, provided s occurs at the
current position. It fails otherwise. For example, to analyze only lines of input
that begin with a colon, the following approach can be used:

while line := readO do {
line? {

if =":" then
analyze rest of the line

}
}

There is more to string scanning thanwe have described here. !fyou need
to do a lot ofcomplex string analysis, see Griswold and Griswold (1996) for more
information.

Chapter 2 Icon

Procedures and Scope

Procedure Declarations

35

Procedures are the computationalbuildingblocks from which programs
are composed. Procedures allow you to organize computation and divide your
program into logical components.

As illustrated by the examples given earlier in this chapter, procedure
declarations are bracketed by procedure and end. Within the declaration, there
can be declarations for variables that are local to the procedure, expressions to
be evaluated on the first call of the procedure, and expressions comprising the
body of the procedure that are executed whenever the procedure is called:

procedure name(parameters)
local declarations
initial clause
procedure body

end

The parameters provide variables to whichvalues are assigned when the
procedure is called, For example in

procedure max(i, j)

if i > j then return i else return j

end

the parameters of maxO are i and j. When the procedure is called, values are
assigned to these parameters, as in

write(max(count, limit))

which assigns the value of count to i and the value of limit to j, as if the expressions

i := count
j:= limit

had been evaluated.

The return expressions in this procedure return either the value of i or the
value of j, depending on their relative magnitudes. The value returned becomes
the value of the procedure call. In the example above, this value is written.

When a procedure call omits the value for a parameter, the null value is
used. The procedure can check for a null value and assign an appropriate
default.

36 Icon Chapter 2

Parameters are local to a procedure call. That is, when maxO is called, the
variables i and j are created for use in the call only. Their values do not affect any
variables i and j that might exist outside the procedure call.

Additional local variables are declared using the reserved words local
and static. Variables declared as local are initialized to the null value every time
the procedure is called. Variables declared as static are initialized to the null
value on the first call, but they retain values assigned to them from call to call.

Expressions in an initial clause are evaluated only once, when the
procedure is called for the firsttime. An initial clause often is used to assign static
variables a first-time value.

The following example illustrates the use oflocal and static variables and
an initial clause:

procedure alpha_count(s)
local count
static alphnum

initial alphnum := &Ietters ++ &digits

count:= 0

s?{
while tab(upto(alphnum)) do {

count := count + 1
move(1)
}

}

return count

end

In this procedure, the value for alphnum is computed the first time alpha_countO
is called, but it is available to subsequent calls of the procedure.

Scope

The term scope refers to the portion of a program within which a variable
is accessible. As explained earlier, parameters and declared local variables are
accessible only within a call of the procedure in which they are declared.

Variables also can be declared to be global, in which case they are
accessible to the entire program. For example

global status, cycle

Chapter 2 Icon 37

declares status and cycle to be global and hence accessible to all procedures in
the program.

Global declarations must be outside procedure declarations. It is good
practice to put them before the first procedure declaration in a program so that
they are easy to locate when reading the program.

In the absence of a global declaration for a variable, the variable is local
to the procedure in which it appears. A local declaration is not required for the
variable. Although local declarations are not required in such cases, it is good
practice to use them. It makes their scope clear and prevents an undeclared
variable from accidentally being global because of an overlooked global decla­
ration.

Calling Procedures

Procedures are values, much like lists and sets are values. The names of
procedures, both built-in and declared, are global variables. Unlike declared
global variables, these variables do not have null values initially; instead they
have procedure values. When you call a procedure, as in

max(count, limit)

it's the value of max that determines which procedure is called. Since max is a
declared procedure, the value of max is that procedure, which is called.

When a procedure is called, the arguments in the call are passedbyvalue.
That is, the values of count and limit in the call above that are assigned to the
variables i and j in max. The procedure max does not have access to the variables
count and limit and cannot change their values.

In the examples shown so far, the values passed to a procedure are given
explicitly in argument lists in the calls. Sometimes it's useful to pass values
contained in an Icon list to a procedure. This is especially useful for procedures
like writeO that can take an arbitrary number of arguments. Suppose, for
example, that you do not know when you're writing a program how many
arguments there should be in a call of writeO. This might occur if lines to be
written consist of fixed-width fields, but you don't know in advance how many
fields there will be.

In such cases, a procedure can be called with an (Icon) list of values
instead of explicit arguments. This form of call is

p!L

where p is a procedure and L is a list containing the arguments for p. For the
situation above, this might have the form

38 Icon Chapter 2

fields := []
every put(fields, new_field(»
write! fields

Since procedures are values, they can be assigned to variables. For
example, if

format := [left, right, center]

then

format[i](data, j)

calls leftO, rightO, or centerO depending on whether i is 1,2, or 3.

Procedure Returns

As shown earlier in this chapter, a declared procedure can return a value
using a return expression, such as

return i

A declared procedure also can fail (produce no value) just as a built-in
operation can fail. This is done by using the expression fail instead of return. For
example, in

procedure between(i, j, k)

if i < j < k then return j
else fail

end

the value of j is returned if it is strictly between i and k, but the procedure call fails
otherwise.

A procedure call also fails if control flows off the end, as in

procedure greet(name)

write("Hi there!")
write("My name is ", name, ".")

end

Two lines are written and then the procedure call fails. It's good practice in such
cases to include an explicit return to prevent failure from causing unexpected
results at the place the procedure is called. The previous procedure might better
be written

Chapter 2 Icon 39

procedure greet(name)

write("Hi there!")
write("My name is ", name, II .")

return

end

If return has no argument, the null value is returned.

A procedure also can generate a sequence of values in the manner of a
built-in operation. This is done using the expression suspend, which returns a
value but leaves the procedure call intact so that it can be resumed to produce
another value. An example is

procedure segment(s, n)

s?{
while seg := move(n) do

suspend seg
}

end

This procedure generates successive n-character substrings of s. For example,

every write(segment("stereopticon"), 3)

writes

ste
reo
pti
con

When the scanning expression terminates because move(n) fails, control flows
off the end of the procedure and no more results are generated; that is, it fails
when resumed for another value. A fail expression could be added at the end of
this procedure, but it is conventional when writing generating procedures to
omit the fail.

File Input and Output

Files

On most platforms, a file is just a string of characters stored on a disk or
entered from the keyboard. A text file consists of lines that end with line
terminators. When reading a line, the characters up to a line terminator are

40 Icon Chapter 2

returned as a string and the line terminator is discarded. When a line is written,
a line terminator is appended. Line terminators vary from platform to platform,
but since they are discarded and added automatically, you usually don't have
to worry about them.

It's also possible to read and write characters in "binary" mode without
regard to line terminators. Most graphics applications deal with text files, but if
you need to deal with binary data, see the description of openO in Appendix E.

We've illustrated reading and writing lines of text in precedingexamples
without mentioning files. Three files always are available. They are the values of
keywords:

&input standard input
&output standard output
&errout standard error output

When readO is called without an argument, it reads lines from standard
input. You also can use &input as the argument to readO, as in read(&input).
Standard input usually comes from the keyboard but also can come from a disk
file. The method of specifying a file for standard input depends on the platform.

When writeO is called without specifying a file, lines are written to
standard output. You also can specify &output as the first argument of writeO, as
in

write(&output, "Hello, world!")

Standard output usually goes to the screen of your monitor, but there are ways
of having it stored for later use.

Standard error output by convention is where error messages, diagnos­
tics, and so forth are written. To write to standard error output, use &errout as
the first argument of writeO, as in

write(&errout, "Your data is inconsistent.")

Like standard output, standard error output usually goes to the screen, but most
platforms provide a way to separate standard output from standard error
output.

You also can open other files for reading and writing. The procedure
open(name, mode) opens the named file in the mode specified. The most
commonly used modes are:

"r" open the file for reading (the default)
"w" open the file for writing

The procedure openO returns a value whose type is file. For example,

Chapter 2 Icon 41

poem := open("thanotopsis.txt")

opens the file thanotopsis.txt for reading and assigns the corresponding file
value to poem. This file value then can be used as the argument for readO, as in

while line := read(poem) do
process(line)

Note that the wordfile is used in two different ways: as the name for a file
that the operating system understands and as an Icon value.

The procedure openO fails if the file cannot be opened in the specified
mode. This may happen for a variety of reasons. For example, if thanotopsis.txt
does not exist or if it's protected against reading, the use of openO above fails.
If this happens, no value is assigned to poem. If no other value has been assigned
to poem, its value is null. A null value and an omitted argument are the same in
Icon, so read(poem) is equivalent to readO. This is not an error; instead lines are
read from standard input, which may have mysterious consequences. It there­
fore is very important when opening a file to provide an alternative in case
openO fails, as in

poem := open("thanotoposis.txt") I stop("*** cannot open input file")

The procedure stopO writes its argument to standard error output and then
terminates program execution. It is the standard way to handle errors that
prevent further program execution.

Writing Lines

As illustrated by previous examples, if writeO has several string argu­
ments, they are written in succession on one line. A line terminator is appended
after the last string to produce a complete line.

Sometimes it's useful to write the components of a line in the midst of
performing other computations. For example, if you want to see the pattern of
word lengths in a line, you might decide to replace every word by its length:

sizes:= 1111

line? {
while tab(upto(&letters)) do

sizes 11:= *tab(many(&letters)) II II II

}

write(sizes)

The result might be something like

415711

42 Icon Chapter 2

You can avoid the concatenation by using the procedure writesO, which
is like writeO, except that it does not append a line terminator. The code fragment
above could be recast using writesO as follows:

line? {
while tab(upto(&letters» do

writes(*tab(many(&letters», II ")

}

writeO

The sizes and separating blanks are written successively, but without line
terminators. The final writeO with no argument provides the line terminator to
complete the line.

Closing Files

The procedure c1ose(name) closes the named file. Closing a file that is
open for output assures that any data that may be in internal buffers is written
to complete the file. Italso prevents additional databeing written to that file until
it is opened again. Closing a file that is open for reading prevents further data
from being read from that file.

When program execution terminates, whether normally by returning
from the main procedure, because of stopO, or as the result of a run-time error,
all files are closed automatically. It therefore is unnecessary to close files
explicitly before terminating program execution.

Most platforms, however, limit the number of files that can be open
simultaneously. If you exceed this limit, openO fails. If you're using many files
in a program, it therefore is important to close a file when you're through with
it.

Preprocessing

Icon provides a preprocessor that performs simple editing tasks as a
source program is read. Values or code fragments can be substituted wherever
a chosen name appears. Lines of code can be enabled or disabled conditionally,
and additional source files can be imported. The preprocessor is so named
because all this editing takes place before the source code is compiled.

Preprocessor directives are identified by a $ as the first character of a line,
followed by a directive name. For example,

$define Margin 8

defines the value of Margin to be 8. Whenever Margin appears subsequently in

Chapter 2 Icon

the program, 8 is substituted. For example, the line

x:= Margin

is interpreted as if it had been written

x:= 8

43

A definition can be removed, as in

$undef Margin

which removes the definition of Margin. A name can be redefined, but it must
be undefined first, as in

$undef Margin
$define Margin 12

In all cases, a definition affects only the portion of the file following the
place it appears.

There are a number ofpredefined names that depend on the platform on
which you are running. For example, _MS_WINDOWS is defined if you're
running on a Microsoft Windows platform.

The directive $ifdef name enables subsequent lines of code up to $endif
only if name is defined. There may be a $else directive between the $ifdef and
$endif directives to enable code if name is not defined. For example,

$ifdef _MS_WINDOWS
pathsym := "\\"

$else
pathsym := "/"

$endif

enables

pathsym := "\\"

if _MS_WINDOWS is defined but

pathsym := "/"

otherwise.

The $include directive copies a specified file into the program at the
place where the $include appears. For example,

$include "consticn"

inserts the contents of the file consticn to replace the $include directive. File
names that do not have the syntax of an Icon identifier must be enclosed in
quotation marks, as shown above.

44 Icon Chapter 2

See Appendix B for more information about preprocessing.

Running Icon Programs

Compilation and Execution

Running an Icon program involves two steps: compiling the program to
produce an executable file and then executing that file.

The way that these two steps are performed depends on the platform on
which Icon is run. On some platforms, Icon runs from a visual interface using
menus and so forth. On other platforms, Icon is run from the command line.
User's manuals that describe how to run Icon are available for the different
platforms. We'll use a command-line environment here to illustrate what's
involved and the options that are available.

On the command line, compilation is performed by the program icont,
which processes an Icon source file and produces an executable icode file, as in

icont app.icn

which compiles the program app.icn (files containing Icon programs must have
the suffix .icn). Specifying the .icn suffix is optional; the following works just as
well as the example above:

icont app

The name of the icode file produced by compiling an Icon program is
based on the name of the Icon file. On UNIX platforms, the name is obtained by
removing the suffix and is just app for the example above. For Microsoft
Windows platforms, the .icn suffix is replaced by .bat, producing app.bat for the
example above.

A program can be compiled and executed in one step by following the
program name by -x, as in

icont app.icn -x

There are several command-line options that can be used to control icont.
For example,

icont -0 rotor app

causes the icode file to be named rotor (or rotor.cmd on Windows platforms).
Such options must appear before the file name, unlike -x.

See Appendix a for more information about compiling and executing
Icon programs.

Chapter 2 Icon

Libraries

45

As illustrated earlier in this chapter, procedures can be declared to
augment Icon's built-in repertoire. Such procedures can be placed in libraries so
that they are available to different programs. Libraries play an important part in
graphics programming, and many of the graphics procedures described in
subsequent chapters are contained in libraries rather than being built into Icon.

A library is included in a program by using a link declaration. For
example,

link graphics

links the procedures needed for most graphics applications.

Link declarations can be placed anywhere in a program except inside
procedure declarations. It is good practice to place them at the beginning of a
program where they are easy to find.

You can make your own libraries. To do this, you need to compile the
files containing the procedures by telling icont to save its result in library format,
called ucode. This is done with the command-line option -c, as in

icont -c drawlib

which produces a pair of ucode files named drawlib.u1 and drawlib.u2. (The .u1
file contains code for the procedures, while the .u2 file contains global informa­
tion). This pair of files then can be linked by

link drawlib

in the program that needs procedures in drawlib.

Only the procedures that are needed by a program are linked into it; you
can make libraries that contain many procedures without worrying about the
space they might take in programs that don't need all of them.

Environment Variables

Icon's compilation environment can be customized using environment
variables. These variables, which are setbefore icont is run, tell Iconwhere to look
for things like libraries specified in link declarations.

The way that environment variables are set depends on the platform on
which you are running. In a UNIX command-line environment, the wayan
environment variable typically is set is illustrated by

setenv IPATH "/usr/local/lib/ilib /usr/icon/ilib"

which sets the environment variable IPATH.

46 Icon Chapter 2

IPATH is used to locate library files given in link declarations. In this
example, Icon looks in the directories

/usr/local/lib/ilib

and

/usr/icon/ilib

in that order. Icon always looks in the current directory first, so if your library
ucode files are there, IPATH need not contain that directory.

The environment variable LPATH is similar to IPATH, but LPATH tells
Icon where to look for files mentioned in $include preprocessor directives. (You
may notice that the names IPATH and LPATH seem backward - IPATH for
library files and LPATH for include files. The source of this potential confusion
has historical origins and it's now too late to correct it.).

Other environment variables are read when an Icon program begins
execution to configure memory and other aspects of execution. Consult the
user's manual for your platform.

See Appendix 0 for more information about environment variables.

The Icon Program Library

The Icon program library is a free collection of programs, procedures,
documentation, data, and support tools that is available to all Icon program­
mers. See Appendix P for instructions about obtaining the library.

Organization

The main directories in the Icon program library hierarchy are shown in
Figure 2.1.

Chapter 2 Icon 47

n
data docs packs procs progs gdata gdocs gpacks gprocs gprogs

basic graphics

Icon Program Library Hierarchy Figure 2.1

The library has two main parts: basic material and graphics material.
The initial character 9 indicates graphics material.

The source code for procedure modules is in the directories procs and
gprocs. As one might expect, the source code for graphics is in gprocs. The
directories progs and gprogs contain complete programs. The directories packs
and gpacks contain large packages.

Core Modules

The directories procs and gprocs contain hundreds of files, and in these
there are thousands of procedures. Some procedures are useful only for special­
ized applications. Others provide commonly used facilities and are designated
as "core" procedures. The core modules for the basic part of the library are:

convert type conversion and formatting procedures
datetime date and time procedures
factors procedures related to factoring and prime numbers
io procedures related to input and output
lists list manipulation procedures
math procedures for mathematical computation
numbers procedures for numerical computation and formatting
random procedures related to random numbers
records record manipulation procedures
scan scanning procedures
sets set manipulation procedures
sort sorting procedures
strings string manipulation procedures
tables table manipulation procedures

48

Special Topics

Icon Chapter 2

This section contains information about aspects of Icon that may help
you in writing and understanding Icon programs.

Syntactic Considerations

As in all programming languages, there are rules that you can follow to
avoid syntactic problems. The worst problems are not those that produce syntax
errors but those that produce unexpected results. The following sections deal
with the most common sources of such problems in Icon programs.

Precedence and Associativity

Icon has many operators - more than most programming languages.
The way that operators group in complex expressions in the absence of specific
groupings provided by parentheses and braces depends on the precedences and
associativities of the operators in such expressions.

Precedence determines which of two operators adjacent to an operand
gets the operand. With one exception, prefix operators that come before their
operands have precedence over infix operators that stand between their oper­
ands. For example,

-text + i

groups as

(-text) + i

The exception is record field references, in which the infix field operator
has highest of all precedence. Consequently,

-box.line

groups as

-(box.line)

Different infix operators have different precedences. The precedences of
infix arithmetic operators are conventional, with exponentiation (1\) having the
highest precedence; multiplication (*), division (I), and remaindering (%) the
next highest; and addition (+) and subtraction (-) the lowest. Consequently,

i * j + k

groups as

(i * j) + k

Icon has many infix operators, and it's easy to get an unintended result

Chapter 2 Icon 49

by relying on precedences for grouping. Instead, it's wise to use parentheses for
the less-familiar operations, as in

heading II (count + 1)

The use of parentheses also makes it easier to read a program, even if you know
what the precedences are.

Two common cases are worth remembering. Assignment has low prece­
dence, so it's safe to write

i:= j + k

knowing it groups as

i := U+ k)

In addition, conjunction has the lowest precedence of all operators, so it's
safe to write

i>j&m>n

knowing it groups as

(i > j) & (m > n)

A word of warning: The string scanning operator has higher precedence
than conjunction. Therefore

text? tab{find{header)) & move{1 0)

groups as

(text? tab{find{header))) & move(10)

which probably is not what's intended.

As a general rule, it's wise to enclose scanning expressions in braces to
avoid such problems, as in

text? {
tab{find{header)) & move{10)
}

This approach also makes it easy to add to scanning expressions and makes the
scope of scanning clear.

Associativity determines which of two infix operators gets an operand
between them. Most infix operators are left associative. For example,

i - j - k

groups as

50 Icon Chapter 2

(i - j) - k

(as is necessary for subtraction to work correctly).

The exceptions to left associativity are exponentiation and assignment.
Thus,

jl\jl\k

groups as

i 1\ (j 1\ k)

as is conventional in mathematical notation.

Assignment also is right associative, so that

I :=J:= k

groups as

i := (j := k)

This allows a value to be assigned to several variables in a single compound
assignment expression.

Line Breaks

As mentioned earlier, the Icon compiler automatically inserts semico­
lons between expressions on successive lines.

You can, however, continue an expression from one line to the next. To
do this, you need to know how the compiler decides to insert semicolons. The
rule is simple: If the current line ends a complete expression and the next line
begins an expression, a semicolon is inserted. To continue an expression from
one line to the next, just write it so that it's not complete on the current line. For
example, in

j :=j­
k

the expression is continued to the second line, since the expression on the first
line is not complete (an expression cannot end with an operator). On the other
hand, in

j := j
-k

a semicolon is inserted between the two lines, since the first line contains a
complete expression and a minus sign is a valid way to begin a new expression.

A useful guideline when you want to continue an expression from one
line to the next is to break the expression after an infix operator, comma, or left
parenthesis.

Chapter 2 Icon 51

Preprocessing

Icon's preprocessor allows a name to be assigned to an arbitrarily
complicated expression. A simple example is

$define SIZE width + offset

When SIZE is used subsequently in the program, width + offset is
substituted for it.

Suppose SIZE is used as follows:

dimension := SIZE * 3

This groups as

dimension := width + (offset * 3)

where the obvious intention was

dimension := (width + offset) * 3

The value assigned to dimension almost certainly will be incorrect and
result in a bug that may be hard to find - after all

dimension := SIZE * 3

looks correct.

The solution is easy: Use parentheses in the definition, as in

$define SIZE (width + offset)

Then

dimension := SIZE * 3

is equivalent to

dimension := (width + 3) * 3

as intended.

Polymorphous Operations

Icon has a number of polymorphous operations; that is, operations that
apply to more than one data type. For example, the prefix size operator, *,
applies to many different data types: *Xproduces the size of Xwhether the X is
a string, list, set, table, or record. Similarly, ?X produces a randomly selected
element of Xfor these types, IX generates all the elements of X, and sortO works
for several different types of data.

Polymorphism simplifies the expression of computations that are com­
mon to different types of data. It's worth keeping this in mind when writing

52 Icon Chapter 2

procedures; a procedure often can be written to work on different kinds of data.
An example is this procedure for shuffling values:

procedure shuffle(X)

every i := *X to 2 by -1 do
X[?i] :=: X[i]

return X

end

This procedure works for shuffling the characters of a string or the elements of
a list or record.

Pointer Semantics

Icon's structures (records, lists, sets, and tables) have pointer semantics. A
structure value is represented internally by a pointer - a "handle" that refer­
ences the data in the structure. When a structure is assigned or passed through
a parameter, the pointer is copied but not the data to which it points. This is as
fast as assigning an integer.

Consider the procedure rotateO, which moves a value from the front of
a list and places it at the end:

procedure rotate(lst)
local v

v := pop(lst)
put(list, v)

return

end

Then

nums : =[2, 3, 5, 7]
rotate(nums)
every write(!nums)

writes

3
5
7
2

Chapter 2 Icon 53

Because the parameter 1st points to the same data as the variable nums, rotateO
modifies the contents of nums.

Sometimes the sharing of data is not wanted. For example, in

Tucson := ["Arizona", "Pima", 1883]
City := Tucson

both Tucson and City point to the same structure. Consequently, assigning to an
element of City changes an element of Tucson, and vice versa. That may not be
the intention.

The procedure copy(x) makes a copy of the structure xbyduplicating the
values to which it points. For example, after

City := copy(Tucson)

there are two different lists that can be modified independently.

The procedure copyO works this way only at the top level: Any struc­
tures in the data pointed to by x are not copied and remain shared by the original
structure and its copy.

Another important ramification of pointer semantics structures is that (a
pointer to) a structure can be an element of a structure. An example is

dates := [1492,1776,1812]
labels := ["discovery", "revolution", "war"]
lookup := [dates, labels]

in which lookup is a list that contains (points to) two other lists.

Pointers canbe used to represent structures such as trees and graphs. For
example, a node in a binary tree might be represented using a record declaration
such as

record node(symbol, Itree, rtree)

The field symbol contains a string for the contents of a node, while Itree and rtree
are used as pointers to nodes for the left and right subtrees. For example,

expr := node("+", node("i"), node("-", node("j"), node("k")))

produces a binary tree. The omitted arguments default to null values and serve
as "null pointers" in cases where there are no subtrees.

The structure that results can be visualized as shown in Figure 2.2.

54

expr

Icon Chapter 2

~ "+11

II i"

~ II- II

IIj"

4 "k"

A Record Structure Figure 2.2

The arrows emphasize the fact that structure values are pointers to
blocks of data.

A more abstract representation is shown in Figure 2.3.

Chapter 2 Icon

Library Resources

55

A Tree of Records

In this diagram, the details are omitted, leaving
only what's needed to understand the struc­
ture.

Figure 2.3

The program library includes a whole directory full of nongraphical
procedures. We can't even provide a concise summary, but here's a small
sampling of what is available.

The strings module includes many procedures for manipulating strings,
such as these:

replace(s1, s2, s3) replace all occurrences of s2 in s1 by s3
rotate(s, i) rotate s by i characters

The numbers module deals with things numerical:

gcd(i, j) return greatest common divisor of i and j
roman(i) convert i to roman numerals

Tips, Techniques, and Examples

Debugging

Debugging is one of the most difficult, time-consuming, and frustrating
aspects of programming. Prevention is, of course, better than cure, but that's
mostly a matter of good programming practice.

If you have a problemwith a program, the easiest thing you can do is add
writeO expressions at judiciously chosen places to get more information. Al­
though this is commonly done, it requires editing the program before and after
finding the problem, and it also runs the risk of introducing its own errors.

56 Icon Chapter 2

If you do use writeO expressions to get information about what is going
on in a program, you may find it useful to use image(x) in the arguments of
writeO. The procedure image(x) produces a string representation showing the
value and type of x. Using imageO also is safe; write(image(x» never produces
an error, although write(x) will ifx is not a string or a value convertible to a string.

Although adding writeO expressions seems easy, you can get a lot of
information about a programby tracing procedures. The keyword &trace can be
used to give you information about procedure calls and returns. Setting &trace
to -1 turns on procedure tracing and setting &trace to 0 turns it off. A word of
warning: Trace output maybe voluminous, especially in graphics programs that
use library procedures.

Another way to get information is to set &dump to -1. This gives a listing
of variables and values when program execution ends.

Even if you don't tum on procedure tracing or the termination dump, a
run-time error produces a traceback of procedure calls leading to the expression
in which the error occurred. It's often worth examining this traceback, rather
than immediately looking in the program at the place the error occurred.

Often a more cerebral approach to debugging is faster and more effective
than simply producing a lot of information inhopes ofseeingsomething helpful.
For Icon, there are a few common causes of errors that have recognizable
symptoms that are worth checking before adding writeO expressions or turning
on tracing and the termination dump.

Incorrect data types are common causes of errors. In such cases, the error
message on termination indicates the expected type and the actual value. The
message procedure or integer expected accompanied by an "offending value"
of &null usually occurs as a result of misspelling a procedure name, as in

wi rte(message)

Since wirte presumably is a misspelling of write, wirte most likely is an unde­
clared identifier that has the null value when wirte(message) is evaluated.
Hence the error.

You can go a long way toward avoiding this kind of error by doing two
things: (1) declaring all local identifiers, and (2) using the -u option for icont, as
in

icont -u app

This option produces warning messages for undeclared identifiers. In the
example above, wirte probably will show up ~hen icont is run, allowing you to
fix the program before it is run.

Chapter 2 Icon

Evaluating Icon Expressions Interactively

57

Although Icon itself does not provide a way to enter and evaluate
individual expressions interactively, there is a program, qei, in the Icon program
library that does. This program lets you enter an expression and see the result of
its evaluation. Successive expressions accumulate, and results are assigned to
variables so that previous results can be used in subsequent computations.

At the> prompt, an expression can be entered, followed by a semicolon
and a return. (If a semicolon is not provided, subsequent lines are included until
there is a semicolon.) The computation is then performed and the result is shown
as an assignment to a variable, starting with r1_ and continuing with r2-f r3-f
and so on. Here is an example of a simple interaction:

> 2 + 3.0;
r1_ := 5.0

> r1_ * 3;
r2_:= 15.0

If an expression fails, qei responds with Failure, as in

> 1.0 =0;
Failure

The program has several other useful features, such as optionally show­
ing the types of results. To get a brief summary of qei's features and how to use
them, enter :help followed by a return.

Chapter 3

Graphics

In the previous chapter, we described the features of Icon that are associated
with ordinary computation as well as facilities that make it easy to process
strings and complicated structures. The rest of this book is about graphics.

The term graphics as used here means more than just drawing. It
includes all kinds of operations that are associated with windows displayed on
the screen of your monitor. You can create windows; draw points, lines, and
various shapes; display text in a variety of sizes and type faces; accept input
directly from the keyboard; determine the position of the mouse when buttons
are pressed and released; and so forth. Plate 3.1 shows some of the effects that
can be produced.

This chapter introduces these graphics capabilities. Subsequentchapters
provide more details and cover Icon's entire graphics repertoire. Appendix E
summarizes the graphics procedures described throughout the text.

We assume initially that only one window is used. When there is just one
window, it is implicit in all graphics operations and needs no explicit mention.
The implicit window is represented by the keyword &window, which is null if no
window is open. Chapter 9 explains how multiple windows are created and
used.

The Structure of a Graphics Program

A minimal Icon graphics program contains a main procedure and a link
graphics declaration. Here is a simple example:

link graphics

procedure mainO

WOpen(ls ize=400,300")

59

60

WWrite(" Hello world!")
DrawRectangle(60. 80, 50, 20)
WDoneO

end

Graphics Chapter 3

The program above opens a window, writes a string in it, draws a
rectangle, and then waits for the user to dismiss it. This program can be used as
a starting point for experimentation. We'll describe the procedure calls in the
next section.

Throughout the book, we'll present other programs or, more commonly,
program fragments. All programs, though, need at least a main procedure and
at least one link declaration.

The library's graphics module implements many important procedures
and is needed by all examples given. Although some graphics procedures are
actually built into Icon, this book does not distinguish them from library
procedures. The link graphics declaration gives access to the graphics library.

Basic Window Operations

The screen and each window are treated as portions of an x-y plane of
pixels, with the origin (0,0) atthe upper-leftcomer. Pixel positions increase to the
right and downward, as shown in Figure 3.1.

0,0
,.-------1~ X

y

Coordinate System

Note that vertical values increase in the downward
direction. This is natural for text that is written from
the top to the bottom of an area, but it is the opposite
of what's usually expected in plotting and drawing.

Figure 3.1

Suppose you want to create a 400-by-300 pixel window on the screen.
This is done with the WOpenO procedure. Arguments give the initial values of
attributes associated with the window, such as its size. In the case above, this
might be:

WOpen("size=400,300")

By convention, the width precedes the height. The result of the WOpenO is a
blank window, as shown in Figure 3.2.

Chapter 3 Graphics 61

A Blank Window

A window is blank until something is
written on it. Windows have frames
supplied by the window system. We'll
talk about them later in this chapter.
Until then, we'll dispense with the
frame and show just the window itself
with a line around it.

Figure 3.2

You now can write text in the window using WWriteO, as in

WWrite(" Hello world!")

which produces the result shown in Figure 3.3.

He11 0 wo r 1d ! Writing Text in a Window

Note that there is a blank at the begin­
ning of the string literal. This provides
space between the edge of the window
and the H.

Figure 3.3

Drawing (lines, shapes, and so forth) is done by other procedures. For
example, the following call of DrawRectangleO draws a rectangle 50 pixels wide
and 20 pixels high with its upper-left corner at position (60,80) in the window:

DrawRectangle(60, 80, 50, 20)

The result is shown in Figure 3.4.

62

Hello world!

Graphics Chapter 3

Adding a Rectangle

In DrawRectangleO, the first two ar­
guments specify the upper-left comer
of the rectangle being drawn. The third
and fourth arguments specify its width
and height respectively.

Figure 3.4

Although it's not shown here, several rectangles can be drawn with one
call of DrawRectangleO, which takes an arbitrary number of arguments that
specify successive quadruples of x-y coordinates, width, and height. This is true
for most drawing procedures.

When the program terminates, the window disappears. The easiest way
to keep this from happening immediately is to call WDoneO, which waits until
a q (for"quit") is typed. Only then does WDoneO return. After that, the program
terminates and the window vanishes.

Window Attributes

A window has numerous attributes; a full list is given in Appendix G.
Two important attributes are the background and foreground colors of a
window. A window is filled with the background color when it is opened. Text,
points, and lines are drawn in the foreground color. As indicated in the
preceding example, the default background color is white and the default
foreground is black. Either or both of these canbechanged by adding arguments
to the WOpenO call. For example,

WOpen(ls ize=400,300", "bg=light gray")
WWrite(" Hello world!")
DrawRectangle(60, 80, 50, 20)

produces a window such as the one shown in Figure 3.5.

Chapter 3 Graphics

Hello world!

63

A Light Gray Background

Many monitors support at least a few
colors or shades of gray and give the
appearance shown here. Some moni­
tors, however, support only black and
white. On such a monitor, light gray is
rendered as white, since it's closer to
white than to black. The result is, of
course, not at all like this.

Figure 3.5

The attributes associated with a window can be changed after the
window is opened. For example,

Fg("white")
Bg("black")

changes the foreground color to white and the background color to black. The
current window appearance is not altered, but subsequent drawing operations
are affected.

The procedure WAttribO can be used to set or get the values of attributes.
Several attributes can be set in one call. For example,

WAttrib(lfg=white", "bg=black")

has the same effect as

Fg("white")
Bg("black")

If the equal sign and value are omitted in the argument to WAttribO, the
value of the attribute is returned. Numeric attributes produce integers; most
other attributes are strings. For example,

foreground := WAttrib(lfg")

assigns the foreground color to the variable foreground.

Windows in Icon have many other attributes. For example, the attribute
Iinewidth can be set to control the thickness of drawn lines. Thus,

WAttrib(llinewidth=3")

causes subsequent DrawRectangleO calls to produce borders that are three
pixels thick.

64 Graphics Chapter 3

Some procedures draw shapes filled in the foreground color rather than
outlines. For example,

Fg("white")
FiIIRectangle(200, 100, 50, 50)

draws a solid white square, as shown in Figure 3.6.

Hello world! Legibility

A gray background can soften the vi­
sual appearance of a window, but it
also reduces legibility. In particular,
white on gray often is difficult to dis­
tinguish.

Figure 3.6

EraseAreaO is like FiIIRectangleO except that it fills with thebackground
color. EraseAreaO typically is called with no arguments, which erases the entire
window.

Example - Random Rectangles

What we've described so far is enough to write a simple program to
display rectangles of randomly selected colors and sizes - a (poor) sort of
"modem art".

Here we'll use a window 500 pixels wide and 300 pixels high and draw
outlines of rectangles. The dimensions of the rectangles will be selected ran­
domly from between one pixel and the window dimensions. Theirpositions will
be randomly selected also.

$define Width 500
$define Height 300

link graphics

procedure mainO
local x, y, w, h

WOpen("size=" II Width II "," II Height)

Chapter 3 Graphics

repeat {
w:= ?Width
h := ?Height
x := ?Width - w / 2
Y:= ?Height - h / 2
DrawRectangle(x, y, w, h)
WDelay(300)
}

65

end

When the sizes and positions of the rectangles are selected in this way, portions
of them may fall outside the window. Such portions are "dipped" and not
drawn. The procedure WDelay(300) delays program execution 300 millisec­
onds. This prevents the drawing from proceeding too rapidly to appreciate.

A typical display from this program is shown in Figure 3.7.

-

c::J

LJ

Random Rectangles

Mindless, random draw­
ings like this are easy to pro­
duce and sometimes are at­
tractive. We'll show more
sophisticated applications
of this technique later in the
book.

Figure 3.7

We can make the results more interesting by allowing for filled rect­
angles as well as outlines and by providing a selection of colors. A typical result
is shown in Figure 3.8.

colors := ["red", "blue", "green", "yellow", "purple", "white", "black"]
Rect := [FiIIRectangle, DrawRectangle]

WOpen("size=" II Width II"," II Height)

repeat {
w:= ?Width
h := ?Height
x := ?Width - w / 2
Y:= ?Height - h / 2

66

Fg(?colors)
(?Rect)(x. y, w, h)
WDelay(300)
}

Events

Graphics Chapter 3

More Random Rectangles

You will, of course, have to
imagine the colors. All we
can do here is represent
them by shades of gray.
We'llhave more to sayabout
this later.

Figure 3.8

When you run the program shown above, the shapes change and go by,
beyond your control. You might want to be able to stop the drawing process to
examine the results more closely, as we did to get the images shown in the
preceding figures. This can be done by having the program look for events.

When the mouse pointer is in a window, an event is produced by
pressing a key or a mouse button, moving the mouse with a button pressed, or
releasing a mouse button.

Events are queued so that they are not lost if it takes a while for the
program to get around to processing them. The queue is an Icon list that is the
value of PendingO. For example,

*PendingO > 0

succeeds if an event is pending.

The procedure EventO produces the next event and removes it from the
queue. If there is no pending event, EventO simply waits for one. When EventO
removes an event from the queue, the position on the screen at which the event
occurred is recorded in keywords.

The value of a keyboard event is a one-character string corresponding to
the key pressed. Mouse events are integers for which there are corresponding
keywords. For example, &rpress and &rrelease are the values for the events that
occur when the right mouse button is pressed and released, respectively.

Chapter 3 Graphics 67

Pressing and releasing the right mouse button could be used to cause the
drawing program given earlier to stop and start. Similarly, pressing the q key on
the keyboard could be used to cause the program to terminate.

To illustrate this, a check for events can be added at the end of the
drawing loop:

repeat {

Fg(?colors)
(?Rect)(x, y, w, h)
WDelay(300)

while *PendingO > 0 do {
case EventO of {

&rpress: {
until EventO === &rrelease
}

"q": exitO
}

}
}

The while loop continues as long as there is a pending event. If the
pending event is a q, program execution is terminated via exitO. (The window
is closed and vanishes in such a case.) If the right mousebutton is pressed, control
drops into another loop waiting for thebutton to be released. All other events are
ignored.

Window Management

The graphics system determines the appearance of a window and allows
the user to control its size and location on the screen. The appearance of a
window and how it is manipulated depend on the particular graphics system.

Most graphics systems provide a title bar that contains an identifying
label for the window. The label can be set when the window is opened using the
label attribute, as in

WOpenC'label=Help")

There usually is a border that frames the window and sets it off from
other items on the screen. Some graphics systems provide control areas at the
comers that allow the user to manipulate the window. Using these control areas,
the user can move the window, resize it, and so forth. In this way, the user can

68 Graphics Chapter 3

manipulate the window without any action on the part of the program that
created the window. Typical windows are shown in Figure 3.9.

.: ,iJ.1I: '.

Tho following operations 4Y4l\ablo:

1........ lon
rotation
.....rlaetlon
shifting
tt'1_lng
crcpplng
slrl"'lng
c:ooopos1t 1on
t-.lng

til d< on one or tho 0G'ds abcMo to got ..."....
Inf'""""tlon about tho operation.

To retlrn to tho preIIl.... help pago. tyle ESC.

To exit f tho help S\lStoIo. tyle q.

lft..,ila.'.ft.....,­
Il.U.C:.'~.",,.0..•
ect-ift.
cc.,,''''
.ltt.atM'",
c ,. '.ft
" "i",

(11ell ." en•• f It". _11:" ~~• •• fell
lft1.~'.f\ ~... tlk. _,.11:•• ''''-0
T. 11 ••'&0\ •••111.•• 1: • .." M1, ,_,•• -n. ~'C.

T t ltt.. Jul, ..,..•••••,..•••

Typical Windows Figure 3.9

Different graphics systems provide different appearances and different
ways ofmanipulating windows. Which manipulations are allowed and
how they are done contribute to the "look and feel" of the graphics
system. The window on the left is typical of a platform using the X
Window System and the Motif Window Manager. The window on the
right is from Windows 95.

Both the user and the program work through the graphics system. Since
graphics systems vary, it's inevitable that some graphics systems support
operations that others don't. Consequently, some features that work on one
system may not work on another.

By default, if the graphics systemsupports it, Icon prevents the user from
resizing its windows. User resizing can be enabled by using the resize attribute,
as in

WAttrib("resize=on")

Most graphics systems provide a way to record a "snapshot" of a
window. That's how the images shown in this book were produced.

Library Resources

In later chapters, we'll use this section to highlight some of the more
useful library procedures that are related to the subject at hand.

Chapter 3 Graphics 69

The library also contains a collection of utilities, demonstrations, and
other graphics programs. These are useful not just for the tasks they performbut
also as programming examples. Studying these can provide additional insight
into Icon graphics.

Tips, Techniques, and Examples

Lists of Attributes

Window attributes can be stored in lists and used for opening windows
or setting their attributes. For example, the following lists contain different
attributes for use in opening windows for different situations:

normal := ["bg=white", "fg=black"]
notice := ["bg=red", "fg=white"]
pasteboard := ["bg=gray", "fg=black", "size=640,480"]

Then a window with the attributes given in normal can be opened by

WOpen ! normal

a window with the attribute given in notice by

WOpen ! notice

and so on. Note that this allows windows to be opened with different numbers
of attributes without having to specify them in the text of the program.

Using the Title Bar to Show Program Status

The window's label attribute, which appears in its title bar, can be
changed at any time. Updating the title bar is a way to inform the user of an
application's status.

Some applications update the label attribute every time the user switches
to a new kind of task. Other applications use the label attribute to keep the user
informed of the current time. The following section of code reads a list of files,
updating the title bar with the name of each file read.

every filename := !files do {
WAttrib("label=reading II II filename II "... ")

process file
}

Chapter 4

Drawing

Drawing is an important component of many graphics applications, and Icon
provides procedures for drawing points, lines, curves, and other shapes. Com­
plicated images can be built up using these primitive operations.

Drawing is comparatively easy in Icon, and a few simple principles
apply to all drawing operations. We'll cover all the drawing operations in this
chapter, showing how they can be used. You'll find a description of various
details related to drawing in Appendix I.

In the examples that follow, we'll assume a window of appropriate size
and omit coding details. In the last section of this chapter, we'll give some
programming tips and techniques.

Points

The most elementary drawing procedure is

DrawPoint(x, y)

which draws a single point at the specified x-y coordinate position. Drawing a
point sets the pixel at that location to the foreground color.

Anynumber ofpoints canbe drawnina singlecall of DrawPointOsimply
by adding more arguments, two for each coordinate position. An example is

DrawPoint(10, 20, 12,22, 14,24, 16,26)

which draws four points to produce a short dotted diagonal line.

Many images are most naturally composed by drawing all their points,
one by one. An example is the Sierpinski triangle (also known as the Sierpinski
gasket), a simple but fascinating fractal. There are many ways to draw the
Sierpinski triangle, most of them mysterious. We won't explain the underlying

71

72 Drawing Chapter 4

top vertex

current point

lower-left vertex

mark new location

move halfway to corner

move halfway to corner

move halfway to corner

loop until interrupted
pick corner randomly

lower-right vertex

principles here, but if you want to learn more, see Barnsley (1988) or Peitgen,
Jiigens, and Saupe (1992).

The following code segment draws the Sierpinski triangle on a 400 x 400
area. The procedure WQuitO succeeds and causes the loop to terminate when the
user presses the q key. An example of the result is shown in Figure 4.1.

$define Width 400
$define Height 400

$define X1 0
$define Y1 Height

$define X2 (Width / 2)
$define Y2 0

$define X3 Width
$define Y3 Height

x:= Width / 2
Y:= Height / 2

until WQuitO do {
case ?3 of {

1: {
x := (x + X1) / 2
Y:= (y + Y1) / 2
}

2: {
x := (x + X2) / 2
Y:= (y + Y2) / 2
}

3: {
x := (x + X3) / 2
Y := (y + Y3) / 2
}

}
DrawPoint(x, y)
}

A more complex version of this program, from the Icon program library,
produced the color images seen in Plate 4.1.

Chapter 4 Drawing

Lines

73

Sierpinski's Triangle

Starting with a blank window,
Sierpinski/s triangle gradually is filled
in, pixel by pixel. The process contin­
ues indefinitely, but since the window
has a finite number ofpixels, the image
eventuallystopschanging. Here's what
it looks like after about 80/000 itera­
tions.

Figure 4.1

Since a window is composed only of pixels, any image can be produced
by drawing it point by point. Usually, though, drawing individual pixels is
tedious, inefficient, and computationallyawkward. Even drawing a straight line
between two points is painful when done pixel by pixel.

The procedure

DrawLine(x1 , y1 , x2, y2)

draws a line from the first x-y coordinate position to the second.

Many images canbe produced just by drawing lines. Here's a procedure
that draws regular polygons. Figure 4.2 shows a regular polygon drawn by this
procedure.

Draw a regular polygon with the specified number of vertices and
radius, centered at (cx,cy).

procedure rpoly(cx, cy, radius, vertices)
local theta, incr, xprev, yprev, x, y

theta := 0 # initial angle
incr := 2 * &pi I vertices
xprev := cx + radius * cos(theta) # initial position
yprev := cy + radius * sin(theta)

74

every 1 to vertices do {
theta +:= incr
x := cx + radius * cos(theta)
y := cy + radius * sin(theta)
DrawLine(xprev, yprev, x, y)
xprev:= x
yprev:= y
}

return

end

Drawing Chapter 4

new position

update old position

Regular Polygon

This octagon was drawn by

rpoly(200, 200, 180, 8)

As the number of vertices increases,
the corresponding polygons become
more circular in appearance.

Figure 4.2

Regular stars can be drawn by skipping over vertices in the drawing
process. All that's necessary is to change the angular increment accordingly:

incr := skips * 2 * &pi / vertices

with the procedure header rstar(cx, cy, radius, vertices, skips).

The most interesting figures usually occur when the number of vertices
and the number of skips are relatively prime, so that a line is drawn to every
vertex only once and each vertex is visited. Figure 4.3 shows an example.

Chapter 4 Drawing 75

Regular Star

This regular star was drawn by

rstar(200, 200, 180, 8, 3)

What happens with skips of 4? Try
other combinations, like 100 vertices
with skips of 31.

Figure 4.3

The preceding examples draw one line at a time. Like DrawPointO,
DrawLineO accepts an arbitrary number of arguments, a pair for each coordinate
position. Lines are connected, drawing from position to position. For example,

DrawLine(200, 50, 250, 150, 300, 100, 200, 50)

draws a triangle with vertices at (200, 50), (250, 150), and (300, 100).

If coordinate positions are computed during program execution, it
sometimes is more convenient to put them on a list and use list invocation to
draw the lines. Thus, the regular star program could be recast as follows, using
only a single call of DrawLineO:

theta := °
incr := skips * 2 * &pi / vertices
points := [cx + radius * cos(theta), cy + radius * sin(theta)]

every 1 to vertices do {
theta +:= incr
put(points, cx + radius * cos(theta), cy + radius * sin(theta»
}

DrawLine ! points

The procedure DrawSegmentO is similar to DrawLineO, but instead of
connecting lines from position to position, line segments are drawn between
successive pairs of positions. With only two positions (four arguments),
DrawLineO and DrawSegmentO produce the same results. DrawSegmentO is
useful for drawing several disconnected lines in one call.

76 Drawing Chapter 4

For example, the spokes of a wheel can be drawn as follows. An example
is shown in Figure 4.4.

Draw n spokes with the given radius, centered at (cx,cy).

procedure spokes(cx, cy, radius, n)
local theta, incr, points

theta := 0
incr := 2 * &pi / n

points := []

every 1 to n do {
put(points, cx, cy)
put(points, cx + radius * cos(theta), cy + radius * sin(theta))
theta +:= incr
}

DrawSegment ! points

return

end

Spokes

This figure was drawn by

spokes(200, 200, 180, 25)

Notice the visual artifacts at the center.
Later in this chapter, we'll add a hub
and a rim to make this look like a
wheel. What happens if DrawLineO is
used in place of DrawSegmentO?

Figure 4.4

Chapter 4 Drawing

Rectangles

77

As shown in Chapter 3, DrawRectangleO draws a rectangle specified by
its comer location and size:

DrawRectangle(x, y, width, height)

If width and height are positive, x and y specify the upper-left comer. However,
either width or height (or both) can be negative to extend the rectangle leftward
or upward from the starting point. This is true for all procedures that specify a
rectangular area.

Here is a code segment that produces the simple design shown in Figure
4.5:

every x := 10 to 140 by 10 do
DrawRectangle(x, x, 300 - 2 * x, 400 - 2 * x)

Rectangles

Try changing the spacing and number of rect­
angles to see what optical effects you can get.

-

~
Figure 4.5

As this example illustrates, DrawRectangleO draws only the outline of a
rectangle. FiIIRectangleO draws solid rectangles that are filled with the fore­
ground color.

Here's a code segment that draws a checkerboard. The squares are
numbered across and down, starting at (0,0). A square is filled if the sum of the
horizontal and vertical counts is odd. The result is shown in Figure 4.6.

78 Drawing Chapter 4

$define Size 40
$define Edge 4
$define Offset 40
$define Squares 8

draw the squares

every i := 0 to Squares - 1 do
every j := 0 to Squares - 1 do

if (i + j) % 2 =1 then
FillRectangle(Offset + i * Size, Offset + j * Size, Size, Size)

add border and edge

DrawRectangle(Offset, Offset, Squares * Size, Squares * Size)
DrawRectangle(Offset - Edge, Offset - Edge,

Squares * Size + 2 * Edge, Squares * Size + 2 * Edge)

A Checkerboard

What change to the code would be
needed to reverse the coloring of the
squares, so that the bottom-left square
was white?

Figure 4.6

EraseArea(x, y, w, h) is similar to FiIIRectangte(), but itfills a rectangular
area using the background color instead of the foreground color. The arguments
x and y default to the upper-left pixel of the window, and wand h default to
values that extend the area to the opposite edges, so that EraseArea() with no
arguments erases the entire window.

DrawRectangle(), FillRectangle(), and EraseArea() all draw multiple
rectangles if provided with additional sets of arguments.

Chapter 4 Drawing

Polygons

79

The procedure DrawPolygonO draws the polygon whose vertices are
given by successive x-y argument pairs. For example, the rows of triangles
shown in Figure 4.7 can be drawn as follows:

v:=(20,115,210,305]

every x := !v do
every y := !v do

DrawPolygon(x + 40, y, x, Y+ 80, x + 80, Y+ 80)

Notice that only the coordinates of the vertices need to be given; the figure is
closed automatically.

Triangles

Try writing a procedure in which the
size of the triangles and the number of
rows and columns are parameters.

Figure 4.7

The procedure FiIIPolygonO draws a polygon that is filled in the fore­
ground color. Changing DrawPolygonO to FiIIPolygonO in the preceding ex­
ample produces the result shown in Figure 4.8.

80 Drawing Chapter 4

Filled Triangles

Later in this chapter, we'll show how
figures can be filled with patterns in­
stead of being solid.

Figure 4.8

If the sides of a polygon intersect, the "even-odd" rule determines the
portions of the drawing that are considered to be inside the polygon for the
purposes of filling. With this rule, a point is interior to the polygon, and hence
filled, if an imaginary line drawn between the point and one outside of the figure
crosses the lines of the figure an odd number of times. This is illustrated in Figure
4.9, in which FillPolygonO is used to draw a regular star.

Filled Star

This filled star has 31 vertices drawn
with skips of 11. Since a filled polygon
must be drawn with a single call of
FillPolygonO, the points for this figure
were put in a list for list invocation.

Figure 4.9

Chapter 4 Drawing 81

Complicated filled polygons can produce interesting designs, as shown
in Figure 4.10.

A Filled Star

Itmay not look like it, but this is a filled
regular star. There are 504 vertices
drawn with skips of 251.

Figure 4.10

Circles and Arcs

So far, all the drawing procedures have produced straight lines. The
procedure

DrawCircle(x, y, r, theta, alpha)

draws a circular arc centered at x and y with radius r. The argument theta is the
starting angle measured from 0 along the positive x axis (3 o'clock). The last
argument is the angular extent of the arc (not the ending angle). Angles are
measured in radians; positive values indicate a clockwise direction.

There are defaults for the last two arguments. If theta is omitted, it
defaults to 0, and if alpha is omitted, it defaults to 21t, a complete arc. Thus,

DrawCircle(100, 200, 25)

draws a circle 50 pixels in diameter centered at (100,200).

FiIICircleO is like DrawCircleO, except that the arc is filled in the fore­
ground color. If a filled arc is not complete, it is wedge-shaped. Plate 4.2 shows
a window full of "paint splatters" produced by using FiIICircleO.

Figure 4.11 shows how a wheel can be produced by adding circles to the
spokes produced by spokesO (shown earlier in Figure 4.4).

82 Drawing Chapter 4

procedure wheel(cx, cy, radius, n, hubradius, tirewidth, rimwidth)
local i, tireradius

spokes(cx, cy, radius, n)

DrawCircle(cx, cy, radius)
FiIlCircle(cx, cy, hubradius)
tireradius := radius + rimwidth
every i := °to tirewidth - 1 do

DrawCircle(cx, cy, tireradius + i)

return

end

A Wheel

This wheel was drawn by

wheel(200, 200, 180,25,25,8, 10)

Notice that the hub covers the visual
artifacts that are noticeable in Figure
4.4.

Figure 4.11

Partial arcs also are useful in some kinds of drawings. The familiar egg
shape, which is pleasing but not representable by a simple mathematical curve,
provides an example. A series of arcs can be combined to produce a reasonable
approximation to the shape of an egg, as shown in Figure 4.12.

every y:= 701150 do
every x := 50 to 350 by 60 do

DrawCircle(
x, y, 20, 0.0, &pi,
x + 20, y, 40, &pi, &pi 14,
x, Y- 20, 12, 5 * &pi 14, &pi 12,
x-20, y, 40, 7 * &pi 14, &pi/4
)

Chapter 4 Drawing 83

000000
000000

A Dozen Eggs

We'llleave itto you to draw thechicken.

Figure 4.12

"Arched" stars provide another example of the use of arcs. You can skip
this example if you don't enjoy trigonometry. See Figure 4.13.

center of arc

angle to arc center

arc ra~ius, rounded up
arc extent

ensure valid eccentricity
half of subtended angle
arc center radius

draw arched star at (x,y) with eccentricity ecc

procedure astar(cx, cy, radius, vertices, ecc)
local acr, x, y, r, kappa, theta, extent

if ecc < 0.1 then ecc := 0.1
kappa := &pi / vertices
acr := radius / (ecc * cos(kappa»

x := acr - radius * cos(kappa)
y := radius * sin(kappa)
r := sqrt(y 1\ 2 + X 1\ 2) + 0.5
extent := 2 * atan(y, x)

theta := &pi / 2
every 1 to vertices do {

x := cx + acr * cos(theta)
y := cy + acr * sin(theta)
DrawCircle(x, y, r, theta + &pi - extent / 2, extent)
theta +:= 2 * kappa
}

return

end

84 Drawing Chapter 4

Arched Star

This arched star was drawn by

astar(200, 200, 180, 9, 1.0)

Try othervalues to see whateffects you
can get.

Figure 4.13

Arcs also can be drawn by

DrawArc(x, y, w, h, theta, alpha)

In this procedure, x, y, w, and h specify a bounding rectangle within
which arcs are drawn; theta and alpha are the starting angle and extent as in
DrawCircleO. The center is at (x + w / 2, Y+ h / 2). If wand h are different, the arc
is elliptical. For example, the following code produces the drawing shown in
Figure 4.14:

DrawRectangle(10, 10, 380, 280)
DrawLine(10, 10, 390, 290)
DrawLine(10, 290, 390,10)
DrawArc(10, 10, 380, 280, &pi /4, &pi)

Elliptical Arc

Notice that if the bounding rectangle is
not square, the angles are distorted
according to the rectangle. Thus, a start­
ing angle of n/4 corresponds to a line
from the center through the bottom­
right comer of the rectangle.

Figure 4.14

Chapter 4 Drawing 85

The defaults for the angular measurements are the same as for
DrawCircleO. FillArcO draws filled arcs and takes the same arguments as
DrawArcO·

Additional sets of arguments can be given in all four procedures to
produce multiple arcs with one procedure call.

Smooth Curves

The procedure DrawCurveO draws a smooth curve through the x-y
coordinates specified in its argument list. If the first and last coordinates are the
same, the curve is closed. An example is shown in Figure 4.15.

Curved Star

1his curved star was produced by using
DrawCurveO with the same vertices
that were used in Figure 4.3.

Figure 4.15

DrawCurveO is designed to draw smooth, visually attractive curves
through arbitrarily placed points. Catmull-Rom splines (Barry and Goldman,
1988) are used to accomplish this. These curves are relatively complicated
mathematically and it's not easy to predict or control their curvature. They are,
however, globally smooth and pass through all the specified points.

Line Attributes

The default width of drawn lines is one pixel, as illustrated in the
preceding figures. A different line width can be set by using the Iinewidth
attribute. For example,

86 Drawing Chapter 4

initial y coordinate
initial linewidth

set Iinewidth
#·draw full-width line
increment location
increment linewidth

WAttrib(llinewidth=3")

sets the line width for subsequent line drawing to three pixels. Wide lines are
centered along the line that would be drawn if the line width were 1.

Using a larger line width allows the tire shown in Figure 4.11 to be drawn
with one arc. The loop previously used to draw the tire one line at a time can be
replaced by

WAttrib(llinewidth=" II tirewidth)
DrawCircle(cx, cy, tireradius + tirewidth / 2)

Another use of line widths is illustrated by Figure 4.16.

Sunset Scene

Oh, to be in Bali.

n
t

Figure 4.16

The code to draw this figure is:

y:= 165
w:= 1

every 1 to 9 do {
WAttrib(llinewidth=" II w)
DrawLine(O, y, 500, y)
Y +:= 2 * w + 1
w +:= w / 3 + 1
}

WAttrib("linewidth=4") # draw thick arc
DrawCircle(150, 140,50, &pi / 6, -4 * &pi / 3)

The attribute linestyle determines the style in which lines are drawn. The
default style is "solid", as illustrated in preceding figures. The line style "striped"
produces a dashed line in which pixels are first drawn in the foreground color,
followed by pixels in the background color, and so on.

Chapter 4 Drawing 87

The line style "dashed" is similar to "striped", except that no pixels are
drawn in the gaps between those drawn in the foreground color. Thus, the
background in the gaps is left unchanged.

The following code segment uses line styles to depict a highway intersec-
tion.

WAttrib(llinewidth=3")

main road

Fg("light gray")
FiIIRectangle(O, 50, 500, 160)
Fg("black")
DrawLine(O, 126, 500, 126)
DrawLine(O, 134, 500, 134)
WAttrib(llinestyle=striped")
DrawLine(O, 88, 500, 88)
DrawLine(O, 172, 500, 172)

side road

Fg("light gray")
FiIIRectangle(120, 50, 80, 250)
Fg("black")
WAttrib(llinestyle=dashed")
DrawLine(160, 210,160,300)

The result is shown in Figure 4.17.

I
I
I
I
I

pavement

double center line

lane stripes

pavement

center line

A Highway Intersection

Notice the different results
produced by striped lines
on the main road and
dashed lines on the side
road.

Figure 4.17

88

Reversible Drawing

Drawing Chapter 4

All drawing operations combine some source pixels (to be drawn) with
some destination pixels (presently in the window). The way source and destina­
tion pixels are combined is specified by the attribute drawop. The default value
of drawop is "copy·, in which case source pixels replace destination pixels, as
illustrated by previous examples.

The value "reverse" allows reversible drawing. If the drawop attribute is
set to "reverse", drawing changes the pixels that are in the foreground color to
the background color, and vice-versa. The color drawn on destination pixels that
are neither the foreground nor the background color is undefined, but in any
event, drawing a pixel a second time restores the pixel to its original color.

Drawing the same figure twice in reverse mode erases it. For example,

WAttrib("drawop=reverse")

every x := 1 to 100 do {
Fill Rectangle(x, 100, 10,20)
WDelay(1)
FiIIRectangle(x, 100, 10, 20)
}

FiIIRectangle(x, 100, 10, 20)

moves a small rectangle horizontally across the screen, leaving an image only at
the end.

The normal mode of drawing can be restored by

WAttrib("drawop=copy")

Coordinate Translation

The attributes dx and dy translate the position at which output is placed
in a window in the x and y directions, respectively. For example, as a result of

WAttrib("dx=10", "dy=20")

output to the window is offset by 10 pixels in the x direction and 20 pixels in the
y direction, and DrawCircle(100, 100) now draws a circle with its center at
(110,120). Positive offsets like this move the origin to the interior of the window,
giving negative locations to some parts of the window. In the example, the
upper-left corner now is addressed as (-10,-20).

Changing the offsets makes it easy to draw the same figure at different
places in a window. The following code segment produces the image shown in
Figure 4.18.

Chapter 4 Drawing

WAttrib(llinewidth=3")

every x := 50 to 350 by 100 do {
every y := 60 to 240 by 60 do {

WAttrib("dx=" II x, "dy=" II y)
DrawCurve(20, -20, -5, 0, 20, 20, 35, 0,

0,-20,-35,0,-20,20,5,0,-20,-20)
}

}

Pretzels

89

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

Try modifying the code to produce this
figure without coordinate translation.

Figure 4.18

Note that setting dx or dy replaces the previous value; the effects do not
accumulate. Two calls of WAttrib("dx=1 Oil) are not the same as WAttrib(ldx=20").

Clipping

The procedure Clip(x, y, w, h) restricts drawing to the specified rectan­
gular area. Drawing outside the clipping region is not an error; everything
proceeds normally except that nothing outside the region is altered. Clipping is
applied on a pixel basis: Characters can be cut in half, arcs cut into segments, and
soon.

The extent of clipping also can be queried or set using the individual
attributes clipx, clipy, c1ipw, and cliph. Clipping is disabled by calling CIiPO with
no arguments. When clipping is disabled, the entire window is writable, but the
graphics system still discards any output beyond the window's edge.

Clipping is particularly useful when making a drawing whose extent
cannot be controlled easily. For example, the following code segment produces
rings confined to a frame, as shown in Figure 4.19.

90

DrawRectangle(20, 20, 360, 260)
Clip(21, 21, 359, 259)
every 1 to 50 do {

x:= ?400
y:= ?300
WAttrib(lfg=black", Ilinewidth=5")
DrawCircle(x, y, 30)
WAttrib(lfg=white", Ilinewidth=3")
DrawCircle(x, y, 30)
}

Library Resources

Drawing Chapter 4

draw frame
clip to inside of frame

choose random coordinates

draw ring in black

color with white band

A Field of Rings

Can you imagine how to produce this
image without clipping?

Figure 4.19

The gpxop module, which is incorporated by link graphics, includes a
procedure Translate(dx, dy, w, h) for setting the dx and dy attributes and
optionally setting a clipping region.

The barchart and strpchrt modules provide families of procedures for
creating bar charts and strip charts respectively.

The fstars, jolygs, and orbits modules contain procedures for drawing
fractal stars, "jolygons", and orbits.

The drawcard module supplies drawcard(x, y, c), which draws an image
of a playing card.

Chapter 4 Drawing

Tips, Techniques, and Examples

Fractal Stars

91

The previous sections show how interesting figures can be produced
using only the repetition of simple rules. "Fractal stars" show what can be done
with only slightly more complicated operations. A fractal star consists of
successively smaller replicas of a figure, producing a result with "self-similar­
ity" in which small parts have the same structure as the overall figure, but at a
reduced scale. We'll limit the replication and reduction by specifying a limit on
the number of "phases", so that we can get a complete drawing. As with
Sierpinski's triangle, the resolution of the window is the practical limiting factor.
Fortunately, even a small number of phases can produce interesting results.

A fractal star is produced by drawing a sequence ofconnected lines, each
at a constant angle from the next. If the basic design has n vertices and there are
p phases, the number of lines drawn is n x (n _l)p-l. The computation of the
lengths of the lines is central to the idea. If the ratio of "radii" for successively
smaller figures is " the length of the ith line is ,p-!-l wheref is the number of
times n divides i evenly, stopping at p-l. That sounds complicated, but the
computation is relatively simple, as shown in the following procedure:

Draw a fractal star with the specified number of vertices, phases,
radius ratio, and angular increment. The parameter extent determines
the "diameter" of the star; x and yare used to position the
figure in the window.

procedure fstar(x, y, extent, vertices, phases, ratio, incr)
local theta, xprev, yprev, resid, factors, length, i

theta := 0 # starting angle

every i := 0 to vertices * (vertices - 1) 1\ (phases - 1) do {
resid := i # residual after division
factors := 0 # number of factors

divide and count
until (resid % (vertices - 1) -= 0) I (factors >= (phases - 1)) do {

resid /:= (vertices - 1)
factors +:= 1
}

length := extent * ratio 1\ (phases - factors - 1)
x +:= length * cos(theta) # end position
y +:= length * sin(theta)
if i > 0 then # skip first point

DrawLine(xprev, yprev, x, y)

92

xprev:= x
yprev:= y
theta +:= incr
}

return

end

Drawing Chapter 4

update previous position

Selecting parameters that produce visually interesting results is some­
thing of an art, as is positioning the figure on the window. The results can be
fascinating, as shown in Figure 4.20.

Fractal Stars

IMM ,. Ie, IMM MM ,.., 1M ..

: IIaIla : : IIaIla
I:

:: hi iiS ::
; IIa Il!lI I:

I.... ,. ICI I....

IMM ,. ICI MM

: 11III 11III :

=: Il~ ~III ::
: III'IIIl'II : : II'IIIl'II :

lBl! JIll lei I. Ie,

Figure 4.20

Itmay seem surprising that these two figures that are so dissimilar were
drawn by the same procedure with only different parameters. The
fractal star at the left was drawn by

fstar(20, 165, 330, 5, 5, 0.35, 4 * &pi / 5)

while the one at the right was drawn by

fstar(20, 245, 330, 4, 8, 0.47, &pi /2)

See Delahaye (1986) or Lauwerier (1991) for additional information
about fractal stars.

Random Rectangles

In Chapter 3, we showed the interesting effects that can be obtained
using an element of randomness in drawing. Here's a more sophisticated

Chapter 4 Drawing 93

procedure that plays at being a "modem artist" by recursively subdividing the
window into rectangles, either drawing or filling at random. An example of the
result is shown in Figure 4.21. rectO calls itself recursively to make smaller
rectangles. The decision to split is made in divide(), which enforces a minimum
size but also includes an element of randomness that is controlled by Bias.

$define MinSide 10 # minimum size of a rectangle side
$define Gap 3 # gap between rectangles
$define Bias 20 # bias setting; affects size choices

rect(x, y, W, h) -- draw rectangle, possibly subdivided, at (x,y)

procedure rect(x, y, w, h)
local d

else draw single rectangle

if cut vertically:
draw left portion
draw right portion

if cut horizontally:
draw top portion
draw bottom portion

if d := divide(w < h) then {
rect(x, y, w, d)
rect(x, y + d, w, h - d)
}

else if d := divide(w) then {
rect(x, y, d, h)
rect(x + d, y, w - d, h)
}

else {
if ?2 =1 then

FiIlRectangle(x, y, w - Gap, h - Gap)
else

DrawRectangle(x, y, w - Gap -1, h - Gap -1)

solid

open
}

return

end

divide(n) -- find division point along length n

procedure divide(n)

if (n > 2 * MinSide) & (?n > Bias) then
return MinSide + ?(n - 2 * MinSide)

else
fail

end

94

Animation

Drawing Chapter 4

Random Rectangles

At the end of Chapter 7,
we'll show a complete pro­
gram that produces such
"paintings" in randomly
chosen colors.

Figure 4.21

When something on the screen appears to move, this is called animation.
Of course, nothing is really moving; it's an illusion produced by the way things
are drawn and erased.

The movement of a single object on a solid background is the simplest
form of animation. This is accomplished by drawing the object, waiting a small
fraction of a second, erasing it and redrawing it at a slightly different location,
and repeating this as long as motion is wanted.

Delaying usually is accomplished by calling WDelayO. The timing
depends on the needs of the particular application, and in some cases the
processor speed may be the limiting factor. If the time needed for computation
and drawing is insignificant, a loop using WDelay(50) will display about twenty
frames per second.

The following program uses this technique to display an animated
version of the sunset scene of Figure 4.16. The sun starts high in the sky, then
sinks slowly below the horizon. Figure 4.22 shows some of the positions of the
sun before it sets.

$define Width 500
$define Height 300

$define Horizon 85
$define Radius 50

$define Delay 100

window width
window height

y-eoordinate of horizon
size of the sun

frame delay in msec

Chapter 4 Drawing 95

set line width
draw line across window
increment location
increment line width

x-coordinate step size
y-coordinate step size

0.35
1.00

$define OX
$define OY

procedure mainO
local i, x, y, w

WQpen(lIwidth=1I II Width, IIheight=1I II Height) I
stop(II*** cannot open windowll

)

draw 1I0cean wavesII by varying the line width
y := Horizon # initial y coordinate
w := 1 # initial line width
while y - w / 2 < Height do {

WAtlrib(lIlinewidth=1I II w)
OrawLine(O, y, Width, y)
Y +:= 2 * w + 1
w +:= w / 3 + 1
}

draw sun
delay

erase sun
set next location

initialize for drawing suns
WAtlrib(lIlinewidth=4") # set width of perimeter
Clip(O, 0, Width, Horizon) # don't draw below horizon
x := .3 * Width # initial x position
y := Radius + 10 # initial y position

draw animated sun sinking to horizon
while y - Radius < Horizon do {

Fg("blackll
)

OrawCircle(x, y, Radius)
WOelay(Oelay)
Fg(lIwhitell

)

DrawCircle(x, y. Radius)
x+:= OX
y +:= DY
}

WDoneO

end

96 Drawing Chapter 4

Animated Sunset

The gray circles show some
of the positions of the sun as
it sets.

Figure 4.22

update position

erase all old circles

number of balls
ball radius
maximum displacement
delay per frame

one ball and its velocity

When multiple objects are in motion, a single loop is used. After delay­
ing, all objects are erased before any are redrawn; the ones drawn later will
appear to be "in front" of the others where they overlap. The following program
displays ten balls bouncing lazily within the frame of the window. See Figure
4.23.

$define Balls 10
$define Radius 10
$define MaxDisp 5
$define Interval 20

record ball(x, y, dx, dy)

procedure mainO
local xmax, ymax, blist, b

WOpen(lsize=400,300") I stop(,'*** cannot open window")
xmax:= WAttrib(lwidth") - Radius
ymax := WAttrib(lheight") - Radius

blist := [] # list of balls
every 1 to Balls do # place entries randomly

put(blist, ball(?xmax, ?ymax, ?MaxDisp, ?MaxDisp»

until WQuitO do { # loop until interrupted

Fg("white")
every b := !blist do

DrawCirde(b.x, b.y, Radius)

every b := !blist do {
b.x +:= b.dx
b.y +:= b.dy

Chapter 4 Drawing

Fg("white")
FiIlCircle(b.x, b.y, Radius) # fill center
Fg(Ublack")
DrawCircle(b.x, b.y, Radius) # draw outline

if b.x < Radius I b.x > xmax then
b.dx := -b.dx # bounce horizontally

if b.y < Radius I b.y > ymax then
b.dy := -b.dy # bounce vertically

97

}
WDelay(lnterval)
}

end

delay between frames

Bouncing Balls

On paper, this is not very interesting.
On the screen, this simple animation
has an odd fascination.

o

o
o

o
CD

o

00
Figure 4.23

On a slow system, a "flash" may be noticeable when an object is erased
and redrawn. This can be mitigated by erasing just the part of the object that is
not to be overdrawn again, if this can be calculated easily. On a fast system,
flashing may happen so infrequently - and so quickly - that it poses no
problem. The erasure step can be skipped entirely for an object that just changes
form without moving, such as a spinning globe.

Other animation methods are described in Chapters 7 and 9.

Avoiding Round-Off Problems

Coordinate values in drawing procedures are integers. Many computa­
tions that involve coordinate values, on the other hand, use real (floating-point)
arithmetic. For example, in

x + r * cos(theta)

98 Drawing Chapter 4

x and r may be integers, but cos(theta) produces a real number. Multiplying an
integer by a real number produces a real number; Icon takes care of the
conversion automatically. Similarly, the addition of an integer and a real
number produces a real number. Consequently, the value of the preceding
expression is a real number.

As computation of successive coordinates continues, it is typical for all
values to be real numbers. It's oftenbest to compute coordinates as real numbers
because this allows sub-pixel accuracy. If the arguments in a drawing operation
like

DrawLine(x1 , y1 , x2, y2)

are real numbers, they are automaticallyconverted to the integers that DrawLineO
expects. Conversion truncates the real numbers, discarding any fractional parts.

Floating-point calculations are inexact. It is possible to start with a
coordinate value of 200.0, make a series of calculations that are designed to
return to the same point, and end up with a resulting value of 199.9999. When
that's truncated to an integer, it becomes 199 and addresses a different pixel. The
result may be a "kink" in a line that should be straight or two lines that fail to
meet as expected.

An easyway to avoid such problems is to start from the"center" ofa pixel
instead of the "edge", in this case by using a value of 200.5. When the series of
calculations ends up with 200.4999, the truncation to an integer produces the
same pixel coordinate as at the start.

This technique doesn't really reduce round-off errors, but it reduces the
probability that the errors will produce visible results.

Starting Drawings

As illustrated in the code for drawing regular stars and fractal stars, the
first computation in a series often is used to get a starting point for a drawing.
Lines are then drawn from the previously computed point to a newly computed
one. The firstpointis an exception, since no line is drawn to it, even though it may
be computed in the same way as the rest of the points.

One way to handle this is to compute the first point before the loop in
which the rest are computed, as in:

xprev := cx + radius * cos(theta) # initial position
yprev := cy + radius * sin(theta)

every 1 to vertices do {
theta +:= incr

Chapter 4 Drawing

x := cx + radius * cos(theta)
y := cy + radius * sin(theta)
DrawLine(xprev, yprev, x, y)
xprev:= x
yprev:= y
}

new position

update old position

99

Duplicating expressions to handle the exception is unattractive, espe­
cially if they are complicated, as in drawing fractal stars. One way to avoid the
duplication of expressions is to perform all the calculations in the loop but skip
drawing on the first pass through the loop:

every i := 0 to vertices do {
theta +:= incr
x := cx + radius * cos(theta) # new position
y := cy + radius * sin(theta)
if i > 0 then # draw only after first pass

DrawLine(xprev, yprev, x, y)
xprev := x # update old position
yprev:= y
}

Notice that a local identifier has been added to serve as a loop counter and that
the loop now starts with 0, bringing the computation of the initial coordinates
into the loop.

There's a simpler way of detecting the first pass through this loop. Local
variables have the null value initially when a procedure is called. Consequently,
xprev and yprev are null until they are assigned other values at the end of the first
pass through the loop. Testing one of them for the null value earlier in the loop
therefore can be used to detect the first pass.

As described in Chapter 2, Icon provides an easy way to determine if a
variable is null or not. The expression \x succeeds if x is not null but fails if it is.
Consequently the test can be written as

if \xprev then
DrawLine(xprev, yprev, x, y)

Note that the loop counter no longer is needed.

In this example, it is possible to make the test even more concise. Since
a procedure is not called if one of its argument expressions fails, the loop can be
written as

every 0 to vertices do {
theta +:= incr

100

x := ex + radius * eos(theta)
y := ey + radius * sin(theta)
DrawLine(\xprev, yprev, x, y)
xprev:= X

yprev:= y
}

Figure Orientation

Drawing Chapter 4

new position

draw only after first pass
update old position

As mentioned in Chapter 3, y values in a window increase in a down­
ward direction, which is the opposite of the conventional Cartesian coordinate
system. This is why positive angular values are in the clockwise direction for
procedures that draw arcs.

In many cases, the orientation and angular direction are not important.
For example, many of the figures in this chapter are symmetric with respect to
the horizontal axis or can be positioned with an initial angular offset to give the
desired appearance. In other cases, however, a figure that is drawn using
Cartesian geometry is upside down when viewed in a conventional frame of
reference.

Consider the following code segment for plotting a sine curve:

$define points 300
$define xoff 50
$define base 200
$define yseale 60
$define xseale 100

every X := 0 to points do
DrawPoint(xoff + x, base + yseale * sin((2 * &pi * x) / xseale»

The result is shown in Figure 4.24. It looks good at a glance, but it's upside down.

Chapter 4 Drawing

..... .,

v

101

Sine Curve

The problem with incorrect orienta­
tion is that'it's easy to overlook.

Figure 4.24

This problemcan be fixed by changing the sign of the y value, a technique
that works in general for cases like this:

every x := 0 to points do
DrawPoint(xoff + x, base + yscale * -sin«2 * &pi * x) / xscale»

A somewhat different problem with orientation occurs when a figure
needs to be oriented so that it doesn't appear to defy gravity. For example, the
octagon in Figure 4.2 balances on a vertex instead of resting on a side.

For an n-sided regular figure, a horizontal bottom side can be obtained
by using a starting angle for the first vertex of rt/2 + rt/n. This works whether n
is odd or even.

Long Argument Lists

As illustrated by the examples in this chapter, it often is useful to put
many coordinate pairs onto a list for a single invocation of a drawing procedure.
This is, in fact, the only way to use FiIIPolygonO and DrawCurveO to produce
drawings with an arbitrary number of computed coordinate pairs.

The number of arguments in such cases can be very large. This presents
a technical problem, since expression evaluation in Icon uses a stack to store
arguments temporarily. If there are too many arguments, stack overflow may
occur. If this happens, it may be possible to work around the problem by
increasing the stack size. This can be done by setting the environment variable
MSTKSIZE to a large value before the program is run.

102 Drawing Chapter 4

The default value for MSTKSIZE is 10,000,where the unit is a word. Since
the implementation of Icon is complex, it's generally not worth trying to figure
out a precise value for MSTKSIZE that is suitable. It's worth knowing, however,
that every procedure argument occupies two words. On platforms with ad­
equate memory, such as most modern workstations, setting a large value, as in

setenv MSTKSIZE 500000

normally lets you work without having to worry about stack overflow.

Default Values

Some procedures use omitted arguments to provide defaults, so that
values that occur frequently do not have to be specified explicitly. For example,
in log(r1, r2), if the second argument is omitted, the base defaults to &e.
Consequently, log(r) produces the natural logarithm of r.

Consider rstarsO, which draws regular polygons if it is called with a
value of 1 for skips. For example,

rstars(200, 200, 180, 8, 1)

draws an octagon.

It's easy to provide a default of 1 for skips:

procedure rstars(cx, cy, radius, vertices, skips)
local theta, incr, xprev, yprev, x, y

/skips := 1

If skips is omitted, a null value is provided for it in a call of rstarsO. The
expression /skips succeeds and returns the variable skips only if skips has the
null value. In this case, 1 is assigned to skips.

Randomizing Drawings

As illustrated in the examples in this chapter, many interestingdrawings
can be produced by introducing an element of randomness. Using Icon's built­
in pseudo-random number generator, every time ?x is evaluated, the next value
in a pseudo-random sequence is produced. The values in the pseudo-random
sequence are determined by a "seed", given by &random. The initial value of
&random is O.

Since &random always starts at 0, the "random" values produced by a
program are the same each time the program is run. In program development
and debugging, reproducible results may be helpful. For applications that are

Chapter 4 Drawing 103

designed to produce drawings with an element of randomness, however,
different random sequences may be needed for each program execution. This
can be accomplished by setting &random to different values depending on, for
example, what time of day the program is run. The procedure randomizeO does
this, taking into account several variable factors. Calling this procedure at the
beginning of program execution virtually assures that each program execution
will produce a different random sequence. The procedure randomizeO is incor­
porated from the library by a

link random

declaration.

ChapterS

Turtle Graphics

The procedures in Chapter 4 treat drawing in an essentially algebraic manner,
in terms of computing the coordinates of points. In order to draw a line, for
example, it is necessary to specify its beginning and ending points, even if the
line begins where the last drawn line ends. Such drawing often involves
trigonometric computations even in simple situations.

In many cases, it is easier and more natural to specify drawing in a
navigational manner in which drawing is done from a current point by moving
a specified amount in a specified direction, changing direction, and so on.

This chapter describes a system, called turtle graphics, that supports a
navigational form of drawing. We'll present the concepts and drawing proce­
dures first, followed by a description of how they are implemented by program­
mer-defined procedures. At the end of this chapter, we'll present an extended
example of the use of turtle graphics.

The procedures described in this chapter are part of the Icon program
library and can be incorporated in a program by using the declaration

link turtle

The Turtle Graphics System

Concepts

The turtle graphics system is based on turtle geometry, an approach to
teaching childrenabout some aspects ofmathematics. In turtle geometry, a turtle
(which is conceptual rather than real) moves according to commands to trace out
various shapes. Turtle graphics comes from giving the turtle the ability to draw
as it moves.

105

106 Turtle Graphics Chapter 5

Turtle graphics originally appeared in the Logo programming language
(Abelson and diSessa, 1980), but turtle graphics has been added to many other
programming languages. The features and details of turtle graphics vary from
implementation to implementation. Some implementations are simple while
others are elaborate, supporting multiple turtles and color. Despite their differ­
ences, all implementations share the same conceptual framework.

In Icon, there is a single turtle that starts out in the center of the subject
window and faces toward the top. If there is no subject window, a 500-by-500
pixel window is opened.

The turtle moves in a straight line and changes its heading in response
to commands. When it moves, it mayor may not draw a line, depending on the
command. Drawing is done in the current foreground color.

Distances are measured in pixels. Angles are measured in degrees, and
the positive direction is clockwise. 00 is in the positive x direction, so the initial
heading of the turtle is -900 (facing straight upward).

Procedures

The turtle commands are expressed in terms of procedure calls. The
following procedures are provided:

Two procedures draw lines. TDraw(n) moves the turtle forward n units
in the direction it is facing, drawing a line from where it was to where it winds
up. TDrawto(x, y) turns the turtle to face toward the location (x,y) and moves the
turtle there while drawing a line.

TSkip(n) is like TDraw(n) except that the turtle does not draw a line.
TGoto(x, y) moves the turtle to (x,y) without drawing a line or changing its
heading.

TLeft(d) and TRight(d) tum the turtle d degrees to the left and right,
respectively. The procedure TFace(x, y) turns the turtle to face the location (x,y),
provided that the turtle is not already at (x,y). These procedures do not move the
turtle.

There are three procedures for finding the turtle's location and heading.
TXO and TYO return its x and y coordinates, respectively. THeadingO returns the
direction in which it is facing.

The state of the turtle - its location and heading - can be saved on a
stack and later restored from the stack. The procedures TSaveO and TRestoreO
do this.

Chapter 5 Turtle Graphics 107

The procedure TResetO clears the stack, erases the window, and returns
the turtle to the center of the window, facing upward.

That's about all there is to turtle graphics, although we've omitted a few
inessential procedures and some functionality in order to simplify the presenta­
tion here.

Drawing with Turtle Graphics

As indicated above, turtle graphics are best suited to drawings that can
be expressed in terms of simple, straight-line movements and changes of
direction.

An example is a "random walk" in which the turtle moves in a series of
steps at directions that are chosen at random. Here's a simple example:

repeat {
TDraw(1)
TRight(?61 - 31)
}

The turtle moves forward and draws for one unit. It then turns right an amount
in the range -300 and +300 and repeats. This goes on until the program is
interrupted. An example of the result is shown in Figure 5.1.

A Random Walk

Increasing the amount in which the
direction can change between succes­
sive steps results in a more erratic path.
The turtle may, of course, wander out
of the window. If this happens, it may
or may not reenter the window later.

Figure 5.1

Many interesting figures can be drawn by repeating simple turtle com­
mands. The following code segment draws spiral figures in which the angular

108 Turtle Graphics Chapter 5

change and amount of movement have random components. Four examples are
shown in Figure 5.2.

angle := 30 + ?149
incr := sqrt(4 * ?O) + 0.3
side:= 0

while side < 270 do {
TDraw(side +:= incr)
TRight(angle)
}

Spirals Figure 5.2

Note the difference in appearance that the random factors produce. If
you repeatedly run the code given above, you'll see many more
variations, some of which may be very different in appearance from the
ones shown here.

Chapter 5 Turtle Graphics 109

position root

The usefulness of being able to save and restore the state of the turtle is
illustrated by the following procedure, which draws a random "bush":

procedure bush(n, len)

TSaveO

TRight(?71 - 36)
TDraw(?len)

if n > 0 then
every 1 to ?4 do

bush(n - 1, len)

TRestoreO

return

end

This procedure might be used as follows:

TSkip(-120)
bush(n := 4 + ?4, 300/ n)

An example of the results is shown in Figure 5.3.

A Bush

Try using this procedure to produce
other bushes and see how much they
differ from this one. Also try changing
some of the constants in the procedure
to see if you can get more interesting
results.

Figure 5.3

110

Implementing Turtle Graphics

Turtle Graphics Chapter 5

We use the term procedure in this book to describe both procedures that
are built into Icon and programmer-defined ones that are implemented in Icon
code. Most of the procedures described in previous chapters are built into Icon,
but a few are programmer-defined and are included in programs by link
declarations. Appendix E indicates which procedures are built-in and which
ones are programmer-defined.

Turtle graphics are implemented by programmer-defined procedures.
This section describes those procedures, illustrating how such a facility can be
written in Icon.

State Information

The essential characteristic of turtle graphics is that information about
the window in which the turtle is located, its position, and its heading are
maintained by the implementation. The situation is much the same as when
you're going from your house to your car. You're always at some location and
facing in some direction (although your latitude, longitude, and heading on the
compass usually are not of interest).

In turtle graphics, state information is maintained in global variables:

global T_x, T_y # current location
global T_deg # current facing direction
global T_stack # stack for turtle state

A procedure like TGoto(x, y) simply changes T_x and T_y:

procedure TGoto(x, y)

T_x:= x
T_y:= y

return

end

The procedure TSkip(n) also changes T_x and T_y, but since the skip is
in the direction the turtle is facing, the new location must be computed:

procedure TSkip(n)
local rad

rad := dtor(T_deg)
T_x +:= n * cos(rad)
T_y +:= n * sin(rad)

Chapter 5 Turtle Graphics

return

end

111

The procedure TDraw(n) is like TSkip(n), except that it also draws a line
between the current position and the new one:

procedure TDraw(n)
local rad, x, y

rad := dtor(T_deg)
x := T_x + n * cos(rad)
y := T_y + n * sin(rad)
DrawLine(T_x, T_y, x, y)
T_x:= x
T_y:= y

return

end

The direction is changed in a similar manner. For example, TRight(d) is:

procedure TRight(d)

T_deg +:= d
T_deg %:= 360 # normalize

return

end

The procedures TSaveO and TRestoreO simply push and pop the state
variables, respectively:

procedure TSaveO

push(T_stack, T_deg, T_y, T_x)

return

end

procedure TRestoreO

T_x := pop(T_stack)
T_y := pop(T_stack)
T_deg := pop(T_stack)

return

end

112 Turtle Graphics Chapter 5

So far we haven't explained how the state variables are initialized. This
is done by the procedure TlnitO:

procedure TlnitO

initial {
if /&window then

WOpen("width=500", "height=500") I
stop("*** cannot open window")

T_stack := []
T_x := WAttrib("width") / 2 + 0.5
T_y := WAttrib("height") / 2 + 0.5
T_deg := -90.0
}

return

end

The initialization code is enclosed in an initial clause to ensure that it is only
executed once. If &window is null, the window has not yet been opened and
TlnitO must do 50. Note also the use of "half-pixel" values to reduce problems
from floating-point round-off; see Avoiding Round-Off Problems in the Tips,
Techniques, and Examples section of Chapter 4.

The user need not call TlnitO before using turtle graphics; in fact, the
procedure is not even documented as part of the turtle graphics system. Instead,
every other turtle graphics procedure has a call of TlnitO in an initial clause (not
shown in the procedure given above). For example, the complete procedure for
TGoto(x, y) is:

procedure TGoto(x, y)

initial TlnitO

T_x:= x
T_y:= y

return

end

The complete set of turtle graphics procedures is given below for
reference. As mentioned earlier, Icon's turtle graphics system includes proce­
dures and functionality not described in this chapter. See the Icon program
library for all the details.

Chapter 5 Turtle Graphics

global T_x, T_y # current location
global T_deg # current heading
global T_stack # turtle state stack

TlnitO -- initialize turtle system, opening window if needed

procedure TlnitO

initial {
if I&window then

WOpen("width=500", Iheight=500") I
stop(,'*** cannot open window")

T_stack := []
T_x := WAttrib(lwidth") 12 + 0.5
T_y := WAttrib(lheight") I 2 + 0.5
T_deg := -90.0
}

113

return

end

TResetO -- clear screen and stack, go to center, head -90 degrees

procedure TResetO

initial TlnitO

EraseAreaO
T_stack := []
T_x := WAttrib(lwidth") 12 + 0.5
T_y := WAttrib(lheight") I 2 + 0.5
T_deg := -90.0

return

end

TDraw(n) -- move forward n units while drawing a line

procedure TDraw(n)
local rad, x, y

initial TlnitO

rad := dtor(T_deg)
x := T_x + n * cos(rad)
y := T_y + n * sin(rad)
DrawLine(T_x, T_y, x, y)
T_x:= x

114 Turtle Graphics Chapter 5

T_y:= y

return

end

TDrawto(x, y) -- draw line to (x,y)

procedure TDrawto(x, y)

initial TlnitO

TFace(x, y)
DrawLine(T_x, T-V, x, y)
T_x:= x
T_y:= y

return

end

TSkip(n) -- move forward n units without drawing

procedure TSkip(n)
local rad

initial TlnitO

rad := dtor(T_deg)
T_x +:= n * cos(rad)
T_y +:= n * sin(rad)

return

end

TGoto(x, y) -- move to (x,y) without drawing

procedure TGoto(x, y)

initial TlnitO

T_x:= x
T_y:= y

return

end

TRight(d) -- turn right d degrees

procedure TRight(d)

Chapter 5 Turtle Graphics

initial TlnitO

T_deg +:= d
T_deg %:= 360

return

normalize

115

normalize

end

TLeft(d) -- turn left d degrees

procedure TLeft(d)

initial TlnitO

T_deg -:= d
T_deg %:= 360

return

end

TFace(x, y) -- turn to face (x,y), unless already there

procedure TFace(x, y)

initial TlnitO

if x -= T_x I Y -= T_y then
T_deg := rtod(atan(y - T_y, x - T_x»

return

end

TXO -- return current x location

procedure TX(x)

initial TlnitO

return T_x

end

TYO -- return current y location

procedure TY(y)

initial TlnitO

return T_y

end

116

THeadingO -- return current heading

procedure THeadingO

initial TlnitO

return T_deg

end

TSaveO -- save turtle state

procedure TSaveO

initial TlnitO

push(T_stack, T_deg, T_y, T_x)

return

end

TRestoreO -- restore turtle state

procedure TRestoreO

initial TlnitO

T_x := pop(T_stack)
T_y := pop(T_stack)
T_deg := pop(T_stack)

return

end

Library Resources

Turtle Graphics Chapter 5

The turtle module in the library includes additional capabilities beyond
those presented in this chapter. The library version supports multiple windows
and adds procedures for drawing circles, rectangles, and polygons.

Tips, Techniques, and Examples

Fractal Stars

If a figure is composed of a sequence of lines drawn between successive
points, using turtle graphics may be simpler than using DrawLineO repeatedly.
Fractal stars, which are described in the Tips, Techniques, and Examples
section of Chapter 4, provide an example. Here's how such figures can be drawn

Chapter 5 Turtle Graphics 117

using turtle graphics. The arguments are the same as those given in Chapter 4,
but incr is in degrees instead of radians.

procedure fstar(x, y, extent, vertices, phases, ratio, incr)
local resid, factors, length, i

every i := 0 to vertices * (vertices - 1) " (phases - 1) do {
resid := i # residual after division
factors := 0 # number of factors
divide and count
until (resid % (vertices - 1) -= 0) I (factors >= (phases - 1» do {

resid /:= (vertices - 1)
factors +:= 1
}

length := extent * ratio" (phases - factors - 1)
TLeft(incr)
if i =0 then TGoto(x, y) else TDraw(length)
}

return

end

Lindenmayer Systems

Lindenmayer systems provide an interesting application in which turtle
graphics playa central role. Lindenmayer systems, or L-systems for short, are
grammatical devices that originally were designed for characterizing the devel­
opment of plants. See Prusinkiewicz and Hanan (1989) and Prusinkiewicz and
Lindenmayer (1990). There are several types of L-systems; we'll look at the
simplest - context-free, deterministic L-systems.

A context-free, deterministic L-system consists of a string of characters,
called the axiom, and replacement rules, whereby individual characters are
replaced by strings of characters. The axiom is rewritten by performing the
replacements for all characters in it to produce another string. This process is
repeated on the new string, and so on, for some specified number of "genera­
tions". (The axiom is the zeroth-generation string.) Depending on the axiom and
the replacement rules, the sequence of strings may characterize the stages in the
growth of a simple plant - or a variety of other objects, including some fractals.

Here's a simple L-system:

F
F -- F[+F]F[-F]F

axiom
replacement rule

118 Turtle Graphics Chapter 5

In rewriting, any character for which there is no replacement rule is left
unchanged. For the L-system given above, the successive strings are:

F
F[+F]F[-F]F
F[+F]F[-F]F[+F[+F]F[-F]F]F[+F]F[-F]F[-F[+F]F[-F]F]F[+F]F[-F]F

The strings become very long with successive rewritings. The next one for the L­
system above would take several lines to show.

Replacements are made for every instance of every character on each
rewriting. Thus, the L-system

x
X ~ F-[[X]+X]+F[+FX]-X
F~ FF

axiom
replacement rules

produces

X
F-[[X]+X]+F[+FX]-X
FF-[[F-[[X]+X]+F[+FX]-X]+F-[[X]+X]+F[+FX]-X]+FF[+FFF-[[X]+X]+

F[+FX]-X]-F-[[X]+X]+F[+FX]-X

where the last string is continued on a second line because of its length. We'll use
this L-system in examples that follow and call it the Plant L-system.

What do these strings mean? In one sense, they don't mean anything; they
can be considered just as strings produced by a formal rewriting system. But in
another sense, such strings can be interpreted as successive stages in the
development of an (artificial) plant or other object. The interpretation that turns
the strings of otherwise meaningless characters into drawings of objects uses
turtle graphics. In this interpretation, some characters correspond to turtle
graphics commands. These characters are:

F move forward a specified amount, drawing a line
f as F, but without drawing a line
+ tum right by a specified amount

tum left by a specified amount
save the current state
restore the most recently saved state

Thus, F and f draw, while + and - change the direction. The role of the
characters [and] is to save the current state inorder to draw a subfigure and then
restore the previous state to continue drawing as before.

Chapter 5 Turtle Graphics 119

The specified length of line segments determines the scale of the figure,
while the specified angular change is a property of the L-system and plays a
major role in how the resulting figure looks. For the Plant L-system, an angle of
22.5° produces the result shown in Figure 5.4 at generation 5.

A Plant

Compare this drawing to the bush
shown in Figure 5.3, which was pro­
duced by simple rules with an element
of randomness. Does the plant here
seem more realistic to you than the
bush?

Figure 5.4

The interpretation of the L-system characters as Icon turtle-graphics
procedure calls is obvious:

F TDraw(n)
f TSkip(n)
+ TRight(d)

TLeft(d)
TSaveO
TRestoreO

In fact, only these six procedures are needed to interpret context-free, determin­
istic L-systems.

Implementing a program to draw figures for an L-system is relatively
easy. Such a program should

1. Specify the L-system.

2. Rewrite the axiom for the desired number of generations.

3. Interpret the resulting string using turtle graphics.

Here's how it might be done for the Plant L-System:

120

link turtle

$define Axiom "X"
$define Angle 22.5
$define Length 5
$define Gener 5

rewrite := tableO

Specify the replacements

rewrite["X"] := "F-[[X]+X]+F[+FX]-X"
rewrite["F"] := "FF"

Rewrite the axiom

current_string := Axiom

every 1 to Gener do {
new_string := III'

every c := !currenCstring do
new_string 11:= (\rewrite[c] I c)

currencstring := new_string
}

Interpret the string

every c := !currenCstring do {
case c of {

"F": TDraw(Length)
"f": TSkip(Length)
"+": TRight(Angle)
"_". TLeft(Angle)
"[": TSaveO
"]": TRestoreO
}

}

Turtle Graphics Chapter 5

A table provides a convenient way for specifying the replacements.
Characters for which no replacement is specified are not included in the table.
In the rewriting code, a test is made for such characters, which are replaced by
themselves.

It's not much more work to write a more general program that reads in
the specification for an L-System and interprets it. First we need to pick a syntax
for representing L-systems. The following syntax is straightforward and easy to
process. The axiom, angle, segment length, and desired number of generations
are given by a keyword syntax. The rules simply use -> for ~. The Plant L­
system looks like this:

Chapter 5 Turtle Graphics

axiom:X
angle:22.5
length:3
gener:5
X->F-[[X]+X]+F[+FX]-X
F->FF

121

Variables can take the place of defined constants, with the program
parsing the specification and assigning appropriate values to these variables.
The code to process the specification might look like this:

rewrite := tableO

Read in the grammar

while line := readO do {
line? {

if c := tab(find("->")) then {
move(2)
rewrite[c] := tab(O)
}

else if keyword := tab(find(":")) then {
move(1)
value := tab(O)
case keyword of {

"axiom": axiom:= value
"angle": angle:= real(value) I stop("*** invalid line: ", line)
"length": length:= integer(value) I stop("*** invalid line: ", line)
"gener": gener:= integer(value) I stop("*** invalid line: ", line)
default: stop("*** erroneous keyword: ", line)
}

}
else stop("*** invalid line: ", line)
}

}

Notice that keyword and replacement lines can appear in any order. Some error
checking is done in the code above; you might think ofmore that should be done.

Once the specification is read in, rewriting can be performed. Checks
should be provided to ensure that all the necessary parts of the L-system have,
in fact, been specified. Missing parts could be treated as errors, but providing
defaults for parts that are not fundamental to the L-system is more useful:

Ilength := 5
Igener:= 3

122 Turtle Graphics Chapter 5

if laxiom then stop(,'*** no axiom specified")
if langle then stop("*** no angle specified")

The rewriting and interpretation code is the same as before.

An L-system program might provide other features, such as a way to
specify the initial point at which drawing begins. For example, the Plant L­
system "grows" up. This was taken into account in the code that produced
Figure 5.4.

Although the approach to interpreting L-systems shown above is cor­
rect, there are practical problems with it. For most interesting L-systems, the
strings that result from successive rewritings become very long. For the Plant L­
system, the 10th-generation string is over 6 million characters long! Not only
may such strings exceed the amount of memory available, they take time to
produce and nothing is drawn until the final string is available. This delay may
be frustrating, and it may give the impression that the program is "hung".

If you think about the rewriting process a bit, you'll realize that the first
character of the axiom can be rewritten for the specified number of generations
before going on to the second character. Of course, in the process, the first
character may produce many characters, but these simply can be "put in front"
of the second character of the axiom, and so on. In fact, it's not necessary to
perform any concatenation; it's just a matter of generating the characters to be
interpreted in the right order.

The word "generate" is the key. Here's a procedure to generate the
characters as needed:

procedure lindgen(c, rewrite, gener)
local s

if gener = 0 then return c
else if s := \rewrite[c] then suspend lindgen(!s, rewrite, gener -1)
else return c

end

The procedure lindgenO may appear mysterious at first. It's an instance
of a very powerful programming technique - recursive generation. It's worth
taking the trouble to understand the procedure, perhaps turning on Icon's
procedure tracing facility to see in detail what's happening.

The current character, rewriting table, and remaining number of genera­
tions are arguments. If there are no more generations, the character is returned.
If there is a replacement for the character in rewrite,lindgenO is called recursively
for every character in that replacement (!s), but with one less generation. On the
other hand, if there is no replacement, the character itself is returned.

Chapter 5 Turtle Graphics 123

That's all there is to it - the former rewriting code is not needed at all,
and no rewritten string is ever formed. The procedure is called in the interpre­
tation code for each character in the axiom:

every c := lindgen(!axiom, rewrite, gener) do {
case c of {

"F": TDraw(length)
"f": TSkip(length)
"+": TRight(angle)
"-": TLeft(angle)
"[": TSaveO
"]": TRestoreO
}

}

We've presented the program for interpreting L-systems in bits and
pieces; here's the whole program for reference:

link turtle

procedure mainO
local rewrite, line, keyword, value, c, currenCstring, new_string
local axiom, angle, length, gener

rewrite := tableO

Read in the grammar

while line := readO do {
line? {

if c := tab(find("->"» then {
move(2)
rewrite[c] := tab(O)
}

else if keyword := tab(find(":"» then {
move(1)
value := tab(O)
case keyword of {

"axiom": axiom:= value
"angle": angle:= real(value) I stop("*** invalid line: ", line)
"length": length:= integer(value) I stop(,'*** invalid line: ", line)
"gener": gener:= integer(value) I stop(,'*** invalid line: ", line)
default: stop("*** erroneous keyword: ", line)
} .

}
else stop("*** invalid line: ", line)

wait for user to dismiss window

124 Turtle Graphics Chapter 5

}
}

Check values

/Iength := 5
/gener:= 3
if /axiom then stop("*** no axiom specified")
if /angle then stop(,'*** no angle specified")

every c := Iindgen(!axiom, rewrite, gener) do { # interpret string
case c of {

"F": TDraw(length)
"f": TSkip(length)
"+": TRight(angle)
"_". TLeft(angle)
"[": TSaveO
"]": TRestoreO
}

}

WDoneO

end

procedure lindgen(c, rewrite, gener)
local s

if gener =0 then return c
else if s := \rewrite[c] then suspend Iindgen(!s, rewrite, gener - 1)
else return c

end

We mentioned earlier that L-systems can be used to produce various
kinds of drawings. Figure 5.5 shows a Penrose tiling (Gardner, 1989).

Chapter 5 Turtle Graphics 125

A Penrose Tiling

The L-system used to produce this fig­
ure is:

angle:36
length:35
axiom:[X)++[X)++[X)++[X)++[X)
w->YF++ZF----XF[-YF----WF)++
x->+YF--ZF[---WF--XF]+
Y->-WF++XF[+++YF++ZF)­
Z->--YF++++WF[+ZF++++XF)--XF
F->

Figure 5.5

The Icon program library's linden program extends the version pre­
sented here with command-line options for controlling scaling and other aspects
of the display.

Chapter 6

Text

When you think of graphics, you're likely to think of drawing and images, not
text. Text is, however, an important aspect of many graphics applications. It is
fundamental to word processing and desktop publishing, and some text ap­
pears in almost all graphics applications.

Window Input and Output

When a window is created, it is opened for both reading and writing. The
procedures WWriteO, WWritesO, WReadO, and WReadsO can be used for
writing text to windows and reading from them. In this respect, they are
analogous to writeO, writesO, readO, and readsO as used for files. For example,

while WWrite(read())

fills the window with lines from standard input.

Output written to a window scrolls automatically, just as if the window
were the screen of a typical text terminal. When a window is full, text flows off
the top to make room for more atthebottom. Any graphics outputin the window
is scrolled along with the text.

Reading text is illustrated by

repeat {
WWrites("command? ")
case WReadO of {

"quit": exitO
"continue": break
"erase": EraseAreaO
}

}

127

128 Text Chapter 6

WWritesO is used so that the text entered by the user follows "command? II on
the same line.

Positioning Text

Icon maintains a position at which text is written. The text position can
be specified in terms of rows and columns and is one-based: That is, the character
closest to the origin of a window is in row 1 and column 1. This is the default
position for a new window. Rows are counted from top to bottom in a window,
and columns are counted from left to right. The horizontal text position is
advanced as characters are written, and a newline advances the vertical position
and resets the horizontal position to column 1. A return character resets the
horizontal position without moving vertically. Backspace and delete characters
have no effect when writing text. A tab character moves the position to the right
to the next tab stop. Tab stops are at columns 9,17, and so on.

The current text position is reflected in the row and col attributes. The
same position, measured in pixels, is in the x and y attributes. These attributes
maybe set by calling WAttribO or either of the procedures GotoRCO or GotoXYO.

The procedure GotoRC(r, c) sets the text position to row r and column c.
For example, GotoRC(1,1) sets the location to the upper-left corner of the
window, and text written subsequently starts there.

The procedure GotoXY(x, y) can be used to set the text position to a
specific x-y pixel location. Pixel positioning can be useful in placing text more
precisely than row-column positioning allows. Note that the arguments in
GotoRCO and GotoXYO specify horizontal and vertical positions in different
orders.

When a program is waiting for input, a text cursor indicates the position
at which the next character will be written. This cursor normally is invisible, but
it can be made visible by setting the cursor attribute cursor to lion", either when
a window is opened or by WAttribO:

WAttrib("cursor=on")

and the cursor can be made invisible by

WAttrib("cursor=off")

The appearance of the text cursor varies from one graphics system to
another. See Appendix N for more specific information.

Chapter 6 Text

Fonts

129

Icon lets you select from among the fonts provided by the graphics
system. A font is a set of characters with a particular appearance in a specified
size.

Fonts are immensely complicated. There are thousands of them, includ­
ing fonts for various languages, fonts with mathematical symbols, and fonts
with special marks used by typographers. Aesthetics playa very important part
in font usage. You don't have to be a font expert, however, to employ fonts in
useful and attractive ways.

The termfamily is used to distinguish fonts that have a common appear­
ance. In this book, most of the text is in a font from the Palatino family, while
program material is in a font in the Helvetica family. Characters in Palatino have
serifs - little extensions to the strokes that make up the characters. Serifs
decorate characters and contribute to their legibility. Helvetica fonts, on the
other hand, have no serifs; they are "sans-serif" fonts. The differences in the
appearances of the two fonts allow program material to be easily distinguished
from the body of the text.

Within a family, different fonts may have different styles, such as bold or
italic. The term roman is used for an upright, plain style, such as the font used in
this paragraph. Some styles are mutually exclusive, like roman and italic.
Others, like bold and italic, can occur in combination. Some families have
condensed and expanded fonts, which refer to the relative width and closeness
of characters.

Text that is written in a window is, of course, composed of pixels and
limited by screen resolution, which is much less than what is possible on paper.
Fonts used in this way are called screen fonts. Screen fonts typically appear
crude when compared to printed material.

The size of a screen font is measured in pixels and refers to the vertical
extent of the font. (In typography, font sizes usually are given in points, where
a point is approximately 1/72 ofan inch.) The actual height of a font that appears
in a window depends on the screen resolution. In some cases, a font of a
particular family and style may be available in any size requested. Often,
however, only specific sizes are available.

Fonts can be divided into two general classes: monospaced ones like
Courier, in which every character has the same width, and proportionally
spaced fonts like Palatino, in which characters have different widths according
to their visual appearances (an i being narrower than, for example, an 0).

Monospaced fonts are holdovers from typewriters, line printers, and

130 Text Chapter 6

computer terminals, for which the printing technology made fixed spacing
necessary. Monospaced fonts have one advantage: the characters line up in
columns, making layout simple.

Proportionally spaced fonts are more visually attractive and easier to
read than monospaced fonts, and are used for most printed material. Propor­
tionally spaced fonts also typically are more compact than monospaced fonts.

When specifying a font in Icon, the font is specified by a comma­
separated string that gives the family name, style characteristics, and size. The
family name must come first; other specifications can be in any order. An
example is "Helvetica,bold,12". Some family names contain blanks, as in "New
Century Schoolbook,14". Font specifications are case-insensitive; "new century
schoolbook,14" specifies the same font as the former example.

The only part of a font specification that is required is the family name.
In the absence of style specifications, a normal style for the family is provided by
default. If the size is not specified, the result depends on the graphics system. See
AppendixN.

The fonts that are available depend on the graphics system used and in
many cases on the specific platform. A workstation is likely to have hundreds of
fonts, while a personal computer may have only a few.

To aid the construction of applications that are portable among different
platforms, four standard family names are provided:

mono monospaced, sans-serif
typewriter monospaced, serif
sans proportionally spaced, sans-serif
serif proportionally spaced, serif

The actual fonts used for these depend on the platform and may differ
somewhat in appearance from platform to platform. In the event that there is no
font available with the specified characteristics, the result depends on the
graphics system. See Appendix N.

abcdefghijklmnopqrstuvwxyz
abcdefghijklrnnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz
abcdefghijklmnopqrstuvwxyz

a~xo£<I>'Yll tcpKA.~VQlt8pO'tUIDCJ.)~"'~

~~~1!$([)"+~~"'~~.t~.,K

Examples of Screen Fonts

The first four lines are in are mono,
typewriter, sans, and serif for a typical
platform. The fifth line is in a font from
the Symbol family. The last line shows
some special characters from the Zapf
Dingbat family.

Figure 6.1



Chapter 6 Text 131

Some platforms have different ways of specifying fonts that can be used
in addition to the standard one given here. See Appendix N.

A font can be specified when a window is opened, as in

WOpen("font=Helvetica,12")

If no font is specified, "mono· is used.

The current font can be determined by using FontO, as in

write("The font is ", Font())

or set by supplying a font name, as in

Font("sans")

Font(s) fails if the specified font is not available.

The following procedure shows how fonts can be used to produce
whimsical output, much like a ransom note made out of cut-out letters. It uses
a different font to display each character in its argument s. An example of the
output is shown in Figure 6.2.

procedure ransom(s)
local c
static famlist, attlist

initial {
attlist := [ "", "", "bold", "italic"]
famlist:= [

"AvantGarde", "Bookman", "Charter", "Courier", "Gill Sans",
"Helvetica", "Lucida Bright", "Lucida Sans",
"New Century Schoolbook", "Palatino", "Rockwell", "Times"]

}

every c := !s do {
Font(?famlist 11",24," II ?attlist)
WWrites(c)
}

return

end

Notice that normal (roman) appearance is chosen for one-half of the characters
on the average.



132

'Twasbrillig, and the slithy toveS

Did gyre and gimble in the wabe:

All mimsy were the borogoves,

And the mOrne raths Qutgrabe.

Font Characteristics

Text Chapter 6

Mixed Fonts

Try modifying the code that
produced this output to
vary the type size as well as
font and style.

Figure 6.2

For many purposes, it's possible to use fonts without worrying about
details. However, additional characteristics of fonts may be useful. Figure 6.3
shows the font-dependent attributes that are associated with characters.

ascent
base line

~
descent

height

Font Characteristics

Notice that the character is
enclosed ina bounding rect­
angle that includes white
space to separate the pixels
of the character from the
pixels of other characters.

Figure 6.3

The base line is the line on which a character"sits" - the y coordinate of
the current text position. The ascender portion is above the base line, while the
descender portion is below. In most fonts, only a few characters, such as g, p, and
y, have descenders. The amount of space and where it is varies from font to font.
Many fonts have all the horizontal space between characters at the right, so that
a character written in column 1 touches the left edge of the window, which is
visually unattractive.



Chapter 6 Text 133

The height of a font is no guarantee of how tall individual characters in
it are. For example, a Tin Palatino is considerably taller than a T of the same size
in Zapf Chancery ('1"').

Leading (which rhymes with heading) is the distance between the base
lines of text written on successive lines. (The term leading comes from the use of
thin strips of lead to separate lines of type.) The leading associated with a font
normally is the same as the font height (the line spacing having been considered
in the font design).

The various characteristics of a font are available in attributes that are set
when the font is selected:

fheight height of the font
fwidth width of characters in the font
ascent extent of the font above the base line
descent extent of the font below the base line
leading distance between base lines

All values are in pixels. The first four attributes are properties of the font and
cannot be changed. Leading is set to the font height when a font is selected, but
it can be changed.

In the case of a proportionally spaced font, fwidth is the width of the
widest character, which normally is M or W. Columns for proportionally spaced
fonts are based on fwidth, although, of course, characters in proportionally
spaced fonts usually do not line up in columns.

The leading can be changed to adjust the space between lines. For
example,

WAttrib(lleading=" II (2 * WAttrib(lfheight")))

produces "double spacing".

Text Width

For a monospaced font, the width of a string when written is just the
character width multiplied by the number of characters in the string. For a
proportionally spaced font, however, the width of a string is more complicated.

The procedure TextWidth(s) returns the width (in pixels) of the string s
in the current font. For example, to write a string centered between x1 and x2 on
base line y, all that's needed is

GotoXY(x1 + (x2 - x1 - TextWidth(s)) 12, y)
WWrites(s)



134 Text Chapter 6

Of course, a check should be provided to assure the positioning specifications
can be met.

Drawing Strings

In addition to writing text to a window, you also can draw strings using

DrawString(x, y, s)

which draws the string s starting at the specified location without changing the
text cursor position. Multiple strings can be drawn by supplying additional sets
of x, y, s arguments. Characters such as "\n" are not interpreted as positioning
actions but instead select the corresponding characters, if any, of the current
font.

DrawStringO draws only the foreground pixels of the characters, not the
background color that normally fills the "space" around text when it is written
using WWriteO and WWritesO. Otherwise, strings that are drawn look the same
as strings that are written.

Since DrawStringO includes positioning arguments, it is useful for plac­
ing text at specific locations. For example, to draw a string centered both
horizontally and vertically at x and y, the following can be used:

x1 := x - TextWidth(s) /2
y1 := y + (WAttrib("ascent") - WAttrib("descent")) /2 + 1
DrawString(x1, y1, s)

Another example of the use of DrawStringO is illustrated by the map of
the state of Arizona shown in Figure 6.4.

uma

~agstaff

PtJiX
~-
~ ~esa

~cson

A Map

In constructing an image like this, the
labels need to be placed with some care
to produce an attractive and readable
result.

Figure 6.4



Chapter 6 Text 135

Another reason for drawing a string rather than writing it is to take
advantage of drawing attributes, and in particular to be able to erase text. If the
drawop attribute is "reverse", a string drawn a second time at the same position
erases the first one. For example

WAttrib("drawop=reverse")

until *Pending > °do {
DrawString(10, 10, "Wake up!")
WDelay(500)
DrawString(10, 10, "Wake up!")
WDelay(200)
}

flashes "Wake up!" in the upper-left corner of the window until the user re­
sponds.

Library Resources

The fontpick program lets you type in a font specification and see all the
characters of the resulting font.

Tips, Techniques, and Examples

Text Justification

Most word processors perform text justification - the addition of extra
space to square up the left and right sides of typeset paragraphs. Figure 6.5
shows unjustified and justified versions of the same text. This section presents
the simple program that produces the justified version.



136

YOU don't know about me without you
have read a book by the name of The
Adventures of Tom Sawyer; but that
ain't no matter. That book was made by
Mr. Mark Twain, and he told the truth,
mainly. There was things which he
stretched, but mainly he told the truth.
That is nothing. I never seen anybody
but lied one time or another, without it
was Aunt Polly, or the widow, or maybe
Mary. Aunt Polly -- Tom's Aunt Polly,
she is -- and Mary, and the Widow
Douglas is all told about in that book,
which is mostly a true book, with some
stretchers, as I said before.

Text Chapter 6

YOU don't know about me without you
have read a book by the name of The
Adventures of Tom Sawyer; but that
ain't no matter. That book was made by
Mr. Mark Twain, and he told the truth,
mainly. There was things which he
stretched, but mainly he told the truth.
That is nothing. I never seen anybody
but lied one time or another, without it
was Aunt Polly, or the widow, or maybe
Mary. Aunt Polly -- Tom's Aunt Polly,
she is -- and Mary, and the Widow
Douglas is all told about in that book,
which is mostly a true book, with some
stretchers, as I said before.

Unjustified and Justified Text Figure 6,5

On the left, there is space at the end of each line. On the right, each line
is "justified" by distributing the extra space between the words.

Three procedures, along with the variables they share, handle the text
layout. The initjustO procedure initializes the shared variables:

$define Border 30 # margin around edges

global rownum # current row number
global words # words awaiting formatting
global linelen # their total length excluding spacing
global maxlen # maximum line width
global minspc # minimum spacing between words

procedure initjustO # initialize text justifier

rownum := 1 # row number 1
words := [] # no words in list
linelen := 0 # length is zero
maxlen := WAttrib("width") - 2 * Border

# max line size
minspc:= TextWidth(" ") # minimum spacing

return

end

Text is displayedby the setlineO procedure, which displays the elements
of the global variable words with specified inter-word spacing:



# typeset current line

# clear word list
# and its length
# increment row number

Chapter 6 Text

procedure setline(spacing)
local x, y, s

/spacing := minspc # default spacing to minimum
x := Border # set initial location
y := Border + rownum * WAttrib(lleading") - WAttrib(ldescent")
while s := get(words) do { # for each word

DrawString(x, y, s) # display the word
x +:= TextWidth(s) + spacing # adjust position
}

words := []
linelen := 0
rownum +:= 1

return

end

137

The addwordO procedure makes the key formatting decisions. It is
called once for each word to be typeset and accumulates those words in the
global list words. When there is not enough room on the current line for the new
word, even with minimum spacing, addwordO calls setlineO to output the
pending list. Spacing is calculated to result in a completely full (justified) line.
A real value is used to avoid loss of the fractional part.

procedure addword(s)
local wordlen

wordlen := TextWidth(s) # width of word to add

# if line can't hold this additional word, flush it out
if Iinelen + *words * minspc + wordlen > maxlen then {

# set with spacing that fills line to maximum size
setline«maxlen -linelen) / real(*words - 1»
}

put(words, s)
linelen +:= wordlen

return

end

# add word to list
# update total length

A simple main procedure breaks input lines into words and calls
addwordO for each.

link graphics

procedure main(args)
local line, cs



138

cs := &ascii -- ' \t\l\r'
WOpen("size=375,375", "font=times,20") I

stop(,'*** cannot open window")

initjustO # initialize justifier

while line := trim(read()) do line? {
while tab(upto(cs)) do # for each text word

addword(tab(many(cs))) # call addword
}

Text Chapter 6

setlineO

WDoneO

end

Specifying Fonts Portably

# flush last line

The set of available fonts varies from one system to another. Programs
that specify fonts should take this into account so that they do not produce
inappropriate displays or become unusable when moved to different environ­
ments.

The best way to do this is to provide alternatives, which is easily done
using Icon's goal-directed evaluation. An example is:

Font(("Frutiger" I "Univers" I "Helvetica" I "sans") II ",14")

The preferred font is given first, followed by less-desirable but possibly
more commonly available alternatives, and finally ending with one of Icon's
generic font families. A size specification is appended to each family name in
tum and the result is passed to FontO. Failure in FontO causes the next alterna­
tive to be tried. As soon as FontO succeeds, evaluation ceases and the chosen font
remains in effect.

If no alternative is accepted by FontO, the entire expression fails and the
font is left unchanged. This can happen if none of the choices is available in a 14­
pixel size. The example above ignores such failure, leaving the previous font in
effect for lack of a better solution.



Chapter 7

Color

Color is one of the most important and potentially rewarding components of
computer graphics - and one of the most difficult. Color often is used just to
make an application visually attractive. But color has many uses beyond
decoration: attracting attention to important events or situations, distinguishing
between different kinds of objects, and so on.

The effective use of color requires much more than just a technical
mastery of rendering color. There are difficult issues related to color vision, the
human cognitive system, the psychology of color, and even artistic taste. We
won't attempt to discuss these issues here, but if you're interested in digging
deeper into such topics, see Rossotti (1983), Hope and Walch (1990), and
Gerritsen (1988), for example.

Most of what follows assumes hardware that supports the display of at
least a few colors; otherwise this chapter is mainly academic.

Specifying Colors

Icon provides two ways to specify color: by name or by numerical value.

Color Names

Icon supports a color-naming system, inspired by Berk et aL (1982), for
the most commonly used colors. These names consist of simple English phrases
that specify hue, lightness, and saturation values of the desired colors. Hue
distinguishes among different colors, such as red, yellow, and purple. Lightness
measures the perceived intensity of a color. Saturation is a measure of the purity
of a color - how far it is from a gray ofequal intensity. Pink is less saturated than
red.

139



140

The syntax of a color name is

lightness saturation

Color Chapter 7

pale
light

medium
dark
deep

where choices enclosed in brackets are optional and hue can be one of

black orange
gray or grey yellow
white green
pink cyan
violet blue
brown purple
red magenta

A single hyphen or space separates each word from its neighbor.
Conventional English spelling is used. When adding ish to a hue ending in e, the
e is dropped. For example, purple becomes purplish. The ish form of red is
reddish. Some examples are

"pale-blue"
"light greenish-blue"
"deep purplish blue"
"vivid orange"

When two hues are supplied and the first hue has no ish suffix, the
resulting hue is halfway between the two named hues. When a hue with an ish
suffix precedes a hue, the resulting hue is three-fourths of the way from the ish
hue to the main hue. The default lightness is medium and the default saturation
is vivid.

Mixing radically different hues such as yellow and purple usually does
not produce the expected result. It's also worth noting that the human percep­
tion of color varies widely, as do the actual colors produced by these names on
different monitors. The program colrbook allows you to see what different color
names produce. See Figure 7.1 or Plate 7.1.



Chapter 7 Color

QUIT I

ale I

,,-=I medium I---=1_ 1_--==:.2..J---- 1"...-----.- bluish cyan

Color Names Figure 7.1

A tool like colrbook can help you quickly get the results you want and
avoid the pitfall of using only garish, primary colors.

141

If a color name does not conform to the naming system above, the name
is passed to the underlying graphics system, which may recognize other names.
See Appendix N for information about color names for various graphics sys­
tems.

Color names can specify only a few of the millions of possible colors.
Despite this limitation, color names are easy to use. If simple colors are all you
need, names do nicely.

Numerical Specifications

Numerical specifications are given in terms of the brightness of the red,
green, and blue (RGB) light that is used to produce color on most monitors. Red,
green, and blue in this context are primary aydditive colors. The intensities of the
components determine the color. At zero intensity for all components, the color
produced is black - at least in theory; most monitor screens don't appear to be
completely black because of light reflected off the screen. At maximum intensity
for all components, the color produced is white - again, in theory; the screens
ofmost monitors appear to be light graywhen fully illuminated. And, in general,
equal intensities of all components produce a shade of gray. (Black, white, and
gray aren't really colors in the technical sense, but it's useful to treat them as if
they are.)



142 Color Chapter 7

Unequal intensities of the primaries produce other colors. For example,
red and blue in the absence of green produce magenta, while red and green
produce yellow, and blue and green produce cyan. All other colors are produced
by combinations of the primaries in various intensities. You may be surprised to
learn thatthere are colors that can't be composed in this manner, but this isn't an
important problem in practice.

The advantage of the RGB color-specification system is that it corre­
sponds directly to the hardware that produces the color. The RGB system has
some disadvantages, however. One disadvantage is that most persons learn
colors with a subtractive model in which a combination of pigments produces
a darker color, not a lighter one. Persons who are used to thinking in terms of
subtractive colors usually are surprised to learn that the additive primaries red
and green produce yellow. Another problem with the RGB system is that it isn't
particularly intuitive. Unless you have experience with the RGB system, it may
not be obvious to you how to get an orange color by combining red, green, and
blue light. And how would you get teal blue?

The intensities of red, green, and blue can be specified in several ways.
Strings of the form "#rgb", "#rrggbb", "#rrrgggbbb", and "#rrrrggggbbbb" specify
intensities in which r, g, and bare upper- or lowercase hexadecimal digits. The
more digits used, the more precisely a color can be specified. The specification
"#ddd" might suffice for a light gray, but to get a particular pink, you might need
something like "#FFCOCB".

Intensities also can be specified by three comma-separated decimal
values in the range from 0 to 65535. For example, "32000,0,0" specifies a dark red
(less than half the maximum intensity for red, and no other primary).

As these ranges suggest, Icon uses 16 bits of information for color
intensities. Neither the human visual system nor color monitors approach this
degree of precision in discriminating among colors, so small variations in
numerical specifications usually are unnoticeable.

The procedure ColorValue(s) produces the comma-separated decimal
form of the color s. ColorValue(s) fails if s is not a valid color specification.
ColorValueO works even if no window is open, but system-dependent color
names may not be recognized in this case.

If you're a bit pixilated at this point by the problems with color specifi­
cation, we suggest you turn to the Icon program library for help. One useful
program is trycolor, which displays a window with a colored circle. See Figure
7.2.



Chapter 7 Color

light blue-green
21845,65535,65535

#55FFFF

143

Trying a Color

With trycolor, you can type a color
specification (fromstandard input, not
in the window) in any of the forms
described earlier. Ifyou specify a color
name that is not available or make a
syntax error in a numerical specifica­
tion, you'll be told about it. The win­
dow also shows the hexadecimal and
decimal values corresponding to a
named color.

Figure 7.2

The program colrpick presents an interactive method for selecting colors
either according to RGB values or hue, saturation, and value. (Value is the
traditional name for lightness in the HSV color model.) Hue is measured in
degrees around a circle; red is at 0°, green is at 120°, and blue is at240°. Saturation
and value are measured on a scale of 0 to 100. See Figure 7.3 or Plate 7.2.

select color:

I I.
I

r: S898 h: 176
g: 39321 5: 85
b: 37093 v: 60

Using Color Specifications

Interactive Color Selection

As you drag a slider, the color in the square
changes accordingly. The sliders and values
are linked so that, for example, changing the
hue changes the RGB values.

Figure 7.3

Color specifications can be used to set the foreground and background
colors using F90 and BgO. For example,



144 Color Chapter 7

Fg(Hred")

sets the foreground color to red.

The foreground color is used for drawing and text. The background color
is used by EraseAreaO and for filling behind text that is written (but not text
drawn by DrawString()).

The attribute reverse can be set to "on" to swap the foreground and
background colors. Thus, after setting the colors as above,

WAttrib("reverse=onH
)

the foreground color is black and the background color is white. The colors can
be restored by

WAttrib(" reverse=off")

Color Correction

In Icon, intensity values range uniformly from darkest to lightest. At the
midpoint, "32768,32768,32768" or "#808080" specifies a medium gray. Com­
puter monitors don't really work this way, though. A 50% hardware intensity
produces a dark color; around 75% is needed to produce "medium" gray. Many
graphics systems take care of this automatically, adjusting the programmer's
values to provide the expected appearance. Others, notably the X Window
System, control the hardware using uncorrected values. This leaves it to Icon to
fix things up.

Precise color correction involves complicated calculations and measure­
ments of the particular monitor involved; these measurements change as a
monitor ages, and even as it warms up. Nevertheless, a remarkably good
approximation can be produced using a simple process called gamma correction.
This is what Icon uses.

In gamma correction, the apparent brightness Bof a color is related to its
hardware intensity I by the formula B = ['Y where B and I range from 0.0 to 1.0
and y (the Greek letter gamma) is a parameter characterizing the monitor. For
most monitors, y is between 2 and 3. Gamma correction is applied indepen­
dently to each of the red, green, and blue color components. Mid-range colors
and grays are most affected; gamma correction has no effect on black, white, or
fully saturated primary colors.

The gamma attribute controls Icon's color correction. A value of1.0 is the
default on systems that need no conversion. On others, a larger default value
effects a translation from Icon's linear color space to hardware-based values
needed by the graphics system. The gamma attribute can be set to any value



Chapter 7 Color 145

greater than zero to better match a particular monitor or to produce special
effects. Changing gamma does not alter anything that has already been drawn,
but it affects all subsequent operations, including the interpretation of the
current foreground and background color.

PortabiIity Considerations

Icon's color names and RGB specifications are portable among different
graphics systems, although the appearance of a color may vary from platform to
platform because of hardware differences. Platform-specific color names gener­
ally are not portable, however. The use of nonportable names may cause a
program to fail or produce unexpected results.

The procedure ColorValueO, described earlier, is useful for converting
a system-specific color name to a form that can be used on any platform.

Color Maps

If you use more than a few different colors for identifying objects and
attracting attention to an important situation, you'll run into one of the most
troublesome aspects of dealing with colors.

Most modem color monitors are capable of displaying a very large
number of different colors. On the other hand, the number of differentcolors that
can be displayed at anyone time may be very limited. This limit is determined
by the number of planes in the hardware used to drive the monitor. One plane is
provided for each bit associated with a pixel on the screen. Machines with one
plane (one bit per pixel) support only two colors - a bi-Ievel, black-and-white
display. On the other hand, well-equipped machines support thousands (15 or
16 planes) or millions (24 planes or more) of simultaneous colors.

All too common is the intermediate case: many color and grayscale
systems have 8 planes, allowing 28 =256 different colors or shades of gray to be
displayed at one time. The attribute depth gives the number of planes supported
by the graphics hardware. Forexample, if WAttrib("depth") returns I, the display
isbi-Ievel. Ifitreturns 8, then256 differentcolors or shades ofgray are supported.

Because of the limited ability of the human visual system to distinguish
colors, a number such as 256 is not as limiting as it might seem. Realistic pictures
can be composed from 256 different colors if there is a large selection of colors
to choose from. The real problemcomes from the fact that the different available
colors usually are shared by all the applications that use the screen. This includes
colors that the graphics system may use for decoration, as well as colors
belonging to other applications that are in the background when the program is
running.



146 Color Chapter 7

On almost a1l4-plane and 8-plane systems, the colors that appear on the
screen are registered in a color map that typically is shared by all applications.
Differentapplications that use the samecolor share an entry in the map. For these
systems, the limitations on the number of different colors can become a problem
for applications that display images with many colors, especially if the colors
that are used change. The procedure FreeColor(51, 52,. ..) frees the specified
colors, allowing the graphics system to reuse the corresponding entries in the
color map. Whether this actually is done depends on the graphics system. If a
color is in use when it's freed, the result is unpredictable. Another way to free
colors is to close the window or completely erase it by calling Era5eAreaO.

In the case of multiple windows, described in Chapter 9, the discussion
above applies to all windows. For example, on systems with 8planes, at most256
colors or shades of gray are available among all windows.

Mutable Colors

When a color map entry is modified, any corresponding pixels on the
screen change instantly to the new color. Sometimes this can be used to
deliberate advantage. Many graphics systems allow modification of color map
entries, and Icon provides this facility in the form of mutable colors.

The procedure NewColor(5) reserves an entry in the color map and
returns a negative integer n representing this new mutable color. The string 5, if
supplied, specifies the color initially set in the color map entry. NewColorO fails
if mutable colors are not supported or if the color map is full.

An integer returned by NewColorO can be used as a color specification.
In particular, Fg(n) makes a mutable color the foreground color for subsequent
drawing.

The procedure Color(n, 5) sets the color map entry for the mutable color
n to the color specified by 5. Any pixels that have been drawn in this mutable
color immediately change to color 5. Additional pairs of arguments can be
supplied to change multiple entries. If only a single argument n is passed, the
current color map setting is returned and nothing is changed.

The color map entry of a mutable color can be freed only by calling
FreeColor(n). As with other uses of FreeColorO, the results are undefined if the
color is still in use.

Using Mutable Colors

The important aspect of mutable colors is the ability to change the
appearance of something that already has been drawn. This is especially useful



Chapter 7 Color 147

with complex objects; on the other hand, the colrpick program uses a mutable
color just to change its central square as the sliders are moved. Mutable colors
can be used to emphasize or de-emphasize something, to make an object blink
or flash, or even to produce animation (as shown later).

Suppose you have a program for drawing figures in a window. Drawing
is done on top of a light-blue grid to help with vertical and horizontal alignment.
Now suppose youwant to view the finished drawing without the grid lines. This
requires either erasing the grid lines, which is tricky if some of them have been
drawn over, or redrawing the figure in a cleared window.

There is an easier way. If the grid is drawn in a mutable color (initially set
to light blue), it can be rendered invisible by setting its color to match the
background color. Itcan even be brought back by changing it to light blue again.
Here's an example of such a usage:

procedure mainO

curr := "light blue" # current grid color
alt := "white" # alternate grid color
grid := NewColor(curr) I stop(,'*** cannot allocate mutable color")

drawgrid(grid)

drawgraphO

# loop and handle events
repeat {

case EventO of {
"q": exitO
&Ipress: Color(grid, curr :=: alt) # change grid color
}

}

end

procedure drawgrid(color)
local fg, i

fg:= F90
Fg(color)

every i := 22 to 347 by 25 do {
DrawLine(i, 0, i, 370)
DrawLine(O. i. 370, i)
}

# draw background grid

# save present foreground color
# set grid color



148

Fg(fg)

Color Chapter 7

# restore foreground color

return

end

Every time the user presses the left mouse button, the grid lines are toggled.
Figure 7.4 illustrates this.

~

1/ "-If \
\ ./

...... /
I, I

If \ II
\

Disappearing Grid Lines Figure 7.4

How would you arrange for a variety of colors for grid lines?

Monochrome Portability

Applications that are designed for color screens can be ugly or even
unusable on monochrome monitors unless some attention is paid to portability.

On a bi-Ievel monitor, F90 can choose only black or white, and it returns
whichever of these is closer to the requested color. On a gray-scale monitor, it
chooses the closest gray.

Choosing black or white is about the best that can be done for drawing
lines or writing text, but it doesn't work very well for colors that cover large
areas. The procedure Shade(s) addresses this problem. On a color monitor,
ShadeO acts just like F90. On a bi-Ievel monitor, ShadeO sets the window to use
a halftone pattern that approximates the darkness of the requested color.
(Halftones are patterns of black and white dots that give the illusion of gray.)

The best results usually are obtained by designing an application to
consider at least two types of displays: bi-Ievel and color. A test such as



Chapter 7 Color 149

if WAttrib(ldepth") = 1 then ...

might be used. This approach groups gray-scale monitors with color monitors
- both have depths greater than 1 - since approximating colors with grays
usually looks better than using halftones.

Printing Color Images

One problem that plagues the use of color is the need to produce printed
copies of such images for use in technical reports, dissertations, journal papers
- and books like this one.

Although new technologies have lowered the cost and increased the ease
of color printing, it's still impractical in most situations. What usually happens
is that color images are printed in black and white in the hope of capturing at
least some sense of the distinctions that color provides. Halftoning is used to
convert colors to different shades of gray.

The trouble with this is that radically different colors may appear similar
or even identical when printed. See Figure 7.5. Ways of dealing with this
problemarebeyond the scope of this book, but ifyou expect to print color images
in black and white, you may want to consider color selection in advance and see
what different choices look like when they are printed.

red

green

blue

orange

purple

light blue

light green

light red

dark yellow

Color Printed in Black and White

If this figure didn't have labels, could you guess
the actual colors?

Figure 7.5



150

Library Resources

Color Chapter 7

The gpxop module, which is incorporated by link graphics, contains
several additional procedures not discussed elsewhere. These include:

Blend(k1, k2, ...) generate a sequence of colors
Contrast(k) choose white or black to contrast with k

Procedures for converting RGB colors to and from HSV and HLS color
spaces also are provided.

Tips, Techniques, and Examples

Random Rectangles

In Chapter 4, we showed a program for generating random rectangles in
black and white. It's easy to adapt this program to select colors at random. All
that's needed are lists of darknesses and hues:

darkness := ["light", "medium", "dark", "deep"]
hue := ["red", "orange", "yellow", "green", "blue", "gray"]

Then the foreground color can be set at random before drawing:

Fg(?darkness II" moderate II II ?hue)

Unlike the black-and-white case, the result is more attractive if only filled
rectangles are drawn, rather than choosing randomly between lines and rect­
angles:

FiIlRectangle(x, y, w - Gap, h - Gap)

Figure 7.6 shows an example of the results; also see Plate 7.3.

II i-···· - • I-· 111=····=1l1li-:'11 111-. =1••. ..1 III- ••••••
I. 1111- .••• -.- . . -- •. =_!..!i·.··-.I=!~·-I-.11.••.11_ J· ... ­• .II••!;-••II:;

Random Rectangles in
Color

Try experimentingwith dif­
ferent selections ofhues and
darknesses, or biasing the
darknesses andhuesbyhav­
ing some appear more than
once in a list.

Figure 7.6



Chapter 7 Color

Three-Dimensional Shading

151

A little bit of shading can make objects appear to be raised above or
sunken below the plane. An example can be seen in Figure 7.7.

A Domino and its Mold

C' C'
Rotating the book 1800 turns one into

oJ ;J the other.
c oJ

n (' oJ oJ

Q C' oJ oJ

(' oJ oJ

("> (' oJ oJ

Figure 7.7

A three-dimensional effect is produced by framing an area using two
different colors. Part of the frame is lighter than the background, as if illumi­
nated, and part is darker, as if in shadow. Where the two meet in a corner, the
boundary is mitered at a 450 angle, as in a real picture frame.

The eye expects illumination to come from above. This is why the
shading cues are so effective, and why rotating the figure can raise and lower the
dominoes. The same illusion can turn valleys into ridges when an aerial photo
taken in the northern hemisphere is viewed with north at the top.

For a realistic appearance, it is important that the shading be done
consistently. InFigure 7.7, the colors framing the pips of the dominoes show that
the "light source" is above and slightly to the left, and the vertical parts of the
frame are colored accordingly.

A light, unsaturated background color, such as pale gray, works best.
This provides sufficient contrast for button labels and other such things while
allowing highlights to be drawn in white, a sti11lighter color. It is also possible
to use light-gray frame highlights with a white background, or a dithered frame
on a bi-Ievel display, but neither is as convincing.

The library file bevel.icn contains several procedures for drawing bev­
eled objects; it was used to produce Figure 7.7.

Animation Using Mutable Colors

Mutable colors canbe used to produce animation. This programdisplays



152 Color Chapter 7

randomly placed helicopters with spinning rotors. Each rotor is drawn in twelve
different positions using twelve different mutable colors; at any time only one
of those is visible, and the rest are set to match the background color. The
appearance of motion is produced by changing the color map settings to make
the "visible" color advance from one position to the next.

link random

$define colors
$define copters
$define nap

$define cwidth
$define cheight

global mcol

procedure mainO
local cv

12
10
20

50
30

# number of colors
# number of helicopters
# spin delay in msec

# helicopter width
# helicopter height

# list of mutable colors

# turn old blades to white
# rotate colors
# turn new blades to black
# don't spin too fast

WOpen(lsize=600,400") I stop("*** cannot open window")

mcol := []
every 1 to colors do # get mutable colors

put(mcol, NewColor(lwhite")) I stop(,'*** cannot get mutable color")

randomizeO

every 1 to copters do # place helicopters randomly
launch(?(WAttrib(lwidth") - cWidth), ?(WAttrib("height") - cheight))

# Loop until user signals a halt.

cv := mcol[1]
until WQuitO do {

Color(cv,"white")
put(mcol, cv := get(mcol))
Color(cv, "black")
WDelay(nap)
}

end

# launch(x, y) - draw helicopter at (x,y)

$define slice (&pi / colors) # blade width

procedure launch(x, y)
local CV, off

WAttrib("dx=" II X, "dy=" II y) # adjust coordinate system



Chapter 7 Color

EraseArea(O, 12, 50, 13) # clear approx background area
DrawSegment(2, 30, 20, 30, 15, 30, 15, 25) # draw body
DrawLine(2, 25, 20, 25, 60, 12, 20, 12, 20, 25)
DrawCircle(14, 18, 14,5 * &pi / 6, &pi / 3) # draw curved windshield

off := ?O * &pi # random initial blade offset

every cv := 1 to colors do { # draw blades
Fg(mcol[cv])
FiIIArc(-10, 0, 50,14, off + cv * slice, slice)
FiIIArc(-10, 0, 50,14, off + cv * slice + &pi, slice)
}

Fg("black")
DrawArc(-10, 0, 50, 14) # ellipse around blade tips

return

end

153

All rotors use the same set of twelve mutable colors. Because no redraw­
ing takes place, the number ofhelicopters has no effect on the speed of the rotors:
it is just as quick to spin a hundred of them as a single one, since only the color
map is changing. Figure 7.8 shows a snapshot of this action.

Animated Helicopters Figure 7.8

Try creating as many helicopters as you dare, and verify that the speed
isn't affected.





Chapter 8

Images

This chapter describes the remaining operations related to windows: specifying
and drawing images, and reading and writing image files.

Drawing Images

Drawlmage(x, y, spec) draws an arbitrarily complex figure in a rectan­
gular area by giving a value to each pixel in the area. x and y specify the upper­
left comer of the area. spec is a string of the form "width,palette,data" where
width gives the width of the area to be drawn, palette chooses the set of colors to
be used, and data specifies the pixel values.

Each character of data corresponds to one pixel in the output image.
Pixels are written a row at a time, left to right, top to bottom. The amount of data
determines the height of the area drawn. The area is always rectangular; the
length of the data must be an integral multiple of the width.

The data characters are interpreted in paint-by-number fashion accord­
ing to the selected palette. With the c2 palette, the data characters r, g, b, c, m, y,
k, w, and x draw the colors red, green, blue, cyan, magenta, yellow, black, white,
and gray, respectively. With the g16 palette, the hexadecimal characters 0
through F select sixteen shades of gray. Other palettes provide larger sets of
colors or grays. The available palettes are described in detail in Appendix H, and
the color palettes are illustrated in Plate 8.1. Plates 8.2 through 8.4 contrast the
discrete colors of the c1 and c6 palettes with the full range of colors.

Spaces and commas can be used as punctuation to aid readability. The
characters - and \377 specify transparent pixels that do not overwrite the pixels
on the window when the image is drawn. Punctuation and transparency
characters lose their special meanings in palettes in which they represent colors.

155



156 Images Chapter 8

E8579BA9643323AF" II
5579AA9643222108"1I
4333333222100008"11
D41111100000019F"1I
FFFD9532248BFFFF"

The following code segment uses the g16 palette to draw the small
spheres shown in Figure 8.1:

sphere := "16,916, FFFFB98788AEFFFF" II
"FFD865554446AFFF FD856886544339FF
"A569DECA7433215E 7569CDB86433211A
"4456776533221007 4444443332210007
"533322221100000A 82222211100oo03D
"FA200000000018EF FFA4000000028EFF

every x := 20 to 460 by 20 do {
y:= 290
every 1 to ?17 do

Drawlmage(x, y -:= 16, sphere)
}

A Drawn Image

Thenur.nberofballsineadh
column in this figure was
selected at random. This
kind of graphic also could
be used to present a bar
graph in an eye-catching
manner.

Figure 8.1

DrawlmageO fails if the specification is invalid. It normally returns the
null value, but if one or more of the requested colors cannot be allocated, the
procedure returns a countofthe number ofcolors that cannotbe allocated. When
a color cannot be allocated, either black or white (whichever is closer) is
substituted in the drawn image.

Palette Inquiries

Programs that construct images need information about color palettes in
usable form. Four procedures provide this in various ways:

PaletteKey(palette, color) returns a character from the given palette
representing an entry in the palette that is close to the given color.

PaletteColor(palette, s) returns the color represented by the single
character s in the given palette, failing if the character is not a member of the
palette. The color is returned in the same form as produced by ColorValueO.



Chapter 8 Images 157

PaletteChars(palette) returns a string containing the characters that are
valid in the given palette. The procedure PaletteGrays(palette) returns only the
characters corresponding to shades of gray, ordered from black to white.

None of the palette inquiry procedures requires a window, either im­
plicit or explicit, but for uniformity they all accept an optional window argu­
ment. Only PaletteKeyO utilizes a window: Platform-dependentcolor specifica­
tions may not be recognized without one.

Bi-Level Images

For an image composed of only the foreground and background colors,
only one bit is needed to specify the setting of each pixel. A more compact form
of specification is allowed as an alternative in this situation.

A bi-Ievel image specification has the form width,#data. The data field is
a series ofhexadecimal digits specifying the row values from top to bottom. Each
row is specified by width/4 digits, with fractional values rounded up.

The digits of each row are interpreted as a base-16 number. Each bit of
this number corresponds to one pixel; a value of 0 selects the background color
and a value of 1 selects the foreground color. The least significant bit of this
number corresponds to the left-most pixel, so the bits of each row are backwards
from the usual representation.

For example, Drawlmage(x,y,15,#1113151911") draws a 5-by-5letterN.
The hexadecimal string is interpreted in this way:

bit value hex
row 1 2 4 8 16

1 .000. 11
2 ••00. 13
3 .0.0. 15
4 .00•• 19
5 .000. 11

If the data field is preceded by the character - instead of #, the image is
written "transparently": Bit values of 0 preserve existing pixels instead of
writing the background color.

Patterns

In previous chapters, we described several procedures for drawing solid
lines and areas. It's also possible to use these procedures to lay down a pattern.



158 Images Chapter 8

Two attributes control pattern drawing: a pattern and a fill style.

A pattern is defined in terms of a small rectangle, or tile. Conceptually,
the tile is aligned in the upper-left comer of the window and then duplicated as
necessary until the window is filled. When the pattern is active, each pixel drawn
on the window is controlled by the corresponding pixel of the pattern. Because
the pattern is always aligned with respect to the edge of the window, and not the
coordinates of the drawing operation, areas drawn at different times merge
seamlessly.

There are 16 built-in patterns with string names, as shown in Figure 8.2.

black verydark

••lightgray verylight

.:.:.:.:-:-:-:-:-:-:

darkgray

white

gray

verti cal

Built-in Patterns

The built-in patterns
are designed toprovide
cornrnonJy used back­
grounds and textures.

diagonal horizontal grid trellis

.~••
Figure 8.2

A pattern is specified by calling Pattern() with a pattern specification, as
in

Pattern("scales")

The attribute pattern also can be used to specify the pattern, as in

WAttrib(lpattern=scales")

The fiIIstyle attribute must be set appropriately to use a pattern. With the
default settingof "fillstyle=solid", anypatternis ignored. Setting "fillstyle=masked"
causes drawing to be restricted to only those pixels that correspond to bits in the
pattern. Setting "fillstyle=textured" causes all the usual pixels to be drawn, using
the foreground color where the pattern is set and the background color where
it is not.



Chapter 8 Images

For example, with the pattern specified above,

WAttrib(lfillstyle=textured")
FiIIRectangle(200, 200, 80, 160)

produces the result shown in Figure 8.3.

159

..
A Patterned Rectangle

Patterns can be used with any drawing
procedure. You mighttry your hand at
crafting a fish.

Figure 8.3

Patterns are not limited to the built-in ones. Figure 8.4 shows an example
of another pattern.

A Patterned Necktie

The tile used in this necktie is 14,#8CA9":
row 1 2 4 8 hex

1 000. 8
2 DO•• C
3 D.O. A
4 .00. 9

Figure 8.4



160 Images Chapter 8

Tiles are given by bi-Ievel image specifications, as described in the
previous section. The specification used in this necktie is 14,#8CA9".

Here is a programfragment thatproduces the image shown inFigure 8.4.
Notice that the fill style is reset after drawing the interior in order to draw a solid
outline.

points := [90, 70, 110, 70, 120, 40, 80, 40,
90,70,60,330,100,370,140,330,110,70]

Pattern(14,#8CA9")
WAttrib(lfillstyle=textured")
FillPolygon ! points
WAttrib(lfillstyle=solid")
DrawPolygon ! points

The sizes of tiles that can be used for patterns are dependent on the
particular graphics system used. There is no inherent limit. Tile sizes of 4 by 4
and 8 by 8 are the most portable. Figure 8.5 shows more examples, each
constructed using one of these two tile sizes.

"""~"''''
'""''''"''''"''''"'''''''"'''''''"'''''''~~'"

"'''''''"'''''''WWWI;;'I
1;;11;;11011;;1
WIOIWW

WWWWW
@!;;IWWW
I;;I@@WW
0WWWW
WWWWW
flI~:II:;II:;II:;II:P

!l1l:~:II:~:II:;II;;II:P

rlH~:II:~:II;;II:;II:P

III rlH~:U;~:U;~;II:P

I'lIIlIIlIWWWq)

1'I't1'Pt1'Ptll't..............................................
Itt""""""ll'tll'tll'tll't
ll'tll'tlttl'lt
lttl'Ptl'Ptl'l't
1'Pt1'Pt1'l'tll't
1'Pt1'Pt1'l't1'l't
ll'tll'tIl'tIPtl!'t
ll'tll'tll'tl'l't/llt
ll'tll'tll't1'Pt1l't

ll'tl'ltl'l'tl'l'tl'l'tltt
1'I't1'l't1'l't1'l't1'l't1tt
1'I't1'l't1'l't1'l't1'l't1'l't
1'I't1'l't1'l't1'l't1'l't19t
1'I't1'l't1'l't1'l't1'l't1tt
1'I't1'l't1'l't1'l't1'l't1'l't
1'I'tl'l'tl'l'tl'l'tl'l'tflltltt
1tt1tt1'l't1tt""1'I't1'l't

1'I'tl'l'tl'l'tl'l'tlttl'l'tJlltltt
1'I'tll't1'l'tll't1'l't1'l't1'l't1Pt
lttlttl'l'tl'l'tl'l'tl'l'tl'l'tltt
Ittl'l'tl'l'tl'l'tl'l'tll'tflltfllt
I'Ptfl'tfl'tlPtl'l'tl'l'tlttltt
1'I't1'l't1'l'tll'tll'tI'Ptl!'tlit
1'I'tl'l'tl'l'tl'l'tl'l'tl'l'tJlltttt
ll'tll'tll'tll'tll't1'Pt1l't1tt

1'I't1'lt1'l't1'l't1'l't1Pt
1'I't1'l't1'l't1'l't....

Various Patterns Figure 8.5

It often is difficult to find a pattern that will produce a desired effect, but
it's fun trying.



Chapter 8 Images

Image Files

161

Any rectangular portion of a window can be saved in an image file.
Conversely, image files can be read into a window.

Icon supports GIF, the CompuServe Graphics Interchange Format
(Murray and vanRyper, 1994). Other image file formats are supported on some
platforms. See Appendix N for more information.

GlF files are limited to 256 different colors. There are two GIF formats:
GlF87a and GIF89a. GIF89a supports transparency, in which designated pixels
in the image are not displayed, leaving those in the window unchanged. Icon can
read both GlF formats, but it can write only GIF87a.

An image can be loaded into a window when it's opened by using the
image attribute with a file name as value, as in

WOpen("image=igor.gif")

which opens a window using the image file igor.gif. The size of the window is set
automatically to the sizeof the image. The result mightbe as shown in Figure 8.6.

Igor, at your service A Start-Up Image

Image files are available from a wide variety of
sources. In addition to ones available from
electronic bulletin boards and networks, im­
age files can be created from printed images
using a scanner. A large number of "clip art"
images also are available without copyright
restrictions.

Figure 8.6

Another example of the use of an image is shown in Figure 8.7.



162 Images Chapter 8

A User Dialog

This example shows how intricate images - ones
you'd never want to construct by drawing in a
program - can be used to dress up user interfaces.

Figure 8.7

An image can be read into a window after it has been opened using
Readlmage(s, x, y, p), which reads the image file named s into the window. The
upper-left corner of the image is placed at x and y, which default to O. Any
portion of the image that does not fit into the window is discarded. If p is present,
the image is displayed using only the colors of the palette p, thus giving the
program some control over color allocation.

ReadlmageO fails if the image file cannot be opened, if it is not in a valid
format, or if p is not a valid palette name. It normally returns the null value, but
if one or more of the needed colors cannotbe allocated, it returns a count of those
colors (after substituting black or white for them).

The procedure Writelmage(s, x, y, w, h) writes the specified rectangular
area of the window to the file named s, starting at x and y and extending by w
and h. x and y default to O. If w or h is omitted, the extent is to the edge of the
window in that direction. Thus, Writelmage(s) writes the entire contents of the
window to the file named s. The image normally is written in GIF format, but
certain forms of file names may select different formats on some systems; see
Appendix N for details. WritelmageO fails if the given bounds exceed the
window, if the width or height is zero, or if the file cannot be written.

If the graphics system allows it, the image used for the iconified version
of a window also can be set by using the attribute iconimage, as in

WAttrib(liconimage=sleep.gif")

Gamma correction is applied when images are read in and written out.
Consequently, an image that is read in and then written out without modifica­
tion is the same, regardless of the value of the gamma attribute.



Chapter 8 Images

Library Resources

163

The gpxop module, which is incorporated by link graphics, includes
these procedures:

Capture(p, x, y, W, h) convert area to image string
Zoom(x1, y1 , w1, h1 , x2, y2, w2, h2) copy and distort rectangle

The gifsize module contains gifsizeO for determining the size of the GIF
image in a file.

Tips, Techniques, and Examples

Random Colors

An mentioned in Chapter 3, an element of randomness often enhances
the visual appeal of graphic designs.

One way to accomplish this is to create a list of colors and use the random
selection operation, as in

colors := ["red", "blue", "green", "orange", "purple", "black"]

Fg(?colors)

Ifmany different colors are needed, it is tedious to list them all and it may
be hard to find an appropriate range. In this case, color palettes can be useful.

The library module color contains a procedure RandomColor(p), which
selects a random color from palette p, omitting the extra shades of gray that are
used to fill out large color palettes. See Appendix H.

An alternative method, which has less overhead per color needed but
requires some work initially, is to create a color list from a designated palette, as
in

colors := []

every put(colors, PaletteColor(p, IPaletteChars(p)))

All grays can be omitted by using PaletteGraysO:

colors := []

grays := PaletteGrays(p)

every c:= !PalleteChars(p) do
if not (grays? upto(c)) then put(colors, PaletteColor(p,c))



164

Transparent GIF images

Images Chapter 8

Transparent GIFs are images in which one color is designated as "trans­
parent", so that pixels of that color are ignored when the image is read. This
allows a variety of interesting visual effects. Icon can read transparent GIFs, but
it cannot write them. There are, however, a number of utility programs that can
create transparent GIFs, and many transparent GIFs can be found on the Web.

Without transparent pixels, images can be read only as complete rect­
angles. With transparency, images of arbitrary shape can be added without
erasing the window contents underneath the rectangle that contains the image.
Such images can be used without regard for the underlyingbackground color or
pattern. Figure 8.8 shows an example of this technique.

Nearby Restaurants Nearby Restaurants

*** Tentazione *** Tentazione
Italian Italian

**** Burly Bob's **** Burly Bob's
Steak House Steak House

* Quicky Burger * Quicky Burger
Fast Food Fast Food

*** Escamillo's *** Escamillo's
Mexican Mexican

Ordinary and Transparent GIFs Figure 8.8

On the left, the rectangular boundary of each small GIF image is readily
apparent. On the right, using transparent GIFs, the edges disappear.

Transparent GIFs also can be used for other visual effects, such as
superimposing images.



Chapter 9

Windows

So far, we've described how to draw and place text in a single window. Now it's
time to look more closely at what windows are and what can be done with them.

The Subject Window

In preceding chapters, we used only one window and performed all
operations on that window. This subject window is the window used by graphics
procedures. The subject window also is the value of the keyword &window.

Some programs need more than one window, and hence it is necessary
to have a way of opening and referring to several different windows. The
procedure WOpenO opens a new window every time it is called. It returns a
value of type window that can be used to identify the new window. For example,

alert := WOpenO

opens a window and assigns it to alert.

If the first argument of a graphic procedure is a window, it operates on
that window instead of the subject window, which is not changed. For example,

DrawRectangle(alert, 100, 100, 10, 20)

draws a small rectangle in the window alert. The subject window can be
referenced explicitly, as in

DrawRectangle(&window, 100, 100, 10,20)

which draws a small rectangle in the subject window. It is, of course, easier just
to leave the window argument out when referring to the subject window.

In addition to returning a new window value, WOpenO assigns this
value to &window if &window does not already have a window value. Conse­
quently, you can ignore the value returned by WOpenO if all you're interested

165



166 Windows Chapter 9

in is the subject window. If you want to change the subject window, you can
assign the null value to &window, as in

&window := &null

so that a subsequent call of WOpenO will assign a new subject window; or you
can simply assign the result of WOpenO to &window.

Exceptwhen more than onewindow is needed, we'll continue to omit the
window argument to procedures and just refer to "the window" with the
understanding that we're referring to the subject window.

Opening and Closing Windows

WOpenO fails if a window cannot be opened. This may happen, for
example, if too manywindows already are open. WOpenO also fails ifa specified
attribute cannot be set. Such a failure can result from something as simple as a
keyboarding mistake. Since undetected failure of WOpenO can have cata­
strophic consequences, it is important to provide a check, as in

log := WOpenO I stop(,'*** cannot open log window")

The display attribute is a system-dependent string that identifies the
particular monitor and keyboard associated with a window. This string is useful
when a computerhas multiple displays or when a network connects the displays
of several computers. The display attribute can be set to select a display when
opening a window, but it cannot be changed thereafter.

WCloseO closes the window. Closing the subject window sets &window
to the null value. When a window is closed, it disappears from the screen and its
contents are discarded. A window that is closed cannot be re-opened. When
program execution terminates, all windows are closed automatically.

Window Size and Position

The size of a window can be specified by width and height in terms of
pixels. For example,

WOpen(ls ize=300,500") I stop("*** cannot open window")

opens a window 300 pixels wide and 500 pixels high. The width and height can
be specified separately, as in

WOpen(lwidth=300", Iheight=150") I stop("*** cannot open window")

The size of a window also canbe specified in terms of the number of rows
and columns for text in the window's font, as in



Chapter 9 Windows 167

WOpen(lrows=40", "columns=80", "font=mono") I
stop("*** cannot open window")

The size of the window can be changed after it is opened.

The initial position of the upper-left corner of a window can be specified
in terms of pixel coordinates. The value of the pos attribute is an integer pair of
x-y coordinates measured relative to the upper-left corner of the screen. For
example,

WAttrib("pos=100,200")

causes the window to be placed with its upper-left corner 100 pixels from the left
edge of the screen and 200 pixels from the top of the screen. The attributes posx
and posy can be used to specify the coordinates individually.

Once a window is open, its size and position can be changed. For
example,

WAttrib(lwidth=600")

changes the width of the window to 600 pixels.

Stacked Windows

When several windows are on the screen at the same time, they may
overlap so that one window obscures another. In this sense, the obscured
window is behind the other window. In some cases, a window may be com­
pletely obscured, so that there is no evidence of its existence on the screen.

The user can rearrange the windows or change the stacking order using
the facilities provided by the graphics system. If a window is completely
obscured, it may be necessary to move or resize other windows to get to the
obscured window.

The programalso can change the order ofwindows using the procedures
RaiseO and LowerO. Raise(win) raises win to the front, so that all other windows
are behind it. Conversely, Lower(win) puts win behind all other windows.

Under most window managers, Raise(win) makes win the "focus" for
input: the window that accepts user input.

Graphics Contexts

So far we've presented a somewhat superficial view of what a window
is: a rectangular array of pixels, together with various attributes. A window
actually consists of a couplingbetween two other objects: a canvas, which is what



168 Windows Chapter 9

you see on the screen, and a graphics context, which determines how drawing is
done on the canvas.

The attributes associated with the graphics context are:
colors: fg, bg, reverse, drawop, gamma
text: font, fheight, fwidth, ascent, descent, leading
drawing: fillstyle, linestyle, linewidth, pattern
clipping: clipx, clipy, clipw, eliph

translation: dx, dy

All other attributes are associated with the canvas:
window: label, image, canvas, pos/ posx/ posy
size: resize, size, height, width, rows, columns
icon: iconpos, iconlabel, iconimage
text: echo, cursor, x/ y/ row, col
pointer: pointer, pointerx, pointery, pointerrow, pointercol
screen: display, depth, displayheight, displaywidth

Most of these attributes already have been described. The rest are discussed later
in this chapter.

When you create a window with WOpen(), the result is a coupling of a
new canvas with a new graphics context. For example,

win1 := WOpen("size=200,100", "fg=red". "font=mono")

produces the coupling illustrated in Figure 9.1.



Chapter 9 Windows 169

CANVAS

size=200,100
...

WINDOW

win1

GRAPHICS CONTEXT

fg=red
font=mono

...

A Coupling

Notice that the size is an attribute of the canvas, while the
foreground color and font are attributes of the graphics context.
There are, of course, many other attributes not shown here.

Figure 9.1

In most circumstances, you don't need to know that a window is a
coupling of a canvas and a graphics context. For example, WAttribO works with
any attribute, querying it or setting it in the canvas or the graphics context,
depending on where the particular attribute resides. The reason that the under­
lying structure is important is that graphics contexts can be created and coupled
to canvases in different ways.

Cloning

The procedure Clone(win1, win2 [, attributes]) creates a window that
couples the canvas of win1 with a new graphics context. The new graphics
context is initialized with the attributes of the graphics context for win2, except
for those given in additional arguments to CloneO. If any canvas attributes are
set, they are applied to the canvas shared by win1 and the new window. CloneO
fails if an attribute cannot be set to a requested value.

For example, if

win2 := WOpen(lsize=350,200", "fg=blue", "font=serif")

then

win3 := Clone(win1, win2, "font=sans")

produces the situation shown in Figure 9.2.



170

CANVAS

size=200,100
...

,
WINDOW WINDOW

win1 win3

, ,
GRAPHICS CONTEXT GRAPHICS CONTEXT

fg=red fg=blue ..
font=mono font=sans

... ...

A Cloning

Windows Chapter 9

CANVAS

size=350,200
...

.~

WINDOW

win2

,
GRAPHICS CONTEXT

fg=blue
font=serif

...

Figure 9.2

Since graphics contexts contain attributes like colors and fonts that
determine the appearance of drawing and text, different effects can be
produced on the same canvas by using different couplings with the
canvas.

For the couplings shown in Figure 9.2,

WWrite(win3, "A selection of choices follows")
every WWrite(win1," ", !choices)

writes a sans-serif heading in blue followed by a list of items in red and a mono­
spaced font, all on the canvas created when win1 was opened.

If the second window argument in Clone() is omitted, the single window
argument supplies both the canvas and the attributes for the new graphics
context, except for any attributes specified in Clone(). Ifbothwindow arguments
are omitted, the subject window is used.

For example, if

win4 := Clone(win1, "fg=blue")

then the situation is as shown in Figure 9.3.



Chapter 9 Windows

CANVAS

size=200,100

WINDOW

win1 win4

171

A Cloning

The most common use of cloning
couples two or more graphics con­
texts with a single canvas.

GRAPHICS CONTEXT

fg=red
font=mono

- -- --~

GRAPHICS CONTEXT

fg=blue
font=mono

Figure 9.3

Although CloneO creates a new graphics context without opening a
window, the only way to create a new canvas is to open a new window.

Coupling and Uncoupling

The procedure Couple(win1, win2) is similar to CloneO, except that a
new graphics context is not created, but instead the graphics context of win2 is
shared with the new window produced by CoupleO. For example,

win5 := WOpen(ls ize=320,200", "font=serif")
win6 := Coupte(win5, win4)

produces the situation shown in Figure 9.4.



172

CANVAS

size=200,100

Windows Chapter 9

CANVAS

size=320,200

WINDOW

win1
WINDOW

win4
WINDOW

win6
WINDOW

win5

GRAPHICS CONTEXT

fg=red
font=mono

GRAPHICS CONTEXT

fg=blue
font=mono

GRAPHICS CONTEXT

fg=black
font=serif

Shared Graphics Contexts Figure 9.4

Either Fg(win4, "green") or Fg(win6, "green") now changes the fore­
ground color in the shared graphics context to green, affecting subse­
quent output to both canvases.

The procedure UncoupleO removes the coupling for the window. If
there is no coupling of the canvas to another window, the window is closed as
in WCloseO. If there are other couplings to the canvas, however, the window is
not closed.

Using Graphics Contexts

The effects of using graphics contexts in the ways described here can be
obtained by changing attributes in a single graphics context. Graphics contexts
offer several advantages over changing attributes: (1) a particular set of at­
tributes can be established and encapsulated in a graphics context, (2) once
graphics contexts are established, less code is required to change the effects of
operations on windows, and (3) there is less likelihood of programming errors
(such as failing to restore the value of an attribute after it has been changed).

Information About Windows

The procedure image(win) produces a string showing serial numbers for
win's canvas and graphics context, along with the window label. The form of



Chapter 9 Windows 173

string produced by image(win) is I window_2:4(display)"/ which indicates the
second canvas created, the fourth graphics context created, and the label display.

Canvas States

In its normal state, a canvas appears on the screen. There are three other
possible states for a canvas: hidden, iconic, and maximal.

When a canvas is hidden, it does not appear on the screen and does not
accept events, but it otherwise behaves in all respects like a normal, visible
canvas. You can draw to a hidden canvas, write text to it, and so forth, but
nothing appears on the screen. When a hidden canvas is returned to its normal
state, however, any changes made to its canvas become apparent.

When a canvas is changed to the iconic state ("iconified"), it becomes an
icon - a small image that typically has only an identifying label. An iconified
canvas can be changed just like a hidden one.

The label associated with an icon can be changed using the attribute
iconlabel, as in

WAttrib("iconlabel=wake Up!")

The position of the icon can be changed using the attribute iconpos,
which is analogous to pos for a canvas in its normal state. The image displayed
by the icon is set using the iconimage attribute.

A maximal canvas fills the entire screen or as much of it as the graphics
system allows. On some window systems, the title bar and other decorations are
removed when a canvas is maximal, allowing the canvas to fill the entire screen.
Changing a canvas to the maximal state usually changes its size and produces
a resizing event. If a maximal canvas subsequently is changed back to its normal
state, the canvas is restored to the size it had in its normal state, and there is a
resizing event.

The state of a canvas is set by the attribute canvas, for which the values
are normal, hidden, iconic, and maximal. For example,

WAttrib(lcanvas=hidden")

causes the canvas to become hidden.

The displaywidth and displayheight attributes give the dimensions of the
screenonwhich the canvas appears (as distinguished from the current sizeof the
canvas itself). WAttrib(lcanvas=maximal") resizes the canvas to the size given by
displaywidth and displayheight.



174

Copying Areas

Windows Chapter 9

The procedure CopyArea(win1, win2, x1, y1, w, h, x2, y2) copies the
rectangular area of the canvas for win1 defined by x1, y1, w, and h to the canvas
for win2 at the offset x2, y2. If the rectangular area exceeds the boundaries of the
canvas for win1, the background color of win1 is used for that portion. Any
portion of the copy that falls outside of the canvas for win2 is discarded. The
source and destination windows may be the same, and the areas may overlap.

The coordinates x1, y1, x2, and y2 default to the upper-left corners of
their windows, and wand h default to include the remainder of the canvas for
win1. Consequently, CopyArea(yvin1, win2) copies the entire canvas of win1 to
the upper-left corner of win2. .

If no window arguments are given, the source and destination for
copying are the subject window. For example,

CopyArea(10, 20, 100,200,300,310)

copies a 100-by-200 rectangle from (10,20) to (300,310) on the subject window.

If only one window argument is given, it is both the source and the
destination. For example,

CopyArea(win, 10, 20, 100, 200, 300, 310)

copies a 100-by-200 rectangle from win to (300,310) on win.

Copying areas is another way to produce the same figure at several
places in a window. For example, the following code segment produces the
image shown in Figure 4.18 without drawing the figure several times.

WAttrib("linewidth=3")

DrawCurve(70, 40, 45, 60, 70, 80, 85, 60,
50,40,15,60,30,80,55,60,30,40)

every x := 0 to 300 by 100 do # overwrite original drawing
every y := 0 to 240 by 60 do # to make the loop simpler

CopyArea(10, 35, 80, 50, x + 10, Y+ 35)

It's worth noting that copying a portion of a window often is considerably faster
than redrawing a figure.

Reading the Canvas

In some applications, you may need to know the colors of pixels on the
canvas. The procedure Pixel(x, y, w, h) generates the pixel colors from the
specified rectangular area. Colors are generated starting in the upper-left corner



Chapter 9 Windows 175

# get window size

# width of shifted area
# horizontal location
# height
# starting altitude

of the rectangular area, advancing across each row before going to the next.
Ordinary colors are represented by comma-separated decimal values for the
RGB components, while mutable colors are given by the negative integers
produced by NewColorO.

PixelO obtains the entire contents of the specified rectangle when it is
called. Modifying the contents of the rectangle while PixelO is generating values
does not affect the the values generated by PixelO.

Customization

Some graphics systems allow users to customize their programs by
providing sets of default values. The procedure WDefaultO provides access to
these customized values. WDefault(program, option) returns the custom value
registered for the option named option for the program named program. It fails
if the option is not registered for the program. If the graphics system does not
provide a customization mechanism, WDefaultO always fails.

Custom defaults can be used to override program defaults. For example,

Fg(WDefault(lteacher", "fg") I "blue")

sets the foreground color to the customized foreground color associated with the
program teacher, if there is one, or to blue if there isn't.

Tips, Techniques, and Examples

Sunset Meltdown

It's often possible to produce interesting images by using graphics
procedures in ways that are not obvious.

The following code segment "melts down" the sunset image of Figure
4.16 by copying randomly selected portions of the window toward the bottom.
See Figure 9.5.

ww := integer(WAttrib("width"))
wh := integer(WAttrib(lheight"))

every 1 to 500 do {
w :=?ww
x := ?(ww + 2 * w) - w
y:= ?wh
h:= ?y
CopyArea(x, y - h, w, h, x, Y- h + 1)
}



176

-.,
J

-~ - ---

Scrolling

Windows Chapter 9

Meltdown

What happens if the loop is
continued indefinitely?

Figure 9.5

# window width
# window height

A large image can be viewed in a smaller window by copying a portion
of the larger window into the smaller one, using scrolling to adjust the portion
of the larger image that is currently displayed. Here's a procedure that does this,
using a hidden window for the larger image and user keystrokes for adjusting
the "view".

procedure scroll(win, image_file)
local ww, wh, img, x, y, w, h

ww := WAttrib(win, "width")
wh := WAttrib(win, "height")

# load image into hidden window
img := WOpen("image=" II image_file, "canvas=hidden") I fail

w:= WAttrib(img, "width") # image width
h := WAttrib(img, "height") # image height

x := y := 0 # start in upper-left corner

repeat {
CopyArea(img, &window, x, y, w, h, 0, 0)
case EventO of {

"I": if x > 0 then x -:= 1
"r": if x + ww < w then x +:= 1
"u": if y > 0 then y -:= 1
"d": if y + wh < h then y +:= 1
"q": break
}

}

WClose(img)



Chapter 9 Windows

return

end

Animation by Copying Images

177

One way to produce animation is to successively copy images that differ
so slightly that the change is not noticeable. This is the way that animated icons
are done.

As an example, consider the pinwheel image shown in Figure 9.6:

A Pinwheel

This image has 180° rotational symmetry; it if is rotated by 180°,
it appears the same.

Figure 9.6

A succession of images like this but rotated slightly, when copied one
after another, produce the appearance of rotation. Since the image has 1800

rotational symmetry, it's only necessary to have images that rotate halfway
around. For successive 100 rotations, 18 images are needed. If rotation is
counterclockwise, they look like those in Figure 9.7.

Successive Images Figure 9.7

For smooth animation at a slow rate, more images may be required.



178 Windows Chapter 9

The key to getting the appearance of animation is to produce the images
fast enough. This can be done with images on hidden canvases and CopyAreaO,
which is fast because the images are in memory. In fact, it usually is necessary
to introduce delays to avoid changing images so fast that the sense of animation
is lost. How much delay is needed depends on the speed of the platform and the
impression that is desired. Here's a procedure that takes a window, a location in
it for the upper-left comer of the animation, a value for delaying between
successive images, and a list of image files from which the animation is to be
produced.

procedure animate(win, x, y, delay, file_list)
local canvas_list, i

canvas_list := list(*file_list)

every i := 1 to *fiIe_list do {
canvas_list[i] := WOpen("canvas=hidden", "image=" II file_list[i]) I

fail
}

repeat {
every CopyArea(!canvas_list, win, , , , , x, y) do {

WDelay(delay)
if WQuit(win) then break break
}

}

every WClose(!canvas_list)

return

end

The procedure animateO fails if an image cannot be opened; this allows
the application that uses animateO to retain control. The animation continues
until the user enters a q. Other ways of controlling the duration of the animation,
such as suspending between copies, might be more appropriate in some situa­
tions.

Subwindows

Some graphics systems provide subwindows that behave like other
windows but reside within the bounds of a parent window. Icon does not have
true subwindows in this sense, but close approximations can be created for
output purposes. An Icon subwindow has its own coordinate system, clipping
bound, text cursor position, and other graphics context attributes such as font
and color. It shares canvas attributes with its parent window.



Chapter 9 Windows 179

Figure 9.8 illustrates the use ofIconsubwindows. In that figure, there are
four subwindows inside the main window. The smallest subwindow is entirely
contained within the largest one. Each window is filled with a different pattern.

Patterned Subwindows

The arcs locate the origin of
each subwindow, and the
name of its pattern is given.

Figure 9.8

Each subwindow was drawn using this procedure:

procedure patternfill(win, pat)

Pattern(win, pat) I fail
WAttrib(win, "fillstyle=textured")
FiIIRectangle(win)
WAttrib(win, "fillstyle=solid")
every DrawCircle(win, 0, 0, 10 to 50 by 10)
WWrite(win, pat)

return

end

Each procedure call passes an explicit window argument instead of using the
subject window &window. The FillRectangleO and DrawCircleO calls depend on
clipping to keep their output within the subwindow.

The main procedure creates subwindows and passes them to patternfillO:

patternfill(&window, "verylight")
w1 := SubWindow(&window, 80, 50,150,80)
patternfill(w1, "grains")
w2 := SubWindow(&window, 50,180,150,80)
patternfill(w2, "waves")
w3 := SubWindow(&window, 300, 30, 150, 200)
patternfill(w3, "gray")



180 Windows Chapter 9

w4 := SubWindow(w3, 50, 60, 80, 80)
patternfill(w4, "trellis")

Subwindow w4 was formed from subwindow w3, not directly from &window.

The SubWindowO procedure is part of the graphics library. Here is a
simplified version:

procedure SubWindow(win, x, y, w, h)

win := Clone(win,
"dx=" II (WAttrib(win, "dx") + x),
"dy=" II (WAttrib(win, "dy") + y)
)

Clip(win, 0, 0, w, h)
GotoRC(win, 1, 1)

return win

end

The incoming window is cloned, and its dx and dy attributes are set; this
translates the origin. To properly handle subwindows within subwindows, it is
necessary to base the new attribute values on the previous ones. With the new
coordinate system in effect, clipping bounds are set to delimit the subwindow.
The text cursor is moved to the new origin, and the cloned window is returned.

A caution: Subwindows created in this manner can be very useful, but
they are not the same as separate windows. Canvas attributes such as width and
height, and default argument values for procedures such as WritelmageO, still
encompass the full window. Actions in the parent window can overwrite the
subwindow region. Furthermore, subwindow input events are not segregated
from those of the parent window; they share a common queue.

Canvas Size

Some window managers impose maximum and minimum dimensions
on canvases. This may be done silently - you may just get a window whose
dimensions are different from what you specified. A maximum may be imposed
to assure the window can be manipulated within the confines of the screen. A
minimum may be imposed so that the window manager has space for the items
in its frame.

You can, of course, find out the actual size of a window by using the size
attribute or the width and height attributes.

A window that is larger than specified can be a problem. For example, if
you open a small image and the window is actually larger than specified, the part



Chapter 9 Windows 181

of the window that is not occupied by the image probably will be in the specified
background color. Ifyou do not take this into account, copying that window to
another one may produce erroneous results. A window that is smaller than
specified presents more serious problems.

Some window managers limit dimensions if the window is opened with
its contents visible, as in "canvas=normal". You therefore may be able to
circumvent the limits by opening the window with "canvas=hidden". If, how­
ever, you then make the window visible, its size may change.

Animation Revisited

A moving object need not be as simple as the bouncing balls of Chapter
4. A complex object can be constructed on a hidden canvas, then repeatedly
drawn on the screen using CopyAreaO. DrawlmageO also can be used to draw
an image, and DrawStringO can be used to produce a moving string.

Animation becomes more difficult with a complex background. Restor­
ing the background as the object moves away is no longer a simple EraseAreaO
call. One possibility in this case is to copy the arena of motion to a hidden canvas
before placing the object for the first time. When it's time to move the object, the
area of the background that it obscured can be restored by copying from the
hidden canvas.

The techniques given here produce effective results, but they fall far
short of the standards required for a Hollywood special-effects production. We
haven't discussed shadows, changes of shape, and so on. Lasseter (1987)
discusses the application of professional animation techniques to computer
graphics.





Chapter 10

Interaction

Windows provide a mechanism for communication between a program and its
user. The generality of this mechanism allows window-based applications to be
much more flexible than traditional command-oriented programs.

Events

User actions such as mouse clicks produce events. When an event occurs,
three values are placed in an event queue for the canvas: a value identifying the
event and two integers containing related information. Each event is associated
with a particular window, and each window has its own event queue. Events
remain in event queues, which are Icon lists, until they are processed.

There are three kinds of events: key presses, mouse actions, and resizing
events. Key presses fall into two categories: "standard" keys that are used for
representing text and "special" keys that are used for manipulating the display
or other non-text purposes. Standard key presses are encoded as strings. For
example, pressing the key a puts the string "a" on the event queue. Special key
presses are encoded as integers for which there are defined constants. For
example, Key_Left is the code for the left arrow key. See Appendix Jfor a list of
the defined constants associated with special keys.

Pressing a mouse button generates an event, as does releasing the button.
A mouse"click", then, produces a pair of events. If the mouse is moved while a
button is pressed, one or more drag events are produced. The final drag event
represents the end of the movement; intermediate events also maybe produced,
depending on the particular graphics system and the speed of the motion.
Mouse actions are encoded as integers. Keywords with corresponding integer
values are provided:

183



184 Interaction Chapter 10

exitO
break
EraseAreaO

&Ipress left mouse button press
&Idrag left mouse button drag
&Irelease left mouse button release
&mpress middle mouse button press
&mdrag middle mouse button drag
&mrelease middle mouse button release
&rpress right mouse button press
&rdrag right mouse button drag
&rrelease right mouse button release

A mouse press event is always followed, eventually, by the correspond­
ing release, although an arbitrary number of other events may intervene. If the
mouse is dragged outside the window, events still are generated until thebutton
is released.

When a window is resized as the result of a user action, an &resize event
occurs. This allows the program to rearrange its display if necessary. The resize
attribute determines whether the user can resize the window. It is "off" initially
but can be set to "on" to enable resizing. If it is "off", a user attempt to resize the
window has no effect and no resize event occurs. The capabilities of the graphics
system determine whether resizing actually can be prevented.

No event occurs when the program resizes the window or when a
window is moved by the program or the user.

Processing Event Queues

The procedure EventO produces the next event and removes it from the
queue. Events are produced in the order they occurred. If there is no event
pending, EventO waits for one. For example, the following loop might be
provided to allow the user to control the program:

repeat {
case EventO of {

"q" I &Ipress:
"c" I &mpress:
"e" I &rpress:
}

}

If the event is a press of the q key or the left button, the program terminates. If
the event is a c or a middle button press, the program breaks out of the loop. If
the event is an e or a right button press, the window is erased. All other events
are discarded. Compare this example to the one using WReadO in Chapter 6.



Chapter 10 Interaction 185

Recall that a case statement compares values without converting types,
as does the === operator. Because some events yield an integer and others yield
a string, it's usually unwise to compare event codes using = or ==.

When EventO removes an event from an event queue, the other two
values associated with the event also are removed and the information con­
tained in them is used to set the value of Icon keywords. Two keywords relate
to the x-y location of the mouse cursor at the time the event occurred:

&x x coordinate
&y y coordinate

For an &resize event, &x and &y produce the width and height of the resized
window.

For example, this short program allows the user to draw in the window.
Pressing the left mouse button establishes the position at which drawingbegins.
Dragging the mouse with the left button pressed tracks the mouse and draws at
corresponding places in the window. Pressing the rightbutton and dragging the
mouse with the right button pressed erases pixels in the vicinity. Finally, a q key
press terminates the program. An example of the use of this program is shown
in Figure 10.l.

procedure main{)
local x, y

WOpen(lsize=400,300") I stop(,'*** cannot open window")

repeat {
case EventO of {

&Ipress: {
DrawPoint(&x, &y)
x :=&x
y:=&y
}

&Idrag: {
DrawLine(x, y, &x, &y)
x :=&x
y:=&y
}

&rpress I &rdrag: {
EraseArea(&x - 2, &y - 2,5,5)
}

"q": exitO
}

}

end



186

Gon~

Interaction Chapter 10

Drawing in a Window

A program like this pro­
vides an easy way to de­
velop your skill at moving
the mouse precisely. Try
writing your signature.

Figure 10.1

Two other keywords give the row and column (based on the size of the
current font) in which the event occurred:

&row
&col

text row
text column

These keywords allow the use of mouse clicks to determine, for example, the
location at which text is entered in a window.

Integer values also can be assigned directly to these keywords, as in

&x:= 10

When values are assigned to pixel-coordinate keywords, the values of the
corresponding text-coordinate keywords are changed automatically, and vice
versa. Such assignments can be useful in translating between pixel and text
coordinates. The translation is based on the attributes of the window used by the
most recent call of EventO.

The values of &x, &y, &row, and &col reflect any coordinate translation
specified by the value of the dx and dy attributes at the time EventO is called.

Three keywords are set corresponding to the status of "modifier" keys at
the time of the event:

&control control key
&meta meta key
&shift shift key

The labelings of these keys depend on the keyboard used.

In the case of standard characters, the status of the shift and control keys
also is encoded in the event value. For example, if the a key is pressed with the
shift key pressed, the event value is "A".



Chapter 10 Interaction 187

Modifier status keywords produce the null value if the corresponding
modifier key was pressed at the time of the event, but they fail otherwise. For
example,

case EventO of {
"q": if &meta then exitO else {

# request confirmation
}

}

exits the programif the meta keywas pressed when q was entered,butit requests
user confirmation if the meta key was not pressed.

When an event is processed, the keyword &interval also is set. The value
of this keyword is the interval, in milliseconds, between the time that the event
occurred and the time of the previous event.

The following code segment provides a display of events:

repeat {
e:= EventO
WWrites("\n ")
WWrites(if &control then "C" else "_")
WWrites(if &shift then "5 " else "_")
WWrites(if &meta then "m" else "_")
WWrites(" ", left(image(e), 6), II ", left("(" II &x 11"," II &y 11")",11),

right(&interval, 6), " msec.")
}

The three characters at the beginning ofeach line indicate the statusof the
modifier keys at the time the event occurred. The actual value of the event is
shown in the next column, followed by its coordinate position and the time
elapsed since the previous event. An example of the result is shown in Figure
10.2.



188

-5- "H" (70,24) o msec.
--- "e" (70,24) 270 msec.
--- "1 u (70,24) 90 msec.
--- "1 " (70,24) 120 msec.
--- "0" (70,24) 180 msec.
--- " " (70,24) 150 msec.
-5- "w" (70,24) 480 msec.
--- "0" (70,24) 330 msec.
--- " r" (70,24) 150 msec.
--- "1 " (70,24) 150 msec.
--- I'd" (70,24) 120 msec.
--- " " (33,15) 1471 msec.
--- -1 (15,5) 1331 msec.
--- -4 (15,5) 86 msec.
--- -2 (225,202) 2726 msec.
--- -5 (225,202) 100 msec.
--- -3 (388,368) 1784 msec.
--- -6 (388,368) 114 msec.

Interaction Chapter 10

Displaying Events

The first line shows the result of press­
ing the H key. Notice that the shift is
encoded in the event value. The fol­
lowing events correspond to the rest of
Hello World. The last six lines show
mouse events. We'll leave it to you to
figure out what kind.

Figure 10.2

WReadO and WReads(i) also process events and remove them from the
event queue. Standard key presses are echoed to the window and accumulate to
produce the values for these procedure calls. All other events are discarded
when these procedures are waiting for input. WReadO does not return a value
until the enter ("carriage return") key is pressed. WReads(i) does not return
until there are i characters.

The echoing of key presses by WReadO and WReadsO to the window
can be turned off by

WAttrib("echo=off")

and turned back on by

WAttrib(lecho=on")

The procedure PendingO produces the event queue. If there are no
pending events, the list is empty. Thus,

*PendingO > 0

succeeds if events are pending but fails otherwise. Note that the value of
*PendingO is three times the number of pending events, since there are three
values for each event.

Since the event queue is an Icon list, it can be manipulated directly. For
example,

while get(PendingO)

removes all events from the event queue. Similarly, pushing three values onto



Chapter 10 Interaction 189

an event queue creates an artificial event, which is the next one to be processed.
For example,

push(PendingO, x3, x2, x1)

pushes an event corresponding to x1, x2, and x3 onto the event queue. Similarly,

put(PendingO, x1, x2, x3)

appends an event corresponding to x1, x2, and x3 to the end of the event queue.
Since a real event can occur at any time, it is important when appending to the
event queue to add all three values using a single call of putO.

Direct manipulation of event queues requires considerable care. Exactly
three values must be removed from a queue to remove an event. When inserting
events, not only must three values be provided for each event, but also the
second and third values must correctlyencode event information. See Appendix
K. The procedure EnqueueO handles the details ofplacing artificial events on the
event queue. See Appendix E.

Polling and Blocking

There are two basically different ways of dealing with events: polling
and blocking.

Polling consists of periodically checking for an event between times
when other computation is being performed. A typical polling loop looks like
this:

repeat {
while *PendingO > 0 do {

# process events
}

# do other work
}

How promptly user actions are processed depends on how much time is
spent doing other workbefore PendingO is called. For a good user interface, care
should be taken so that the user does not experience significant delays.

On the other hand, ActiveO and EventO wait until an event occurs, and
similarly, WReadO and WReadsO wait until text is entered. This is called
blocking. Thus, in

while input := WReadO do {
# process input

}



190 Interaction Chapter 10

nothing is done until the user provides a line of input for WReadO. Since all
events except standard key presses are discarded until WReadO returns, other
user actions, such as presses of mouse buttons, are ignored. In other words, the
user is required to complete text input before anything further is done.

Event Loops

Programs that must handle user interaction at any time usually are
organized around an event loop like the ones shown earlier in this chapter. In
such situations, the event loop is the heart of the program. An event may result
in some computation, after which control is returned to the loop to process the
next event. Typically only a few types of events are of interest, and all others are
discarded without any action being taken.

An event loop usually consists of a case expression in which the type of
the event results in the selection of the computation to be performed. Applica­
tions that provide functionality in response to user actions often have event
loops with many case selectors, as in

repeat case EventO of {
&Ipress: {

# handle left button press
}

&mpress: {
# handle middle button press

}
&rpress: {

# handle right button press
}

&Idrag: {
# handle left button drag

}

}

In a program designed around user actions, the event loop may become
large and unwieldy. In such cases, procedures can be used to handle events,
moving code out of the event loop, as in

repeat {
case EventO of {

&Ipress: selectO
&Idrag: moveO
&Irelease: placeO



Chapter 10 Interaction

}

191

Procedures that are invoked as the result of user actions are called
callback procedures, or simply callbacks. This term refers to the fact that the event
loop calls back into the program after being itself called by the program.

The use of callbacks is particularly advantageous when the event loop is
not written by hand but is constructed by an interface builder that handles the
construction of visual interfaces with tools such as buttons, sliders, and menus.
The names of callbacks are specified for the interface builder so that it can
construct an event loop that calls the appropriate procedures. Such an interface
builder for Icon is described in Chapter 12.

Active Windows

If a program has several windows open, it may be necessary to find one
for which there is an event pending. The procedure ActiveO returns a window
that has an event pending. If no window has an event pending, ActiveO blocks
and waits for an event to occur. To find an active window, ActiveO checks each
window, starting with a different window on each call to assure that every
window in which there is an event pending is serviced. ActiveO fails if no
windows are open.

An example is

repeat {
case ActiveO of {

calc_win: calc_event(Event(calc_win»
texCwin: texcevent(Event(text_win»
status_win: status_event(Event(status_win»
}

}

Because Active0always waits for an event, it is not suitable for a program
that needs to check multiple windows without blocking. Such a program must
keep track of active windows and call PendingO for each one in turn.

Synchronization

Some graphics systems accumulate output in a buffer before displaying
it on the screen. The output from a call to DrawLineO, for example, may not be
displayed until some time after DrawLineO returns. This is notusually a problem
in practice, because output is flushed to the displaywhen the program is waiting



192 Interaction Chapter 10

for text input. The procedure WFlush() can be used to force pending output to
be written to the window at other times, such as to display progress during
periods of heavy computation. The procedure WDelay() also flushes window
output.

In client-server graphics systems, such as the X Window System, it is
possible for the display to develop a backlog of unprocessed output and for the
program to get far ahead of the display. Again, this is seldom a problem in
practice. When explicit synchronization is desired, the procedure WSync()
flushes all output and then waits for an acknowledgment from the server that all
pending requests have been processed.

Audible Alerts

Sometimes it's useful to attract the attention of a user by producing a
sound. The procedure Alert() does this. The sound is produced on the computer
with which the window is associated.

The nature of the sound produced depends on the graphics system. Not
all graphics systems support sound.

Mouse Pointer

The mouse pointer moves on the screen as the mouse itself is moved. The
visual representation of the mouse pointer can be changed using the attribute
pointer. The pointers that are available depend on the graphics system. Some
graphics systems have a pointer that looks like a small wristwatch. On such a
system,

WAttrib(lpointer=watch")

might be used to alert the user to situations in which the program is involved in
a lengthy computation and is unable to respond to user events. Appendix N lists
the pointer shapes available on different graphics systems.

Pointer location attributes give the current position of the mouse, even
when no button is down and no events are being generated. The location in
window coordinates is given by the pointerx and pointery attributes. The
location in terms of character position is given by the pointerrow and pointercol
attributes.

The pointer location attributes can be set to new values to change the
pointer's position. Doing this is, however, generally a bad idea from an interface
design standpoint.



Chapter 10 Interaction

Dialogs

193

The kinds of interaction we've described so far involve the application
responding to the user. Applications often need to notify users of situations that
require attention or action. Applications also may need information from users,
such as the name of an output file. Sometimes the information needed may
involve settingvalues and making choices. Temporarywindows, called dialogs,
are used to handle these matters.

The following section describes some simple and frequently used dia­
logs. See Chapter 14 for more extensive coverage of dialogs.

Notification Dialogs

There often are situations in which a user needs to be alerted to a
condition before a program continues.

The procedure Notice(line1, line2, ... ) produces a dialog with the strings
line1, line2 ,.... For example,

Notice("The file you specified does not exist.")

produces the dialog shown in Figure 10.3.

.•..'"
The file \IOU $lMlC1fied does not exist.

A Notice Dialog

This dialog has only one line of information. If
more arguments are given to NoticeO, each is
left-adjusted on a separate line.

Figure 10.3

When the user clicks on the Okay button, the dialog is dismissed, it
disappears, and program execution continues. Typing a return character also
dismisses the dialog.

File Name Dialogs

Opening files and saving data are such common operations that dialog
procedures are provided for querying for file names.

The procedure OpenDialog(caption, filename, length) produces a dialog
that allows the user to specify the name of a file to be opened. The argument
caption, which defaults to "Open:" if not given, appears at the top of the dialog.
A text-entry field appears below, in which the user can enter the name of the file



194 Interaction Chapter 10

to open. The argument filename provides the string used to initialize the text­
entry field. Itoften is omitted, defaulting to the empty string, in the common case
where there is no meaningful default file name. The argument length specifies
the size of the text field and has a default value of 50. For example,

OpenDialogO

produces the dialog shown in Figure 10.4.

An Open Dialog

A file name is entered in the long
Open: trough. Pressing return is equiva-
I lent to selecting the default button,

indicated by a sunken outline.
Okay Cancel

Figure 10.4

The user can type in the text-entry field. An "I-beam" text cursor shows
the current location in the field where typed text is inserted. This cursor can be
positioned in the text by clicking with the mouse pointer at the desired location.
Dragging over the characters in the text field selects them for editing and
highlights them (reversing the foreground and background colors). Characters
that are typed then replace the selected ones. A backspace character deletes the
character immediately to the left of the text cursor, if there is one. All this sounds
complicated, but as in many interactive operations, it becomes natural in
practice, and it is easier to do than it is to describe.

Figure 10.5 shows the dialog after a file name hasbeenentered in the text­
entry field.

Open:

Poi nts.d"l

Cancel

An Open Dialog

Until the user selects a button, the
text entered is tentative and can be
edited as needed.

Figure 10.5

The procedure OpenDialogO. like all dialog procedures, returns the
string name of the button selected and assigns the string in the text-entry field
to the global variable dialog_value. A typical use of OpenDialogO is



Chapter 10 Interaction 195

repeat {
case OpenDialogO of {

"Okay": {
if input := open(dialog_value) then {

currenCfile := dialog_value # save name in global variable
data_list := []
while put(data_list, read(input)) # get the data
c1ose(input)
return data_list
}

else Notice("Cannot open file.")
}

"Cancel": fail
}

}

If the user selects Okay (or types a return character), the specified file is
opened and the data in it is read into a list. If the file cannot be opened, however,
the user is notified via a dialog and the open dialog is presented again. The
procedure fails without trying to open a file if the user selects Cancel.

The procedure SaveDialog(caption, filename, length) is used to provide
a dialog for saving data to a file. The argument caption, if omitted, defaults to
"Save:". Providing a file name can eliminate the need for the user to reenter a
name that is already known to the program. An example is

SaveDialog(, currenCfile)

which might produce the dialog shown in Figure 10.6.

SlIve:

iftijihWJm

Yes No C8nCe1

A Save Dialog

If the supplied file name is accept­
able, it's only necessary to type re­
turn, which is equivalent to click­
ing on the Yes button.

Figure 10.6

One use of SaveDialogO is to check whether the user wants to save
modified data before quitting an application. Typical code to do this is

repeat {
case SaveDialog("Save before quitting?", current_file) of {

"Yes": {



196

if output := open(dialog_value, "w") then {
every write(output, !data_list)
exitO
}

else Notice("Cannot open file for writing.")
}

"No": exitO
"Cancel": fail
}

}

Interaction Chapter 10

If the user elects to save the current data, it is written to the specified file
and program execution is terminated. If the file cannot be opened for writing,
however, the user is notified and the process is repeated with a new dialog box.
If the user selects No, program execution is terminated without saving any data.
If the user selects Cancel, perhaps because ofsecond thoughts about quitting the
application, the procedure fails and program execution continues. The pro­
grams in Chapters 15 and 16 show how interaction for quitting an application
can be handled in the context of an entire application.

Library Resources

The gpxop module, which is incorporated by link graphics, includes the
SweepO procedure; it allows the user to specifya rectangular areaby moving the
mouse. The drag module provides Drag(x,y,w,h) for interactively moving a
rectangular object within a window.

Plates 10.1 and 10.2 illustrate two interactive programs from the library.
The img program is a simple editor that builds small images for use with
DrawlmageO. The concen program is a solitaire card game.

Tips, Techniques, and Examples

Using the Meta Key

To prevent an accidental keypress from causing unwanted actions, it
may be useful to require that the meta key be depressed in combination with a
keyboard event, as in

e:= EventO
if &meta & (e === "q") then exitO

While this provides no guarantee, it does require a coordinated actionon thepart
of the user.



Chapter 10 Interaction 197

In the case of actions that may have serious consequences, a dialog box
should be presented for confirmation.

Event Values for Control Characters

As described earlier, upper- and lowercase letters produce event values
that are the letters as you'd see them in other context, as in "a" and "A". In the case
of uppercase letters, the keyword &shift also is set, although it is not necessary
for distinguishing uppercase letters.

When the control key is depressed, the event value for a letter is the
corresponding control character. For example, to detect control-C events, the
following can be used:

if EventO === "\"e" then... # interrupt processing

Tracking Mouse Movement

Unless a button is depressed, no events are generated by mouse move­
ment. It is still possible, though, to follow the mouse position by polling the
pointerx and pointery attributes.

The program that follows illustrates this by drawing a circle and then
tracking the mouse position. When the mouse pointer is inside the circle, the
pointer changes to a cross.

Tracking Mouse Movement Figure 10.7

The pointer shape changes to a cross when inside the circle.



198 Interaction Chapter 10

In the code below, the name of the standard pointer shape is recorded
and the circle is drawn in the center of the window. The main loop repeats until
a q is pressed, and the pointer shape is set every time.

p := WAttrib(lpointer") # standard pointer

x := WAttrib("width") /2 # center of circle
y := WAttrib(lheight") /2
r := WAttrib(lheight") /5 # radius

DrawCircle(x, y, r) # draw the circle

# repeat until "q" entered
until *PendingO > 0 & EventO === "q" do {

# get pointer position
px := WAttrib(lpointerx")
py := WAttrib("pointery")

# is pointer within the circle?
if (px - x) A 2 + (py - y) A 2 < r A 2 then

WAttrib(lpointer=cross") # yes
else

WAttrib(lpointer=" II p) # no

# share the processor
WDelay(10)
}

Selection Rectangles

A selection rectangle, which is used to specify a rectangular area of a
window on which an operation is to be performed, provides an example of
interaction between the user and the program.

Different methods can be used to specify a rectangular area of a window.
Typically, the user starts a rectangle by pressing a mouse button to pick one
comer of the rectangle and then drags the mouse with the button depressed to
the opposite comer. While the mouse is being dragged, the program draws a
rectangle so that the user can see where it is. The selected area is determined
when the user releases the mouse button.

That sounds simple, but programming an event loop to create a selection
rectangle requires careful attention to events and proper maintenance of the
image in the window.

It's often useful to use a finite state machine (Kain, 1972) to model the
interaction and to design the logic of the event loop. A finite state machine has



Chapter 10 Interaction 199

a fixed number of states that correspond to the significant situations. When an
event occurs, the current state may change to another state and an action may be
taken.

For the method of selecting a rectangle that is described above, three
states suffice. Initially, the event loop waits for a mouse button press that starts
the selection. For simplicity, we will assume that the left mouse button is used.
In the waiting state, the only event of interest therefore is &Ipress. When an
&Ipress event occurs, the location of the mouse pointer is recorded to establish
a corner and the program goes to another state in which the opposite corner is
selected by dragging the mouse, producing &Idrag events. The program remains
in this state until the left mouse button is released and an &Irelease event occurs
to establish the final position of the opposite comer. The program then goes into
a state in which an action is to be performed on the selected area. For sake of
example, we'll assume only two operations are possible: clearing the area to the
background color or filling itwith the foreground color. The keyboard events "e"
and "f" determine which is done. Figure 10.9 shows the corresponding finite state
machine.

&Idrag

update

"f" or "e"

fill or clear

A Finite State Machine

Such a diagram clarifies the
significant situations that
may occur in an event loop
and what events are to be
processed. This determines
the structure of the event
loop.Theactions takenwhen
there is a transition from one
state to another are provided
in the code itself.

Figure 10.9

The actions that are taken in response to events require elaboration. For
example, positions have to be recorded and a rectangle drawn to show the
selection. The finite state machine just serves as a conceptual tool to assist in
writing the event loop.

The event loop might begin as follows:



200

WAttrib("drawop=reverse")
WAttrib("linestyle=dashed")

state := "wait"

repeat {
event := EventO
case state of {

"wait": {
case event of {

&Ipress: {
x1 := xO:= &x
y1 := yO:= &y
DrawRectangle(xO, yO, 0, 0)
state := "select"
}

}

Interaction Chapter 10

# wait for selection

# initial coordinates

# start the rectangle

The reverse drawing mode is used so that the selection rectangle can be
drawn, erased, and redrawn as the user drags the mouse. A dashed line style is
used so that the rectangle can be seen on top of different colors. The initial
waiting state is indicated by the value "wait" for state. In the event loop, the
section of code to be executed depends on this variable. The variables xO and yO
hold the location of the comer from which the selection starts, while x1 and y1
hold the location of the opposite comer.

In the waiting state, an &Ipress event causes the position variables to be
initialized. An initial rectangle is drawn, even though it has no area, so that the
current rectangle canbe erased and redrawn with eachsubsequent &Idrag event.
Finally, the state is changed to "select", so that the next event will be processed
by another section of code. The entire event loop looks like this:

repeat {
event := EventO
case state of {

"wait": { # wait for selection
case event of {

&Ipress: {
x1 := xO := &x # initial coordinates
y1 := yO:= &y
DrawRectangle(xO, yO, 0, 0) # start the rectangle
state := ·select"
}

}
}



Chapter 10 Interaction

"select": {
case event of {

&Idrag: {
DrawRectangle(xO, yO, x1 - xO, y1 - yO)
x1 := &x
y1 := &y
DrawRectangle(xO, yO, x1 - xO, y1 - yO)
}

&Irelease: {
DrawRectangle(xO, yO, x1 - xO, y1 - yO)
x1 := &x
y1 := &y
if (xO = x1) I (yO = y1) then

state := "wait"
else {

w:= x1-xO
h := y1 - yO
DrawRectangle(xO, yO, w, h)
state := "act"
}

}
}

}
"act": {

case event of {
"f": {

DrawRectangle(xO, yO, w, h)
WAttrib("drawop=copy")
FillRectangle(xO, yO, w, h)
WAttrib("drawop=reverse")
state := "wait"
}

lIe": {
DrawRectangle(xO, yO, w, h)
EraseArea(xO, yO, w, h)
state := "wait"
}

}
}

}
}

201

# select

# selecting ...
# erase rectangle
# new position

# draw rectangle

# got it!
# erase rectangle
# new position

# no area

# set up for action

# draw rectangle

# act on area

# erase rectangle

# erase rectangle



202 Interaction Chapter 10

In the selecting state, if the event is &Idrag, the current rectangle is erased
by redrawing it, the new position of the opposite corner is recorded, a rectangle
is drawn for this new position, and the state remains the same.

If the event is &Irelease, the current rectangle is erased and the final
corner position is recorded. At this point, a situation that cannot be directly
represented in a finite state machine must be handled: The rectangle may have
no area. This can occur if the mouse button is pressed and released without
dragging, or if the initial and final coordinate positions in one direction are the
same. Although the first situation could be handled in the finite state machine
by adding a state between waiting and selecting to discard the selection if there
was no drag event, the other possibility cannot be handled this way. If there is
no area, the state reverts to waiting.

On the other hand, if the rectangle has an area, things are set up for an
action on it. The width and height are recorded so that they won't have to be
computed later in two places, the final rectangle is drawn, and the state changes
to wait for a user action on the selected area.

The character "f" indicates that the area is to be filled in the foreground
color. First, the selection rectangle is erased. Before calling FillRectangleO, the
drawing mode is changed to "copy"; otherwise filling will be done in the reverse
mode, possibly with an interesting but unintended effect. After restoring the
reverse mode of drawing, the state is changed to waiting for another selection
rectangle. Clearing is similar but simpler, since the drawing mode need not be
changed and restored.

Note that in the action mode, the selection rectangle is changed in the
code for each event that is handled. It cannot be changed before these events are
handled, since that would erase the rectangle for events that may occur in this
state but do not result inan action on the selected area. Similarly, the state cannot
be changed until one of the expected events occurs.

Figure 10.10 shows an example of using a selection rectangle.



Chapter 10 Interaction 203

Erasing an Area Figure 10.10

The image at the left shows the sitUation before selecting an area. The
middle image shows a selection rectangle drawn around material to be
deleted. The result of pressing C is shown at the right.

One problem with the event loop shown above is that there is no way out
of it. One possibility is to allow the user to press q in any state to exit the loop:

repeat {
event := EventO
if event === "q" then break
case state of {

"wait": {

}
}

Falling Behind ... and Catching Up on Pending Events

Ifa program is computationally intensive, pendingevents may queue up
faster than the application is able to process them. If the size of the list produced
by PendingO grows large, the application may be able to "catch up" by skipping
some events.



204 Interaction Chapter 10

Suppose that the user drags an object in the window using the mouse. If
redrawing the object takes too long, the screen updates will lag behind the
mouse movement and the user will become disoriented. If the list returned by
PendingO grows past a certain size, the application can skip drag events, as
indicated in the following loop:

repeat {

# perform background computation
e:= EventO
if e === (&Idrag I &mdrag I &rdrag) &

*PendingO > Limit then next # skip drag event
# process the event

Dialog Colors

If there is no subjectwindow, dialogs have a black foreground and a light
gray background, as illustrated by the examples in this chapter.

If there is a subject window, however, dialogs inherit the foreground and
background colors of the subject window. This may produce unattractive or
illegible dialogs (for example, a black foreground and a white background do
not produce an attractive dialog).

This problem may be avoided by saving the foreground and background
colors of the subject window and setting appropriate ones before calling a dialog
procedure. The saved colors are restored after the dialog is dismissed:

fg := WAttrib("fg")
bg := WAttrib(lbg")
Fg("black")
Bg("light gray")

# call dialog procedure

Fg(fg)
Bg(bg)



Chapter 11

User Interfaces

In preceding chapters, we described how a user can convey information to a
program using mouse and keyboard events. Except for the simplest applica­
tions, it is more helpful to organize interactionbetween the programand the user
by using interface tools such as buttons, menus, and sliders. Such interface tools
provide a visual interface between the user and the program.

Interface tools provide a wide range of functionality in ways that are
convenient, familiar, and easily understood. For example, clicking on a button
on the application window can be used to tell the application to perform some
action, pulling down a menu can be used to select among operations, and
dragging on a slider can be used to change a numerical value.

The rest of this chapter describes an application with a visual interface
and then goes on to describe the available interface tools. Subsequent chapters
explain how to build a visual interface and how it fits into a complete program.

An Example Application

Figure 11.1 illustrates an application that displays a multicolored kalei­
doscopic image. The image changes as old circles are erased and new ones are
drawn. Plate 11.1 shows what the application looks like in color.

205



206

s.-cI
slow

densfty

111"

.1"1_ radius

111"

ux1_ rectlus

111"

+ discs
rings

Figure 11.1

User Interfaces Chapter 11

A Kaleidoscope

The image is produced by drawing circles. The colors, sizes, and
positions of the circles are chosen at random. Circles are drawn until the
specified density (number of simultaneous circles) is reached, at which
point the oldest circle is erased and a new one drawn. This continues
until the user intervenes.

The pause button allows the user to suspend drawing, which is not
resumed until the user presses this button again. The reset button clears the
image and starts the drawing process from scratch. The sliders allow the user to
control the speed of drawing, the density, and the minimum and maximum radii
for circles. At the bottom, the user can choose between discs (solid circles) or
rings (outlines). The File menu allows the user to take a snapshot of the image
or quit the application, as shown in Figure 11.2.



Chapter 11 User Interfaces

slow

density

IItn

1I8X1_ rad1 us

IItn~

+d1scs
rings

Figure 11.2 A Kaleidoscope

Pressing a mouse button on the word File pulls down a list of menu
items. Positioning the mouse pointer on an item highlights it, and when
the mouse button is released, the operation is performed.

207

The notations @S and @Q shown in the menu indicate keyboard
shortcuts that can be used to accomplish the same thing as menu items. By
convention, @ is used to indicate that the meta modifier key is held down while
the following character is pressed, either in upper- or lowercase. For example,
pressing the q key while holding down the meta key is the same as selecting quit
from the File menu.

If snapshot is selected from the File menu, a dialog box pops up for the
user to specify the name of a file in which to save the image, as shown in Figure
11.3.



208 User Interfaces Chapter 11

.tn

+ discs
rings

Saving an Image Figure 11.3

As shown in Chapter 10, the user can enter a file name in the text-entry
field of the dialog box. Pressing return or clicking on Okay dismisses the
dialog and the image is saved in the named file. Clicking on Cancel
cancels the operation, and no image is saved.

Interface Tools

Icon's interface tools are called vidgets (for virtual input gadgets). They
include tools for allowing the user to make selections, set numerical values, and
so on. There also are tools that serve only to decorate interfaces with text and
lines.

Buttons

Buttons are among the most simple and commonly used interface tools.
Pressing a mouse button when the mouse cursor is on a button amounts to
1/pushing" the button. We'll use the term 1/pushing" with the understanding that
it amounts to pressing a mouse button with the mouse cursor positioned on the
button.

Buttons support two kinds of functionality. An ordinarybuttononly has
a momentary effect: It remains on only as long as it's held down, then reverts to
its original state. A toggle button remains on when it is pushed, and it must be



Chapter 11 User Interfaces 209

pushed a second time to tum it off. Both kinds of buttons are highlighted when
they are on.

Buttons are available in a variety of styles, as illustrated in Figure 11.4.

Button Styles

:..J Enablej

oJ En8ble

En8ble

.J En8ble

,oJ En8ble

o There are four basic button styles. Out­
lines are optional. The button at the
right is called an X-box button. Unlike
other button styles, it has no text asso­
ciated with it.

Figure 11.4

x
Enable

En8ble

Figure 11.5 shows the highlighted forms of the various buttons.

Highlighted Buttons

The nature of highlighting depends on
the style of the button. As you see here,
there is an X-box button without an
outline. It's only visible when it's high­
lighted.

Figure 11.5

X-box buttons and buttons with squares or circles at the left give the
impression that they can be set. Consequently, they are best used for toggles.

Radio Buttons

Radio buttons are collections of buttons in which only one button is on
at any time. Pushing a button turns it on and highlights it, and turns off the
previously selected button.

Only one style is provided for radio buttons; it is shown in Figure 11.6.



210

Menus

640 KFI Los Nlgeles

680 KNBIl san Franci 5CO

720 WCN Chicago

770 WMIC New York

830 WCCO Mi nneapo1i s

850 KOA Denver

870 WL New Orleans

1040 WHO Des Iloines

1120 KIlOX St. Louis

1200 WOAI san Antonio

User Interfaces Chapter 11

Radio Buttons

The example here was chosen to em­
phasize the origin of the term U radio
button". Radio buttons can, of course,
have any labels such as the names of
colors available in a particular applica­
tion.

Figure 11.6

A menu is a button that conceals a list of items. When you push the menu
button, the list of items is "pulled down" and the item under the mouse cursor
is highlighted. As you drag over the items on the list, the item under the mouse
cursor is highlighted, as shown in Figure 11.7.

cut
copy
paste
J<1Hr.
fill >
stroke >
invert
crop
tnt ratII

A Menu

Releasing the mouse button with the
mouse cursor positioned on an item
selects that item. Ifyou drag off the list
and release the mouse button, the list
disappears and no item is selected.

Figure 11.7



Chapter 11 User Interfaces 211

A menu item can itself be a menu. Such items are identified by an angle
bracket at the right. If you selectone of these items, its menu appears to the right,
as shown in Figure 11.8.

A Submenu

If you drag off a submenu and select
another item from the main menu, the
submenu disappears.

Figure 11.8

You can then drag onto this submenu and select an item there, as shown
in Figure 11.9.

Selecting a Submenu Item

Submenus themselves can have
submenus. There is no limit to this
hierarchical structure, but more than
two or three levels are confusing to
most users. Some users do not like
submenus at all.

Figure 11.9



212

Text-Entry Fields

User Interfaces Chapter 11

We've already described text-entry fields, which are designed for use in
dialogs such as those shown in Chapter 6. Figure 11.10 shows six text-entry
fields.

H.e:

EIiployee m:

BirthdatB:

Ilarltal Status:

CUrrent Position:

Des1 red Posi tion: Ifry cook

Text-Entry Fields

Each field has a label and space for the
user to enter text. The maximum num­
ber of characters that are allowed can
be specified; this determines the width
of the field. A suggested value for a
field can be given, as shown in the last
text-entry field.

Figure 11.10

You can select a text-entry field by clicking on it, at which point an "1­
beam" text cursor appears and you can enter or edit text. The I-beam cursor
shows the current place in the field where typed text is inserted. This cursor can
be positioned in the text by clicking with the mouse pointer at the desired
location. Dragging over characters in the text field selects them for editing and
highlights them (reversing the foreground and background colors). Characters
that are typed then replace the selected ones. A backspace character deletes all
the selected characters. If no character is selected, a backspace character deletes
the character immediately to the left of the text cursor, if there is one. All this
sounds complicated, but as in many interactive operations, it becomes natural
in practice, and it is easier to do than it is to describe.

Sliders

A slider specifies a numerical range visually. Numeric values, which can
be integers or real numbers, are associated with the end points of a slider. A
"thumb" marks the current position in the range. The value is changed by
dragging the thumb or by clicking anywhere in the trough to move it to that
point.

Sliders may be vertical or horizontal, as shown in Figure 11.11.



Chapter 11 User Interfaces

Scrollbars

213

Sliders

Sliders can have different sizes, as
shown in this figure.

Figure 11.11

Scrollbars are very similar to sliders, although they have a different
visual representation. See Figure 11.12.

.J

.J

Scrollbars

Sliders usually are used for setting val­
ues, while scrollbars typically are used
to select a portion of a larger image for
display in a smaller area.

Figure 11.12

Dragging the thumb of a scrollbar or clicking in the trough has the same
effect as with a slider. In addition, clicking on an arrow at the end of a scrollbar
moves the button incrementally in the direction indicated.

Text Lists

A text list displays multiple lines of text. If there are more lines than will
fit in the space provided, a scrollbar allows scrolling through the lines.

There are three kinds of text lists: ones that allow a user to scroll but not
select a line, ones that allow the user to select one line, and ones that allow the
user to select multiple lines. These are shown in Figures 11.13 and 11.14.



214 User Interfaces Chapter 11

1
1•• Is there a users' BnqI for Icon?

There is 110 official Icon users' BnqI. The Icon Project uint81ns 1m
electnJl'llc uil1ng list,

1con-gl"OUllks.ari zona.edu •

..n sent to this address Is forwarded to subscribers. To subscribe (or "
unsubscribe), send a IIIlSS8lIIl to ...

1con-group- request8cs. ari zona. edu

A Scrollable Text List Figure 11.13

A text list that allows the user to scroll is a good way to provide a large
amount of infonnation in limited space.

unde11
unde12
801re
offt11er
orbit
palnterc
pal check
palette I
I~chIWMt
pextract
PlllItotas

Iplckt11e
plat
PIlI!

....11.1cn- -:1
118nde12.1en

, 801 reo len
ml~~.;;i

Selectable Text

The groove beside the left-hand list
indicates that an item can be selected.
The double groove beside the right­
hand list indicates that multiple selec­
tions are allowed. No groove appears
if selection is disallowed, as shown in
Figure 11.13.

Figure 11.14

Regions

A region is a rectangular area that serves to accept events within its
boundary. Figure 11.15 shows three regions.

D
o

Regions

There are four region styles: sunken,
grooved, raised, and invisible (which
we can't show).

Figure 11.15



Chapter 11 User Interfaces 215

Labels

A label consists of text. Figure 11.16 shows a slider with four labels.

Labels

Labels can be used to identify tools,
indicate values, and so forth.

SCALE f~OR

0.0 I ..u 1.0

drag on the tt..b to dIange the SC81e

Figure 11.16

Lines

Lines can be used to visually delineate areas of an interface. See Figure
11.17.

Lines

Although lines are only IIdecorationll
,

they nonetheless can be very helpful in
making an interface visually under­
standable.

\ ,
\

-- -,
SCALE f~OR

drag on the tt..b to dIange the SC81e

0.0 r-I----..,-.....1..,.----- 1.0
,
!
I

\ '\"==---~=---.,-.....,..-.,----'/

,
I

i

!
i

Figure 11.17

Callbacks

When the user presses a button, selects an item from a menu, or activates
some other interface tool, a procedure associated with the vidget is called. Such
procedures are called callbacks because user actions on the interface result in
calls back to procedures in the application.



216 User Interfaces Chapter 11

Callback procedures have the following form:

procedure cb(vidget, value)

The first argument identifies the vidget that produced the callback, and the
second argument gives a value. The vidget argument is not always needed, but
it can be used to distinguish among differentvidgets thatshare the samecallback
procedure. The value often is important, since in many cases it indicates the
nature of the user action.

For a toggle button, the value is null when the toggle is turned off and 1
(nonnu1l) when it is turned on. This makes testing of the state of a toggle easy,
as in

procedure pause_cb(vidget, value)

if \value then ...
else ...

return

end

# stop display
# continue display

# set shape to filled circle
# set shape to outlined circle

# take snapshot
# shut down the application

The callback value for a radio button is the (string) label of the selected
button, as in

procedure shape_cb(vidget, value)

case value of {
"discs":
"rings":
}

return

end

Since menus can have submenus, their callback values are lists whose
first elements are the text for the item selected from the main menu, whose
second elements are the text for the item selected from the first submenu, and so
on. If there are no submenus, the callback value for a menu is a one-element list,
as illustrated by

procedure file_cb(vidget, value)

case value[1] of {
"snapshot @S":
"quit @Q":
}

return

end



Chapter 11 User Interfaces 217

Notice that the list element is the complete text for the item selected.

The callback value for a text-entry field is the text in the field at the time
the user presses return with the I-beam cursor in the field. There is no callback
until the user presses return.

The callback value for a slider or scrollbar is the numerical value in the
given range, as determined by the position of the thumb. A slider or scrollbar can
be configured in two ways: to provide callbacks as the user moves the thumb, or
"filtered" to provide a callback only when the user releases the thumb. Filtering
is appropriate when only the final value is important, as in

procedure density_cb(vidget, value)

density := value # set global variable

return

end

Unfiltered callbacks may be needed when the application needs to respond
while the user moves the thumb, as in scrolling an image.

The callback value for a text-list vidget depends on the kind of the text
list. If the vidget allows selection of only a single item, the value is the selected
line. If thevidget allows multiple selections, thevalue is a list of the selected lines.
There is no callback for a text list that does not allow selection.

The form of callback procedures for regions is somewhat different from
the callback procedures for other vidgets. The second argument is the event
produced by the user, and there are two additional arguments that indicate
where on the application canvas (not the region) the event occurred:

procedure cb(vidget, e, x, y)

Note in particular that e is not a value associated with the region vidget, as it is
for other kinds of vidgets; it is the actual event, such as a mouse press or a
character from the keyboard.

Labels and lines do not produce callbacks; they provide decoration only.

The Interaction Model

In order to design an application with a visual interface, it is necessary
to understand how the user and the application communicate. Figure 11.18
shows this schematically.



218 User Interfaces Chapter 11

program

procedure mainO

end

! qun_cb(...) .................

/ ............
/ ............

/ ............
/ ............

...... procedure qun_cbO
saveO
exnO

end

/
/

/
/

/

~
/

/
/

/
/

/

r--
/

/
/

/
" /\

\ /

[;j
ouse

User Interaction with an Application Figure 11.18

Most user events in an application with a visual interface come from the
mouse. For example, clicking on an interface button with the mouse
causes the callback procedure associated with the button to be called.

Tips, Techniques, and Examples

Scaling Sliders and Scrollbars .

The bounds of a slider or scrollbar are fixed when the program is built and
cannot be altered during execution. At first glance, this would appear to be a
serious limitation - what if a scrollbar is to be used to control the panning of a
viewport across an image of unknown size?

There is a simple solution, though: The scrollbar is configured to range
from 0.0 to 1.0, and its output is then scaled to the desired range. The scaling is
easily done in the callback procedure. For the image-panning situation, it could
be done this way:

procedure sbaccb(vidget, value)
value := value * image_width

Nonlinear scaling also can be useful. For a slider controlling the size of an
object (its area), the square root of the slider value canbe used to scale the object's
width and height. Logarithmic scaling often is best for speed controls.



Chapter 11 User Interfaces

Choosing Vidgets

219

In some cases, the same functionality can be provided by different kinds
of

. Both sliders and scrollbars provide a way to specify a numeric value in
a range. Both menus and radio buttons can be used to provide the user with one
choice among several.

The only significant differences between sliders and scrollbars are their
visual appearances and the functionality by which a user can set a value.
Choosing between the two kinds ofvidgets is more a matter of taste than design.

When choosing between a menu and a set of radio buttons, consider the
following:

• A menu button takes less space on the interface than a set of radio
buttons.

• Using a menu requires the user to pull it down and navigate with the
mouse, while selecting a radio button is just a matter of clicking on it.

• The menu choices are not visible until the menu is pulled down, while
radio buttons always are visible.

• A radio button maintains an internal state and the last selected radio
button remains visible, while the last selected menu item does not.

The "real-estate problem" often determines the choice - a large inter­
face cluttered with buttons may be confusing and annoying to users.

It is conventional to use menus to select among actions and to use radio
buttons for selecting states. Users generally prefer interfaces that follow conven­
tion.





Chapter 12

Building a Visual Interface

This chapter describes the process of building a visual interface, using as an
example the kaleidoscope program introduced in the previous chapter.

Good visual interface design is a difficult and complicated subject that is
beyond the scope of this book. In this and subsequent chapters, we'll illustrate
common usage by example and comment from time to time on design consid­
erations. For more information on the subject, see Apple (1987), Open Software
Foundation (1991), and Laurel (1990).

Planning the Interface

It's important to have a good idea of the functionality of an application
before designing an interface for it. It's not necessary, however, to completely
implement the functionality of the application before starting to build the
interface.

The process of building an application with a visual interface usually is
iterative, with focus shifting between the functionality of the interface and the
interface itself. Design of the interface may suggest additional functionality or
cause features to be cast in ways that are easily represented in the interface.

The interface for the kaleidoscope application presented in the last
chapter is the end product of a process that involved many changes and
refinements. We won't attempt to recapitulate the process here. Instead we'll
sketch how we might have done it.

Thesize of the applicationcanvas is an important consideration. Changes
in the size of the application canvas after an interface is laid out may result in
unnecessary work. Screen space often is a limiting factor. Many personal
computers have screens that are only 64D-by-480 pixels. In designing an appli­
cation that is intended to be portable to various platforms, it's wise to work
within these dimensions.

221



222 BUilding a Visual Interface Chapter 12

In many situations, the screen is shared by several applications, so an
application canvas generally should notbe larger than is necessary. On the other
hand, the application canvas should be large enough tobe visually attractive and
allow the user easy access to interface tools. An application that displays an
image or provides a user work area generally is more attractive and useful with
a relatively large canvas. Achieving a good compromise may be difficult.

Figure 12.1 shows a sketch of the interface we designed for the kaleido­
scope program.

[

r

\i

O~;..&--l

[ Ii

Initial Interface Layout Figure 12.1

It's often worth doing a series of rough sketches with different layouts
before committing to interface construction. Sometimes more precise
drawings done to scale, perhaps using graph paper, can save work
later.

Our first consideration was the display region. We decided, somewhat
arbitrarily, to make the region 400-by-400 pixels (the region needs to be square
because of the drawing symmetry). This is large enough to provide an attractive
display but small enough so that the entire canvas would fit within the 640-by­
480 limit. We put the region at the right side of the canvas because it's conven­
tional to put user controls at the top and left of visual interfaces. Following
common, well-known conventions, in the absence of compelling reasons not to,
makes learning the application easier for users.



Chapter 12 Building a Visual Interface 223

We put a menu bar at the top, also because that's conventional. The
functionality we had in mind included the ability to save snapshots of the
display. Such operations usually are put in a menu named File. An entry for
quitting the application also typically is put in a menu named File, although it
has little to do with files. The point is that experienced users expect it there. In
this application, there are no other menus; many applications would have
others.

Allowing the user to stop the display temporarily and to reset it are part
of the application design. We could have put these operations in a menu, but
buttons are easier to use than menus and there is ample space on the canvas to
provide buttons. Furthermore, since pausing the display involves a change of
state, using a button rather than a menu item makes the state visible on the
interface.

Since the speed of the display, the density of circles, and the maximum
and minimum radii of circles all are numerical quantities, we chose sliders to let
the user adjust these values. An alternative would have been to provide text­
entry fields in which the user could enter numbers. For an application like the
kaleidoscope, there is little advantage to allowing the user to specify precise
values - entering precise values is more difficult than moving sliders and the
user would need to know what the numerical values mean. Sliders deprive the
user of precision, but they allow a more intuitive approach to using the
application. Because of the area available and the need to label the sliders, we
oriented the sliders horizontally.

All that remains is a way for the user to select between discs and rings.
Because there are only two choices and there is space available, we decided to
use radio buttons, which makes the choice visible on the interface. If there had
been more choices for shapes or less available space on the canvas, a menu might
have been a more appropriate choice.

With this layout in hand, we're ready to build the interface.

A Visual Interface Builder

The Icon program library contains procedures for creating vidgets,
configuring them, and positioning them at specified places on an application
canvas. Using procedures to do this, however, is a tedious and often intricate
task. Icon provides a visual interface builder, VIB, that automates much of this
process. VIB allows you to create instances of vidgets, place them where you
want them, configure them, name their callbacks, and try them out, all interac­
tively.

In the following sections, we'll go through the process of building the



224 BUilding a Visual Interface Chapter 12

visual interface for the kaleidoscope application. We won't attempt to describe
all the features of VIB in this chapter. See Appendix M for more information.

The VIS Application

The VIB window for building a new interface is shown in Figure 12.2.

FUe

The VIB Application Figure 12.2

The menus at the top provide operations needed to use VIB. The icons
below the menus represent the vidgets described in the previous
chapter. The inner rectangle represents the canvas of the interface being
developed.

The icons below the VIB menu bar from left to right represent buttons,
radio buttons, menus, text lists, text-entry fields, sliders, scrollbars, regions,
labels, and lines. Clicking on one of these icons creates a vidget of the corre­
sponding type and places it on the application canvas. We'll show instances of
this later.



Chapter 12 Building a Visual Interface

Building the Kaleidoscope Interface

225

It's generally a good idea, before creating any vidgets, to set the desired
size of the application canvas. This can be done by dragging with the left mouse
button on the lower-right comer of the rectangle representing the application
canvas. Alternatively, clicking the right mouse button on the lower-right comer
of the canvas area brings up a dialog in which information can be entered. See
Figure 12.3.. ~.~_.~....~.__..._...-._.-

~) .u:.e~~'~~"'~-~~4'~"~~....-" ... ~ .. '
r7,':';, . .:..·.~·:;~,.~:....q;..'::.~.· .•:::~I~~t+a··: 0'

ril.

procedure _: I
window 1.1:

width: S94
height: 392

kaleldo.k:n

dl.101 Wiricloii

The Canvas Dialog Figure 12.3

Text can be entered and edited, as described in Chapter 11. The tab key
moves the cursor from one text-entry field to the next.

To build the interface for the kaleidoscope, we don't need the procedure
name field or the dialog window toggle. These features are described in the next
chapter and in Appendix M. The window label refers to the label for the
application, which we can enter now. The default width is reasonable for our
design. The critical dimension is the height, which needs to be increased to
accommodate the display region and menu bar, with some space for a visual



226 Building a Visual Interface Chapter 12

border around the display region. Figure 12.4 shows the result of editing the
canvas dialog and Figure 12.5 shows the new application canvas.

proc:ecllre _:

window 1_1: fka1eido

width: lGOO
height: .. d1810g window

Specifications for the Kaleidoscope Canvas Figure 12.4

The values for the canvas size cannot exceed the dimensions of the VIB
window. If we try to set a dimension larger than the VIB canvas, we'll
be warned and have to provide acceptable values before we can go on.
We can, however, resize the VIB window if it's not large enough for the
application canvas we want.



Chapter 12 Building a Visual Interface 227

The Kaleidoscope Canvas Figure 12.5

Although the size of the application canvas can be changed at any time,
it's generally a good idea to know approximately what size the appli­
cation canvas should be at the beginning, since changing it later may
involve moving many vidgets.

The question is what to do next. There are quite a few vidgets to create,
configure, and position. We can't be sure (unless we have a detailed drawing of
the interface and are certain it's the waywe want it) that the canvas size is correct.
A good approach at this point is to start laying out the portions of the interface
that depend most on the canvas size. One approach is to startby subdividing the
canvas into its main areas; first the menu bar that divides the canvas vertically,
and then the kaleidoscope display region, which is the most crucial part of the
area below the menu bar.

As mentioned in the previous chapter, lines provide visual cues for the
user (and also for the interface designer). Therefore, the first vidget we'll create
is a line to separate the menu bar from the rest of the canvas.

A vidget is created by pressing the left mouse button on its icon and



228 Building a Visual Interface Chapter 12

dragging it onto the canvas. For a line vidget, this produces a short horizontal
line, as shown in Figure 12.6.

• •

A Line Vidget Figure 12.6

The initial location of the line and its length and orientation aren't
important; they're easily changed.

The end points of the line are highlighted to indicate that the vidget is
"selected". Operations are performed on the currently selected vidget. A vidget
is selected when it is created. A vidget that is not selected can be selected by
clicking on it with the left mouse button. Only one vidget can be selected at any
given time.

There are several ways we can adjust the length and position of the line.
We can press the left mouse button on the line and drag it to a new position. We
can drag one end point to stretch and pivot the line while the other end remains
anchored. Alternatively we canpress the rightmouse button to bring up a dialog
that allows us to specify the length and positions of the end points. See Figure
12.7.



Chapter 12 Building a Visual Interface

. '"

Dialog for a Line Vidget Figure 12.7

Every vidget has an ill field that serves to identify it. The dialog for a
newly created vidget provides a suggested value, but the ill can be set
to any string ofprintable characters excludingcolons (:), backslashes (\),
and double quotes n. Since the kaleidoscope interface has only one
line, we changed the ID to line. We could use something more mne­
monic like menu bar line.

229

The x1 coordinate should be set to 0 and the x2 coordinate to 599 to fitthe
width of the application canvas. (If a line is a little too long to fit on the application
canvas, that doesn't matter, since nothing beyond the edge appears when the
application is run.) The values of y1 and y2 need to be the same, of course, to
produce a horizontal line. It may be necessary to try out different values or to
drag the line until its appearance on the canvas is acceptable. We chose 25 for the
vertical offset, with the results shown in Figure 12.8.



230 Building a Visual Interface Chapter 12

The Menu Bar Line Figure 12.8

What we have so far isn't very impressive, but it didn't take long.

The display region is the next order of business. Figure 12.9 shows a
region vidget and the dialog for configuring it.



Chapter 12 Building a Visual Interface

x: S21 32 irw1s1ble

v: so height: ZO sunken
• grooved

raised

Okav cancel

The Region Dialog Figure 12.9

There are several attributes of a region that need configuring. As with
all vidgets, ifwe don't get everything right the first time, we can go back
later and make changes.

231

We chose to use a dialog to configure the region, since we wanted to
specify a precise size. For approximate sizing and positioning, we can drag on
the corners of a region vidget when it's selected.

In this case the suggested ID is almost what we want, but since there's
only one region, we just deleted the number. There also is a suggested name for
a callback for the region. Since the region is only for the display and there's no
functionality associated with user events in the region, we don't need a callback.
The callback can be eliminated by deleting the text in the field,leaving it empty.
When there is no callback for a vidget, events that occur on it are ignored.

We know the width and height for the region, and we could make a guess
as to where the upper-left corner should be. If we're wrong, we can move the
region later.

The four radio buttons at the right of the region dialog provide alterna­
tives for the visual appearance of the region's border. We decided on "raised".



232 Building a Visual Interface Chapter 12

The edited dialog is shown in Figure 12.10, and the resulting region is shown in
Figure 12.11.

p--.-.-:------~~.---.. -----.-.---.-:

A

r ,

ID: reg1...

callbac1c:

x: 1.

v: )z

width: '400

height: 400

invisible
sunken

, grooved

• raised

The Edited Region Dialog Figure 12.10

Ifwe don't like the effect ofa raised region, we canchange it later. In fact,
we may not know if the effect is what we want until we are able to run
the kaleidoscope. As explained in the next chapter, it's always possible
to go back to VIB to modify an interface.



Chapter 12 Building a Visual Interface 233

File aft select

r-~·-:-- ----~--~---~fl.,,-:.,,-,~--- - - - - - - - -- - - - ---

. .-
,,_. ".

~ - ~ ~ ~..=.l ~ =~ -r b;di A

r
"

i

~ ~

The Configured Region Figure 12.11

Satisfactory placement may require some experimentation. When a
vidget is selected, it can be moved one pixel at a time using the arrow
keys on the keyboard.

Now we're ready to create the vidgets at the left side of the application
canvas. We'll start with the menu, which completes that region of the canvas.
Figure 12.12 shows the result of creating a menu vidget and the dialog for it.



234 Building a Visual Interface Chapter 12

r ~ . --
; ! ~ 1 1 I" .. I
• <. •

-, ~

- ..
. .. .." ~~. 1.2~1C.:i:

x: r0­

y: 6S

cancel

"

A Menu Dialog Figure 12.12

Since there's only one menu in the kaleidoscope application, we could
leave the ID as it is, but an ID that corresponds to the name of the menu
will make it easier to identify later on.

The menu label needs to be changed to File, since that's what appears on
the menu button on the interface. The callback also shouldbe changed to identify
the functionality of the menu. We use the suffix _cb to distinguish callbacks
from other procedures in the application, but this is only a convention.

A newly created menu vidget provides three items. The kaleidoscope
application needs only two; one can be deleted by clicking on the del button
beside it (clicking on an add button between two items adds an item there). This
menu has no submenus, so we can ignore the create submenu buttons. See
Appendix M for instructions on creating submenus.

The edited dialog is shown in Figure 12.13 and the result, after position­
ing the menu vidget, is shown in Figure 12.14.



Chapter 12 Building a Visual Interface

0k8y I C8nce1

235

The Edited Menu Dialog Figure 12.13

There is no limit to the number of items in a menu, but if the menu, when
pulled down, is too long to fit in the window, not all the items will be
available. Once the dialog is dismissed, this can be tested by pressing
the middle mouse button on the menu.



236 Building a Visual Interface Chapter 12

The Canvas with Three Vidgets Figure 12.14

It may not seem like we're making much progress, but it didn't take
long.

Next we'll start creating the vidgets to the left of the display region,
working from top to bottom. Figure 12.15 shows the result of creating a button
and the dialog for it.



Chapter 12 Building a Visual Interface 237

x: 48

y: fi4'l
widtfl: r35

height: 20

+ regular
c:heck
circle

lCbox

f f
Okay I cancel

outl1..

toggle

d18lllll default

A Button Dialog Figure 12.15

Buttons have more attributes than their apparent simplicity might
suggest.

The label for the button needs to be changed to pause. Here we're
configuring the button for temporarily stopping the display. Since it's a toggle
button, we need to check thatbox. The callback can be eliminated, since the state
of thebutton canbe obtained with VGetState(). Ordinarily, we'd pick a style that
clearly shows it's a toggle when displayed on the interface, but since we have
only one other button, and it's not a toggle, we decided to use the same
appearance for both of them, for which the default style is our preference. (The
dialog default option doesn't concern us here - see Chapter 14.) Figure 12.16
shows the edited dialog.



238 Building a Visual Interface Chapter 12

libel: .-se
ID' .-se

,._.... ca~lb8dc: r --;;;=====:;:::::;:;:::;;;;=1
~...-,~

ll: 41
y: 141

wtddl: 42
height: ,20

• regular

chedc

circle
lCbox

Olcay cancel

lIlltU..

to9lIle

dialog default

The Edited Button Dialog Figure 12.16

The size of the button adapts automatically to the label it's given,
although it can be made larger.

We also need a reset button, but we won't go through all the details here;
the process is similar to that for creating the pause button, except that the reset
button is not a toggle. Figure 12.17 shows the canvas with the two buttons after
positioning them where we thought they looked best.



Chapter 12 Building a Visual Interface

pause reset

Five Vidgets in Place Figure 12.17

It's usually necessary to adjust the positions of vidgets so that they are
aligned and are placed in a visually appealing way. It's worth doing
this; visually misaligned or off-balance layouts annoy users and sug­
gest that the application is not well done.

239

The four sliders are next. Figure 12.18 shows a newly created slider and
its dialog box after editing. We've changed the default vertical orientation to
horizontal and set the range from 500 to 0, anticipating that the left end of the
slider will correspond to "slow" and the right end to "fast". We set the filter
toggle because our program doesn't need to react to every motion as the user
drags the slider. With filter set, intermediate events are filtered out, and the
program takes action only when the mouse button is released to fIlet go" of the
slider.



240

ID:
C811beck:

x: ;n
y: 102

length: 1

wtddl: 1S

vert1C8l

+horizontal

Building a Visual Interface Chapter 12

filter

Okay c.nce1•

The Edited Slider Dialog Figure 12.18

Since the dialog has not yet been dismissed, the newly created slider is
shown in its original size and orientation.

Figure 12.19 shows the slider after it has been positioned.



Chapter 12 Building a Visual Interface 241

file Edit select
f"

-- - .... ~ _~~ -- ~- - .. .. - _.~-

," I: 1:~> .. ' !

.~ ~ ~ ~ A ..::=J _ ~ -r .-.
fife.

reset

I

.
J

'-.,

The Slider in Place Figure 12.19

Getting the size of the slider just right may take some experimentation.

Three more sliders are needed. We could repeat the process we used for
the first slider, but we can save some work by making copies of the first slider.
Entering @C when a vidget is selected makes a duplicate of the selected vidget.
(That's c with the meta key held down, as described in Chapter 11.) The new
vidget won'tbe where we want it, and we'll have to change some of its attributes,
but it will be the same size as the vidget from which we made the copy, which
is what we want in our layout. Figure 12.20 shows the four sliders in place.



242 Building a Visual Interface Chapter 12

pause reset

The Sliders in Place Figure 12.20

The interface is now taking shape; at this point the results should be
satisfying.

The radio buttons are next. Figure 12.21 shows a newly created set of
radio buttons and the dialog after it has been edited.



Chapter 12 Building a Visual Interface

r e ritit "select

A

I

243

Configuring the Radio Buttons Figure 12.21

As for menus, three radio buttons are provided by default. Adding and
deleting radio buttons and changing their names is similar to the
process for menus. We've already done this in the figure.

Figure 12.22 shows the resulting radio buttons.



244 Building a Visual Interface Chapter 12

Fn [df 58 let

r -~--.~~~---- - .----- --~ ~ -- -

i ,., I(~ I II, ,'.

e t

~ ~ IP.. -r:- ~ ~ A .
~ .

fne'

p-use reset

.../1

i
I

dfscs
rings

- -

The Radio Buttons in Place

Only the labels remain to be done.

Figure 12.22

We've saved the labels until last for a good reason: We couldn't be sure
the sliders were where we wanted them until the radio buttons were in place.
Twelve labels are needed and moving them around after creating them is a lot
of work.

Figure 12.23 shows a newly created label and its dialog before editing.



Chapter 12 Building a Visual Interface

label:
m: label1

IC: 46

y: 79

0k8y C8IICe1

Creating a Label Figure 12.23

This is the label that goes over the speed slider, so we need to change its
text accordingly.

Figure 12.24 shows the new label in place.

245



246 Building a Visua,l Interface Chapter 12

k0
~----,,------------.- -~" .. .. . ~

~ . .... ~ ._ ' .,,, .'. -; • _ ~ '. _ 1.£19,I,!.EdC.'U! _,.. ,.; -,- :.. .
Fl1e

File

-r ~

reset

dtscs

~

One of the Labels in Place

At this point, we know the end is near.

Figure 12.24

We can save work for the remaining labels by copying. Note that several
of the labels have the same text, so by choosing what to copy, we can reduce the
amount of work even further. The final result is shown in Figure 12.25.



Chapter 12 Building a Visual Interface

File

pause reset

5lIBBd
slow fast

density
.In -

.in1_ radi us
ain -

aaxl_ radius
.In -

dtscs

rings

The Completed Interface Figure 12.25

Finally, the interface is complete. All the planned vidgets have been
created, and they are at least approximately where we want them. That
doesn't mean the interface will never change. As the application devel­
ops, new functionality may require additions or changes to the inter­
face. With a good foundation, though, future changes will not be as
hard.

247

The interface as shown in Figure 12.25 looks like it will look when the
application is run. It's possible, however, to see the application "in action"
without leaving VIE. Typing @ P starts up a prototype of the application with
functional vidgets. See Figure 12.26.



248 Building a Visual Interface Chapter 12

reset

speed

slow -fast

density
.1n -

~n1_ l'8dtus
.1n -
~_ l'8dtus

.1n -
ct1scs

• rings

Prototyping the Application Figure 12.26

The prototype comes up in a separate window. We can click on buttons,
pull down the menu, move a slider thumb, and so forth. A listing of the
activated vidgets and their callback values is written to standard
output, where we can see if we're getting what we expected.

Pressing q with the mouse cursor not on any vidget dismisses the
prototype, and we can go back to VIB to make adjustments or just admire our
work.

VIS Menus

VIB has three menus, as shown in the previous figures. The File menu,
shown in Figure 12.27, provides for creating new interfaces, opening previously
saved ones, saving the current interface, and so on.



Chapter 12 Building a Visual Interface 249

speed

slow fast

dens1ty
.1n -

ain1_ I'8lttus
ain -

aaxi_ I'8lttus
.1n -

discs
rings

The File Menu Figure 12.27

It's wise to save an interface frequently while working on it. The refresh
item in the File menu redraws the application canvas in case something
is drawn incorrectly, as sometimes happens. Notice the keyboard
shortcuts; we've used @ P already.

The Edit menu provides for copying, deleting, and aligning objects. See
Figure 12.28.



250 Building a Visual Interface Chapter 12

sPMd
slow fast

density
II1n -

.1n1_ rad1us
.1n -

Uld_ rad1us
II1n - --

-,,/ct1scs

r111lJS

The Edit Menu Figure 12.28

We've used the @C shortcut already. It's worth learning the other
shortcuts to save time in building interfaces. Aligning vidgets is de­
scribed in Appendix M.

The Select menu lets us select a vidgetby its ID, as shown in Figure 12.29.



.tn

slow

Chapter 12 Building a Visual Interface

fil.
1_101

11l----..,---ill - 1OZ
m. 1_103

Hr;.;.;;.o.~---=--"'~ll_l04

I_lOS
pause 1_106

1_107
1_108

speo IbLdens1 tv
.J·1b1_II8lLnd1us

lblJ1tn..radtus
dens-1b1~ I

line
pause

.tni_ I'.8A1 on
reset
shape
slcLdens1tv

--t_ slcL118lLradtus
.in ..J. slcL.tn..nd1us

slct.sP-1

The Select Menu

r

Figure 12.29

251

Ordinarily a vidget is selected by clicking on it. Sometimes, however, it
is difficult to select a line, since it's only two pixels wide. A vidget also
may have no visible appearance and can get "lost". The Select menu
solves these problems. It also illustrates why choosing good mnemon­
ics for vidget IDs is important.

VIS Output

When a file is saved by Vill, it appends Icon code describing the interface
to the named file. If the file is new, Vill provides a main procedure to give a
runnable program that behaves much like a prototype in VIB does. If the file
already contains Icon code, Vill does not modify that code but just appends an
updated VIB section when the file is saved.

The Vill section for the kaleidoscope application looks like this:



252 Building a Visual Interface Chapter 12

#===«vib:begin»=== modify using vib; do not remove this marker line
procedure uLattsO

return ["size=600,455", "bg=pale gray"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,

[":Sizer:: :0,O,600,455:kaleido",),
["file:Menu:pull::12,3,36,21 :File",file_cb,

["snapshot @S","quit @Q"ll,
["labeI01 :Label:::13,180,21,13:min",],
["labeI02:Label:::152,180,21 ,13:max" ,),
["labeI03:Label:::13,240,21,13:min",],
["labeI04:Label:::152,240,21,13:max",l,
["labeI05:Label:::13,300,21,13:min",],
["labeI06:Label:::152,300,21,13:max",l,
["labeI07:Label:::7,120,28,13:slow",),
["labeI08:Label:::151 ,120,28,13:fast",],
["lbLdensity:Label:::67, 160,49,13:density",],
["lbLmax_radius:Label:::43,280,98,13:maximum radius" ,l,
["lbLmin_radius:Label:::44,220,98,13:minimum radius" ,],
["lbLspeed:Label: ::74,100,35,13:speed",],
["line:Line:::0,30,600,30:",],
["pause:Button:regular:1 :33,55,45,20:pause",pause_cb],
[" resetButton:regular::111,55,45,20:reset" ,reseCcb),
["sld_density:Slider:h:1 :42,180,100,15:1,100,50",density_cb],
["sld_max_radius:Slider:h:1 :42,300,100,15:1,230,115",max_radius_cb),
["sld_min_radius:Slider:h:1 :42,240,100,15:1,230,115",min_radius_cb],
["sld_speed:Slider:h:1 :42,120,100,15:500,0,250",speed_cb),
[lregion:Rectraised::188,42,400,400:",],
)

end
#===«vib:end»=== end of section maintained by vib

The first and last lines are markers that VIB uses to find the interface
section in an existing file. The code produced by VIB should not be modified; if
something is changed, VIB may not be able to use the modified section.

Although the interface sections produced by VIB are not designed for
easy reading, it's worth knowing that every vidget is represented by an Icon list.
The string up to a colon in the first item in a list is the ID for the vidget. If the
vidget has a callback, it's the second item in the list.



Chapter 12 Building a Visual Interface

More About Vidgets

253

Vidgets are implemented with records whose fields contain the at­
tributes of the vidgets. Some of these are described below; see Appendix L for
more information.

All vidgets on an interface are enclosed within a "root" vidget. The root
vidget accepts user events (such as mouse presses) and identifies the vidget, if
any, on which the mouse cursor is positioned. If the mouse cursor is on a vidget
when an event occurs, that vidget is activated. For example, if a mouse button
is pressed with the cursor on a slider vidget, the slider is activated. If the event
is not appropriate for that vidget (such as a keypress event on a button vidget),
it is rejected by the vidget.

Vidget States

Toggle buttons, radio buttons, text lists, text-entry fields, sliders, and
scrollbars maintain internal states. For most of these, the vidget state is the same
as the last callbackvalue it produced. But for textlists, the state is a list ofintegers.
The first integer indexes the top line currently displayed; this reflects the
position of the scrollbar thumb. Additional integers, if any, index the currently
selected items.

Since the callback values and the states usually are the same, it seldom
is necessary to ascertain the state of a vidget. If it is necessary, the procedure

VGetState(vidget)

produces the state.

The procedure

VSetState(vidget, value)

sets the state of the vidget to the given value. It also produces a callback, as if the
user had set the value by manipulating the interface. For example, VSetStateO
can be used to set the state of a slider and move its thumb to the corresponding
position.

The lists of items associated with menus and text lists can be accessed by
VGetitems(vidget) and VSetitems(vidget, L), which get and set the lists, respec­
tively.

VGetltemsO returns a list of strings representing the items displayed by
the menu or text-list vidget. If a menu vidget contains a submenu, the submenu
is represented by two entries in the returned list: a string label followed by a list
of items in the submenu.



254 Building a Visual Interface Chapter 12
VSetltemsO sets the list of strings representing the items displayed by the

menu or text-list vidget. For a menu vidget, any string entry may be followed by
a list representing a submenu.

Vidget Fields

Vidgets have several fields that contain attributes. Most of these fields are
used for internal purposes, but some provide useful information, such as the
location and size of a vidget on the interface canvas. Except for lines, vidgets
occupy a rectangular area and have these fields:

vidget.ax x coordinate of the upper-left corner of the vidget
vidget.ay y coordinate of the upper-left corner of the vidget
vidget.aw width of the vidget
vidget.ah height of the vidget

Regions also have fields that give the "usable" area that can be drawn on
without overwriting borders used for three-dimensional effects:

vidget.ux x coordinate of the upper-left corner of the usable area
vidget.uy y coordinate of the upper-left corner of the usable area
vidget.uw width of the usable area
vidget.uh height of the usable area

The Organization of a Program with a VIB Interface

An application with a VIB interface usually has several relatively distinct
components, as illustrated in Figure 12.30.

header

main procedure

initialization

application functionality

callbacks

VIB interface

Program Organization

The section labeled "application function­
ality" contains the code necessary to imple­
ment the features of the program that do
not reside in callbacks. All but the VIB
interface section is written by the author of
the application.

Figure 12.30



Chapter 12 Building a Visual Interface 255

The procedure uiO in the VIB section opens the application, draws and
initializes the vidgets, and returns a table that contains the vidget records.

A program with a VIB interface typically begins with

vidgets := uiO

The keys in the table returned by uiO are the vidget IDs. Their corre­
sponding values are the vidget records. One vidget in the table returned by uiO
is particularly important: a "root" vidget that encloses all other vidgets and
processes events that occur on them. The root vidget has the ID root.

In an application with a VIB interface, events are not handled by EventO
but by higher-level procedures that understand vidgets and the meaning of
events that occur on them. There are two procedures that handle vidget events,
ProcessEventO and GetEventsO.

ProcessEvent(root, missed, all, resize} processes a single event. If the
event takes place on a vidget and is appropriate for the vidget (such as a mouse
press within the area of a button), a callback for that vidget occurs. The
arguments missed, all, and resize are optional procedures that are called for
events that occur when the mouse pointer is not on a vidget or are not
appropriate for that vidget (such as a keyboard event with the mouse cursor on
a button), for all events, and for resize events, respectively. For example,

ProcessEvent(root, , shortcuts}

might be used to call shortcutsO for all events in order to handle keyboard
shortcuts that are entered whether the mouse pointer is on a vidget or not.

The procedure ProcessEventO is used when an application wants to
handle events one by one. For example, the kaleidoscope application needs to
run the display between user events. Such programs typically have an event
loop of the form

repeat {
while *PendingO > 0 do

ProcessEvent(vidgets[lroot"])
# work performed between processing events

}

In the repeat loop, if there are any pending events, they are processed
before going on. This assures prompt response to the user. If no events are
pending, other work is done. The amount of computation done before checking
again for user events should be small, so as to assure a responsive interface.

The procedure GetEvents(root, missed, all, resize}, whose arguments
have the same meaning as those for ProcessEventO, handles all events and does



256 Building a Visual Interface Chapter 12

not return control to the program. GetEventsO is appropriate for applications
that are entirely"event-driven" and perform processing only in response to user
events and the resulting callbacks.

Examples of different kinds of event loops are illustrated in following
chapters.

Multiple VIB Interfaces

A single visual interface window is adequate and appropriate for most
applications. There are situations, however, that require more than one inter­
face. Typical examples are multi-user games and painting and drawing applica­
tions.

Before designing an application with more than one interface window,
consider the problems: managing multiple windows adds programming com­
plexities, and in single-user situations an application with more than one
window requires the user to change his or her focus of attention. In addition,
applications with multiple windows require more screen space than single­
window applications.

VIS Considerations

VIE can handle only one interface section in a file. There are ways of
fooling VIE by editing the lines it places at the beginning and end of its interface
code, but these are clumsy. It's usually best to break the application into multiple
files with each interface in a separate file.

When VIB creates a file, it provides a main procedure. In the program
organization we're using here, such main procedures should be deleted and a
main procedure provided in the program that links the interface code. (VIB does
not add a main procedure when editing an existing file, so this needs to be done
only once.)

The code for a VIB interface contains two procedures, which are named
uLatts and ui by default. The procedure ui_attsO returns the attributes used to
open the interface window. In most applications, it is not needed, but it can be
used to open the window with added or changed attributes. The procedure uiO
opens the interfacewindow if &windows is null, draws its vidgets, and initializes
the interface.

To avoid conflicting declarations for these procedures in multiple inter­
faces, their names need to be changed. This is done easily in VIB by specifying
a procedure name in the canvas dialog, as shown in Figure 12.31.



Chapter 12 .Building a Visual Interface

procedure _:

111... 1....1:

II1ddl:
height: d1e1Dl1 111...

Cence1

257

VIB Canvas Dialog Figure 12.31

The name specified - control in this case - is used in place of ui for the
two procedures in the interface code. In the example above, they are
named controLattsO and controlO.

Each interface has its own vidgets. The same vidget ID can be used in
more than one interface, but care should be taken not to use the same callback
name in more than one interface unless a single procedure handles callbacks
from more than one window.

If the names are changed to draw_attsO and drawO in draw.icn, the
application might begin as follows:

controLvidgets := controlO

draw_vidgets := drawO

Note that each interface produces its own table of vidgets.

There's a problem here: A "ui" procedure opens a window only if
&window is null. If &window is null when controlO is called, and nothing else is
done, drawO does not open a window, but instead overwrites what controlO
drew in the window it opened. This problem is easily fixed:

controLvidgets := controlO
&window := &null
draw_vidgets := drawO

If there is need to refer to the windows later in the program, they can be
assigned to variables as follows:

controLvidgets := controlO
controLwin:= &window
&window := &null
draw_vidgets := drawO
draw_win := &window



258 Building a Visual Interface Chapter 12

The window to use also can be specified as the argument to a /lui"
procedure, as in

controLwin := WOpen ! controLatts()
controLvidgets := control(controLwin)
draw_win := WOpen ! draw_atts()
draw_vidgets := draw(draw_win)

Controlling MUltiple Interfaces

As mentioned earlier, each interface has its own set of vidgets; in each,
the ID of the root vidget that encloses and manages all others in the interface is
"root". These roots can be obtained as needed or assigned to variables, as in

control_root := control_vidgets["root"]
draw_root := draw_vidgets[" root"]

The most difficult part remains: managing events in more than one
window. How this is done depends on the functionality of the application.

The simplest case is a purely event-driven application in which actions
are taken only in response to user events and events in all interface windows
have equal priority and need to be handled as they occur.

In this case, it is not sufficient to process the windows in order, waiting,
for example, for an event in the first window before going on to the second. If this
is done, events may accumulate in other windows and not be processed.

The procedure Active() can be used to deal with this problem. Active()
returns a window in which an event is pending - blocking and waiting for an
event if none is pending. Every time Active() is called, it starts with a different
window in round-robin fashion, to assure that all windows can be serviced.

The event loop for an event-driven application of the kind described
above might look like this:

repeat {
root := case Active() of {

controLwin: controLroot
draw_win: draw_root
}

ProcessEvent(root, ...)
}

where the ellipses indicate other possible arguments for ProcessEvent().

In some applications, different interface windows may have different
priorities. For example, a drawing application might be designed so that there



Chapter 12 Building a Visual Interface 259

# callback in draw

# callback in control

is a shift in focus between the control window and the drawing window.
Furthermore, when the drawing window is the focus, all events in it might be
processed, ignoring events in the control window until a specific event in the
drawing window changes the focus to the control window, and vice versa. The
code might look like this:

root := controLroot # initial interface
while ProcessEvent(root, ...)

procedure go_drawO

root := draw_root

return

end

procedure go_controlO

root := controLroot

return

end

where gO_drawO is in control.icn and go_controlO is in draw.icn.

One problem with this is that ifevents occur in the control window while
the draw window is the focus of attention, these events are not processed until
the focus is changed - and then they all are processed.

One way to handle this problem is to discard events that occur in
windows other than the focus window. This can be done by emptying the event
queue of the window that is to become the focus before changing the focus. The
callbacks given earlier can be modified to do this:

procedure go_drawO # callback in control

while get(Pending(draw_win))

root := draw_root

return

end

procedure go_controlO

while get(Pending(controLwin))

root := controLroot

return

end

# callback in draw



260 Building a Visual Interface Chapter 12

Handling multiple interfaces poses other problems for an application
like the kaleidoscope that is not entirely event driven. In this kind of an
application, processing goes on even if there are no user events, but user events
must be processed when they occur.

For a single interface, the event-processing loop typically looks some­
thing like this:

repeat {
while *PendingO > 0 do

ProcessEvent(root, ... )
# do something before checking for next event
}

It's important that what's done before checking for the next event be
brief; otherwise the user may become annoyed at the unresponsiveness of the
interface, perhaps repeat actions that"didn't take", or even assume the applica­
tion is "hung".

Ifwe introduce multiple interfaces, this event loop needs to be recast. For
two interfaces, the loop might look like this:

repeat {
while *Pending(win1 I win2) > 0 do

ProcessEvent(
case ActiveO of {

win1: root1
win2: root2
},

)
# do something before checking for next event
}

Note that ActiveO is called only if there is an event pending in one of the
windows; it therefore does not block.

Tips, Techniques, and Examples

The Aesthetics of Interlace Layout

Here are some guidelines for laying out visual interfaces:

• Unless the interface is for your use only, design it with a typical user
in mind. Avoid showing off.



Chapter 12 Building a Visual Interface 261

• Don't innovate. Interface design is difficult at best and innovation
should be left to professionals, most of whom know it's generally not
a good idea. Users tend to like interfaces that look familiar and allow
them to use their experience with other interfaces.

• Be neat. An interface that is sloppilydone suggests an applicationwith
a similar problem. Align vidgets where appropriate and lay them out
in a logical and attractive way.

• Avoid clutter. It's all too easy to use too many vidgets, resulting in
what is called the "747-Cockpit Syndrome". See the tip on Choosing
Vidgets at the end of Chapter 11.

• Use color sparingly and appropriately. See the tip on Interface Colors
that follows.

• Ask others what they think of your interface and listen to what they
say.

• Be willing to modify your interface to improve it - or even to scrap
it and start over.

Interface Colors

When designing an interface, it is tempting to use color for decoration­
to enliven the interface. While this may produce "interesting" results, it can all
to easily lead to gaudy, confusing, and illegible results. What you think is
attractive may not appear that way to others.

Guidelines for color usage on interfaces have been established through
years of experimentation and testing. Here are some of them:

• Backgrounds should be neutral and unsaturated. Light gray is a good
choice.

• Text generally should be black; in any event, dark text on a light
background always is more legible than the opposite.

• Bright colors should be used with restraint, in small areas, and only to
attract attention.

• Certain colors have generally accepted connotations:
red: danger, stop

yellow: caution, warning
green: okay, go

• Blue is perceived as the least intense of colors, yellow the most.

• Light blue is the least visible color; it is suitable only for uses such as
grid lines.



262 Building a Visual Interface Chapter 12

• Adjacent areas of different bright colors may cause optical illusions
and should be avoided.

Interface Window Attributes

It is possible to add to or override the window attributes provided by
VIB.

As mentioned earlier, uLattsO returns a list of the attributes for the
interface window. Attributes can be appended to this list before using it to
provide arguments for WOpenO. For example, adding posx and posy attributes
can be used to determine the location on the screen at which an interface is
opened.

Appending attributes that are already on the list overrides them. For
example, if you want an ivory background, this can be used:

put(atts, "bg=pale yellow-white")
WOpen! atts

Placing Graphics and Text on an Interface

An application can draw or write text anywhere on its interface window.
Doing this on portions occupied by vidgets generally is unwise, since it may not
only obscure the vidget, but also because VIB redraws some kinds of vidgets
after the user manipulates them, in tum overwriting what the application may
have placed on them.

Places on a window that are not occupied by vidgets can be used,
however, for decoration or to provide information. One way to assure that such
material is in the appropriate place is to create regions with invisibleborders but
no functionality. The locations and extents of these regions then are accessible to
the program and can be used when placing graphics and text.

Consider, for example, the interface shown in Figure 12.32:



Chapter 12 Building a Visual Interface 263

•---------------------it !

sillPlex
duplex

triplex

,.---., ,, ,
'. 1

Invisible Regions

VIB shows invisible re­
gions with dashed out­
lines so they can be lo­
cated when building an
interface. Such regions
are, however, invisible in
the application interface
window.

Figure 12.32

The application can access these regions by ID. Suppose the ID for the
square regions is logo and the ID for the lower region is status. Then, the
application might do this during initialization:

logo := vidgets[OI logo"]
status := vidgets[OIs tatus Ol]
Readlmage( l logo.gif", logo.ax, logo.ay)
DrawString(status.ax, status.ay + status.ah, status_text)

The height of the status region is added, since the y coordinate is at the top of the
region and the text is drawn on a baseline.

The result might appear as shown in Figure 12.33.

organize
file Action

sillPlex a
duplex B
triplex

~tsprocessed:42

A Decorated Interface

It may take some adjustment to get text written on an
interface where it looks best.

Figure 12.33

Reversible drawing is useful if the text on the interface changes during
execution, as in

WAttrib(OIdrawop=reverse Ol )
DrawString(status.ax, status.ay + status.ah, status_old)
DrawString(status.ax, status.ay + status.ah, status_new)
WAttrib("drawop=copyOl)
status_old := status_new

# erase old
# write new

# for next time



264 Building a Visual Interface Chapter 12

It's important to reset the normal drawing mode; otherwise other actions on the
interface may produce inappropriate results.

Sharing Callback Procedures

There's no requirement thateach vidgetbe servicedbya distinct callback
procedure. Sometimes itis handy to use a shared callback procedure for multiple
vidgets. Grouping related functions together can make the code clearer.

Ofcourse, there must be a way to distinguish among the actions that can
invoke a callback procedure. One possibility is to check the vidget ID field, as in
this example for handling button calls:

procedure button_cb(vidget, value)
case vidgetid of {

"blur": { }
"sharpen": { }
}

Another approach is to check the vidget value. This doesn't work for
buttons, but it does work for menus, provided that all the menu labels are
unique:

procedure menu_cb(vidget, value)
case value[1] of {

"New": { }
"Open": { }
"Save": { }
"Cut": { }
"Copy": { }
"Paste": { }
}

The individual case processing can be followed by code to perform
common actions, such as redrawing the display or marking a file as having been
updated. This need for common code may be the most important factor in
grouping vidgets to share callback procedures.

Aligning Text-Entry Vidgets

The length of a text-entry vidget's label determines the position of its
text-entry field. When related text-entry vidgets are aligned vertically, their
fields won't line up if their labels differ in length. Consider, for example, the
three fields shown in Figure 12.34.



Chapter 12 Building a Visual Interface 265

width:

depth:

Unaligned Text-Entry Fields

Although it may seem like a trivial matter, a well laid-out
interface is important in making a good impression.

Figure 12.34

This problemis easy to solve. Since VIB uses a monospaced (fixed-width)
font, adding a blank to the shorter labels brings them into alignment, as shown
in Figure 12.35.

width:

height:

depth:

Aligned Text-Entry Fields

In this illustration, blanks were added after the colons of the
first and third labels. To align the labels at the right, put blanks
before, not after, the shorter labels.

Figure 12.35





Chapter 13

Completing an Application

In this chapter we describe what's necessary to complete an application with a
visual interface and how to put all the parts together. It continues with the
kaleidoscope application as a concrete example. A complete listing of the
program is given at the end of the chapter. Other applications with visual
interfaces are described in Chapters 15 and 16.

Usually, the construction of an application with a visual interface pro­
ceeds iteratively, withworkbeing done alternatively on the interface and the rest
of the program, as illustrated in Figure 13.1.

interface VIB text editor program code

The Program Construction Cycle Figure 13.1

We have separated the interface construction in the last chapter and the
coding of the rest of the program in this chapter for pedagogical
reasons. Like all other program construction, the real process is more
complicated and less organized than the ideal one - and the finished
product tells little of what went into achieving it.

267



268

Program Organization

Completing an Application Chapter 13

The general organization of a program with a visual interface is de­
scribed in the previous chapter. That organization fits the kaleidoscope applica­
tion nicely.

Program Header

The program header for an application with a visual interface usually is
not much different from the program header for any program. There are link
declarations, global declarations, and sometimes preprocessor definitions.

The kaleidoscope program requires three procedure libraries:

link interact
link random
link vsetup

The library interact contains a procedure snapshotO that is used for saving
images. The library random contains a procedure randomizeO that assures
somewhat different results every time the kaleidoscope program is run, provid­
ing a bit of variety. The library vsetup is needed for all VIB applications and
includes the graphics procedures.

Applications that support user control through a visual interface usually
need more global variables than other kinds of applications because several
procedures may need to access the same state information. The global variables
for the kaleidoscope application are divided into three sections:

# Interface globals

global vidgets # table of vidgets
global root # root vidget
global pause # pause vidget
global size # size of display area (width & height)
global half # half size of display area
global pane # graphics context for viewing
global colors # color list

# Parameters that can be set from the interface

global delay
global density
global draw_proc
global max_radius
global min_radius
global scale_radius

# delay between drawing circles
# number of circles in steady state
# drawing procedure
# maximum radius of circle
# minimum radius of circle
# radius scale factor



Chapter 13 Completing an Application

# State information

global draw_list
global reset

269

# list of pending drawing parameters
# nonnull when display needs resetting

The first section contains global variables whose values are set from the
code provided by VIB. The second section contains global variables whose
values the user can change using vidgets on the interface. The final section
contains global variables that relate to the state of the running program.

Then there is a record declaration for circles:

# Record for circle information

record circle(off1, off2, radius, color)

Finally, there are defined constants for default values:

$define DensityMax 100
$define SliderMax 10.0
$define SliderMin 1.0

The Main Procedure

The main procedure is simplicity itself:

procedure main(args) # initialize the interface

initO # initialize the application

kaleidoscopeO # run the kaleidoscope

end

All initialization is done by initO. The initialization could have been placed in the
main procedure, but a substantial amount of code is needed, and putting it in a
separate procedure makes the program structure clearer.

The procedure kaleidoscopeO draws the display and contains the event
loop that handles user actions. The structure of the event loop is:

repeat {
# set up new display
repeat {

# process pending events
# break out of inner loop if new display needs to be set up
# draw and erase circles
}

}



270 Completing an Application Chapter 13

This event loop is described in more detail in the section on drawing the
kaleidoscope.

Initialization

Initializing the application involves creating the interface, setting up the
display area, establishing initial values, and setting the states of the vidgets
correspondingly:

procedure initO

randomizeO

vidgets := uiO

root := vidgets[" root"]
size := vidgets[" region"].uw
if vidgets[" region"].uh -= size then {

Notice("improper interface layout.")
exitO
}

delay:= 0
density := DensityMax / 2.0
max_radius := SliderMax # scaled later
min_radius := SliderMin
scale_radius := (size / 4) / SliderMax

draw_proc := FillCircle

colors := []
every put(colors, PaletteColor(lc1", !PaletteChars(lc1")))

pause := vidgets["pause"]

VSetState(vidgets[ldensity"], (density / DensityMax) * SliderMax)
VSetState(vidgets["delay"], delay)
VSetState(vidgets[lmin_radius"], min_radius)
VSetState(vidgets["max_radius"], max_radius)
VSetState(vidgets[lshape"], "discs")

# Get graphics context for drawing.

half := size / 2

pane := Clone("bg=black", "dx=" II (vidgets["region"].ux + half),
"dy=" II (vidgets["region"].uy + half), "drawop=reverse")

Clip(pane, -half, -half, size, size)



Chapter 13 Completing an Application 271

return

end

The procedure uiO opens the application window and draws and initializes the
vidgets. It returns a table containing the vidgets, which is assigned to a global
variable.

The root vidget, which also is assigned to a global variable, is needed for
the event loop. Next, the size of the display region is determined byaccessing the
appropriate fields of the region vidget. Notice that the "usable" portions of the
region are used; they determine the part of the region that can be drawn on
without overwriting its border. A check is made that the width and height are
the same, since a square area is required by the geometry of the display.

A clone then is made for the display area. The origin is set to the center
of the area using the dx and dy attributes because the drawing is symmetric
around the center and placing the origin there simplifies the drawing code. The
display area is clipped to prevent drawing outside the region. Drawing is done
with "drawop=reverse", so that circles can be erased by drawing them a second
time.

The initial values for the display are set next. The delay is set to zero, so
that the display runs at the maximum speed until the user changes it. The chosen
values for the density of the display (the number of simultaneous circles
allowed) and the maximum and minimum radii are somewhat arbitrary. They
were chosen by experiment to provide an attractive display.

The global variable draw_proc, whose value is the procedure used for
drawing, is set to FiIICircle, so that the display starts with discs.

The pause vidget is assigned to a global variable so that its state can be
checked.

The palette c1, which has 90 colors, was chosen for colors by experiment.

Next, the states of the sliders and radio buttons are set to correspond to
the global variables just set; what the user sees initially corresponds to the actual
state of the application.

The procedure kaleidoscopeO makes random choices for colors and
radii. The use of randomizeO assures that the display is somewhat different on
every run.

Callback Procedures

Most of the callback procedures are quite simple and serve mainly to set
global variables that control the display. For example, the callback for the vidget



272 Completing an Application Chapter 13

that controls the speed of the display is:

procedure delay_cb(vidget, value)

delay := value * 200

return

end

The global variable delay is used in kaleidoscopeO to pause temporarily be­
tween drawing actions. We'll show that later.

Controlling the density of the display is nearly as simple as setting the
delay, but when the density is changed, kaleidoscopeO must be informed that
the display needs to be erased and drawing restarted. This is done by setting the
global variable reset to a nonnull value:

procedure density_cb(vidget, value)

density := (value / SliderMax) * DensityMax
density <:= 1

reset := 1

end

We'll show how reset is used when we get to kaleidoscopeO.

Conceptually, the callback procedures for setting the radii are as simple
as the one for setting the density. It's necessary to ensure, however, that the
maximum radius is not set to less than the minimum radius, and conversely.
This is accomplished by forcing the other value to conform to the newly set one:

procedure max_radius_cb(vidget. value)

max_radius := value

if max_radius < min_radius then { # if max < min lower min
min_radius := max_radius
VSetState(vidgets[ls ld_min_radius"], min_radius)
}

reset := 1

return

end

Note that VSetStateO is used to set the minimum radius if necessary. This
produces a callback for the minimum radius slider, which sets the state and the
position of the slider thumb. In this situation the user sees the slider for the



Chapter 13 Completing an Application 273

minimum radius track the one for the maximum radius. The callback procedure
for the minimum radius is similar to the one above.

Changing the shape that is used for drawing is done by assigning the
appropriate procedure value to the global variable draw-proc depending on the
radio button the user chooses:

procedure shape_cb(vidget, value)

draw_proc := case value of {
"discs": FiIICircie
"rings": DrawCircle
}

reset := 1

return

end

The callback procedure for the file menu illustrates that the callback
value for a menu is a list, even if there are no submenus:

procedure file_cb(vidget, value)

case value[1] of {
·snapshot @S": snapshot(pane, -half, -half, size, size)
"quit @O" : eXit()
}

return

end

The strings in the case expression must exactly match the items in the menu,
since they are the source of the values in the list.

The procedure snapshot() is contained in interact, which is linked in the
program header. This procedure requests a file name for the saved image, alerts
the user if a file with that name already exists, and provides the user the choice
of overwriting an existing file or of choosing another name.

In the case of this application, a user request to quit is honored without
comment. In an application that creates or modifies data, the user should be
given the option of saving the data or deciding not to quit.

The procedure for handling keyboard shortcuts is invoked when an
event is not handled by any vidget, such as a mouse click on a label or a keypress
with the mouse over a slider. In the kaleidoscope program, there are only two
keyboard shortcuts, as indicated in the items in the file menu:



274 Completing an Application Chapter 13

procedure shortcuts(e)

if &meta then
case map(e) of { # fold case

"q": exitO
"s": snapshot(pane, -half, -half, size, size)
}

return

end

As described earlier, the meta modifier key, indicated in the file menuby
@, is used for keyboard shortcuts to provide some protection against unin­
tended effects caused by casual typing while the application is running.

Uppercase characters are mapped to lowercase ones so that q and a have
the same effect. The actions performed are identical to the ones in the file menu
callback.

Drawing the Kaleidoscope

The kaleidoscope is produced by drawing circles in eight symmetric
positions (the crystallographic symmetry p4m, known in quilting as the sun­
flower symmetry). The symmetry is produced by two "mirrors", as shown by
the heavy lines in Figure 13.2 and their reflections in each other as indicated by
the narrow lines.

The Sunflower Symmetry

An asymmetrical shape is used here to
show the nature of the symmetry. Since
circles are symmetric under rotation,
only the relative positions in the eight
octants are important for drawing.

Figure 13.2



Chapter 13 Completing an Application 275

# clear display
# new drawing list

The center and radius of each circle are selected at random within limits
that produce an attractive appearance. A color is chosen at random and circles
are drawn in each octant until the specified density (number of simultaneous
circles) is reached. At that point, the oldest set of circles is erased and a new set
is drawn. This continues until the user intervenes.

In order to keep track of the circles so that old ones can be erased, a list
is used as a queue. The parameters of a new circle specification are puton the end
of the queue and the parameters for the oldest circle specification are taken off
the beginning.

The procedure kaleidoscopeO is:

procedure kaleidoscopeO

# Each time through this loop, the display is cleared and a
# new drawing is started.

repeat {

EraseArea(pane, -half, -half, size, size)
draw_list := []
reset := &null

# In this loop a new circle is drawn and an old one erased, once the
# specified density has been reached. This maintains a steady state.

repeat {
while (*PendingO > 0) I WGetState(pause) do {

ProcessEvent(root, , shortcuts)
if \reset then break break next
}

putcircleO
WDelay(delay)

# Don't start clearing circles until the specified density has
# reached.

if *draw_list > density then c1rcircleO
}

}

end

The outer repeat loop sets up a new display. The list draw_list provides
the queue for keeping track of circles that have been drawn. It is empty for a new
display, since no circles have been drawn yet. The global variable reset is set to
null to indicate a new display has been set up.



276 Completing an Application Chapter 13

Circles are drawn and erased in the inner repeat loop. Before drawing a
new set of circles, if there are any pending events or if the state of the pause
vidget is nonnull (indicating the display is paused), ProcessEventO is called. It
processes an event ifone is pending or waits for an event if the display is paused.

Some events, such as changing the radii of the circles, require the display
to be reset. As shown in the previous section on callbacks, this is indicated by
assigning a nonnull value to reset. If this has happened,

break break next

is used to break out of the while loop, break out of the inner repeat loop, and go
to the beginning of the outer repeat loop.

If, on the other hand, drawing is to continue, there is a delay as specified
by delay, a new set of circles is drawn using putcirciesO, and there is another
delay.

At this point, a test is made to determine if the specified density has been
reached. If the density has been reached, c1rcircleO is called to erase the oldest set
of circles.

The procedure putcircleO is:

procedure putcircleO
local off1 , off2, radius, color

# get a random center point and radius

off1 := ?size % half
off2 := ?size % half
radius := «max_radius - min_radius) * ?O + min_radius) * scale_radius
radius <:= 1 # don't let them vanish

color := ?colors

put(draw_list, circle(off1, off2, radius, color»

outcircle(off1, off2, radius, color)

return

end

The offsets for the centers of the circles are picked with an element of
randomness, as are the radii and colors. These four values are put on the end of
draw_list, and outcirclesO is called to do the actual drawing:

procedure outcircles(off1, off2, radius, color)

Fg(pane, color)



# table of vidgets
# root vidget
# pause vidget
# size of view area (width & height)
# half size of view area
# graphics context for viewing
# color list

Chapter 13 Completing an Application

# Draw in symmetric positions.

draw-proc(pane, off1, off2, radius)
draw_proc(pane, off1, -off2, radius)
draw_proc(pane, -off1 , off2, radius)
draw_proc(pane, -off1, -off2, radius)
draw_proc(pane, off2, off1, radius)
draw_proc(pane, off2, -off1, radius)
draw_proc(pane, -off2, off1, radius)
draw_proc(pane, -off2, -off1, radius)

return

end

The procedure clrcircleO also draws circles, but it gets the specification
from the oldest one on draw_list and removes it:

procedure c1rcircleO
local circle

circle := get(draw_list)

outcircle(circle.off1, circle.off2, circle. radius, circle.color)

return

end

The Complete Program

In the listing of the program that follows, procedures are given in
alphabetical order, except for the main procedure, which is given first.

link interact
link random
link vsetup

# Interface globals

global vidgets
global root
global pause
global size
global half
global pane
global colors



# list of pending drawing parameters
# nonnull when display needs resetting
# nonnull when display paused

# delay between drawing circles
# number of circles in steady state
# drawing procedure
# maximum offset of circle
# minimum offset of circle
# maximum radius of circle
# minimum radius of circle
# radius scale factor

278 Completing an Application Chapter 13

# Parameters that can be set from the interface

global delay
global density
global draw-proc
global max_off
global min_off
global max_radius
global min_radius
global scale_radius

# State information

global draw_list
global reset
global state

# Record for circle data

record circle(off1, off2, radius, color)

$define DensityMax 100
$define SliderMax 10.0 # shared knowledge
$define SliderMin 1.0

procedure main()

init()

kaleidoscope()

end

procedure init()

randomize()

vidgets := ui()

root := vidgets[" root"]
size := vidgets[" region"].uw
if vidgets["region"].uh -= size then stop("*** improper interface layout")

delay:= 0
density := DensityMax / 2.0
max_radius := SliderMax # scaled later
min_radius := SliderMin
scale_radius := (size /4) / SliderMax

draw_proc := FiIICircie



Chapter 13 Completing an Application

colors := []
every put(colors, PaletteColor(lc1", !PaletteChars(lc1")))

pause := vidgets["pause"]

VSetState(vidgets[ldensity"], (density / DensityMax) * SliderMax)
VSetState(vidgets[ldelay"], delay)
VSetState(vidgets[lmin_radius"], min_radius)
VSetState(vidgets["max_radius"], max_radius)
VSetState(vidgets[lshape"], "discs")

# Get graphics context for drawing.

half := size / 2

pane := Clone("bg=black", "dx=" II (vidgets["region"].ux + half),
"dy=" II (vidgets["region"].uy + half), "drawop=reverse")

Clip(pane, -half, -half, size, size)

return

end

279

procedure kaleidoscopeO

# Each time through this loop, the display is cleared and a
# new drawing is started.

repeat {

EraseArea(pane, -half, -half, size, size) # clear display
draw_list := [] # new drawing list
reset := &null

# In this loop a new circle is drawn and an old one erased, once the
# specified density has been reached. This maintains a steady state.

repeat {
while (*PendingO > 0) I WGetState(pause) do {

ProcessEvent(root, , shortcuts)
if \reset then break break next
}

putcircleO
WDelay(delay)

# Don't start clearing circles until the specified density has been
# reached.

if *draw_list > density then c1rcircleO



280 Completing an Application Chapter 13

}
}

end

procedure putcircleO
local off1, off2, radius, color

# get a random center point and radius

off1 := ?size % half
off2 := ?size % half
radius := ((max_radius - min_radius) * ?O + min_radius) * scale_radius
radius <:= 1 # don't let them vanish

color := ?colors

put(draw_list, circle(off1, off2, radius, color))

outcircle(off1, off2, radius, color)

return

end

procedure c1rcircleO
local circle

circle := get(draw_list)

outcircle(circle.off1, circle.off2, circle.radius, circle.color)

return

end

procedure outcircle(off1, off2, radius, color)

Fg(pane, color)

# Draw in symmetric positions.

draw_proc(pane, off1 , off2, radius)
draw-proc(pane, off1, -off2, radius)
draw_proc(pane, -off1, off2, radius)
draw_proc(pane, -off1, -off2, radius)
draw-proc(pane, off2, off1, radius)
draw_proc(pane, off2, -off1, radius)
draw_proc(pane, -off2, off1, radius)
draw_proc(pane, -off2, -off1, radius)



Chapter 13 Completing an Application

return

end

procedure density_cb(vidget, value)

density := (value / SliderMax) * DensityMax
density <:= 1

reset := 1

end

procedure delay_cb(vidget, value)

delay := value * 200

return

end

procedure file_cb(vidget, value)

case value[1] of {
"snapshot @S": snapshot(pane, -half, -half, size, size)
"quit @a" : exitO
}

return

end

procedure max_radius_cb(vidget, value)

max_radius := value

if max_radius < min_radius then { # if max < min lower min
min_radius := max_radius
VSetState(vidgets["min_radius"], min_radius)
}

reset := 1

return

end

procedure min_radius_cb(vidget, value)

min_radius := value

281

if min_radius> max_radius then { # if min> max raise max



282 Completing an Application Chapter 13

max_radius := min_radius
VSetState(vidgets["max_radius"] , max_radius)
}

reset := 1

return

end

procedure reset_cb(vidget, value)

reset := 1

return

end

procedure shape_cb(vidget, value)

draw_proc := case value of {
"discs": FiIICircle
"rings": DrawCircie
}

reset := 1

return

end

procedure shortcuts(e)

if &meta then
case map(e) of { # fold case

"q": exitO
"s": snapshot(pane, -half, -half, size, size)
}

return

end

#===«vib:begin»=== modify using vib; do not remove this marker line
procedure ui_attsO

return ["size=600,455", "bg=pale gray", "Iabel=kaleido"]
end

procedure ui(win, cbk)



Chapter 13 Completing an Application 283

return vsetup(win, cbk,
[" :Sizer:: :0,0,600,455:kaleido",],
["delay:Slider:h:1:42,120,100,15:1.0,0.0,0.0·,delay_cb],
["density:Slider:h:1:42,180,100,15:0.0,10.0,10.0·,density_cb],
["file:Menu:pull::12,3,36,21 :File",file_cb,["snapshot @S·,"quit @Q"]],
["labeI01 :Label:::13,180,21,13:min",],
["labeI02:Label:::152,180,21,13:max·,],
[llabeI03:Label:::13,240,21,13:min",],
[llabeI04:Label:::152,240,21,13:max",],
[llabeI05:Label:::13,300,21,13:min",],
["labeI06:Label:::152,300,21,13:max",],
["labeI07:Label:::7,120,28,13:slow",],
["labeI08:Label:::151,120,28,13:fast",],
[llbLdensity:Label:::67,160,49,13:density",],
["lbLmax_radius:Label:::43,280,98,13:maximum radius" ,],
["lbLmin_radius:Label:::44,220,98,13:minimum radius" ,],
["lbLspeed:Label:::74,1 00,35,13:speed",],
[lline:Line:::O,30,600,30:",],
["max_radius:Slider:h: 1:42,300,100,15:0.0,10.0,10.0",max_radius_cb],
["min_radius:Slider:h:1:42,240,100,15:0.0,10.0,1.0",min_radius_cb],
["pause:Button:regular:1 :33,55,45,20:pause",],
[lresetButton:regular::111,55,45,20:reset",reseCcb],
["shape:Choice::2:66,359,64,42: I ,shape_cb,["discs","rings"]],
[lregion:Rectraised::188,42,400,400:",],
)

end
#===«vib:end»=== end of section maintained by vib

Tips, Techniques, and Examples

Using a Separate Window for the Display

We deliberately designed the kaleidoscope application to use a single
window that contains both the interface controls and the kaleidoscopic display.
Although it's often easier to use several windows for an application, a single
window, when it will do, unifies the application and presents a more attractive
appearance to the user.

In the case of the kaleidoscope application, an obvious alternative to the
design we chose is to use two windows, one for the user interface and the other
for the display itself.



284 Completing an Application Chapter 13

It's actually quite simple to convert the one-window design to a two­
window one. Instead of cloning the display region from the subject (interface)
window and clipping the clone, all that needs to be done is to open another
window, replacing

pane := Clone("bg=black", "dx=" II (vidgets["region"].ux + half),
"dy=" II (vidgets["region"].uy + half»

Clip(pane, -half, -half, size, size)

by

pane := WOpen(lbg=black", "size=" II size II"," II size, "dx=" II half,
"dy=" II half) I {

Notice("Can't open display window. ")
exit()
}

The size of the display now can be specified in the application instead of being
obtained from the region vidget, replacing

size := vidgets["region"].uw

by

size := 400

The interface needs changing too: removing the region vidget and reducing the
width of the interface canvas. But that's all; just a few trivial changes.

Using two windows allows additional functionality, such as the ability
to change the size of the display while the application is running. Although the
size of the display in the one-window version can be reduced from its original
size at the expense of some complexity in the code, it cannot be made signifi­
cantly larger. In the two-window version, it's easy to change the size of the
display window and to provide the user with a facility for doing this.

We'll leave this as an exercise. You'll find it's not hard to do, but you'll
also see aspects of the one-window version that might have been done in a more
general manner, had this possibility been considered.

Providing Other Drawing Shapes

It's tempting to try to provide other shapes for drawing. There are two
problems: symmetry and drawing.

Since a circle has complete rotational symmetry, it's not necessary to
rotate it when reflecting around a diagonal mirror; see Figure 13.2. Shapes
without suitable rotational symmetry need to be rotated to produce a kaleido-



Chapter 13 Completing an Application 285

scopic display. There are, of course, shapes other than circles that have symme­
tries that do not need rotation - certain polygons and stars, for example.

Although it's easy to specifyvarious drawing procedures a user can pick,
filled and outline circles can be drawn without changing how their arguments
are computed. Other shapes make this aspect of the application more complex.
An approach in which shapes are drawn with respect to a bounding box may
prove more flexible.

Other Applications

The color plates show two other programs that utilize graphics inter­
faces. The bin packing program of Plate 13.1 shows how several packing
algorithms operate. The tiling program of Plate 13.2 allows the user to select a
rectangle from an image and have it tiled in a larger area to see how itwould look
as a repeating pattern.





Chapter 14

Dialogs

Icon provides two kinds of dialogs: standard ones, which handle common
situations, and custom dialogs built by VIB, which can be tailored for specific
uses.

Standard Dialogs

In addition to the notification dialogs, open dialogs, and save dialogs
described in Chapter 10, Icon has several other standard dialogs for situations
that occur frequently.

Text Dialogs

NoticeO, OpenDialogO, and SaveDialogO are just interfaces to a more
general procedure, TextDialogO, which allows customized dialogs for textentry.
TextDialogO, in its most general usage, is rather complicated because text-entry
dialogs canbe complicated. Defaults are provided, however, to makeTextDialogO
easy to use if all its generality is not needed.

The general form is:

TextDialog(captions, labels, defaults, widths, buttons, index)

The argument captions is a list of caption lines that serve the same
purpose as the multiple arguments in NoticeO. The arguments labels, defaults,
and widths are lists that give the details of a sequence of text-entry fields. The
argument buttons is a list of buttons, and index is the index in buttons of the
default button.

TextDialogO returns the name of the button that was selected to dismiss
the dialog. The global variable dialog_value is assigned a list containing the
values of the text fields at the time the dialog was dismissed.

287



288 Dialogs Chapter 14

Unlike the dialogs that were described previously, TextDialogO pro­
vides for labels that appear before text-entry fields to identify them. Each field
can have a default value and a width to accommodate a specified number of
characters, based on the width of the current font.

Here's an example of the most general kind of usage:

TextDialog(
["To open a window, fill in the values", "and click on the Okay button."],
["xpos", "ypos", "width", "height"],
[10, 10, 500, 300],
[4,4,4,4],
["Okay", "No"],
1
)

The dialog produced by this call is shown in Figure 14.1.

TD DP8II • wi ndow, fill 1n the YlI1 ues
end c11ck on the 0kII'/ button.

IlPDS

ypos 10

width SOD

..1ght 3DD

A General Text Dialog

Since lists are used in the arguments of
TextDialogO, there is no limit to the number of
text-entry fields except the height of the screen.

Figure 14.1

If there is only one caption line, it can be given as a string instead of a list.
If there is only one text-entry field, the specifications for it also can be given as
single values instead of lists. In the case where there are several fields and all
have the same value, a single value can be given for that argument in place of a
list. If there are no labels or defaults for fields, these arguments can be omitted
altogether. The default field width, if its argument is omitted, is 10.

If the button argument is omitted, Okay and Cancel buttons are pro­
vided. Ifno button index is given, the first button is the default button. An index
of 0 indicates that there is no default button.

An example of the use of defaults is:

TextDialog("Open window:", ["x", "y", "w", "h"l)

which produces the dialog shown in Figure 14.2.



Chapter 14 Dialogs

, __ • - - - - - -0

I .

It

y

•
h ..

289

A Simpler Text Dialog

It is good practice to offer a button to cancel the operation in
case the user has second thoughts.

Figure 14.2

In a dialog that has more than one text-entry field, the text cursor
indicates the field in which text can be entered and edited. The text cursor
initially is in the first field. Typing a tab moves the text cursor to the next field.
From the last, it moves to the first. A specific field also can be selected by clicking
on it. Pressing return or clicking on a button dismisses the dialog.

Selection Dialogs

The procedure SelectDialogO allows the user to pick one of several
choices. Its general form is

SelectDialog(captions, choices, dflt, buttons, index)

The arguments captions, buttons, and index serve the same purpose that they do
in TextDialogO. The argument choices is a list of choices from which the user can
select. The argument dflt is the default choice, which is highlighted in the dialog.
The defaults for omitted arguments follow the same rules as the defaults for
TextDialogO. The user's choice is returned as a string in dialog_value.

The following procedure call illustrates the use of SelectDialogO.

SelectDialog(
"Pick a suit",
["spades", "hearts", "diamonds", "clubs"],
"hearts" ,
["Okay", "Cancel"]
)

The dialog produced by this call is shown in Figure 14.3.



290

Plde. suit:

Oby cancel

Toggle Dialogs

Dialogs Chapter 14

A Selection Dialog

The default choice is highlighted, as shown. The user can pick
another choice by clicking on another choice button.

Figure 14.3

c:.trals:

The procedure ToggleDialogO allows the user to set several toggles (onl
off states) at the same time in one dialog. Its general form is

ToggleDialog(captions, toggles, states, buttons, index)

The arguments captions, buttons, and index serve the same purpose as
they do in TextDialogO and SelectDialogO. The argument toggles is a list of
toggle names and the argument states is a list of their respective states: 1 for on,
null for off. The defaults for omitted arguments follow the same rules as for
TextDialogO and SelectDialogO. A list of the states of the toggles that the user
chooses is returned in dialog_value.

The following procedure call illustrates the use of ToggleDialogO.

ToggleDialog(
"Controls:" ,
["generate report", "stop on bad data", "trace"],
[1, 1, ]
)

The dialog produced by this call is shown in Figure 14.4.

A Toggle Dialog

The toggles that are on are highlighted. The user can change
the state of any toggle by clicking on its button.

"'I'lIO report

stlIp lIIl bed dlo

tl'llCe

Figure 14.4



Chapter 14 Dialogs

Color Dialogs

291

The procedure ColorDialogO allows the user to pick a color interactively
using either the RGB or HSV color model. Its general form is

ColorDialog(captions, color, callback, value)

The argument captions serves the same purpose as it does in preceding
dialog procedures. The optional argument color is a reference color that is
displayed at thebottomof a rectangular area where color is displayed. The initial
color for the rest of the rectangle is color, if provided, otherwise the current
foreground color. The optional argument callback is a procedure that is called
whenever the user adjusts the color setting. It is called as

callback(value, setting)

where setting is the current color setting and value is the final argument,
otherwise unused, from the ColorValueO call. Thus, the user can track changes
in the color setting, and value can be used to pass along an arbitrary value to the
caller of ColorValueO. The final setting is returned as a string in dialog_value.

The following procedure call illustrates the use of ColorDialogO.

ColorDialog("Pick a color, any color", "black")

The dialog produced by this call is shown in Figure 14.5.

Pick • color. eny color

A Color Dialog

The reference color, in this case black, is at
the bottom of the rectangle, as mentioned
earlier.

Figure 14.5



292

Custom Dialogs

Dialogs Chapter 14

If no standard dialog fits a particular need, a customized dialog can be
built using VIB. The method for building a dialog using VIB is very similar to the
one for building an application interface. The few differences are noted in the
following example.

A Custom Dialog for Setting Line Attributes

Lines have both width and style attributes. The width can be entered in
a text-entry field, but the style should be chosen using radio buttons that indicate
the possible choices. There are standard dialogs for both cases, but that would
require the use of two dialogs, which is an annoyance for the user. A custom
dialog can be created in VIE to handle both kinds of vidgets.

In order to create a dialog using VIE, VIE must be informed that a dialog,
not an application interface, is being created. This is done by checking dialog
window and entering the name of a procedure to invoke the dialog in the VIB
canvas dialog, as shown in Figure 14.6:

attrlbs.lcn

prucedure .-: lettrtbutes
window 1.1: ~-------------

wi dth: liiiii
hei gilt: f37S Iii"die109 wi ndow ,

The VIB Canvas Settings for a Custom Dialog Figure 14.6

The window label is irrelevant for a dialog; the label for the dialog is
inherited from the window of the application that invokes the dialog.

Next the vidgets for the custom dialog are created and placed as they are
in building an application. Figure 14.7 shows a dialog for setting attributes.



Chapter 14 Dialogs

A Dialog for Setting Attributes Figure 14.7

In a custom dialog all kinds of vidgets except menus, text lists, and
regions can be used.

293

A dialog must have at least one regular button; otherwise there would be
no way to dismiss it. VIB enforces this. A default button can be designated by
selecting dialog default in the button dialog, as shown in Figure 14.8.



294 Dialogs Chapter 14

Only non-toggle buttons can be used to dismiss a
dialog. Togglebuttons canbeused to indicate onloff
states.

The Default Button

1....1: rlilD~---":==~1
ID: okay

callback: r-

IC: 124

y: (iM
widtt1: fGO

height: f3iI

Figure 14.8

The code produced by VIB for a custom dialog is similar to that produced
for an application. It is shown later at the end of a complete listing of a procedure
for using the attribute dialog.

Using a Custom Dialog

A custom dialog is invoked by calling the procedure named in VIB's
canvas dialog. The argument of the procedure is a table whose keys are the IDs
of the vidgets in the dialog and whose corresponding values are the states of
these vidgets.

When a dialog is dismissed, it returns the text of the button used to
dismiss it (as for standard dialogs). Before returning, it also changes the values
in the table to correspond to the states of the vidgets when the dialog was
dismissed. Here's the code for the line attribute dialog:

link dsetup # dialog setup

procedure attribs(win)
static atts

# table of vidget IDsinitial atts := tableO

twin := &window

# Assign values from current attributes.

atts[llinewidth"] := WAttrib(win, Ilinewidth")
atts[llinestyle"] := WAttrib(win, Ilinestyle")

# Call up the dialog.



Chapter 14 Dialogs

repeat {

attributes(win, atts) == "Okay" I fail

# Set attributes from table.

WAttrib(win, Ilinewidth=" II atts["linewidth"]) I {
Notice("lnvalid linewidth.")
next
}

WAttrib(win, Ilinestyle=" II atts[llinestyle"])

return

}

295

end

#===«vib:begin»=== modify using vib; do not remove this marker line
procedure attributes(win, deftbl)
static dstate
initial dstate := dsetup(win,

["attributes:Sizer::1:0,0,256,160:",l,
["cancel:Button:regular::164,1 02,60,30:Cancel",l,
["linestyle:Choice::3:155,20,78,63:""

["solid","striped", "dashed"]],
["linewidth:Text::3:1 0,20,115,19:1ine width: \\=" ,l,
["okay:Button:regular:-1 :31,1 02,60,30:0kay",l,
)

return dpopup(win, deftbl, dstate)
end
#===«vib:end»=== end of section maintained by vib

If the value for the line width is invalid, an attempt to set it fails. If this
happens, the user is notified and the dialog is presented again. The radio button
choices, on the other hand, are guaranteed to be legal by virtue of the button
names used.

An example of the use of the attribute dialog is shown in Figure 14.9.

11ne width: 0

The Custom Dialog

This dialog could be made more capableby allowing
the user to set the foreground color, pattern, and fill
attributes.

Figure 14.9



296

Standard Dialogs Versus Custom Dialogs

Dialogs Chapter 14

Standard dialogs generally are easier to use in a program than custom
dialogs, and they have the virtue of providing a standard appearance. Standard
dialogs also offer a facility that is easily overlooked. A standard dialog is
constructed using the arguments given when the corresponding dialog proce­
dure is invoked. These arguments can be lists that change depending on current
data. For example, in an application that allows the user to create and delete
items, standard dialogs can display the current list of items, which may change
the number of items presented in the dialog.

Constructing custom dialogs requires time and effort. Custom dialogs,
however, can be laid out for a particular situation, and slider, scroll bar, label,
and line vidgets can be used in their construction. Unlike standard dialogs,
however, the structure of a custom dialog is fixed when it is created. The states
of the vidgets can be changed, but the vidgets themselves cannot.

Since VIB can handle only one VIB section in a file, custom dialogs must
be kept in separate files if they are to be maintained using VIB. In this case, the
applications that use them must link their ucode files. The need for multiple files
causes organizational, packaging, and maintenance problems. A general guide­
line is to use custom dialogs only when standard dialogs won't do or when a
custom dialog can provide a substantially better interface.

Library Resources

The attribs module provides:

atlribs() interactively alter graphics attributes

The interact module contains several general-purpose dialog proce­
dures, including these:

load_fiIe(s)
save_as(s1, s2)
snapshot(x, y, W, h, n)

file loading dialog
file saving dialog
window dump dialog

Tips, Techniques, and Examples

Creating Notice Dialogs with Many Lines of Text

A notice dialog canbe used not only to alert the user to a problembutalso
to provide information. In this usage, a notice dialog may have many lines of
text.



Chapter 14 Dialogs 297

we',. tl"llPlMld I

The lines can be written explicitly in the call to NoticeO, but it may be
more convenient to put the lines of text in a list and then use list invocation, as
in

help := [
"If you want to move an object in the display·,
"window, first select it with the pointer tooL",
"Then you can drag on one of the handles on",
"the edges, nudge it one pixel at a time using",
"the arrow keys, or get a dialog for precise",
"positioning from the Adjust menu."
]

Notice! help

This technique is particularly useful when the contents of a notice dialog
are not fixed and known when the program is written. The list can be created
during program execution and used as needed.

Creating Notice Dialogs with Nonstandard Buttons

A notice dialog is just a text dialog with no text-entry fields. You
therefore can use TextDialogO to create notice dialogs with nonstandard but­
tons. For example,

TextDialog(["We're trapped!"], , , , ["No way", "Get help", "We quit"])

produces the dialog shown in Figure 14.10.

Nonstandard Notice Buttons

One of the problems with dialog procedures is that
they have many arguments. It/s difficult enough to
keep track of them if all are used; when many
aren/t, it's a matter of counting commas.

Figure 14.10

Text-Entry Fields in Custom Dialogs

If a custom dialog has more than one text-entry field, the order in which
text-entry fields in a custom dialog are selected by pressing the tab key is the
lexical orderof the IDs for the text-entryfields. Since mnemonic IDs are not likely
to be in lexical order, the desired order can be imposed by prefixes, such as 1_fg,
2_bg, 3_width, 4_pattern, and so on.



298

Hidden Dialogs

Dialogs Chapter 14

If you're using an interface that produces dialogs and everything seems
frozen, the problem may be a dialog window that is waiting to be dismissed but
is hidden behind the interface window (or another window). This may happen
when there is a dialog window and you inadvertently click on the interface
window behind it, bringing it forward to obscure the dialog window. A solution
is to move windows around until you find the dialog window and then bring it
to the front.

The trouble is that if you don't realize the source of the problem, you may
kill the application unnecessarily. This is one of those things that are learned by
painful experience.



Chapter 15

A Pattern Editor

This chapter describes a fairly substantial application. As in the preceding
chapter, we'll start by describing the functionality of the application and its
visual appearance. Then we'll discuss various aspects of the implementation:
the design of the visual interface, how data is represented, the overall structure
of the program, event handling, some special problems, and a few details of the
coding. A complete listing of the program is given at the end of the chapter.

The Application

Basic Functionality

This application is designed to enable a user to create and modify bi­
level patterns interactively. It is intended primarily for patterns that are to fill
areas, but it can be used also for small bi-Ievel patterns to be drawn by
DrawlmageO·

Features of the application are:

• easypatternediting with the ability to set individual bits of the pattern
to the foreground or background color

• pattern transformations, such as shifting and rotating

• constant visual feedback on the appearance of the patterns when used
as a fill pattern

• saving and loading bi-Ievel pattern specification strings

299



300

The User Interface

A Pattern Editor Chapter 15

The functionality described above can be cast in many ways. Figure 15.1
shows our choices and the visual layout we've designed.

The Pattern Editor Figure 15.1

The layout of an application such as this is largely a matter of taste. The
menu bar is at the top, a conventionallocation. An editinggrid, the main
area of activity, is in the center. A rectangle filled with the current
pattern is at the right, the natural direction of eye movement. Transfor­
mation buttons are at the left.

Clicking the left mousebutton on a cell on the grid sets the corresponding
bit of the pattern to the foreground. The cell is filled in black to indicate that the
bit is set. Dragging the mouse with the left button pressed sets the bits corre­
sponding to the cells that are passed over. The right mouse button clears bits to
the background in a similar fashion.

When the mouse is clicked on a button at the left, the pattern is trans­
formed in the manner indicated by the icon for the button. The top four buttons
shift the pattern circularly by one bit in the direction indicated. The next four
buttons flip the pattern as indicated. Next are three buttons for rotating the
pattern: 90° counterclockwise, 90° clockwise, and 180°. The bottom-left button
clears the pattern, setting all bits to the background. The bottom-right button
inverts the foreground and background.

The File menu is shown in Figure 15.2.



Chapter 15 A Pattern Editor 301

Menu Operations Figure 15.2

It's customary to put miscellaneous items in a menu labeled File, even
if they have nothing to do with files. That seems better than having
several menus, and it's so commonly done that users don't think much
about it. So far, no one has found a better name.

The load item in the File menu allows the user to load a new pattern from
a file. A dialog box is presented, in which the user can specify the file name.

The save and save as items allow the user to save the current pattern in
a file as a string specification. The save item uses the current file name, while
save as allows the user to specify a different file name. The new item allows the
user to start a new pattern. A dialog box is provided for the user to specify the
dimensions of the new pattern. When a new pattern is specified, the editing grid
is sized automatically to accommodate the pattern and is centered in the editing
region. The quit item serves its usual purpose.

Keyboard shortcuts are provided as indicated in the menu items. The
conventions for keyboard shortcuts are the same as those described in Chapter
11.

Program Design

The Interface

Given a rough sketch ofwhat the interface should look like, the construc­
tion of the interface in VIS is relatively straightforward. The results are shown
in Figure 15.3.



302

r-----I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I_____1

D:
callb1dc:

wtdth: 160
height: 240

A Pattern Editor Chapter 15

+inY1s1ble
5UIlken

vlraoved

raised

The Interface as Seen in VIB Figure 15.3

The application is shown with the specification sheet for the region that
displays the pattern.

There are five objects in the interface: a menu, three regions, and a line
of decoration. Note that one region handles all transformation events. It is
treated as a grid of button-sized cells, not all of which are used. Positioning
individual buttons is left to the program. Icons for the buttons (designed in the
pattern editor) are drawn by the program.

Data Representation

An important issue in the implementation of most applications is how to
represent the data that is to be manipulated. In the pattern editor, the main
concern in this regard is the representation of bi-Ievel pattern specifications.
Although the string representation of patterns used by DrawStringO and Pat­
ternO is convenient for storing specifications in files and representing patterns
literally in programs, this representation is not appropriate for operations on
patterns, such as setting or clearing bits or for transformations like rotation. The
obvious representation for these purposes is a matrix in which each bit of the
pattern is 0 for background and 1 for foreground. In Icon, a matrix can be
represented as a lists of lists.



Chapter 15 A Pattern Editor 303

The pattern shown in Figure 15.1 has the string representation
"8.#8142241818244281". The matrix representation of this pattern would be

imx:= [
[1. 0. 0. 0. 0. 0. 0. 1].
[0,1.0.0.0.0.1.0].
[0, 0, 1. 0. 0. 1. 0. 0].
[0.0.0,1.1.0.0.0],
[0,0,0,1.1,0,0,0],
[0. 0. 1, 0. 0. 1. 0. 0].
[0. 1, 0, 0. 0. 0. 1, 0],
[1,0,0,0,0.0,0.1]
]

In such a matrix, imx[i. j], which is equivalent to imx[ilU], references the jth value
in the ith row, so that, for example,

imx[3, 6] := 0

clears the bit in the third row and sixth column to the background.

Although this list-of-lists representation is a natural one, there's an
alternative representation that can be subscripted in the same way, but that is
easier to use for many operations - a list of strings.

In the list-of-strings representation, each row of the pattern is repre­
sented by a string of Os and Is. Thus, the matrix above can be represented by

imx:= [
"1 0000001".
·01000010"•
"00100100",
"00011000" ,
"00011000",
"00100100",
"01000010",
"10000001"
]

In this representation,

imx[3. 6] := "0"

also clears the bit in the third row and sixth column to the background.

To see how operations on these two representations compare, consider
a procedure that creates a blank i-by-j pattern. In the list-of-lists representation,
this procedure is



304 A Pattern Editor Chapter 15

procedure imxcreate(i, j)
local imx

imx := list(i)
every !imx := listU, 0)

return imx

end

Each row must be a distinct listbecause of Icon's pointer semantics, as described
in Chapter 2.

The list-of-strings version is simpler:

procedure imxcreate(i, j)

return list(i, repl("O", j»

end

Separate strings are not needed for each row, since any operation that changes
a string creates a new one.

Another advantage of the string representation is that Icon's extensive
string-manipulation repertoire can be applied on a row-by-row basis. For
example, to invert the foreground and background using the list-of-lists repre­
sentation, every bit must be set separately, as in

procedure imxinvert(imx)
local i, j

every i := 1 to *imx do
every j := 1 to *imx[i] do

imx[i, j] := 1 - imx[i, j]

return imx

end

For the list-of-strings representation, the procedure is, again, simpler:

procedure imxinvert(imx)
local i

every i := 1 to *imx do
imx[i] := map(imx[i], -10-, -01-)

return imx

end



Chapter 15 A Pattern Editor

Program Organization

305

# pattern utilities
# VIB library

The program organization is the same as for the application in the
preceding chapter:

1. Program heading, including link declarations, defined constants, and
global declarations

2. The main procedure

3. Callback, initialization, and support procedures

4. Interface specifications provided by VIE

Except for the main procedure and the procedure in the VIE specification,
procedures are ordered alphabetically.

Program Heading

Link declarations are needed for procedures that manipulate patterns, as
well as for the vidgets:

link imxform
link vsetup

Defined constants are used to parameterize the program:

$define ButtonSize 16 # size of buttons
$define MaxBits 32 # maximum pattern dimension
$define MaxCell 24 # maximum size of grid cell

ButtonSize specifies the size of the icons for the transformation buttons. MaxBits
determines how large a pattern can be. This value is somewhat arbitrary. It also
is somewhat constrained by the size of the editing grid region, but many
platforms do not support patterns even this large. MaxCelllimits grid cells to a
reasonable maximum size in the case of small patterns.

Global variables are needed for values that must be accessible to more
than one procedure. Because of the organization around callback procedures, a
programlike this one needs many global variables, including one for the pattern
matrix, parameters determined by the interface specification, and so on. See the
program listing at the end of this chapter for a complete list of global identifiers.
All local identifiers are declared, so if you see an undeclared identifier in a
procedure, you can assume that it is global.



306

Main Procedure with Initialization

A Pattern Editor Chapter 15

The pattern editor is entirely event driven; that is, it only performs
actions in response to user events. For event-driven programs, the procedure
GetEventsO is used to handle events:

procedure mainO

vidgets := uiO

initO

GetEvents(vidgets["root"), , shortcuts)

end

Here are relevant sections of the initialization. See the complete listing at
the end of the chapter for all the details.

procedure initO

# Get layout values from the vidgets

xform_xpos := vidgets["xform").ax
xform_ypos := vidgets["xform").ay
grid_xpos := vidgets["grid").ax
grid_ypos := vidgets["grid"].ay
grid_width := vidgets["grid").aw
grid_height := vidgets["grid"].ah

imx := imxcreate(8, 8)

loadname := "untitled.ims"

# initial 8-by-8 blank pattern

# default file name

touched := &null # pattern not yet modified

# Draw the transformation buttons. place(row, col, pattern) draws the
# pattern at the specified row and column of the transformation region.

place(O, 1, "16,#3ffe6003408141c143e140814081408140814081II II
"40814081408160033ffeOOOO") # shift up

place(1, 0, "16,#3ffe6003400140014001401140195ffd4019401 II II
"140014001400160033ffeOOOO") # shift left

place(1, 2, "16,#3ffe600340014001400144014c015ffd4c014401" II
"40014001400160033ffeOOOO") # shift right

# Set up graphics context for pattern area and draw border.

pattgc := Clone("fillstyle=textured")



Chapter 15 A Pattern Editor

DrawRectangle(patCxpos - 1, patt_ypos -1, patCwidth + 1,
patCheight + 1)

# Set up the grid and pattern areas.

setupO

return

307

end

The current pattern, initially an 8-by-8 blank one, is kept in the global
variable imx. The global variable loadname contains the current file name for the
pattern. The initial name, until the user specifies anew one, is "untitled.ims". The
global variable touched keeps track of whether the current pattern has been
changed and hence may need to be saved if the user loads anew pattern or quits
the application. A nonnull value indicates the pattern has been changed but not
saved.

The procedure setupO - which is called whenever a new pattern is
created - sizes, positions, and draws the editing grid:

procedure setupO
local row, col, x, y

vbits := *imx
hbits := *imx[1]

cellsize := MaxCell # compute cell size
cellsize >:= grid_height / vbits
cellsize >:= grid_width / hbits

grid_xoff := grid_xpos + (grid_width - hbits * cellsize) /2
grid_yoff := grid_ypos + (grid_height - vbits * cellsize) /2

EraseArea(grid_xpos, grid_ypos, grid_width, grid_height)

every x := 0 to hbits * cellsize by cellsize do
DrawLine(grid_xoff + x, grid_yoff, grid_xoff + x,

grid_yoff + vbits * cellsize)
every y := 0 to vbits * cellsize by cellsize do

DrawLine(grid_xoff, grid_yoff + y, grid_xoff + hbits * cellsize,
grid_yoff + y)

every row := 1 to vbits do
every col := 1 to hbits do

if imx[row, col] == "1" then
FiIIRectangle(grid_xoff + (col-1) * cellsize + 1,

grid_yoff + (row - 1) * cellsize + 1, cellsize - 1, cellsize - 1)



308

draw-patternO I {
Notice("Can't draw pattern.")
fail
}

return

end

A Pattern Editor Chapter 15

The procedure draw_pattern(), which also is called whenever the pattern
is changed, fills in the viewing region:

procedure draw-pattern()

Pattern(pattgc, imxtoims(imx)) I fail
FiIIRectangle(pattgc, patCxpos, patt_ypos, patt_width, patt_height)

return

end

Note that draw_pattern() fails if the pattern cannot be set. This happens if the
specification is too large for the platform on which the pattern editor is run. In
this case, setupO posts a notice and passes the failure back to its caller.

Event Processing

There are four callback procedures: one to handle mouse events in the
edit region, one to handle mouse events in the transformation region, one for the
file menu, and one for user responses to dialogs. In addition, shortcuts() handles
keyboard shortcuts.

The callback procedure for the edit region processes only presses and
drags for the left and right mouse buttons; all other events in this region are
ignored. For relevant events, the procedure first determines if the location is on
the grid; if it isn't, the event also is ignored:

procedure grid_cb(vidget, e)
local x, y, row, col

if e === (&Ipress I &rpress I &Idrag I &rdrag) then {
row := (&y + cellsize - grid_yoff) / cellsize
col := (&x + cellsize - grid_xoff) / cellsize
if «row I col) < 1) I (row> vbits) I (col> hbits) then fail
if e === (&Ipress I &Idrag) then setbit(row, col, "1")
else setbit(row, col, .0")
return
}



Chapter 15 A Pattern Editor

fail

end

309

# skip processing if no-op

# modify the pattern

If the event is on a cell of the grid, setbitO is called with a string value
corresponding to setting or clearing the corresponding bit:

procedure setbit(row, col, c)
local x, y

if imx[row, col] == c then
return

imx[row, col] := c
touched := 1

y := grid_yoff + (row - 1) * cellsize + 1
x := grid_xoff + (col - 1) * cellsize + 1

if c == "1" then FiIIRectangle(x, y, cellsize - 1, cellsize - 1)
else EraseArea(x, y, cellsize - 1, cellsize - 1)

draw_patternO

return

end

Before proceeding, a check is made to see if the event would change the
pattern. If not, the procedure returns without taking any further action. Avoid­
ing unnecessary computation is mainly significant for client-server graphics
systems connected by a slow communication link. Otherwise, the pattern matrix
is changed and touched is set to a nonnull value to indicate that the pattern may
need to be saved before starting a new one or quitting the application. Once this
is done, the edit grid is updated, filling or clearing the relevant cell as appropri­
ate. Finally, the view area is redrawn to show the effect of the modified pattern.

The callback procedure for the transformation region also checks that
the event is relevant, computes the row and column of the correspondingbutton,
and calls xformO to perform the appropriate transformation:

procedure xform_cb(vidget, e)
local col, row

if e === (&Ipress I &rpress I &mpress) then {
col := (&x - xform_xpos) / ButtonSize
row := (&y - xform_ypos) / ButtonSize
if not xform(row, col) then fail
touched := 1



310

setupO
}

return

end

A Pattern Editor Chapter 15

# shift up
# shift left
# shift right
# shift down
# flip diagonally, NE/SW
# flip vertically
# flip diagonally, NW/SE
# flip horizontally
# rotate counterclockwise
# rotate clockwise
# rotate 180 degrees
# clear
# invert

IfxformO succeeds, the pattern matrix is marked as changed, and setupO
is called to redraw the editing grid and view area. It is necessary to call setupO,
since some transformation on patterns that are not square change their width
and height.

The transformation procedure combines the row and column values in
a single string, so that the desired transformation can be selected in a single case
expression:

procedure xform(row, col)

imx := case (row II"," II col) of {
"0,1": imxshift(imx, -1, "v")
"1,0": imxshift(imx, -1, "h")
"1,2": imxshift(imx, 1, "h")
"2,1": imxshift(imx, 1, "v")
"4,0": imxflip(imx, "r")
"4,1": imxflip(imx, "v")
"5,0": imxflip(imx, "I")
"5,1": imxflip(imx, "h")
"7,0": imxrotate(imx, "ccw")
"7,1": imxrotate(imx, "cw")
"7,2": imxrotate(imx, 180)
"9,0": imxcreate(vbits, hbits)
"9,1": imxinvert(imx)
default: fail

}

return

end

If the location does not correspond to a button, the procedure fails, as
noted above. Otherwise the appropriate procedure is called to produce a
transformed pattern matrix, which is reassigned to imx. The transformation
procedures are contained in the library file imxform.icn, which is linked at the
beginning of the program.

The callback procedure for the file menu uses a procedure to perform the
specified action, since most actions also are available as keyboard shortcuts.



Chapter 15 A Pattern Editor 311

10adO
newO
saveO
save_asO
quitO@Q":

procedure file_cb(vidget, menu)

case menu[1] of {
"load @L":
"new @N":
"save @S ":
"save as":
"quit
}

return

end

# get a new matrix

All of the items in the file menu communicate with the user via dialogs.
Here's the procedure for loading a new pattern:

# Load pattern from a file.

procedure 10adO
local input, load_imx

check_saveO I fail

repeat {
case OpenDialogO of {

"Okay": {
if input := open(dialog_value) then break else

Notice("Can't open" II dialog_value II".")
}

"Cancel": fail
}

}

load_imx := imstoimx(readims(input» I {
Notice("No pattern specification.")
c1ose(input)
fail
}

c1ose(input)

if (*Ioad_imx I *load_imx[1]) > MaxBits then {
Notice("Pattern too large.")
fail
}

else {
imx := load_imx



312

touched := &null
loadname := dialog_value
setupO
return
}

end

A Pattern Editor Chapter 15

Because the application edits only one pattern at a time, loading a new
pattern means losing the old one. The procedure check_saveO displays a dialog
for saving the old pattern if it has not been saved already. If the user cancels the
dialog, check_saveO fails and consequently loadO also fails, aborting the load
operation and continuing with the old pattern.

If check_saveO succeeds, the user is presented with a dialog in which to
specify the name of a file for the new pattern. A repeat loop is provided in case
the specified file can't be opened. This makes it simple for the user to correct a
spelling error or a mistaken name.

Once a file is opened, the stringspecification in it is converted to a pattern
matrix. If this fails (as in the case of a syntactically erroneous specification), the
user is notified and the attempt to load a new pattern is abandoned. A check also
is made to ensure that the resulting pattern is not too large. If all is well at this
point, imx is updated, marked as untouched, the new file name is recorded, and
the editing grid and view areas are set up. Note that the new pattern initially is
assigned to load_imx, not imx. This prevents a pattern that is too large from
destroying the current pattern.

As mentioned above, a check is made to see if the current pattern needs
to be saved before attempting to load a new one:

procedure check_saveO

if \touched then {
case SaveDialog(, loadname) of {

"Yes": {
loadname := dialog_value
saveO I save_asO I fail
}

"No": return
"Cancel": fail
}

}

return

end



Chapter 15 A Pattern Editor 313

If the current pattern has not been modified since its creation, there is no
need to save it. Otherwise, the user is asked if the pattern is to be saved. The
current file name is provided, so that the user need not re-enter the name if it is
to be used. If the user response is positive ("Yes"), the current file name is
updated (since the user may have specified a new one in the dialog) and it is
saved. If saveO fails, which mighthappen if the file could notbewritten, the user
is given the opportunity to try again, possibly using a different file name. If this
also fails, indicating that the user wants to cancel the operation, check_saveO
fails to notify the procedure that called it. If the response is "No", nothing is done
and check_saveO returns. If the response is "Cancel", check_saveO fails.

The Complete Program

link imxform
link vsetup

$define ButtonSize 16
$define MaxBits 32
$define MaxCell 24

# geometry

global xform_xpos, xform_ypos
global grid_xpos, grid_ypos
global grid_width, grid_height
global grid_xoff, grid_yoff
global cellsize
global patt_ypos, patt_xpos
global patt_width, patt_height
global pattgc

# pattern

global imx
global hbits, vbits
global touched
global loadname

global vidgets

# Main procedure

procedure mainO

vidgets := uiO

# pattern utilities
# VIB library

# size of buttons
# maximum pattern dimension
# maximum size of grid cell

# offset of transformation area
# position of grid area
# size of grid area
# offset of grid
# size of cell in grid
# position of pattern area
# size of pattern area
# graphics context for pattern

# matrix representation of pattern
# bits in pattern
# pattern-modification switch
# name of loaded pattern file

# table of vidgets

# set up interface



314 A Pattern Editor Chapter 15

initO # initialize everything

# Now process events. The procedure shortcutsO looks at keyboard
# events regardless of where they occur in the window.

GetEvents(vidgets["root"), , shortcuts)

end

# Check to see if user wants to save pattern before creating a new one.

procedure check_saveO

if \touched then {
case SaveDialog(, loadname) of {

"Yes": {
loadname := dialog_value
saveO I save_asO I fail
}

"No": return
"Cancel": fail
}

}

return

end

# Draw pattern area.

procedure draw_patternO

Pattern(pattgc, imxtoims(imx)) I fail
FiIlRectangle(pattgc, patCxpos, patCypos, patCwidth, patt_height)

return

end

# Process event for the file menu. Procedures are used, since the
# same functionality for most items is needed for keyboard shortcuts
# also.

procedure file_cb(vidget, menu)

case menu[1) of {
"load @L": 10adO
"new @N": newO
"save @S ": saveO



Chapter 15 A Pattern Editor 315

"save as":
"quit
}

return

end

save_asO
@Q": quitO

# Process events on the editing grid.

procedure grid_cb(vidget, e)
local x, y, row, col

# Event must be of right type and in bounds.

if e === (&Ipress I &rpress I &Idrag I &rdrag) then {
row := (&y + cellsize - grid_yoff) / cellsize
col := (&x + cellsize - grid_xoff) / cellsize
if ((row I col) < 1) I (row> vbits) I (col> hbits) then fail
if e === (&Ipress I &Idrag) then setbit(row, col, "1 ")
else setbit(row, col, "0")
return
}

fail

end

# Initialize global variables and set things up.

procedure initO

# Get layout values from the vidgets

xform_xpos := vidgets["xform"].ax
xform_ypos := vidgets["xform"].ay
grid_xpos := vidgets["grid"].ax
grid_ypos := vidgets["grid"].ay
grid_width := vidgets["grid"].aw
grid_height := vidgets["grid"].ah
patCxpos := vidgets["pattern"].ax
patt_ypos := vidgets["pattern"].ay
patt_width := vidgets["pattern"].aw
patt_height := vidgets["pattern"].ah

imx := imxcreate(8, 8) # initial 8-by-a blank pattern

loadname := "untitled.ims" # default file name

touched := &null # pattern not yet modified



316 A Pattern Editor Chapter 15

# Draw the transformation buttons. place(row, col, pattern) draws the
# pattern at the specified row and column of the transformation region.

place(O, 1, "16,#3ffe6003408141c143e140814081408140814081II II
140814081408160033ffeOOOO") # shift up

place(1, 0, 116,#3ffe6003400140014001401140195ffd4019401" II
1140014001400160033ffeOOOO") # shift left

place(1, 2, 116,#3ffe600340014001400144014c015ffd4c014401" II
140014001400160033ffeOOOO") # shift right

place(2, 1, "16,#3ffe60034081408140814081408140814081408" II
1143e141c1408160033ffeOOOO") # shift down

place(4, 0, 116,#3ffe600340014f014e014e014901408140494039" II
140394079400160033ffeOOOO") # flip right

place(4, 1, "16,#3ffe6003408141 c143e140814081408140814081II II
"43e141 c1408160033ffeOOOO") # flip vertical

place(5, 0, 116,#3ffe600340014079403940394049408149014e01" II
14e014f01400160033ffeOOOO") # flip left

place(5, 1, 116,#3ffe600340014001400144114c195ffd4c19441" II
1140014001400160033ffeOOOO") # flip horizontal

place(7, 0, "16,#3ffe600340014781404140214021402140f94071II II
140214001400160033ffeOOOO") # rotate ccw

place(7, 1, 116,#3ffe6003400140f141014201420142014f814701" II
142014001400160033ffeOOOO") # rotate cw

place(7, 2, "16,#3ffe6003400141c1420144014401440144414261II II
141114061404160033ffeOOOO") # rotate 180

place(9, 0, 116,#3ffe600340014001400140014001400140014001" II
140014001400160033ffeOOOO") # clear

place(9, 1, 116,#3ffe60ff40ff40ff40ff40ff40ff7OOf817f8" II
117f817f817f817f833ffeOOOO") # invert

# Set up graphics context for pattern area and draw border.

pattgc := Clone("fillstyle=textured")
DrawRectangle(patCxpos - 1, patt_ypos - 1, patt_width + 1,

patt_height + 1)

# Set up the grid and pattern areas.

setupO

return

end

# Load pattern from a file.



# get a new matrix

Chapter 15 A Pattern Editor

procedure 10adO
local input, load_imx

check_saveO I fail

repeat {
case OpenDialogO of {

"Okay": {
if input := open(dialog_value) then break else

Notice("Can't open" II dialog_value II •.")
}

"Cancel": fail
}

}

load_imx := imstoimx(readims(input)) I {
Notice("No pattern specification.")
c1ose(input)
fail
}

c1ose(input)

if (*Ioad_imx I *load_imx[1]) > MaxBits then {
Notice("Pattern too large.")
fail
}

else {
imx := load_imx
touched := &null
loadname := dialog_value
setupO
return
}

end

317

# Create a new blank pattern.

procedure newO
local new_vbits, new_hbits

check_saveO I fail

repeat {
case TextDialog("New: ", ["height", "width"], [*imx, *imx[1]], 3) of {



318 A Pattern Editor Chapter 15

"Okay": {
new_vbits := integer(dialog_value[1]) &
new_hbits := integer(dialog_value[2]) I {

Notice("Non-integer specification.")
next
}

if «new_vbits I new_hbits) > MaxBits) I
«new_vbits I new_hbits) <= 0) then {
Notice("lnvalid pattern size.")
next
}

else {
imx := imxcreate(new_vbits, new_hbits)
touched := &null
setupO
return
}

}
"Cancel": fail
}

}

end

# Place button.

procedure place(row, col, pattern)

Drawlmage(xform_xpos + col * ButtonSize,
xform_ypos + row * ButtonSize, pattern)

return

end

# Terminate session.

procedure quitO

check_saveO I fail
exitO

end

# Save pattern.

procedure saveO



Chapter 15 A Pattern Editor

local output

output := open(loadname, "w") I {
Notice("Can't write " II loadname II ".")
fail
}

write(output, imxtoims(imx»
c1ose(output)

touched := &null

return

end

# Save pattern in a file with another name.

procedure save_as()
local output

repeat {
case SaveDialog(, toadname) of {

"No": return
"Cancel": fail
"Yes": {

if output := open(dialog_value, "w") then break else
Notice("Can't write" " dialog_value II ".")

}
}

}

write(output, imxtoims(imx»
close(output)
loadname := dialog_value
touched := &null

return

end

319

# Set or clear bit in pattern.

procedure setbit(row, col, c)
local x, y

if imx[row, col] == c then
return

imx[row, col] := c

# skip processing if no-op

# modify the pattern



320 A Pattern Editor Chapter 15

touched:= 1

Y := grid_yoff + (row - 1) * cellsize + 1
x := grid_xoff + (col- 1) * cellsize + 1

if c == "1" then FiIlRectangle(x, y, cellsize - 1, cellsize - 1)
else EraseArea(x, y, cellsize - 1, cellsize - 1)

draw_pattern0
return

end

# Set up editing grid and pattern area based on imx.

procedure setupO
local row, col, x, y

vbits := *imx
hbits := *imx[1]

cellsize := MaxCell # compute cell size
cellsize >:= grid_height / vbits
cellsize >:= grid_width / hbits

grid_xoff := grid_xpos + (grid_width - hbits * cellsize) / 2
grid_yoff := grid_ypos + (grid_height - vbits * cellsize) /2

# Draw the editing grid.

EraseArea(grid_xpos, grid_ypos, grid_width, grid_height)

every x := 0 to hbits * cellsize by cellsize do
DrawLine(grid_xoff + x, grid_yoff, grid_xoff + x,

grid_yoff + vbits * cellsize)
every y := 0 to vbits * cellsize by cellsize do

DrawLine(grid_xoff, grid_yoff + y, grid_xoff + hbits * cellsize,
grid_yoff + y)

every row := 1 to vbits do
every col := 1 to hbits do

if imx[row, col] == "1" then
FiIIRectangle(grid_xoff + (col - 1) * cellsize + 1,

grid_yoff + (row - 1) * cellsize + 1, cellsize - 1, cellsize - 1)

draw_patternO I {
Notice("Can't draw pattern.")
fail
}



Chapter 15 A Pattern Editor

return

end

321

# Check for keyboard shortcuts.

procedure shortcuts(e)

if &meta then
case map(e) of {

"I": 10adO
"n": newO
"q": quitO
"s": saveO
}

return

end

# Perform transformation.

procedure xform(row, col)

imx := case (row II"," II col) of {
"0,1": imxshift(imx, -1, "v")
"1,0": imxshift(imx, -1, "h")
"1,2": imxshift(imx, 1, "h")
"2,1": imxshift(imx, 1, "v")
"4,0": imxflip(imx, "r")
"4,1": imxflip(imx, "v")
"5,0": imxflip(imx, "I")
"5,1": imxflip(imx, "h")
"7,0": imxrotate(imx, "ccw")
"7,1": imxrotate(imx, "cw")
"7,2": imxrotate(imx, 180)
"9,0": imxcreate(vbits, hbits)
"9,1": imxinvert(imx)
default: fail
}

return

end

# fold case

# shift up
# shift left
# shift right
# shift down
# flip diagonally, NE/SW
# flip vertically
# flip diagonally, NW/SE
# flip horizontally
# rotate counterclockwise
# rotate clockwise
# rotate 180 degrees
# clear
# invert

# Handle events on transformation buttons.

procedure xform_cb(vidget, e)



322 A Pattern Editor Chapter 15

local col, row

if e === (&Ipress I &rpress I &mpress) then {
col := (&x - xform_xpos) / ButtonSize
row := (&y - xform_ypos) / ButtonSize
if not xform(row, col) then fail
touched := 1
setupO
}

return

end

#===«vib:begin»=== modify using vib; do not remove this marker line
procedure uLattsO

return ["size=630,330", "bg=pale gray", "label=Pattern Editor")
end

procedure ui(win, cbk)
return vsetup(win, cbk,

[":Sizer:::O,0,630,330:Pattern Editor",),
["file:Menu:pull::0,0,36,21 :File",file_cb,

["load @L","new @N","save @S","save as","quit @Q"ll,
[lline:Line:::O,20,630,20:",),
["xform:Rectinvisible::30,99,48,160:",xform_cb),
["pattern:Rectinvisible::442,57,160,240:",],
["grid:Rectinvisible::112,31,299,287:",grid_cb],
)

end
#===«vib:end»=== end of section maintained by vib

Tips, Techniques, and Examples

Undoing Changes

An application like this pattern editor really needs a facility whereby the
user can recover from mistakes, "undoing" (rescinding) unfortunate changes to
the pattern. ("Undo" is an ugly word, but it's commonly used and there doesn't
seem to be a better choice.)

The design ofan undo facility is difficult and its implementation is tricky.
We'll discuss some of the issues involved, but we won't supply an implementa­
tion - we'll leave that to you as an "exercise".



Chapter 15 A Pattern Editor 323

To begin with, it's not obvious what changes to the pattern should be
undoable and what changes should not. Presumably, a user would not find it
particularly useful to be able to undo the change of a single bit in the pattern. On
the other hand, undoing the results of dragging the mouse with the cursor on the
editing grid might be handy - it's all too easy to pass over the wrong cells. And,
most likely, a user would want to be able to undo the results of a transformation
that didn't turn out as planned. In addition, undo itself should be reversible.

Some applications offer several levels of undo, allowing the user to
backtrack through many previous operations. But a user may have trouble
remembering the sequence of past operations and get lost. If a significant
operation is irreversible, it may be helpful to alert the user to this fact before the
operation is performed to allow the user to decide whether or not to perform the
operation. If nothing else, a warning places the responsibility for the conse­
quences on the user. Perhaps the most important aspect of the design of an undo
facility is that itbe coherent and easy to understand; if the user isn't sure of what
can and can't be undone, the facility may not be used as well as it might be and,
worse, important changes to a pattern may be lost.

In order to undo a change, it's necessary either to save the pattern before
the operation or to record enough information to reverse changes. In some kinds
of applications, recording user actions may be the best approach, but in this one
it's easier just to save the entire pattern. Some operations, like clearing a pattern,
require this in any event. If only a single level of undo is supported, only one
more global variable is needed to save a copy of the pattern. For multilevel
undos, a stack can be used.

There are efficiency concerns also. If only a single level of undo is
provided, saving the informatioh to undo changes doesn't take a lot of memory.
But an unlimited, multilevel undo facility may present problems with memory
utilization.

Making a copy of a pattern is a relatively expensive process. It's not
sufficient to assign the current pattern to another variable, as in

imx_save := imx

Because of Icon's pointer semantics, the result of this assignment is that both
imx_save and imx point to the same list. A subsequent change to imx changes
imx_save also! Instead, what's needed is

imx_save := copy(imx)

Although copYO does not copy the elements of imx (which represent the
rows of the pattern), this is not a problem, since the rows are strings and any
change to a string creates a new one rather than modifying the currentone. Thus,
changing a row in imx does not change the corresponding row in imx_save. It's



324 A Pattern Editor Chapter 15

worth noting that in the list-of-lists representation discussed earlier in the
chapter, copying a pattern matrix requires copying all the row lists too, making
the operation considerably more expensive.

The tricky partof an undo facility is beingsure to save the currentpattern
before any change that should be undoable is made - and only then. This
requires careful analysis of the program. It's clear, for example, that before a
transformation is applied to a pattern, the current pattern should be saved so
that the transformation can be undone. But what if the transformation does not
actually change the pattern?

In the case of a single-level undo facility, saving the current pattern
destroys the previously saved one, and hence a transformation that does nothing
prevents the user from going back to the previous pattern. This also is a case
where functionality must be balanced against programming effort, program
size, and program correctness - it's not trivial to determine if an operation has
changed a pattern. If a particular operation usually changes a pattern, it's
probably unwise to check for exceptions. It's unlikely to be a significant problem
in practice, and if you do manage to detect such a case, the user may be surprised
and react inappropriately.

A facility for undoing changes needs to be accessible to the user through
the interface. This typically is implemented by an item in the file menu and a
corresponding keyboard shortcut. The necessary procedure is simple:

procedure undoO

imx_save :=: imx
setupO

return

end

Notice that the values of imx_save and imx are exchanged. This allows the undo
tobe undone, as itwere. A multilevel undo facility would need a separate "redo"
operation.

More Features

An application like a patterneditorvirtuallybegs for additional features.
It's so easy to add features that the result may be "creeping featurism": the
accumulation of so many features that the application becomes difficult to learn
and use.

Good design dictates that the value of a new feature be weighed against
its cost - programming effort, program size, program correctness, documenta­
tion, and learning effort must be balanced against utility.



Chapter 15 A Pattern Editor 325

There's generally less cost in expanding an existing category of features
than there is to adding a completelynew kind offeature. For example, additional
transformations canbe added to the pattern editor without significantly increas­
ing program complexity or making major changes to the interface.

Possible additional transformations include increasing the size of the
background area, trimming off the background area surrounding the rest of the
pattern, and cropping to change the pattern size in an arbitrary way. You'll find
procedures in imxform.icn to do such things. All you need to do is create
appropriate patterns for the new transformation buttons, decide where they go
(which may involve enlarging or even rearranging the application window),
and adding appropriate code to xformO corresponding to the locations of the
new buttons.

Another feature that's useful, easy to implement, and commonly found
in similar applications, is the ability to revert to the last saved version of the
pattern. This facility normally would appear as a new item in the file menu and
a corresponding keyboard shortcut. The code needed to load the last saved
pattern is simpler than that found in 10adO, but some of the code there may be
useful.

A feature that is particularly useful in a pattern editor is symmetric
editing. In a symmetry mode, an editing action not only affects the cell of the
editing grid where the mouse action occurs, but also has a corresponding effect
on cells in symmetric positions. There are eight symmetries for a square corre­
sponding to the three rotations, four flips, and the "identity" symmetry, in
which an action affects only the cell on which the cursor is positioned. Symme­
tries can, of course, be applied in combination.

In order to implement symmetric editing, there must be a way to specify
it in the interface. Eight symmetry buttons, each of which can be on or off,
provide an intuitive representation. For seven of the symmetries, the same
button patterns as for the transformations can be used. The identity symmetry
might be represented by a single dot in the center of the button. Some way of
indicating which symmetries are in effect is needed. Highlighting, by reversing
the foreground and background of the button, is visually intuitive. Highlight
patterns for the buttons can, of course, be produced easily in the pattern editor
itself.

In order to add symmetry buttons to the application window, it's
necessary to redesign the interface. The window needs to be larger, and some
rearrangement of existing components may be desirable. Since the same pat­
terns are used for transformation buttons and symmetry buttons, it may be
useful to label the two areas so that the user can distinguish them easily.



326 A Pattern Editor Chapter 15

A callback procedure is needed to record which symmetries are in effect.
Finally, the procedure setbitO needs to be modified to handle symmetries, so that
it performs its operation on all cells symmetric to the one on which the mouse
action occurred. If you are not familiar with symmetry, you may have to think
about the code a bit - but in that case, you'll learn something.

Adding new transformations and symmetric editing involves compara­
tively straightforward changes to the interface and the code in the program
itself. There are other features that are useful but require different design and
coding techniques. One useful set of features involves the selection of a portion
of the pattern on the editing grid, the ability to move the selection, and facilities
for cutting, copying, and pasting. Most of the bits and pieces needed for these
features can be found in this book. We'll leave it to you to put them together.



Chapter 16

Facial Caricatures

In this chapter we'll look at another large interactive application. Asbefore, we'll
describe it first from the user's standpoint and then from the programmer's.
Many techniques and facilities from the pattern editor will reappear here, but
we'll emphasize the novel aspects. A complete listing appears at the end of the
chapter.

The Application

Basic Functionality

This program interacts with the user to produce a caricature from a
photograph or other image of a face. With the mouse, the user indicates the
contours of facial features such as the eyes, nose, and ears. The program then
compares these contours with those of an "average" face, exaggerates the
differences, and presents the result as a caricature. Figure 16.1 shows an example
of such a caricature. The techniques used here are due to the artist and scientist
Susan Brennan (Brennan 1985). The program was inspired by A. K. Dewdney's
article in Scientific American, reprinted in Dewdney (1988).

327



328 Facial Caricatures Chapter 16

Babbage and his Caricature Figure 16.1

Charles Babbage was an early inventor of calculating machinery. The
photograph was taken about 1850.

We'll assume that a suitable image is available in a format that Icon can
read. Digitized images ofphotographs can be producedby a scanner or obtained
from sources such as bulletin boards and networks.

The User Interface

The program presented here is the end result of an iterative process. We
started with a sketch on paper and then created an interface using VIR As usual,
our early experiences with the program suggested new ideas and highlighted
problems, leading to several changes in the design and implementation.

The main functions of this application are:

• displaying an image and collecting points

• saving and reloading coordinate values

• generating and displaying caricatures

Figure 16.2 shows the caricature generator in the process of collecting
features. On the right is the image being entered; this same area also is used to
display the caricature. Above this is a prompt string indicating that the program



Chapter 16 Facial Caricatures 329

is ready to record the coordinates of the right eyebrow. The program uses the
terms "left" and "right" from the user's standpoint; the "right" eye is actually the
subject's left eye.

The Caricature Generator Figure 16.2

The next mouse click on the image willbe recorded as the location of the
comer of an eyebrow.

To the left of the image is a sample face on which a target indicates the
point that is needed next. Although the caricature seen earlier was drawn with
smooth curves, the sample face is drawn with straight line segments to empha­
size the point locations.

At the lower left is a slider controlling the amount of distortion to be
applied in constructing a caricature. With the slider in the center, the drawing
reflects the contours as entered. Moving the slider to the right adds increasingly
larger amounts of exaggeration. Moving it to the left subtracts the exaggeration;
At -100%, this cancels all of the differences from the sample face to produce a
copy of the sample face. Moving further left produces an "anti-caricature" - a
caricature of the sample face with respect to the subject.

The File menu is similar to that of the pattern generator, and again



330 Facial Caricatures Chapter 16

keyboard shortcuts are provided. Entries are provided for loading an image, for
loading or saving a set of points, and for exiting the application.

The Display menu, shown in Figure 16.3, selects what is shown on the
right side of the window. The user can choose to view the image, the resulting
caricature, or even both (as illustrated). The combined display is produced by
partitioning the display area with a fine checkerboard pattern, using half of the
cells for the image and half for the caricature. The checkerboard cells are two
pixels wide by one pixel high; this works better for dithered images than the
more obvious single-pixel cell pattern.

A Dual-Mode Display Figure 16.3

In this mode, curves are drawn through the selected points while the
original image is still visible through a screen.

Program Design

The Interface

Figure 16.4 shows the layout created using VIB. Two solid lines divide
the main window sections. The File and Display menus are placed along the top.



Chapter 16 Facial Caricatures 331

Broken outlines delimit the sample face region and the main display region. A
horizontal region in the menu bar is used to position a prompt string. The
distortion slider at the bottom is accompanied by three unchanging labels.
Above the slider, another label and region are used to display the slider setting
as a percentage.

File D1splllY

-,
-----------------------------~l=======::=:::==::=:=:::::==---------===~=~~~

""
'"""""I:.
""""""
'"

distortion: ~·-"-I,---_..

The Interface as Seen in VIB Figure 16.4

Of the four regions indicated by dashed lines, only the largest accepts
events; the others are used just for placement.

Control Flow

An early prototype implementation used a simple loop to collect all of
the points of the face before displaying anything. While this was easy to
program, itwas difficult to use: All the data had to be collected before the results
could be seen, and once the caricature was displayed, no further changes were
possible.



332 Facial Caricatures Chapter 16

# null-eoordinate
# incomplete curve

In its current form, the program is event-driven, allowing the user to
switch back and forth between input and display at any time or to save the work
in progress for reloading later. This requires that the input, output, and display
procedures be capable of working with incomplete data sets.

To keep the application down to a manageable size, there is no provision
for removing or adjusting points once they have been entered. This would
clearly be desirable, and extensions such as this are discussed later.

Data Representation

One data structure is key to the implementation: the representation of the
contours of a face. The solution must be able to represent and display the
digitized points from the image, the sample face, and the generated caricature.

A face is composed of curves specified by coordinate pairs. Because both
DrawLineO and DrawCurveO accept coordinate lists consisting of alternating x
and y values, we use that same representation for a facial curve.

A face structure, in tum, is a list of curves - a list of lists. The order of
lines within a face is mostly arbitrary; we have tried to choose an order that
makes sense for input. However, the left and right pupil locations are critical for
scaling and aligning faces, so they appear first. Each pupil is specified by a single
coordinate pair, .the shortest possible curve.

It's possible for a face, or even part of a curve, to be incomplete: this
happens, for example, during construction. Null values take the places of
missing coordinates.

Drawing a face is straightforward. To allow drawing with either
DrawCurveO or DrawLineO, the actual drawing procedure is passed as an
argument to the following procedure:

# drawface(win, f, proc) -- draw face from curve list using proc

procedure drawface(win, f, proc)
local curve

every curve := copy(!f) do {
if /curve[-1] then

next
if *curve = 2 then

FiIlCircle(win, curve[1], curve[2], PupilRadius)
else {

push(curve, win)
proc! curve



Chapter 16 Facial Caricatures

}
}

333

return

end

Each curve of the face is copied and prepended with the window argument; this
list becomes the argument list of the drawing procedure. Special checks handle
incomplete curves and the pupils of the eyes.

There are two situations where it is necessary to move and scale the
coordinates in a face structure:

• preparing the standard face for drawing in the guide region

• aligning the standard face with the input face before creating a
caricature

Translation and scaling are handled by this procedure:

# scaleface(f, g) -- return copy of face f scaled to overlay face 9

procedure scaleface(f, g)
local fl, fr, gl, gr, fx, fy, gx, gy, m, r, t, curve

fl := f[1] I fail # left iris
fr := f[2] I fail # right iris
gl := g[1] I fail # target left iris
gr := g[2] I fail # target right iris
fx := (fl[1] + fr[1]) /2.0 # x offset of f
fy := (fl[2] + fr[2]) / 2.0 # Y offset of f
gx := (gl[1] + gr[1]) /2.0 # x offset of 9
gy := (gl[2] + gr[2]) / 2.0 # Y offset of 9
m := (gr[1] - gl[1]) / real(fr[1] - fl[1]) # multiplier

r := []
every curve := copy(!f) do {

if /curve[-1 ] then
put(r, curve) # incomplete placeholder

else {
put(r, t := [])
while put(t, m * (get(curve) - fx) + gx) do

put(t, m * (get(curve) - fy) + gy)
}

}

return r

end



334 Facial Caricatures Chapter 16

The midpoints between the pupils of the two faces are found first; these
determine the necessary translation (sliding movement). The ratio of the dis­
tances between the eyes becomes the multiplier used for scaling.

The two similar expressions in the while loop function in pairs: The first
handles an x-coordinate and the second a y-coordinate. This is done by consum­
ing a copy of a curve. Another approach would be to reference only the
individual curve, iterating with an increment of two.

In effect, the face is moved so that the midpoint is at the origin; then the
coordinate values are scaled; and finally the results are moved to the destination.

The actual exaggeration procedure for creating a caricature is relatively
simple:

# distort(f, b, m) -- return distortion of face f from face b by factor m

procedure distort(f, b, m)
local r, t, i, j, curve, base

r := []
every i := 1 to *f do {

base := b[i]
put(r, curve := copy(f[i]))
if /curve[-1] I /base[-1] then

next # incomplete placeholder
every j := 1 to *curve by 2 do {

curveU] +:= m * (curveU] - baseU])
curveU + 1] +:= m * (curveU + 1] - baseU + 1])
}

}

return r

end

The result r is built by copying the curves of f, one at a time, and adjusting each
coordinate value. The adjustment amount is calculated by scaling the difference
from the base face b by the factor m.

Program Organization

The program consists of header information, the main procedure, other
procedures (in alphabetical order), and the vm interface specification. High­
lights of the program are given here; a full listing appears at the end of the
chapter.



Chapter 16 Facial Caricatures

Program Heading

335

The link declaration specifies the library packages required:

link graphics # graphics library
link vsetup # VIS library

Defined constants are used for some dimensions and flag values:

$define PupilRadius 2 # radius for drawing pupils of eyes

$define TargetRad1 5 # radii for guide display target
$define TargetRad2 20

$define ImageMode 1 # drawing modes
$define DrawMode 2
$define DualMode 3

The event-driven nature of the program makes itnecessary to store most
of the persistent state information inglobal variables, so there are many of these.
The global variable vidgets holds the table of interface objects:

global vidgets # vidget table

The vidget table is followed by global variables that hold the locations
and dimensions of screen regions:

global display_xoff, display_yoff # image area
global display_width, display_height
global image_xoff, image_yoff # centered image

global guide_xoff, guide_yoff # guide area
global guide_width, guide_height

global prompt_xoff, prompt_yoff # prompt area
global prompCwidth, prompCheight

global dmeter_xoff, dmeter_yoff # distortion meter
global dmeter_width, dmeter_height

Although the subject window, &window, is used for most operations,
some global windows are used for special purposes:

global image_win # scanned image
global targeCwin # binding for point targets
global display_win # binding for image or caricature
global overlay_win # binding for dual-mode display

The global variable image_win is a hidden window that holds the image. This
image is copied to the main window when its display is desired.



336 Facial Caricatures Chapter 16

The global variable targecwin, a done of the main window, is used for
drawing targets on the guide face. Clipping is enabled to confine the target
drawing to its region, and a drawop=reverse attribute allows the targets to be
drawn reversibly.

The global variable display_win is used for displaying the image and
caricature; overlay_win is used for displaying the caricature atop the image.
These windows also use dipping to confine the output.

Four global variables hold face information:

global stdface # standard (average) face
global guideface # scaled/translated guide face
global sketch # points from subject face

A list of descriptions (such as "left ear") is stored in descriptions. The order of
this list corresponds to the order of the curves in a face data structure.

The global variable stdface contains the coordinates of the standard,
"average" face. Its coordinates are not directly useful; guideface contains the
same face after scaling and positioning for use as the guide face. Finally, sketch
contains the coordinates of a constructed caricature.

Two global variables, interpreted as indices into a face structure, specify
the interpretation of a mouse dick that places a point:

global tcurve # index of current curve to place
global tpoint # index of point within curve

The last few global variables handle general bookkeeping:

global pointfile # file name for saving coordinates
global touched # has data changed since last save?

global mode # Image/Draw/Dual mode
global distortion # distortion factor (0.0 = undistorted)

Main Procedure with Initialization

The main procedure controls the program initialization: everything that
must be done before entering the event loop. Most of the logic is contained in the
main procedure itself. Two large sections that would overwhelm itby their bulk
are bundled separately.

Execution begins by opening the main window, changing the cursor,
and extracting region information:

procedure mainO



Chapter 16 Facial Caricatures 337

vidgets := uiO
WAttrib("pointer=circle") # may fail, but at least try
iniCgeometryO

The uiO call opens the window and creates a table of vidgets, which is stored in
a global variable. The program then attempts to turn the mouse pointer into a
circle, although this may not work on all graphics systems. The iniCgeometryO
procedure extracts the layout information from the vidget table, setting several
global variables with code such as this:

guide_xoff := vidgets["guide"].ax
gUide_yoff := vidgets["guide"].ay

The main procedure continues by setting up the special-purpose win­
dow bindings described earlier:

display_win := Clone("linewidth=2")
Clip(display_win, display_xoff, display_yoff, display_width,

display_height)
overlay_win := Clone(display_win, "fillstyle=masked",

"pattern=4,#9696")

targeCwin := Clone("drawop=reverse")
Clip(target_win, guide_xoff, guide_yoff, guide_width, guide_height)

The pattern and fill style in overlay_win are used for overlaid drawing. Because
overlay_win is a clone of display_win, not the subject window, it inherits the line
width and clipping attributes of display_win.

Next, the procedure init_stdfaceO is called to set the coordinates of the
standard face. With many lines of data elided, init_stdfaceO looks like this:

descriptions := []
stdface := []
every spec := ![

["left pupil", 145, 203], # must be first
["right pupil", 255, 203], # must be second
["top of left eyebrow", 101, 187, 105, 177, 126, 168, 153, 170, 177,

176,181,185],
["top of right eyebrow", 219,185,223,176,247,170,274,168,295,

177,299,187],

["chin line", 180, 350, 200, 345, 220, 350]
] do {

put(descriptions, get(spec))



338

put(stdface, spec)
}

Facial Caricatures Chapter 16

return

end

The every-do loop iterates though a large list of lists, assigning a sublist to spec
on each iteration. Each sublist contains a label and some coordinates. The label
is removed from the list and put in the description file, and the remaining
coordinates become one curve in a face structure. Arranging the fundamental
data this way makes it easy to reorder the curves while maintaining synchroni­
zation between the descriptions and coordinate lists. Unfortunately, reordering
also affects the interpretation of coordinates stored in data files, so once the order
is finalized and serious use begins, further rearrangement becomes infeasible.

When iniCstdfaceO returns, the main procedure sets some display
parameters:

mode := ImageMode
setdist(O)

# display mode
# distortion factor

The distortion factor is set by a procedure that also displays it on the screen as
a percentage.

Next, the guide face is created and drawn. The standard face is scaled and
aligned by scalefaceO, described earlier,based on pupil locations. To specify the
destination, a face structure consisting of only two pupil locations is calculated
from the location and size of the guide region. The code to do this follows:

1:= guide_xoff + 3 * guide_width / 8
r := guide_xoff + 5 * guide_width / 8
Y := guide_yoff + guide_height / 2
guideface := scaleface(stdface, [[I, y], [r, y]])
drawface(&window, guideface, DrawLine)

The last initialization step is to load the image:

newO I exitO

newO is called to open a dialog and load a file specified interactively. It persists
until it is successful or until it is cancelled. If cancelled, it fails, and the program
exits.

With initialization complete, the main procedure then enters the main
event loop:

GetEvents(vidgets["root"], , shortcuts)



Chapter 16 Facial Caricatures

Event Processing

339

# draw updated sketch

# update and display value
# ensure that mode includes drawing

# if no points are left unset

Four types of events are processed: menu events, keyboard events, slider
events, and mouse events.

Menu and keyboard event handling is simple; it echoes that of the
pattern editor and is not listed here. Although two menus are used, one callback
handler can serve both, because the menu entries are distinct.

The slider callback is also simple:

# slider_cbO -- handle adjustments of distortion slider

procedure slider_cb(vidget, val)

setdist(val)
if mode = ImageMode then

mode := DualMode
redisplayO

return

end

The distortion value is updated and displayed according to the position of the
slider. If the caricature is not currently being displayed (that is, ifonly the image
is shown), the display mode is changed to add the caricature atop the image.
Finally, redisplayO is called to redraw the picture using the current display mode
and distortion value.

Mouse events are handled by poinCcbO. A click of the leftbutton sets the
coordinates of the point requested on the guide display. A click of the right
button advances to the next curve, clearing all points of the current curve. Action
occurs on the release of the mouse button. The code is as follows:

# poinCcbO -- handle event in display region

procedure poinCcb(vidget, e)

if Itcurve then
return

case e of {

&Irelease: { # left button sets current point
sketch[tcurve, 2 * tpoint - 1] := &x
sketch[tcurve, 2 * tpoint] := &y
touched := 1
if mode -= ImageMode &*sketch[tcurve] = 2 * tpoint then



# redraw if new curve done
# update target display

340 Facial Caricatures Chapter 16

redisplayO
target(tcurve, tpoint)
}

&rrelease: { # right button skips a curve
every !sketch[tcurve] := &null # clear all points on curve
if (tcurve +:= 1) > *sketch then

tcurve := 1
target(tcurve, 1) # set target to next curve
}

}

return

end

A mouse event has no meaning if all the points have been specified; the initial
check detects this and ignores the event.

In the &Irelease case, the coordinates from a left-button click are stored
in the current structure. If the caricature is currently on display, and if this was
the last point on a curve, then the caricature is redrawn to incorporate the new
curve. Finally, the target of the next point is set.

In the &rrelease case, which calls for skipping the current curve, all of the
points in the curve are set to the null value and the target is advanced.

Setting the target is a complex operation. It involves updating both the
guide display and some global variables. The procedure targetO advances the
targetto the next unsetpointthat is at or beyond the given indices in the evolving
face. Here is the code:

# target(curve, point) -- display next point to be placed

procedure target(curve, point)
local s, n, x, y
static tx, ty

# Undraw the previous target and erase the previous prompt.

FiIlCircle(target_win, \tx, \ty, TargetRad1)
FiIICircle(targeCwin, \tx, \ty, TargetRad2)
EraseArea(prompCxoff, prompt_yoff, prompCwidth, prompCheight)

# Start from specified place unless the pupils remain unplaced.

if \sketch[1, 1] &\sketch[2, 1] then {
tcurve := curve
tpoint := point



Chapter 16 Facial Caricatures

}
else {

tcurve := 1
tpoint := 1
}

# Find the next unset point.

until /sketch[tcurve, 2 * tpoint - 1] do {
tpoint +:= 1 # advance to next point
if tpoint > (2 * *guideface(tcurve]) then {

tpoint := 1 # need to move to next curve
tcurve +:= 1
}

if tcurve > *guideface then
tcurve := 1 # wrapped around list of curves

if tcurve = curve & tpoint = point then {
tcurve := tx := ty := &null # there are no unset points
return
}

}

# Draw a target on the guide face.

tx := guideface[tcurve, 2 * tpoint - 1]
ty := guideface[tcurve, 2 * tpoint]
FiIICircle(targeCwin, tx, ty, TargetRad1)
FillCircle(targeCwin, tx' ty, TargetRad2)

# Display the prompt.

x := prompCxoff + prompt_width / 2
Y := prompCyoff + prompCheight / 2
s := "locate" II descriptions[tcurve]
n := *guideface[tcurve]
if n > 2 then

s 11:= " (select" II n / 2 II" points)"
CenterString(x, y, s)

return

end

341

The static variables tx and ty retain the coordinates of the last drawn
target; they contain null values ifno target is currently displayed. This informa­
tion is not needed by any other procedure, so tx and ty are local to target(). They
are declared static so that their values persist from one call to the next.



342 Facial Caricatures Chapter 16

The first step is to remove the current target from the screen. Recall that
target_win has a drawop=reverse attribute, which causes two identical se­
quences of drawing operations to cancel each other out. Accordingly, redrawing
the current target (if tx and ty are not null) causes it to disappear. The prompt
region, which displays the description of the current curve, also is cleared.

Next, the global variables tcurve and tpoint, the current point indices, are
set to the starting point of the search. This starting point is usually specified by
parameters, but if the pupil locations have not been set, the search starts at the
beginning.

The indices then are advanced until an unset point is found, proceeding
in an end-around fashion. If the starting point is reached again, there are no
unset points, so targetO returns.

If an unset point is found, the index values are used to find the corre­
sponding coordinates on the guide face, and a new target is drawn. Finally, a
new prompt string is generated and displayed.

Displaying Faces

The display region shows an image, a caricature, or both, depending on
the global variable mode. The mode can be set from the Display menu, by a
keyboard shortcut, or in some cases by internal program logic. When the display
region is to be redrawn, the following redisplayO procedure is called:

# redisplayO -- display image and/or drawing, depending on mode

procedure redisplayO

if mode -= DrawMode then
CopyArea(image_win, display_win, , , , , image_xoff, image_yoff)

if mode -= ImageMode then
caricatureO

return

end

The CopyAreaO call displays the image by copying it to the display region from
the hidden canvas. The caricatureO call draws the caricature. Note that there are
three possible values of mode given by defined constants in the header. If mode
has the value DualMode, then both CopyAreaO and caricatureO are called.

The caricatureO procedure consists mostly of bookkeeping and display
control, with the actual construction done by the distortO procedure shown
earlier. Here are the details:



# use all the display area pixels

# use subpattern of display pixels

Chapter 16 Facial Caricatures

# caricatureO -- draw sketch distorted by current distortion factor

procedure caricatureO
local base, face, win

if /sketch I /sketch[1, 1] I /sketch[2, 1] then
fail # must have both pupils to draw

if mode = DrawMode then
win:= display_win

else
win := overlay_win

Fg(win, "white")
FiIlRectangle(win) # clear clipped area using fiIIstyle
Fg(win, "black")

base := scaleface(stdface, sketch)
face := distort(sketch, base, distortion)
drawface(win, face, DrawCurve) # draw distorted face

return

end

343

The window binding win is set depending on the display mode. While
display_win gives full access to the display region, overlay_win contains the
checkerboard pattern that allows writing to only half of the pixels. The
fillstyle=masked attribute of this window causes any pixels destined for unset
areas of the pattern to be discarded.

The FiIIRectangleO call, with a white foreground, clears out the pixels
allowed by the fill style. In overlay mode, this is the caricature portion of the
checkerboard pattern. A base face is created by scaling the standard face to align
with the data points, and then face is assigned a distorted caricature. Finally,
drawfaceO displays the caricature on the screen, again filtered by the pattern.

Loading Images

The procedure rdimageO reads an image in any format supported by
Icon. The initialization that is needed for a new image also is performed here. If
an image cannot be loaded, rdimageO fails. Here is the code:

# rdimage(fiIename) --load image from file, failing if unsuccessful

procedure rdimage(filename)
local curve

image_win := WOpen("image=" II filename, "canvas=hidden") I fail



344 Facial Caricatures Chapter 16

pointfile := &null
touched := &null

# Calculate offsets that center the image in display area.

image_xoff := display_xoff +
(display_width - WAttrib(image_win, "width")) /2

image_yoff := display_yoff +
(display_height - WAttrib(image_win, "height")) / 2

# Initialize a new set of (unset) points.

sketch := []
every curve := !stdface do

put(sketch, list(*curve, &null))
target(1, 1) # reset to start with first point

# Ensure that current mode includes the image, and update the display.

if mode =DrawMode then
mode:= ImageMode

EraseArea(display_xoff, display_yoff, display_width, display_height)
redisplayO

return

end

The image is first loaded into a hidden window. rdimageO fails immedi­
ately if this is unsuccessful. Global variables are reset to remove any association
with a coordinate file and to indicate that no points have been added with the
mouse.

The next two assignments calculate where the corner of the image should
be placed to center it within the display region. The image size is obtained from
thewindow thatwas created to contain it. If the image is too large, the corner may
lie outside the region, but this requires no special consideration: The image is
clipped to the region boundaries when it is displayed, and the center portion
appears, which is probably the best choice.

The current coordinate set, sketch, is initialized to contain only null
values. The number ofcurves, and the number ofpoints per curve, is determined
by iterating through the standard face.

Because there are no coordinates, no caricature can possibly be drawn;
so, if the display is currently in caricature-only mode, it is changed to show the
image instead.

At this point the image still is not visible; it's only in the hidden window.



Chapter 16 Facial Caricatures 345

The final step is to clear the display area (incase a previous image was larger) and
call redisplayO.

Data Files

It takes time for a user to create a caricature, so it is important to provide
a way to save the results of this effort. Saving the digitized points allows the
caricature to be reconstructed at a later time.

A simple file format is easily generated. Each curve appears as one line,
a single colon followed by the coordinates. For example, a typical data file begins
like this:

: 107168
: 168168
: 84 160 87 154 93 150 102 145 114 145 125 149
: 147150156147163146175146183152189158

Coordinate values in the file are relative to the upper-left comer of the underly­
ing image. This allows the program's region sizes and locations to change
without invalidating data files. Zero values serve as placeholders for missing
coordinates. The actual file writing is simple:

# wtface(f, face) -- write face data to file f

procedure wtface(f, face)
local curve, i

every curve := !face do {
writes(f, ":")
every i := 1 to *curve by 2 do {

writes(f, " ", (\curve[i] - image_xoff) I 0)
writes(f, " ", (\curve[i + 1] - image_yoff) I 0)
}

write(f)
}

return

end

Reading is a little morecomplex than writing, because the formatted data
must be decoded and the possibility of bad data must at least be considered. In
this program, files that are obviously bad are handled gracefully, but individual
coordinate values are not validated. Only lines with colons are processed, and
all other characters except digits are ignored; that is sufficient to avoid Icon run-



346 Facial Caricatures Chapter 16

time errors. After the data is collected, the number of curves and the number of
points on each curve are verified. That can be expected to catch most cases of
content problems. Here is the code:

# rdface(f) -- read face coordinates from file f

procedure rdface(f)
local face, line, curve, i, n

face := []
while line := read(f) do line? {

=":" I next # ignore line missing ":"
curve := []

while tab(upto(&digits)) do {
n := integer(tab(many(&digits)))
if n -= 0 then n +:= image_xoff else n := &null
put(curve, n)

tab(upto(&digits)) I break
n := integer(tab(many(&digits)))
if n -= 0 then n +:= image_yoff else n := &null
put(curve, n)
}

put(face, curve)
}

# Validate the number of curves and points.

if *face -= *stdface then fail
every i := 1 to *stdface do

if *face[i] -= *stdface[i] then fail

return face

end

String scanning is applied to each line of the file. The expression

tab(upto(&digits))

finds the next numeric field; the expression

integer(tab(many(&digits)))

consumes it and converts it to integer. Nonzero coordinates are adjusted for the
location of the corner of the image; the two sections ofnearly identical code differ
here, with one adding an x-offset and the other a y-offset. Zero values tum into
null-valued placeholders.



Chapter 16 Facial Caricatures

The Complete Program
link graphics
link vsetup

# constant definitions

# graphics library
# VIS library

347

# drawing modes

# radius for drawing pupils of eyes

# radii for guide display target

# scanned image
# binding for point targets
# binding for image or caricature
# binding for dual-mode display

$define PupilRadius 2

$define TargetRad1 5
$define TargetRad2 20

$define ImageMode 1
$define DrawMode 2
$define DualMode 3

# vidgets and geometry

global vidgets # vidget table

global display_xoff, display_yoff # image area
global display_width, display_height
global image_xoff, image_yoff # centered image

global guide_xoff, guide_yoff # guide area
global guide_width, guide_height

global prompt_xoff, prompCyoff # prompt area
global prompCwidth, prompt_height

global dmeter_xoff, dmeter_yoff # distortion meter
global dmetecwidth, dmeter_height

# windows and bindings

global image_win
global targeCwin
global display_win
global overlay_win

# face data
#
# (A face is a list of curves, beginning with the left and right pupils;
# a curve is a list of x and y coordinates.)

global descriptions # labels for facial curves

global stdface # standard (average) face
global guideface # scaled/translated guide face
global sketch # points from subject face



348

global tcurve
global tpoint

# miscellaneous globals

global pointfile
global touched

global mode
global distortion

Facial Caricatures Chapter 16

# index of current curve to place
# index of point within curve

# file name for saving coordinates
# has data changed since last save?

# Image/Draw/Dual mode
# distortion factor (0.0 = undistorted)

# may fail, but at least try

# coordinates of "standard" face
# display mode
# distortion factor

# main program

procedure mainO
local I, r, y

# Open the window, extract layout information, initialize dialogs.

vidgets := uiO
WAttrib(lpointer=circle")
iniCgeometryO

# Make two clipped bindings for displaying the image and sketch.

display_win := Clone(llinewidth=2")
Clip(display_win, display_xoff, display_yoff, display_width,

display_height)
overlay_win := Clone(display_win, "fillstyle=masked",

I pattern=4,#9696")

# Make a clipped binding for displaying targets on the guide display.

target_win := Clone("drawop=reverse")
Clip(targeCwin, gUide_xoff, guide_yoff, guide_width, guide_height)

# Initialize globals.

init_stdfaceO
mode := ImageMode
setdist(O)

# Use the standard face to create a guide display for locating targets.
# Calculate eye locations to use for scaling; then draw the face
# with straight lines to emphasize the individual point locations.

I := guide_xoff + 3 * guide_width / 8
r := guide_xoff + 5 * guide_width / 8
Y := guide_yoff + guide_height / 2
guideface := scaleface(stdface, [[I, y], [r, y]])



# use all the display area pixels

# use subpattern of display pixels

Chapter 16 Facial Caricatures

drawface(&window, guideface, DrawLine)

# Load and display an image; exit if dialog is cancelled.

newO I exitO

# Enter event loop.

GetEvents(vidgets["root"], , shortcuts)

end

# caricatureO -- draw sketch distorted by current distortion factor

procedure caricatureO
local base, face, win

if Isketch I Isketch[1, 1] I Isketch[2, 1] then
fail # must have both pupils to draw

if mode = DrawMode then
win := display_win

else
win := overlay_win

Fg(win, "white")
FiIlRectangle(win) # clear clipped area using fiIIstyle
Fg(win, "black")

base := scaleface(stdface, sketch)
face := distort(sketch, base, distortion)
drawface(win, face, DrawCurve) # draw distorted face

return

end

349

# check_saveO -- check to see if previous coordinate needs to be saved
#
# check_save fails if cancelled.

procedure check_saveO

if \touched then
case SaveDialog("Save coordinates first?", pointfile) of {

"Yes": {
pointfile := dialog_value
saveO I save_asO I fail
}

"No": return



# null-eoordinate
# incomplete curve

350 Facial Caricatures Chapter 16

"Cancel": fail
}

return

end

# distort(f, b, m) -- return distortion of face f from face b by factor m

procedure distort(f, b, m)
local r, t, i, j, curve, base

r := []
every i := 1 to *f do {

base := b[i]
put(r, curve := copy(f[i]))
if /curve[-1] I /base[-1] then

next # incomplete placeholder
every j := 1 to *curve by 2 do {

curveO] +:= m * (curveO] - base[j])
curveU + 1] +:= m * (curveU + 1] - baseU + 1])
}

}

return r

end

# drawface(win, f, proc) -- draw face from curve list using proc

procedure drawface(win, f, proc)
local curve

every curve := copy(!f) do {
if /curve[-1] then

next
if *curve = 2 then

FillCircle(win, curve[1], curve[2], PupilRadius)
else {

push(curve, win)
proc! curve
}

}

return

end



Chapter 16 Facial Caricatures

# iniCgeometryO -- extract layout information from vidgets

procedure iniCgeometryO

guide_xoff := vidgets["guide"].ax
guide_yoff := vidgets["guide"].ay
guide_width := vidgets["guide"].aw
guide_height := vidgets["guide"].ah

display_xoff := vidgets["image"].ax
display_yoff := vidgets["image"].ay
display_width := vidgets["image"].aw
display_height := vidgets["image"].ah

prompCxoff := vidgets["prompt"].ax
prompCyoff := vidgets["prompt"].ay
prompCwidth := vidgets["prompt"].aw
prompt_height := vidgets["prompt"].ah

dmeter_xoff := vidgets["dmeter"].ax
dmeter_yoff := vidgets["dmeter"].ay
dmeter_width := vidgets["dmeter"].aw
dmeter_height := vidgets["dmeter"].ah

return

end

351

# init_stdfaceO -- initialize standard face and description list

procedure iniCstdfaceO
local spec

descriptions := []
stdface := []
every spec := ![

["Ieft pupil II , 145, 203], # must be first
[" right pupil", 255, 203], # must be second
["top of left eyebrow", 101, 187, 105, 177, 126, 168, 153, 170, 177,

176,181,185],
["top of right eyebrow", 219,185,223,176,247,170,274,168,295,

177,299, 187],
["bottom of left eyebrow", 102, 188, 124, 177, 151, 181, 181, 185],
["bottom of right eyebrow", 219,185,249,181,276,177,298,188],
["topof lefteye", 114, 199, 141, 187, 172, 198],
["top of right eye", 228,198,259,187,286,199],
["bottom of left eyelid", 116, 207, 143, 194, 170, 206],



352 Facial Caricatures Chapter 16

["bottom of right eyelid", 230, 206, 257, 194,284,207],
["bottom of left eye", 120,208,142,213,170,206],
["bottom of right eye", 230, 206, 258, 213, 280, 208],
["left iris", 144, 195, 132, 201, 144, 211, 156, 201, 145, 195],
["right iris", 255, 195, 244, 201, 256, 211, 268, 201, 256, 195],
["left side of nose", 190, 193, 190,219, 190, 244, 186,257, 189,271,

200,277],
["right side of nose", 210, 193, 210, 219, 210, 244, 214, 257, 211,

271, 200, 277],
["left nostril", 177,250,171,258,169,269,174,277,183,271,198,

277],
["right nostril", 223, 250, 229, 258, 231,269,226,277,217,271,202,

277],
["top of upper lip", 152, 318, 172, 311, 188, 306, 200, 311, 212, 306,

228,311,248,318],
["bottom of upper lip", 152,318,170,319,186,317,200,319,214,

317,230,319,248,318],
["top of lower lip", 152,318,172,318,186,317,200,319,214,317,

228,318,248,318],
["bottom of lower lip", 152,318,169,327,184,333,200,335,216,

333,231,327,248,318],
["left ear", 75, 212, 61,201,54,213,58,233,64,260,75,285,85,

281],
["right ear", 325, 212, 339, 201, 346, 213, 342, 233, 336, 260, 325,

285, 315, 281],
["top of head", 60, 317, 28, 254, 31,189,46,108,82,47,141,4,200,

1,259,4,318,47,354, 108,369, 189,372,254,340,31~,
["hairline", 79, 200, 90,168,104,141,119,120,143,104,172,100,

200,99,228,100,257,104,281,120,296,141,310,168,321,
200],

["left side of face", 84, 194, 79, 232, 86, 273],
["right side of face", 316, 194, 321, 232, 314, 273],
["jaw", 85, 272, 93, 311, 108, 342, 133, 369, 167, 392, 200, 399, 233,

392,267,369,292,342,307,311,315,272],
["left eye line", 131,221,148,220,166,214],
["right eye line", 234, 214, 252, 220, 269, 221],
["left cheek line", 167,264,154,278,145,294],
["right cheek line", 233, 264, 246, 278, 255, 294],
["left cheekbone", 87, 269, 95, 280, 101,292],
["right cheekbone", 313, 269, 305, 280, 299, 292],
["chin cleft", 200, 377, 200, 389],
["chin line", 180, 350, 200, 345, 220, 350]



Chapter 16 Facial Caricatures

] do {
put(descriptions, get(spec»
put(stdface, spec)
}

return

end

# 10adO -- load coordinate data

procedure 10adO
local input, face

check_saveO I fail
repeat {

case OpenDialog("Load coordinates:") of {
"Okay": {

if input := open(dialog_value) then break else
Notice("Can't open" II dialog_value)

}
"Cancel": fail
}

}

if sketch := rdface(input) then {
c1ose(input)
pointfile := dialog_value
touched := &null
if mode -= ImageMode then

redisplayO
target(1, 1)
return

}

else {
Notice("Not a valid coordinate file")
c1ose(input)
fail
}

end

# menu_cbO -- handle menu selections

procedure menu_cb(vidget, menu)

353



354 Facial Caricatures Chapter 16

case menu[1] of {

"load @L": 10adO
"new @N": newO
"save @S": saveO
"save as II. save_asO
"quit @Q": quitO

"image @I": {
mode := ImageMode
redisplayO
}

"drawing @D": {
mode := DrawMode
redisplayO
}

"both @B": {
mode := DualMode
redisplayO
}

}

return

end

# newO -- load new image

procedure newO
local input, f

check_saveO I fail
repeat (

case OpenDialog("Load image:") of {
"Okay": (

if rdimage(dialog_value) then
return

if f := open(dialog_value) then (
c1ose(f)
Notice(dialog_value II" is not a valid image")
}

else
Notice("Can't open II II dialog_value)

}
"Cancel": fail



Chapter 16 Facial Caricatures

}
}

end

# point_cbO -- handle event in display region

procedure poinCcb(vidget, e)

if Itcurve then # if no points are left unset
return

case e of {

&Irelease: { # left button sets current point
sketch[tcurve, 2 * tpoint - 1] := &x
sketch[tcurve, 2 * tpoint] := &y
touched := 1
if mode -= ImageMode & *sketch[tcurve] = 2 * tpoint then

redisplayO # redraw if new curve done
target(tcurve, tpoint) # update target display
}

&rrelease: { # right button skips a curve
every !sketch[tcurve] := &null # clear all points on curve
if (tcurve +:= 1) > *sketch then

tcurve := 1
target(tcurve, 1) # set target to next curve
}

}

return

end

# quitO -- terminate session

procedure quitO

check_saveO I fail
exitO

end

# rdface(f) -- read face coordinates from file f

procedure rdface(f)
local face, line, curve, i, n

355



356 Facial Caricatures Chapter 16

face := []
while line := read(f) do line? {

=":" I next # ignore line missing ":"
curve:= []

while tab(upto(&digits)} do {
n := integer(tab(many(&digits)))
if n -= 0 then n +:= image_xoff else n := &null
put(curve, n)

tab(upto(&digits» I break
n := integer(tab(many(&digits)))
if n -= 0 then n +:= image_yoff else n := &null
put(curve, n)
}

put(face, curve)
}

# Validate the number of curves and points.

if *face -= *stdface then fail
every i := 1 to *stdface do

if *face[i] -= *stdface[i] then fail

return face

end

# rdimage(filename) --load image from file, failing if unsuccessful

procedure rdimage(filename)
local curve

image_win := WOpen(limage=" " filename, "canvas=hidden") I fail
pointfile := &null
touched := &null

# Calculate offsets that center the image in display area.

image_xoff:= display_xoff +
(display_width - WAttrib(image_win, ·width"» / 2

image_yoff:= display_yoff +
(display_height - WAttrib(image_win, "height"» / 2

# Initialize a new set of (unset) points.

sketch := []
every curve := !stdface do

put(sketch, list(*curve, &null»



Chapter 16 Facial Caricatures 357

target(1, 1) # reset to start with first point

# Ensure that current mode includes the image, and update the display.

if mode = DrawMode then
mode:= ImageMode

EraseArea(display_xoff, display_yoff, display_width, display_height)
redisplayO

return

end

# redisplayO -- display image and/or drawing, depending on mode

procedure redisplayO

if mode -= DrawMode then
CopyArea(image_win, display_win, , , , , image_xoff, image_yoff)

if mode -= ImageMode then
caricatureO

return

end

# saveO -- save coordinate data

procedure saveO
local output

if /pointfile then
return save_asO

output := open(pointfile, "W") I {
Notice("Can't write II II pointfile)
fail
}

wtface(output, sketch)
c1ose(output)
touched := &null

return

end

# save_asO -- save coordinate data in alternate file

procedure save_asO
local output



358 Facial Caricatures Chapter 16

repeat {
case SaveDialog("Save coordinates?", "") of {

"No": return
"Cancel": fail
"Yes":

if output := open(dialog_value, "w") then break else
Notice("Can't write" II dialog_value)

}
}

wtface(output, sketch)
c1ose(output)
pointfile := dialog_value
touched := &null

return

end

# scaleface(f, g) -- return copy of face f scaled to overlay face 9

procedure scafeface(f, g)
local fl, fr, gl, gr, fx, fy, gx, gy, m, r, t, curve

fI := f[1] I fail # left iris
fr := f[2] I fail # right iris
gl := g[1] I fail # target left iris
gr := g[2] I fail # target right iris
fx := (fl[1] + fr[1]) /2.0 # x offset of f
fy := (fl[2] + fr[2]) /2.0 # y offset of f
gx := (gl[1] + gr[1]) / 2.0 # x offset of 9
gy := (gl[2] + gr[2]) / 2.0 # Yoffset of 9
m := (gr[1] - gl[1]) / real(fr[1] - fl[1]) # multiplier

r:= []
every curve := copy(!f) do {

if /curve[-1] then
put(r, curve) # incomplete placeholder

else {
put(r, t := [])
while put(t, m * (get(curve) - fx) + gx) do

put(t, m * (get(curve) - fy) + gy)
}

}

return r

end



# draw updated sketch

# update and display value
# ensure that mode includes drawing

Chapter 16 Facial Caricatures

# setdist(val) -- set and display distortion value, in percent

procedure setdist(val)

distortion := val / 100.0
GotoXY(dmeter_xoff, dmeter_yoff + dmeter_height)
WWrites(right(integer(val), 4), "%")

return

end

# shortcuts() -- check event for keyboard shortcut

procedure shortcuts(e)

if &meta then case map(e) of {
"I": load()
"n": new()
"s": save()
"q": quit()
lIi": {

mode := ImageMode
redisplay()
}

"d": {
mode := DrawMode
redisplay()
}

"b": {
mode := DualMode
redisplayO
}

}

return

end

# slider_cb() -- handle adjustments of distortion slider

procedure slider_cb(vidget, val)

setdist(val)
if mode = ImageMode then

mode := DualMode
redisplay()

359



360 Facial Caricatures Chapter 16

return

end

# target(curve, point) -- display next point to be placed

procedure target(curve, point)
local s, n, x, y
static tx, ty

# Undraw the previous target and erase the previous prompt.

FiIICircle(targeCwin, \tx, \ty, TargetRad1)
FiIlCircle(targeCwin, \tx, \ty, TargetRad2)
EraseArea(prompt_xoff, prompt_yoff, prompCwidth, prompCheight)

# Start from specified place unless the pupils remain unplaced.

if \sketch[1, 1] & \sketch[2, 1] then {
tcurve := curve
tpoint := point
}

else {
tcurve := 1
tpoint := 1
}

# Find the next unset point.

until /sketch[tcurve, 2 * tpoint - 1] do {
tpoint +:= 1 # advance to next point
if tpoint > (2 * *guideface[tcurve)) then {

tpoint := 1 # need to move to next curve
tcurve +:= 1
}

if tcurve > *guideface then
tcurve := 1 # wrapped around list of curves

if tcurve =curve & tpoint =point then {
tcurve := tx := ty := &null # there are no unset points
return
}

}

# Draw a target on the guide face.

tx := guideface[tcurve, 2 * tpoint - 1]
ty := guideface[tcurve, 2 * tpoint]
FiIICircle(target_win, tx, ty' TargetRad1)



Chapter 16 Facial Caricatures

FiIICircle(target_win, tx, ty, TargetRad2)

# Display the prompt.

x := prompCxoff + prompCwidth / 2
Y := prompCyoff + prompCheight / 2
s := "locate" II descriptions[tcurve]
n := *guideface[tcurve]
if n > 2 then

s 11:= " (select" II n / 2 II" points)"
CenterString(x, y, s)

return

end

# wtface(f, face) -- write face data to file f

procedure wtface(f, face)
local curve, i

every curve := !face do {
writes(f, ":")
every i := 1 to *curve by 2 do {

writes(f, " ", (\curve[i] - image_xoff) I 0)
writes(f, " ", (\curve[i + 1] - image_yoff) I 0)
}

write(f)
}

return

end

361

#===«vib:begin»=== modify using vib; do not remove this marker line
procedure ui_atts()

return ["size=640,480", "bg=pale gray", "label=Caricaturist"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,

[":Sizer:::O,O,640,480:Caricaturist",],
["distort:Slider:h:1:1 0,436,230,22:-300,300,0" ,slider_cb],
["dmenu:Menu:pull::36,O,57,21 :Display",menu_cb,

["image @I","drawing @D","both @B"]],
["fmenu:Menu:pull::0,0,36,21 :File",menu_cb,

["new @N","load @L","save @S",·save as ","quit @Q"]],



362 Facial Caricatures Chapter 16

["header_line:Line:: :0,22,639,22:11 ,1,
["label1 :Label:::11 ,409,77,13:distortion:",1,
["labeI2:Label:::9,460,28,13:anti",1,
["labeI3:Label:::1 04,460,42,13:normal",],
["labeI4:Label:::213,460,28,13:wildll ,1,
[lvert_line:Line:::250,23,250,479:" ,1,
["dmeter:Rectinvisible::104,41 0,41,10:",1,
["promptRectinvisible::252,1 ,387,19:" ,1,
["guide:Rectinvisible:: 1,24,247,280:",1,
[llimage:Rect invisible::252,24,387,455:",poinecb1,
)

end
#===«vib:end»=== end of section maintained by vib

Tips, Techniques, and Examples

Using the Program

Large images produce the best caricatures because the points of the face
can be placed with greater relative precision. Utility programs can be used to
enlarge small images. Even when this enlargementproducesvisible artifacts, the
result is easier to use for making caricatures. The program as presented u~es a
640-by-480 window, but it can easily be modified to take advantage of a larger
screen.

The best images are well-lit, detailed, frontal photographs of unsmiling
subjects. (Big smiles tend to exaggerate into wild sneers.) Color, of course, is not
a factor in the final caricature.

Adjusting Datapoints

Once the last point of a curve has been placed, all the points on a curve
are "locked in". The only way to change one is byediting a coordinate file, a very
error-prone activity. A way to adjust the point locations to correct mistakes or
fine-tune the drawing would be extremely useful.

The obvious approach would be to allow points to be moved with the
mouse. The center mouse button, currently unused, could be reserved for this
purpose. But where are the points? They're not obvious on the drawn figure.
Another display mode could be added to show the points more prominently, for
instance by circling them.

Pressing the center mouse button within one of these circles would then



Chapter 16 Facial Caricatures 363

"latch on" to the nearest point, allowing it to be dragged to a new location by
mouse movement. The case of multiple points close together would need
addressing; one solution would be to move them as a unit, possibly maintaining
their relationships with each other.

Implementing all of this would add quite a lot of code to the program. A
simpler but less flexible approach would be to allow whole curves to be selected
for replacement. Mouse manipulations would identify a curve, and its points
would be replaced by null values. Then the curve could be re-input using the
existing code.

Other Possibilities

After a caricature is drawn, it would be useful to be able to save it to a file
as an image. This is relatively simple to do.

The current coordinate file format is intimately tied to the number and
order of curves configured in the program. Ifsome identifying information were
added to each curve in the file, it would thenbe possible to enlarge or reorder the
program's set of curves without invalidating existing data files.

The program as given produces caricatures and blends with respect to a
predefined standard face. Allowing the replacement of this face with values
from a coordinate file would allow the blending and mixing of any two faces.

A caricature works by drawing attention to a person's unusual features.
The program presented here has no provision for beards, eyeglasses, or personal
trademarks such as a pipe or a hat. What could you do in these cases?





The Appendices

The appendices that follow contain reference material both for the basic Icon
language and for its graphics facilities.

Appendix A describes Icon's syntax, and Appendix Bdescribes the Icon
preprocessor.

Appendices C though F cover Icon's computational repertoire, includ­
ing features that are not described in the body of this book. In these appendices,
data types are indicated by the following letter codes:

c cset L list
f file N numeric (i or r)
i integer R record (any record type)
n null S set
p procedure T table
r real a any type
S string A any structure type (R, L, S, or T)

Some features of Icon that are used only in special situations unrelated to
graphics are not included in these appendices. See Griswold and Griswold
(1996) for a complete description of Icon.

Appendices G through K include reference material for Icon's graphics
facilities. Appendix L describes Icon's interface tools, and Appendix M is a
reference manual for VIB. Appendix N lists implementation details that vary
among platforms.

Appendix a contains a brief description of how to run an Icon program,
and Appendix P lists resources that are available to Icon programmers. Finally,
Appendix Q describes the contents of the CD-ROM that accompanies this book.

365





Appendix A

Syntax

This appendix presents an informal summary of the syntax of the Icon language.
Some details have been omitted in the name of simplicity and clarity. A more
rigorous presentation appears in Griswold and Griswold (1996).

Italic brackets [like this} indicate optional components; ellipses (...)
indicate repeated items. An ellipsis on a line by itself means that the item on the
preceding line can be repeated; an ellipsis preceded by a punctuation character
means that the preceding item can be repeated by using that punctuation
character as a separator.

program:
link ident ,_ ..
global ident ,...
record ident ( fident ,...) )
procedure

procedure:
procedure ident ( [ident ,.. .) )

local ident , .
static ident , .
initial expr
expr

end

367



368

expr:
ident
expr . ident
keyword
literal
(expr , )
{expr ; }
[expr , ]
expr [expr ,... ]
expr [ expr sectop expr ]
expr ( [ expr ,... ] )
unop expr
expr binop expr
if expr then expr [ else expr ]
case-expression
repeat expr
every expr [ do expr ]
while expr [ do expr ]
until expr [do expr ]
next
break [ expr ]
return [ expr ]
suspend [ expr ] [ do expr ]
fail

case-expression:
case expr of {

expr: expr

default: expr

}

unop:

Syntax Appendix A

Unary (prefix) operators have higher precedence than binary (infix)
operators, except for field selection (expr. ident), which has the highest
precedence of all.

. + - * - I \ = ? ! I not



Appendix A Syntax

binop:

369

Binary operators are grouped in classes of decreasing precedence. Op­
erators of equal precedence group to the left except as noted.

\ !
1\

* /
+
II III

0/0 **
++

(right associative)

< <= = -= >= > « «= -- -== »= » --- -===
I
to
:= :=: op:= <- <->
?
&

(right associative)

Note: The operator to is an abbreviation for to-by, which actually is a
ternary operator.

op:

An op is any binop except :=, :=:, <-, <->, or to.

sectop:
+:

literal:

12316rFFCO
1.236e23
"violin"
'aeiou'

integer literal
real literal
string literal
cset literal

The following escape sequences are recognized in string and cset literals:

\b backspace
\d delete
\e escape
\f form feed
\1 line feed (same as \n)
\n newline
\r return



370

\t tab
\v vertical space
\' single quote
\" double quote
\\ backslash
\000 octal character
\xhh hexadecimal character
\I\c control character

keyword:

Keywords are described in Appendix F.

Syntax Appendix A

ident:

&ascii
&c1ock
&col
&control
&cset
&date
&dateline
&digits
&dump
&e
&errout
&fail

&features
&host
&input
&interval
&Icase
&Idrag
&Ietters
&Ipress
&Irelease
&mdrag
&meta
&mpress

&mrelease
&null
&output
&phi
&pi
&pos
&progname
&random
&rdrag
&resize
&row
&rpress

&rrelease
&shift
&subject
&time
&trace
&ucase
&version
&window
&x
&y

An identifier is composed of any number of letters, digits, and under­
scores; the initial character cannotbe a digit. Upper- and lowercase letters
are distinct. The following words, including two relating to features of
Icon not discussed in this book, are reserved; these words cannotbe used
as identifiers:

break every next suspend
by fail not then
case global of to
create if procedure until
default initial record while
do invocable repeat
else link return
end local static



AppendixB

Preprocessing

All Icon source code passes through a preprocessor before translation. Prepro­
cessor directives control the actions of the preprocessor and are notpassed to the
Icon compiler. If no preprocessor directives are present, the source code passes
through the preprocessor unaltered.

A source line is a preprocessor directive if its first non-whitespace
character is a $ and if that $ is not followed by another punctuationcharacter. The
general form of a preprocessor directive is

$ directive arguments # comment

Whitespace separates tokens when needed, and case is significant, as in Icon
proper. The entire preprocessor directive must appear on a single line, which
cannot be continued but can be arbitrarily long. The comment portion is
optional. An invalid preprocessor directive produces an error except when
skipped by conditional compilation.

Preprocessor directives can appear anywhere in an Icon source file
without regard to procedure, declaration, or expression boundaries.

Include Directives

An include directive has the form

$include filename

An include directive causes the contents ofanother file to be interpolated
in the source file. The file name must be quoted if it is not in the form of an Icon
identifier.

Included files maybe nested to arbitrary depth,buta file may not include
itself either directly or indirectly. File names are looked for first in the current
directory and then in the directories listed in the environment variable LPATH.

371



372 Preprocessing Appendix B

Relative paths are interpreted in the preprocessor's context and not in relation
to the including file's location.

line Directives

A line directive has the form

$Iine n [filename)

The line containing the preprocessing directive is considered to be line n of the
given file (or the current file, if unspecified) for diagnostic and other purposes.
The line number is a simple unsigned integer. The file name must be quoted if
it is not in the form of an Icon identifier.

Define Directives

A define directive has the form

$define name text

The define directive defines the text to be substituted for later occurrences of the
identifier name in the source code. text is any sequence of characters except that
any string or cset literals must be properly terminated within the definition.
Leading and trailing whitespace, including comments, are not part of the
definition. The text can be empty.

Duplicate definition of a name is allowed if the new text is exactly the
same as the old text. This prevents problems from arising if a file of definitions
is included more than once. The text must match exactly: For example, 3.0 is not
the same as 3.000.

Definitions remain in effect through the end of the current original
source file, crossing include boundaries, but they do not persist from one source
file to another.

If the text begins with a left parenthesis, it must be separated from the
name by at least one space. Note that the Icon preprocessor does not provide
parameterized definitions.

It is possible to define replacement text for Icon reserved words or
keywords, but this generally is dangerous and ill-advised.

Undefine Directives

An undefine directive has the form

$undef name



Appendix B Preprocessing 373

The current definition of name is removed, allowing its redefinition ifdesired. It
is not an error to undefine a nonexistent name.

Predefined Names

At the start of each source file, several names are automatically defined
to indicate the Icon system configuration. Each potential predefined name
corresponds to one of the values producedby the keyword &features. Ifa feature
is present, the name is defined with a value of 1. If a feature is absent, the name
is not defined. The most commonly used predefined names are listed below. See
Griswold, Jeffery, and Townsend (1996) for a complete listing.

predefined name &features value

- MACINTOSH Macintosh

- MSDOS MS-DOS

- MSDOS_386 MS-DOS/386

- MS_WINDOWS_NT MS Windows NT

- OS2 OS/2
- UNIX UNIX

- VMS VMS

- GRAPHICS graphics

- MS_WINDOWS MS Windows
- PRESENTATION_MGR Presentation Manager
_X_WINDOW_SYSTEM X Windows

- PIPES pipes

- SYSTEM_FUNCTION system function

Predefined names have no special status: Like other names, they can be unde­
fined and redefined.

Substitution

As input is read, each identifier is checked to see if it matches a previous
definition. If it does, the value replaces the identifier in the input stream.

No whitespace is added or deleted when a definition is inserted. The
replacement text is scanned for defined identifiers, possibly causing further
substitution, but recognition of the original identifier name is disabled to
prevent infinite recursion.



374 Preprocessing Appendix B

Occurrences of defined names within comments, literals, or preproces­
sor directives are not altered. The preprocessor is ignorant of multi-line literals,
however, and it potentially can be fooled by these.

Substitution cannot produce a preprocessor directive. By then it is too
late.

Conditional Compilation

Conditional compilation directives have the form

$ifdef name

and

$ifndef name

$ifdef or $ifndef cause subsequent code to be accepted or skipped, depending on
whether name has been previously defined. $ifdef succeeds if a definition exists;
$ifndef succeeds ifa definition does not exist. The value of the definition does not
matter.

A conditional block has this general form:

$ifdef name or $ifndef name
... code to use if test succeeds ...

$else
... code to use if test fails ...

$endif

The $else section is optional. Conditional blocks can be nested provided that all
of the $if/$else/$endif directives for a particular block are in the same source
file. This does not prevent the conditional inclusion of other files via $include as
long as any included conditional blocks are similarly self-contained.

Error Directives

An error directive has the form

$error text

An error directive forces a fatal compilation error displaying the given text. This
typically is used with conditional compilation to indicate an improper set of
definitions.



AppendixC

Control Structures

Icon's control structures are summarized in this appendix. Most are introduced
by reserved words.

Control structures are expressions, and as such they can produce results,
although some simply fail after performing their intended actions. The notation
used to introduce each control structure indicates its possible result sequence:

cstruct no result (always fails)

cstruct : n at most one null result

cstruct : a at most one result, any type

cstruct : a1, a2,... multiple results possible

Some descriptions refer to related Icon operators, which may be found in
AppendixD.

break expr: a - break out of loop

break expr exits from the enclosing loop and produces the outcome of
expr.

Default: expr &null

See also: next

case expr of { ... } : a - select according to value

case expr of {... }produces the outcome of the case clause that is selected
by the value of expr. It fails if expr fails or if no case clause is selected.

375



376 Control Structures Appendix C

every expr1 do expr2 - generate evety result

every exprl do expr2 evaluates expr2 for each result generated by exprl;
it fails when exprl does not produce a result. The do clause is optional.

fail - fail from procedure

fail returns from the current procedure, causing the call to fail.

See also: return and suspend

if expr1 then expr2 else expr3 : a - select according to outcome

if exprl then expr2 else expr3 produces the outcome of expr2 if exprl
succeeds, otherwise the outcome of expr3. The else clause is optional.

next - go to beginning of loop

next transfers control to the beginning of the enclosing loop.

See also: break

not expr: n - invert failure

not expr produces the null value if expr fails, but fails if expr succeeds.

repeat expr - evaluate repeatedly

repeat expr evaluates expr repeatedly.

return expr - return from procedure

expr &null

fail and suspend

return expr returns from the current procedure, producing the outcome
of expr.

Default:

See also:

suspend expr1 do expr2 - suspend from procedure

suspend exprl do expr2 suspends from the currentprocedure, producing
each result generated by exprl. If suspend is resumed, expr2 is evaluated
before resuming exprl. The do clause is optional.



Appendix C Control Structures

Default: exprl &null (only if the do clause is omitted)

See also: fail and return

377

until expr1 do expr2 - loop until result

until exprl do expr2 evaluates expr2 each time exprl fails; it fails when
exprl succeeds. The do clause is optional.

See also: while exprl do expr2

while expr1 do expr2 - loop while result

while exprl do expr2 evaluates expr2 each time exprl succeeds; it fails
when exprl fails. The do clause is optiona1.

See also: until exprl do expr2

expr11 expr2: a1, a2, ... - evaluate alternatives

exprll expr2 generates the results ofexprl followed by the results ofexpr2.

See also: lexpr

lexpr: a1, a2, ... - evaluate repeatedly

lexpr generates the results of expr repeatedly, terminating if expr fails.

See also: exprl Iexpr2

expr\ i : a1, a2, ... , ai -limit generator

expr \ i generates at most i results from the outcome of expr.

See also: \a

s ? expr: a - scan string

s ? expr saves the current subject and position and then sets them to the
values of sand 1, respectively. It then evaluates expr. The outcome is the
outcome ofexpr. The saved values of the subject and positionare restored
on exit from expr.

See also: ?a





Appendix 0

Operators

Icon's large repertoire of operators is summarized in this appendix. Operators
are grouped by syntactic form into three classes: prefix (unary) operators, infix
(binary) operators, and other operators.

Referenced procedures are described in Appendix E.

Prefix Operators

+N : N - compute positive

+N produces the numeric value of N.

See also: N1 + N2

-N : N - compute negative

-N produces the negative of N.

See also: N1 - N2

-c1 : c2 - compute cset complement

-c1 produces the cset complement of c1 with respect to &cset.

=5 : 5 - match string in scanning

=s is equivalent to tab(match(s».

See also: matchO, tabO, and N1 = N2

379



380

*a : i-compute size

*a produces the size of a.

See also: N1 * N2

Operators Appendix D

?a1 : a2 - select randomly

If a1 is an integer, ?a1 produces a number from a pseudo-random
sequence. If a1 > 0, it produces an integer in range 1 to a1, inclusive. If
a1 = 0, it produces a real number in range 0.0 to 1.0.

Ifa 1 is a string, ?a1 produces a randomly selected one-character substring
of a1 that is a variable if a1 is a variable.

If a1 is a list, record, or table, ?a1 produces a randomly selected element
from a1.

If a1 is a set, ?a1 produces a randomly selected member of a1.

Returned elements of lists, records, and tables are variables.

See also: s? expr

!a : a1, a2, ..., an - generate values

If a is a file, !a generates the remaining lines of a.

If a is a string, !a generates the one-character substrings of a and
produces variables if a is a variable.

If a is a list or record, !a generates the elements of a from beginning to
end.

If a is a set, !a generates the members of a in no predictable order.

If a is a table, !a generates the elements of a1 in no predictable order.

Returned elements of lists, records, and tables are variables.

See also: key() and a ! A

la : a - check for null value

/a produces a if the value of a is the null value, but fails otherwise. It
produces a variable if a is a variable.

See also: N1 / N2



Appendix 0 Operators 381

\a : a - check for nonnull value

\a produces a if the value of a is not the null value, but fails otherwise.
It produces a variable if a is a variable.

See also: expr \ i

.a : a - dereference variable

.a produces the value of a.

See also: R. f

Infix Operators

N1 + N2 : N3 - compute sum

N1 + N2 produces the sum of N1 and N2.

See also: +N

N1 - N2 : N3 - compute difference

N1 - N2 produces the difference of N1 and N2.

See also: -N

N1 * N2 : N3 - compute product

N1 * N2 produces the product of N1 and N2.

See also: *a

N1/ N2: N3 - compute quotient

N1 f N2 produces the quotient of N1 and N2.

See also: fa

N1 % N2 : N3 - compute remainder

N1 % N2 produces the remainder of N1 divided by N2. The sign of the
result is the sign of N1.



382

N1 1\ N2 : N3 - compute power

N1 1\ N2 produces N1 raised to the power N2.

See also: expO and 5qrtO

Operators Appendix D

a1 ++ a2 : a3 - compute cset or set union

a 1 ++ a2 produces the cset or set union of a 1 and a2.

a1 - - a2 : a3 - compute cset or set difference

a1 - - a2 produces the cset or set difference of a1 and a2.

a1 ** a2 : a3 - cset or set intersection

a1 ** a2 produces the cset or set intersection of a1 and a2.

51 II 52 : 53 - concatenate strings

51 II 52 produces a string consisting of 51 followed by 52.

See also: L1 III L2

L1 III L2 : L3 - concatenate lists

L1 III L2 produces a list consisting of the values in L1 followed by the
values in L2.

See also: 51 II 52

R • f: a - get field of record

R .f produces a variable for thef field of record R.

See also: .a

a1 & a2 : a2 - evaluate in conjunction

a 1 & a2 produces a2. It produces a variable if a2 is a variable.



Appendix D Operators 383

N1 > N2 : N2 - numerically greater

N1 >= N2 : N2 - numerically greater or equal

N1 = N2 : N2 - numerically equal

N1 -= N2 : N2 - numerically unequal

N1 < N2 : N2 - numerically less

N1 <= N2 : N2 - numerically less or equal

The numerical comparison operators produce N2 if the condition is
satisfied, but fail otherwise.

51 » 52: 52 -lexically greater

51 »= 52 : 52 - lexically greater or equal

51 == 52 : 52 - lexically equal

51 -== 52 : 52 - lexically unequal

51 «52 : 52 - lexically less

51 «= 52 : 52 - lexically less or equal

The lexical comparison operators produce 52 if the condition is satisfied,
but fail otherwise.

a1 === a2 : a2 - value equal

a1 -=== a2 : a2 - value unequal

The value comparison operators produce a2 if the condition is satisfied,
but fail otherwise.

a1 := a2 : a1 - assign value

a1 := a2 assigns the value of a2 to a1 and produces the variable a1.

See also: a1 op:= a2, a1 :=: a2, and a1 <- a2

a1 op:= a2 - augmented assignment

a1 op:= a2 performs the operation a1 op a2 and assigns the result to a1;
it produces the variable a1. For example, i1 +:= i2 produces the same



384 Operators Appendix D

result as i1 := i1 + i2. There are augmented assignment operators for all
infix operations except assignment operations.

See also: a 1 := a2

a1 :=: a2 : a1 - exchange values

a 1 :=: a2 exchanges the values of a 1 and a2 and produces the variable a 1.

See also: a1:= a2 and a1 <-> a2

a1<- a2 : a1 - assign value reversibly

a 1 <- a2 assigns the value of a2 to a 1 and produces the variable a 1.
It reverses the assignment if it is resumed.

See also: a 1 := a2 and a 1 <-> a2

a1 <-> a2 : a1 - exchange values reversibly

a1 <-> a2 exchanges the values a1 and a2 and produces the variable a1.
It reverses the exchange if it is resumed.

See also: a2 <- a2 and a1 :=: a2

Other Operators

i1 to i2 by i3 : i1, ..., in - generate integers in sequence

i1 to i2 by i3 generates the sequence of integers from i1 to i2 in increments
ofi3.

Default: i3

See also: seqO

1 if by clause is omitted

[a1, a2, ... , an] : L - create list

[a1, a2, ... , an] produces a list containing thevaluesa1, a2, ... , an.
[ ] produces an empty list.

See also: listO



Appendix D Operators 385

a[a1] : a2 - subscript

If a is a string, a[a1] produces a one-character string consisting of
character a 1 of a.

If a is a list or record and a1 is an integer, a[a1] produces element a1 of
a.

If a is a record and a 1 is a string, a[a 1]produces the field of a whose name
is a1.

If a is a table, a[a1] produces the element corresponding to key a1 of a.

In all cases, a1 may be nonpositive.

Except when a1 is a string that is not a variable, a1 [a2] produces a
variable.

In all cases, the subscripting operation fails if the subscript is out of range.

See also: a[a1, a2, ... , an], a[i1 :i2], a[i1+:i2], and a[i1-:i2]

a[a1, a2, ... , an] : am - multiple subscript

a[a1, a2, ... , an] is equivalent to a[a1][a2] ...[an].

See also: a[a1]

a[i1 :i2] : a1 - produce substring or list section

If a is a string, a[i1 :i2] produces the substring of a between i1 and i2.
a[i1 :i2] produces a variable if a is a variable.

If a is a list, a[i 1:i2] produces a list consisting of the values of a in the given
range.

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of
range.

See also: a[a1], a[i1+:i2], and a[i1-:i2]

a[i1+:i2] : a1 - produce SUbstring or list section

If a1 is a string, a1 [i1 +:i2] produces the substring of a1 between i1 and i1
+ i2. a1 [i1+:i2] produces a variable if a1 is a variable.

Ifa1 is a list, a1 [i1+:i2]produces a list consisting of the values of a1 in the
given range.



386 Operators Appendix D

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of
range.

See also: a[a1], a[i1 :i2], and a[i1-:i2]

a[i1-:i2] : a1 - produce substring or list section

If a1 is a string, a[i1-: i2] produces the substring of a between i1 and i1
- i2. a[i1-:i2] produces a variable if a is a variable.

If a is a list, a[i1-:i2] produces a list consisting of the values of a in the
given range.

In either case, i1 and i2 may be nonpositive.

In either case, the subscripting operation fails if a subscript is out of
range.

See also: a[a1], a[i1 :i2], and a[i1 +:i2]

a(a1, a2, ..., an) : am - process argument list

If a is a procedure, a(a1, a2, ... , an) produces the outcome of calling a
with arguments a1 I a2, "'1 an.

If a is an integer having the value i, a(a1, a2, ... , an) produces the
outcome of ai, but fails if i is out of the range 1, ..., n. If i is nonpositive,
the argument is determined with respect to the right end of the list. It
produces a variable if ai is a variable.

Default: a -1

See also: a! A

a ! A - process argument list
If a is a procedure, a ! A produces the outcome of calling a with the
arguments in the list or record A. If a is an integer, a! A produces A[a] but
fails if a is out of range of A.

See also: a( ...) and !a



Appendix E

Procedures
Icon's built-in and library procedures are described jn this appendix.

Graphics procedures appear first, followed by basic (nongraphical) procedures.

Graphics Procedures

For graphics procedures, the type notation is extended in several ways.
The following identifiers have meanings as indicated:

x, y integer coordinate location

w, h integer width and height

theta real angle (measured in radians)

alpha real angle (measured in radians)

k string or integer color specification

Either or both of w and h can be negative to indicate a rectangle that extends
leftward or upward from its given coordinates. A color specification is either an
integer obtained from NewColorO or a string having one of these forms:

[lightness] [saturation] [hue[ish]] hue
red,green,blue
#hexdigits
system-dependent-color-name

Any window argument named W can be omitted, in which case the
subject window, &window, is used. Note that this is not the same as a default
argument: to use the subject window, the argument is omitted entirely, not
replaced by a null argument.

The notation"......" in an argument list indicates that additional argu­
ment sets can be provided, producing the same effect as multiple calls. The
optional window argument, W, is not repeated in these additional argument
sets.

Some graphics procedures are not built into Icon itself but are instead
part of the library. For these, the corresponding link file is noted. Alternatively,

387



388 Procedures Appendix E

link graphics incorporates all procedures listed here with the exception of the
turtle graphics library (which must be linked explicitly).

The Icon program library is constantly evolving and expanding. This
appendix lists the stable setofcore procedures thatis most important in graphics
programming. It includes Icon's built-in graphics procedures and all library
procedures used in this book. For information about the full library, seeGriswold
and Townsend (1996).

ActiveO : W - produce active window

ActiveO returns a window that has one or more events pending, waiting
if necessary. Successive calls avoid window starvation by checking the
open windows in a different order each time. Active() fails if no window
is open.

See also: PendingO

Alert(W) : W - alert user

AlertO produces a beep or other signal to attract attention.

Bg(W, k1) : k2 - set or query background color

8g0 returns the background color. If k1 is supplied, the color is first set
to that specification; failure occurs if the request cannot be satisfied.
Setting the background color does not change the appearance of the
window, but subsequent drawing operations that use the background
color are affected.

See also: EraseArea(), Fg(), and FreeColor()

CenterString(W, x, y, s) : W - draw centered string

CenterString() draws a text string that is centered verticallyand horizon­
tally about (x,y).

Link: gpxop

See also: DrawStringO, LeftStringO, and RightStringO

Clip(W, x, y, W, h) : W - set clipping rectangle

CIiPO sets the clipping region to the specified rectangle; subsequent
output extending outside its bounds is discarded. If CliPO is called with
no arguments, clipping is disabled and the entire canvas is writable.



Appendix E Procedures

Defaults: w, h to edge of window

389

Clone(W1, W2, 51, 52, •••, 5n) : W3 - create new context

CloneO produces a new window value that combines the canvas of W1
with a new graphics context. The new graphics attributes are copied
from W2 and modified by the arguments of CloneO. If W2 is omitted,
graphics attributes are copied from W1. If W1 is omitted, the subject
window is cloned. Invalid arguments produce failure or a run-time error
as in WAttribO.

See also: CoupleO, SubWindowO, and WAttribO

Color(W, i, k1, ......) : k2 - set or query mutable color

ColorO returns the setting of mutable color i if k1 is omitted. If k1 is
supplied, color iis changed as specified, with an immediate effect on any
visible pixels of that color. Additional index and color pairs may be
supplied to set multiple entries with one call. ColorO fails if a color
specification is invalid.

See also: NewColorO

ColorDialog(W, L, k, p, a) : 5 - display color selection dialog

ColorDialogO displays a color selection dialog box with Okayand Cancel
buttons. The box is headed by zero or more captions specified by the list
L, or a single string argument if passed in place of a list. If k is supplied,
it specifies a reference color to be displayed below the color being
adjusted.

If a callback procedure p is supplied, then pea, s) is called whenever the
color settings are adjusted. The argument a is an arbitraryvalue from the
ColorDialogO call; s is the new color setting in the form returned by
ColorValueO·

The color initially is set to k, if supplied, or otherwise to the foreground
color.

The final color setting, in ColorValueO form, is stored in the global
variable dialog_value. ColorDialogO returns the name of the button that
was selected.

Default: L

Link: dialog

"Select color:"



390 Procedures Appendix E

ColorValue(W, k) : s - translate color to canonical form

ColorValueO interprets the color k and returns a string of three comma­
separated integer values denoting the color's red, green, and blue
components. ColorValueO fails if k is not a valid color specification.

CopyArea(W1, W2, x1, y1, w, h, x2, y2) : W1 - copy rectangle

CopyAreaO copies a rectangular region (x1, y1, w, h) of window W1 to
location (x2, y2) on window W2. If W2 is omitted, W1 is used as both
source and destination. If W1 is omitted, the subject window is used.

Defaults: x1, y1 upper-left pixel
w, h to edge of window
x2, y2 upper-left pixel

Couple(W1, W2) : W3 - couple canvas and context

CoupleO produces a new window value that binds the canvas of W1
with the graphics context of W2. Both arguments are required.

See also: CloneO and WAttribO

DrawArc(W, x, y, w, h, theta, alpha, ......): W - draw arc

DrawArcO draws an arc of the ellipse inscribed in the rectangle specified
by (x, y, w, h). The arc begins at angle theta and extendsby an angle alpha.

Defaults: x, y upper-left pixel
w, h to edge of window
theta 0
alpha 21t

See also: DrawCircleO and FiIIArcO

DrawCircle(W, x, y, r, theta, alpha, .......) : W - draw circle

DrawCircleO draws anarc or circleof radius rcenteredat (x,y). theta is the
starting angle, and alpha is the extent of the arc.

Defaults: theta 0
alpha 21t

See also: DrawArcO and FiIICircleO



Appendix E Procedures 391

DrawCurve(W, x1, y1, x2, y2, ..., xn, yn) : W - draw curve

DrawCurveO draws a smooth curve through the points given as argu­
ments. If the first and last point are the same, the curve is smooth and
closed through that point.

See also: DrawLineO and DrawPolygonO

Drawlmage(W, x, y, s) : i-draw rectangular figure

DrawlmageO draws an arbitrarily complex figure in a rectangular area
at (x,y). s has one of these forms:

"width,palette,data" character-per-pixel image
"width,#hexdigits" bi-Ievel image
"width,-hexdigits" transparent bi-Ievel image

DrawlmageO normally returns the null value, but if some colors cannot
be allocated, it returns the number of colors that cannot be allocated.

Defaults: x, y upper-left pixel

See also: PatternO and ReadlmageO

DrawLine(W, x1, y1, x2, y2, ..., xn, yn) : W - draw line

DrawLineO draws line segments connecting a list of points in succession.

See also: DrawCurveO, DrawPolygonO, and DrawSegmentO

DrawPoint(W, x, y, ......): W - draw point

DrawPointO draws a point at each coordinate location given.

DrawPolygon(W, x1, y1, ... , xn, yn): W - draw polygon

DrawPolygonO draws the outline of a polygon formed byconnecting the
given points in order, with x1,y1 following xn,yn.

See also: DrawCurveO, DrawLineO, and FiIIPolygonO

DrawRectangle(W, x, y, w, h, ......): W - draw rectangle

DrawRectangleO draws the outline of the rectangle with comers at (x,y)
and (x+w,y+h).



392

Defaults: x, y
w, h

upper-left pixel
to edge of window

Procedures Appendix E

See also: FiIIRectangleO

DrawSegment(W, x1, y1, x2, y2, ......): W - draw line segment

DrawSegmentO draws a line between two points. Additional pairs of
coordinates may be supplied to draw additional, disconnected seg­
ments.

See also: DrawLineO

DrawString(W, x, y, s, ......): W - draw text

DrawStringO draws a string of characters without altering the location of
the text cursor. The integer x specifies the left edge of the first character,
and y specifies the baseline.

Enqueue(W, a, x, y, s, i): W - append event to queue

EnqueueO adds event a to the window event list with an event location
of (x,y). The string s specifies a set of modifier keys using the letters c, m,
and s to represent &control, &meta, and &shift, respectively. i specifies a
value for &interval, in milliseconds.

Defaults: a &null
x 0
y 0
S

1111

i 0

Link: enqueue

See also: PendingO

EraseArea(W, x, y, w, h, ......) : W - clear rectangular area

EraseAreaO fills a rectangular area with the background color.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: FiIIRectangleO



Appendix E Procedures 393

Event(W) : a - return next window event

EventO returns the next event from a window, waiting if necessary. The
keywords &x, &y, &row, &col, &interval, &control, &shift, and &meta are
set as side effects of calling EventO.

See also: ActiveO, EnqueueO, PendingO, WReadO, and WReadsO

Fg(W, k1) : k2 - set or query foreground color

F90 returns the foreground color. If k1 is supplied, the color is first set
to that specification; failure occurs if the request cannot be satisfied.
Setting the foreground color does not change the appearance of the
window, but subsequent drawing operations are affected.

See also: 890, FreeColorO, and ShadeO

FiIIArc(W, x, y, W, h, theta, alpha, ......) : W - draw filled arc

FillArcO draws a filled arc of the ellipse inscribed in the rectangle
specified by (x, y, w, h). The arc begins at angle theta and extends by an
angle alpha.

Defaults: x, y upper-left pixel
w, h to edge of window
theta 0
alpha 21t

See also: DrawArcO and FillCircleO

FiIICircle(W, x, y, r, theta, alpha, ......) : W - draw filled circle

FiIICircleO draws a filled arc or circle of radius rcentered at (x,y). theta is
the starting angle, and alpha is the extent of the arc.

Defaults: theta 0
alpha 21t

See also: DrawCircleO and FillArcO

FiliPolygon(W, x1, y1, x2, y2, ..., xn, yn) : W - draw filled polygon

FiIIPolygonO draws and fills the polygon formed byconnecting the given
points in order, with x1 ,y1 following xn,yn.

See also: DrawPolygonO



394 Procedures Appendix E

FiIIRectangle{W, x, y, w, h, ......) : W - draw filled rectangle

FiIIRectangle() draws a filled rectangle.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: DrawRectangleO and EraseAreaO

Font{W, 51) : 52 - set or query text font

FontO returns the text font. If s1 is supplied, the font is first set to that
specification; failure occurs if the request cannot be satisfied.

FreeColor{W, k, ......): W - free color

FreeColorO informs the graphics system that the color k no longer
appears in the window. This may allow the system to reclaim some
resources. Unpredictable results can occur if the color is still present in
the window.

See also: 890, F90, and NewColorO

GetEvent5{R, p1, p2, p3) : a - get events

GetEvents() repeatedly calls ProcessEvent(R, p1, p2, p3). GetEvents()
does not return.

Link: vidgets

See also: ProcessEvent()

GotoRC{W, i1, i2) : W - move text cursor to row and column

GotoRCO sets the text cursor position to row i1 and column i2, where the
character position in the upper-left corner of the window is 1,1 and
calculations are based on the current font attributes.

Defaults: x, y 1, 1

See also: GotoXY0



Appendix E Procedures 395

GotoXY(W, x, y): W - move text cursor to coordinate position

GotoXYO sets the text cursor position to the specified coordinate posi­
tion.

Defaults: x, y 0, 0

See also: GotoRCO

LeftString(W, x, y, 5) : W - draw left-justified string

LeftStringO draws a text string that is left-justified at position x and
centered vertically about y.

Link: gpxop

See also: CenterStringO, DrawStringO, and RightStringO

Lower(W) : W - lower window to bottom of window stack

LowerO sets a window to be "below" all other windows, causing it to
become obscured by windows that overlap it.

See also: RaiseO

NewColor(W, k) : i-allocate mutable color

NewColorO allocates a changeable entry in the color map and returns a
small negative integer that serves as a handle to this entry. If k is
supplied, the color map entry is initialized to that color. NewColorO fails
if no mutable entry is available.

See also: ColorO and FreeColorO

Notice(W, 51, 52, ..., 5n) : 5m - display strings and await response

NoticeO posts a dialog box with an Okay button and returns "Okay" after
response by the user. Each string sn is displayed centered on a separate
line in the dialog box.

Link: dialog

See also: TextDialogO



396 Procedures Appendix E

OpenDialog(W, 51,52, i) : 53 - display dialog for opening file

OpenDialogO displays a dialog box allowing entry of a text string of up
to i characters, normally a file name, along with Okay and Cancel
buttons. 51 supplies a caption to be displayed in the dialog box. 52 is used
as the initial value of the editable text string. The final text string value
is stored in the global variable dialog_value. OpenDialogO returns the
name of the button that was selected.

Defaults: 51
52
i

·Open:"
1111

50

Lin1e dialog

See also: SaveDialogO and TextDialogO

PaletteChar5(W, 51) : 52 - return characters of color palette

PaietteChar50 returns the string of characters that index the colors of
palette 51.

Default: 51 "c1"

See also: PaletteColorO, PaietteGraY50, and PaletteKeyO

PaletteColor(W, 51, 52) : 53 - return color from palette

PaletteColorO returns the color indexed by character 52 in palette 51.
The result is in the form produced by ColorValueO.

Default: 51 "c1"

See also: ColorValueO, PaietteChar50, PaietteGray50, and
PaletteKeyO

PaletteGray5(W, 51) : 52 - return grayscale entries of palette

PaietteGray50 returns the string of characters that index the achromatic
entries within palette 51, ordered from black to white.

Link: color

See also: PaietteChar50, PaletteColorO, and PaletteKeyO



Appendix E Procedures 397

PaletteKey(W, s1, k) : s2 - return character of closest color in palette

PaletteKeyO returns the character indexing the color of palette s 1 that is
closest to the color k.

Default: s1 "c1"

See also: PaletteCharsO, PaletteGraysO, and PaletteColorO

Pattern(W, s) : W - set fill pattern

PatternO sets a pattern to be used for drawing when the fill style is set to
"masked" or "textured". s can be a known pattern name or a specification
of the form "width,#data" where the data is given by hexadecimaldigits.
PatternO fails in the case of a bad specification or unknown name.

See also: DrawlmageO

Pending(W) : L - produce event list

PendingO returns the list that holds the pending events of a window. If
no events are pending, this list is empty.

See also: EnqueueO and EventO

Pixel(W, x, y, w, h) : k1, k2, ... kn - generate pixel values

PixelO generates the colors of the pixels in the given rectangle, left to
right, top to bottom.

Defaults: x, y upper-left pixel
w, h to edge of window

ProcessEvent(R, p1, p2, p3) : a - process event

ProcessEventO reads the next event, a, from the window associated
with the vidget R. Using x from &x and y from &y, p3(a, x, y) is called if
the event is a resize event. Then the event is passed to the proper vidget
for processing; p1(a, x, y) is called if the event is not accepted by a vidget.
Finally, p2(a, x, y) is called unconditionally.

Any procedure arguments that are omitted are not called.

ProcessEventO returns the event code a.

Link: vidgets

See also: GetEventsO



398 Procedures Appendix E

Rai5e(W) : W - raise window to top of window stack

RaiseO sets a window to be "above" all other windows, so that it is not
obscured by any other window.

See also: LowerO

Readlmage(W, 51, x, y, 52) : i-load image file

ReadlmageO loads an image from file s 1, placing its upper-left corner at
x,y. Ifa palette s2 is supplied, the colors ofthe image are mapped to those
of the palette. ReadlmageO fails if it cannot read an image from file s1.
Itnormally returns the null value, but if some colors cannotbe allocated,
it returns the number of colors that cannot be allocated.

Defaults: x, y upper-left pixel

See also: DrawlmageO and WritelmageO

RightString(W, x, y, 5) : W - draw right-justified string

RightStringO draws a text string that is right-justified at position x and
centered vertically about y.

Link: gpxop

See also: CenterStringO, DrawStringO, and LeftStringO

SaveDialog(W, 51,52, i) : 53 - display dialog for saving file

SaveDialogO displays a dialog box allowing entry of a text string of up
to i characters, normally a file name, along with Yes, No, and Cancel
buttons. s1 supplies a caption to be displayed in the dialog box. s2 is
used as the initial value of the editable text string. The final text string
value is stored in the global variable dialog_value. SaveDialogO returns
the name of the button that was selected.

Defaults: s1
s2
i

"Save:"
1111

50

Link: dialog

See also: OpenDialogO and TextDialogO



Appendix E Procedures 399

SelectDialog(W, L1, L2, 51, L3, i) : 52 - display selection dialog

SelectDialogO constructs and displays a dialog box and waits for the
user to select a button. The box contains zero or more captions specified
by the list L1, zero or more radio buttons specified by L2 and 51, and one
or more buttons specified by L3. i specifies the index of the default
button, with a value of 0 specifying that there is no default button. Any
of the list arguments Ln can be specified by a single nonnull value which
is then treated as a one-element list.

For the radio buttons, L2 specifies the button names and 51 specifies the
name for the default button. If L2 is omitted, there are no buttons.

SelectDialogO returns the name of the button that was selected to
dismiss the dialog. The global variable dialog_value is assigned the
name of the selected radio button.

Defaults: L1
L2
L3

[]
[ ]
["Okay", "Cancel"]
1

Link: dialog

See also: TextDialogO and ToggleDialogO

Shade(W, k) : W - set foreground for area filling

ShadeO sets the foreground color to kon a color or grayscale display. On
a bi-Ievel display, it sets the fill style to textured and installs a dithering
pattern that approximates the brightness of color k.

Link: color

See also: FgO

SubWindow(W, x, y, w, h): W - clone a subwindow

SubWindowO produces a subwindow by creating and reconfiguring a
clone of the given window. The original window is not modified. In the
clone, which is returned, clipping bounds are set by the given rectangle
and the origin is set at the rectangle's upper-left corner.

Link: wopen

Defaults: x, y upper-left pixel
w, h to edge of window

See also: WOpenO



Procedures Appendix E400

TDraw(r) : n - move turtle forward while drawing

TDrawO moves the turtle forward r units while drawing a line. r can be
negative to move backwards. The heading is not changed.

Default: r 1.0

Link: turtle

See also: TDrawtoO, TScaleO, and TSkiPO

TDrawto(x, y) : n - draw with turtle to (x,y)

TDrawtoO turns the turtle and draws a line to the point (x,y). The heading
is set as a consequence of this movement.

Defaults: x, y center of window

Link: turtle

See also: TDrawtoO and TGotoO

TextDialog(W, L1, L2, L3, L4, L5, i) : s - display text dialog

TextDialogO constructs and displays a dialog box and waits for the user
to select a button. The boxcontains zero or more captions specified by the
list L1, zero or more text-entry fields specified by L2, L3, and L4, and one
or more buttons specified by L5. i specifies the index of the default
button, with a value of 0 specifying that there is no default button. Any
of the list arguments Lncan be specified by a single nonnull value, which
is then treated as a one-element list.

For the text-entry fields, L2 specifies the labels, L3 specifies the default
values, and L4 specifies the maximum widths. If L2, L3, and L4 are not
the same length, the shorter lists are extended as necessary by duplicat­
ing the last element. If omitted entirely, the defaults are: no labels, no
initial values, and a width of 10 (or more if necessary to hold a longer
initial value).

TextOialogO returns the name of the button that was selected to dismiss
the dialog. The global variable dialog_value is assigned a list containing
the values of the text fields.

Defaults: L1
L2
L3
L4
L5

[]
[]
[]
[]
["Okay", ·Cancel"]
1



Appendix E Procedures 401

Link: dialog

See also: NoticeO, OpenDialogO, SaveDialogO, and SelectDialogO

TextWidth(W, s) : i-return width of text string

TextWidthO returns the width of string 5, in pixels, as drawn using the
current font.

See also: DrawStringO

TFace(x, y) : r - set turtle heading

TFaceO turns the turtle to face directly towards the point (x,y). If the
turtle is already at (x,y), the heading is not changed. The new heading is
returned.

Defaults: x, y center of window

Link: turtle

See also: THeadingO

TGoto(x, y, r) : n - set turtle location and change heading

TGotoO moves the turtle to the point (x,y) without drawing. The heading
is not changed unless r is supplied, in which case the turtle then turns to
a heading of r.

Defaults: x, y center of window

Link: turtle

See also: TDrawtoO, THomeO, TSkiPO, TXO, and TYO

THeading(r) : r - set or query turtle heading

THeadingO returns the turtle's heading. If r is supplied, the heading is
first set to that value. The turtle's location is unaffected.

Link: turtle

See also: TFaceO, TLeftO, and TRightO



402 Procedures Appendix E

THome() : n - move turtle to home position

THomeO moves the turtle to the center of the window without drawing
and sets the heading to -900 (that is, towards the top ofthe window). The
scaling factor is not changed.

Link: turtle

See also: TGotoO and TResetO

TLeft(r) : r - turn turtle to left

TLeftO turns the turtle r degrees to the left of its current heading. Its
location is not changed, and nothing is drawn. The resulting heading is
returned.

Default: r 90.0

Link: turtle

See also: TFaceO, THeadingO,and TRightO

ToggleDialog(W, L1, L2, L3, L4, i) : L - display toggle dialog

ToggleDialogO constructs and displays a dialog box and waits for the
user to select a button. The box contains zero or more captions specified
by the list L1, zero or more toggle buttons specified by L2, zero or more
toggle states (1 or null) specified by L3, and one or more buttons specified
by L4. i specifies the index of the default button, with a value of 0
specifying that there is no default button. Any of the list arguments Ln
can be specified by a single nonnull value, which is then treated as a one­
element list.

For the toggle buttons, L2 specifies the labels and L3 specifies the
corresponding states. If L2 and L3 are not the same length, the shorter list
is extended as necessary by duplicating the last element. If omitted
entirely, the defaults are: no labels and null states.

ToggleDialogO returns the name of the button that was selected to
dismiss the dialog. The global variable dialog_value is assigned a list
containing the states of the toggle buttons.

Defaults: L1 []
L2 []
L3 []
L4 ["Okay·, "Cancel"]
i 1



Appendix E Procedures

Link: dialog

See also: SelectDialogO and TextDialogO

403

TReset() : n - reinitialize turtle state

TResetO resets the turtle state: The window is cleared, the turtle is
moved to the center of the window without drawing, the heading is set
to -90°, the scaling factor is reset to 1.0, and the stack of turtle states is
cleared. These actions restore the initial conditions.

Link: turtle

See also: THomeO, TRestore(), and TSave()

TRestore() : n - restore turtle state

TRestore() sets the turtle state to the most recenfset of saved values, then
discards that set. It fails if no unrestored set is available.

Link: turtle

See also: TReset() and TSave()

TRight{r) : r - turn turtle to right

TRight() turns the turtle r degrees to the right of its current heading. Its
location is not changed, and nothing is drawn. The resulting heading is
returned.

Default: r 90.0

Link: turtle

See also: TFaceO, THeadingO, and TLeft()

TSave() : n - save turtle state

TSave() saves the turtle window,location, heading, and scaling factor on
an internal stack.

Link: turtle

See also: TRestore()



404 Procedures Appendix E

TScale(r) : r - set or query turtle scaling factor

TScaleO returns the TDraw/TSkip scaling factor. If r is supplied, the
scaling factor is first multiplied by r. The turtle's heading and location are
not changed.

Link: turtle

See also: TDrawO and TSkiPO

TSkip(r) : n - move turtle forward without drawing

TSkiPO moves the turtle forward i units. r can be negative to move
backwards. The heading is not changed.

Default: r 1.0

Link: turtle

See also: TDrawO, TGotoO, and TScaleO

TWindow(W) : n - set turtle window

TWindowO moves the turtle to the given window, retaining its coordi­
nates and heading. The heading is not changed.

Link: turtle

TX(x) : r - set or query horizontal turtle position

TXO returns the turtle's horizontal position. If x is supplied, the turtle is
first moved without drawing. The turtle's heading is not changed.

Link: turtle

See also: TGotoO and TYO

TY(y) : r - set or query vertical turtle position

TYO returns the turtle's vertical position. If yis supplied, the turtle is first
moved without drawing. The turtle's heading is not changed.

Link: turtle

See also: TGotoO and TXO



Appendix E Procedures 405

Uncouple(W) : W - uncouple window

UncoupleO frees the window W. Ifno other bindings to the same canvas
exist, the window is closed.

See also: CloneO, CoupleO, and WCloseO

VEcho(R, a) : n - trace vidget callback

VEchoO writes the ill ofvidget R and the value a on the standard output
file.

VEchoO is suitable for use as a vidget callback procedure, and the line is
labeled as a callback.

Link: vidgets

VGetltems(R) : L - get vidget items

VGetitemsO returns a list of strings representing the items displayed by
the menu or text-list vidget R. If a menu vidget contains a submenu, the
submenu is represented by two entries in the returned list: a string label
followed by a list of items in the submenu.

Link: vidgets

See also: VSetitemsO, VGetStateO, and VSetStateO

VGetState(R) : a - get vidget state

VGetStateO returns the current state of the vidget R. VGetStateO can be
used only with vidgets that maintain state, such as toggle buttons and
sliders but not menus.

See also: VSetStateO, VGetltemsO, and VSetitemsO

Link: vidgets

VSetFont(W) : W - set standard vidget font

VSetFontO sets the font to one suitable for use with the vidgets. It may
be used independently of the vidgets by other programs seeking a
similar appearance. If the existing font has suitable dimensions, it is left
unchanged; if no suitable font can be found, the font is left unchanged.

Link: vidgets

See also: FontO



406 Procedures Appendix E

VSetltem5{R, L) : L - set vidget items

VSetltem50 sets the list of strings representing the items displayed by
the menu or text-list vidget R. For a menu vidget, any string entry may
be followed by a list representing a submenu.

Link: vidget5

See also: VGetltem50, VGetStateO, and VSetStateO

VSetState{R, a) : n - set vidget state

VSetStateO sets the state of the vidget R. VSetStateO can be used only
with vidgets that maintain state, such as toggle buttons and sliders but
not menus.

See also: VGetStateO, VGetltem50, and VSetltem50

Link: vidget5

WAttrib{W, 51, 52, ..., 5n) : a1, a2, ..., an - set or query attributes

WAttribO sets and generates window attribute values. Each string of the
form name=va[ue sets a value. A string with just a name is an inquiry.
First, any requested values are set. Then, WAttribO generates the values
of all referenced attributes. Each value has the data type appropriate to
the attribute it represents. WAttribO ignores illegal values, producing no
result; if all values are illegal, WAttribO fails.

WCI05e{W) : W - close window

WClo5eO closes a window. The window disappears from the screen, and
all bindings of its canvas are rendered invalid. Closing the subject
window sets &window to the null value.

Link: wopen

See also: c105eO, UncoupleO, WFlu5hO, and WOpenO

WDefault{W, 51, 52) : 53 - get default value from environment

WDefaultO returns the value of option 52 for the program named 51 as
registered with the graphics system. Ifno such value is available, or if the
system provides no registry, WDefaultO fails.



Appendix E Procedures 407

WDelay(W, i) : W - flush window and delay

WDeiayO flushes any pending output for window Wand then delays for
i milliseconds before returning.

Default: 1

Link: wopen

See also: delayO and WFlushO

WDone(W) - wait for "quir' event, then exit

WDoneO waits until a q or Q is entered, then terminates program
execution. It does not return.

Link: wopen

See also: exitO and WQuitO

WFlush(W) : W - flush pending output to window

WFlushO forces the execution of any window commands that have been
buffered internally and not yet executed.

See also: flushO, WCloseO, WDelayO, and WSyncO

WOpen(s1, s2, ... , sn) : W - open and return window

WOpenO creates and returns a new window having the attributes
specified by the argument list. Invalid arguments produce failure or
error, as in WAttribO. If &window is null, the new window is assigned as
the subject window.

Link: wopen

See also: openO, WAttribO, SubWindowO, and WCloseO

WQuit(W) : W - check for "quit" event

WQuitO consumes events until a q or Q is entered, at which point it
returns. If the event queue is exhausted first, WQuitO fails.

Link: wopen

See also: WDoneO



408 Procedures Appendix E

WRead(W) : s - read line from window

WReadO accumulates characters typed in a window until a newline or
return is entered, then returns the resulting string (without the newline
or return). Backspace and delete characters may be used for editing. The
typed characters are displayed in the window if the echo attribute is set.

Link: wopen

See also: readO, EventO, and WReadsO

WReads(W, i) : s - read characters from window

WReadsO returns the next i characters typed in a window. Backspace
and delete characters may be used for editing prior to entry of character
i. The typed characters are displayed in the window if the echo attribute
is set.

Default: 1

Link: wopen

See also: readsO, EventO, and WReadO

Writelmage(W, s, x, y, W, h) : W - write image to file

WritelmageO writes an image of the rectangular area (x,y,w,h) to the file
s. It fails if s cannot be written or if the specified area, after clipping by
the window's edges, has a width or height of zero. The file is normally
written in GIF format, but some forms of file names may select different
formats on some graphics systems.

Defaults: x, y upper-left pixel
w, h to edge of window

See also: ReadlmageO

WSync(W) : W - synchronize with server

W8yncO synchronizes the program with the graphics server on a client­
server graphics system, returning after all pending output has been
processed. Onsystemsthatmaintainsynchronizationatall times,W8ync()
has no effect.

See also: WFlushO



Appendix E Procedures 409

WWrite(W, s1, s2, ..., sn): sn - write line to window

WWriteO writes a string to a window at the text cursor position. The area
behind the written text is set to the background color. Newline, return,
and tab characters reposition the cursor. An implicit newline is output
following the last argument.

Link: wopen

See also: writeO, DrawStringO, and WWritesO

WWrites(W, s1, s2, ..., sn) : sn - write partial line to window

WWriteO writes a string to a window at the text cursor position. The area
behind the written text is set to the background color. Newline, return,
and tab characters reposition the cursor. Unlike WWriteO, no newline is
added.

Link: wopen

See also: writesO, DrawStringO, and WWriteO

Basic Procedures

The procedures listed here are basic in the sense that they do not involve
graphics. No link declarations are needed for access; all are built into Icon.

abs(N1) : N2 - compute absolute value

absO produces the absolute value of N1.

acos(r1) : r2 - compute arc cosine

acosO produces the arc cosine of r1 in the range of0 to 1t for r1 in the range
of -1 to l.

See also: cosO

any(c, s, i1, i2) : i3 - locate initial character

anyO succeeds and produces the position after the first character of
s[i1 :i2] if that character is in c. It fails otherwise.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0



410

See also: manyO and matchO

Procedures Appendix E

asin(r1) : r2 - compute arc sine

asinO produces the arc sine of r1 in the range of -rt/2 to rt/2 for r1 in the
range -1 to 1.

See also: sinO

atan(r1, r2) : r3 - compute arc tangent

atanO produces the arc tangent of r1 / r2 in the range of -1t to 1t with the
sign of r1.

Default: r2 1.0

See also: tanO

bal(c1, c2, c3, s, i1, i2) : i3, i4, ..., in - locate balanced characters

balO generates the sequence of integer positions in s preceding a charac­
ter of c1 in s[i1 :i2] that is balanced with respect to characters in c2
and c3, but fails if there is no such position.

Defaults: c1 &cset
c2 '('
c3 ')'
s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

See also: findO and uptoO

center(s1, i, s2) : s3 - position string at center

centerO produces a string of size i in which s1 is centered, with s2 used
for padding at left and right as necessary.

Defaults: i 1
s2 II II (blank)

See also: leftO and rightO

char(i) : s - produce character

char(} produces a one-character string whose internal representation is
i. The value of i must be between 0 and 255 inclusive.



Appendix E Procedures

See also: ordO

411

chdir(s) : n - change directory

chdirO changes the current directory to 5, but it fails if there is no such
directory or if the change cannot be made. Whether the change in
directory persists after program termination depends on the operating
system on which the program runs.

close(f) : f - close file

c1oseO closes f.

See also: flushO and openO

copy(a1) : a2 - copy value

copYO produces a copy of a1 if a1 is a structure; otherwise it produces
a1. Structures contained within a copied structure are not copied.

cos(r1) : r2 - compute cosine

cosO produces the cosine of r1 in radians.

See also: cosO

cset(a) : C - convert to cset

csetO produces a cset resulting from converting a, but fails if the
conversion is not possible.

delay(i) : n - delay execution

delayO delays program execution i milliseconds. This procedure is not
supported on all platforms; if it is not, there is no delay and delayO fails.

delete(A, a) : A - delete element

If A is a set, deleteO deletes a from A. If A is a table, deleteO deletes the
element for key a from A. deleteO produces A.

See also: insertO and memberO



412 Procedures Appendix E

detab(51 ~ i1, i2, ..., in) : 52 - replace tabs by blanks

detabO produces a string based on s1 in which each tab character is
replaced by one or more blanks. Tab stops are at i1, i2, "0' in, with
additional stops obtained by repeating the last interval.

Default: i1 9

See also: entabO

dtor(r1) : r2 - convert degrees to radians

dtorO produces the radian equivalent of r1 given in degrees.

See also: rtodO

entab(51, i1, i2, ..., in) : 52 - replace blanks by tabs

entabO produces a string based on s1 in which runs of blanks are
replaced by tabs. Tab stops are at i1, i2, ... , in, with additional stops
obtained by repeating the last interval.

Default: i1 9

See also: detabO

exit(i) - exit program

exitO terminates program execution with exit status i.

Default: normal exit (machine dependent)

See also: stopO

exp(r1) : r2 - compute exponential

expO produces the mathematical constant e (2.71828... ) raised to the
power r1.

See also: logO and N1 I\. N2

find(51, 52, i1, i2) : i3, i4, ..., in - find string

findO generates the sequence of integer positions in s2 atwhich s1 occurs
as a substring in s2[i1 :i2], but fails if there is no such position.



Appendix E Procedures

Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

See also: balO, matchO, and uptoO

flU5h(f) : f - flush output

flushO flushes any accumulated output for file f.

See also: closeO

413

get(L) : a - get value from list

getO produces the left-most element of Land removes it from L, but fails
if L is empty. get is a synonym for pop.

See also: popO, pullO, pushO, and putO

getenv(51) : 52 - get value of environment variable

getenvO produces the value of the environment variable s 1, but fails if
s1 is not set or if environment variables are not supported.

iand(i1, i2) : i3 - compute bit-wise and

iandO produces an integer consisting of the bit-wise AND of i1 and i2.

See also: icomO, iorO, ishiftO, and ixorO

icom(i1): i2 - compute bit-wise complement

icomO produces the bit-wise complement of i1.

See also: iandO, iorO, ishiftO, and ixorO

image(a) : 5 - produce string image

imageO produces a string image of a.

in5ert(A, a1, a2) : A - insert element

If A is a table, insertO inserts key a 1withvalue a2 into A. If A is a set,
insertO inserts a1 into A. insertO produces A.



414

Default: a2 &null

See also: deleteO and memberO

Procedures Appendix E

integer(a) : i-convert to integer

integerO produces the integer resulting from converting a, but it fails if
the conversion is not possible.

See also: numericO and realO

ior(i1, i2) : i3 - compute bit-wise inclusive or

iorO produces the bit-wise inclusive OR of i1 and i2.

See also: iandO, icomO, ishiftO, and ixorO

i5hift(i1, i2) : i3 - shift bits

ishiftO produces the result of shifting the bits in i1 by i2 positions.
Positive values of i2 shift to the left with zero fill; negative values of i2
shift to the right with sign extension.

See also: iandO, icomO, iorO, and ixorO

ixor(i1, i2) : i3 - compute bit-wise exclusive or

ixorO produces the bit-wise exclusive OR of i1 and i2.

See also: iandO, icomO, iorO, and ishiftO

key(T) : a1, a2, ..., an - generate keys from table

keyO generates the keys of table T.

See also: !a

left(51, i, 52) : 53 - position string at left

leftO produces a string of size i in which s1 is positioned at the left, with
s2 used for padding at the right as necessary.

Defaults: i 1
s2 II II (blank)

See also: centerO and rightO



Appendix E Procedures

1i5t(i, a) : L - create list

listO produces a list of size i in which each value is a.

Defaults: i 0
a &null

See also: [a1, a2, ... , an]

log(r1, r2) : r3 - compute logarithm

logO produces the logarithm of r1 to the base r2.

Default: r2 &e (2.71828 ... )

See also: expO

415

many(c, 5, i1, i2) : i3 -locate many characters

manyO succeeds and produces the position in s after the longest initial
sequence of characters in c within s[i1:i2]. It fails if the initial character is
not in c.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

See also: anyO and matchO

map(51, 52, 53) : 54 - map characters

mapO produces a string of size *s1 obtained by mapping characters
of s1 that occur in s2 into corresponding characters in s3.

Defaults: s2 string(&ucase)
s3 string(&lcase)

match(51, 52, i1, i2) : i3 - match initial string

matchO produces the position beyond the initial substring of s2[i1 :i2], if
any, that is equal to s1; otherwise it fails.

Defaults: s2 &subject
i1 &pos if s2 is defaulted, otherwise 1
i2 0

See also: =s, anyO, and manyO



416 Procedures Appendix E

member(A, a) : a - test for membership

If A is a set, memberO succeeds if a is a member of Abut fails otherwise.
IfAis a table, memberO succeeds ifa is a key ofan element in A, butit fails
otherwise. memberO produces a if it succeeds.

See also: deleteO and insertO

move(i) : 5 - move scanning position

moveO produces &subjeet[&pos:&pos + i] and assigns &pos + i to &pos/
but fails if i is out of range. moveO reverses the assignment to &pos if it
is resumed.

See also: tabO

numeric(a) - convert to numeric

numerieO produces an integer or real number resulting from converting
a, but fails if the conversion is not possible.

See also: integerO and realO

open(51, 52) : f - open file

openO produces a file resulting from opening s1 according to options
given in s2, but fails if the file cannot be opened. The options are:

character
II rn

IIW"

"all
"b"
·e"
IIgil
lip"

"t"
"u"

effect

open for reading
open for writing
open for writing in append mode
open for reading and writing
create file
open window for graphics
open a pipe to or from command s1 (not available
on all platforms)

translate line termination sequences to linefeeds
do not translate line termination sequences to
linefeeds

The default mode is to translate line termination sequences to linefeeds
on input and conversely on output. The untranslated mode should be
used when reading and writing binary files.



Appendix E Procedures

Default: s2 "rt"

See also: close()

417

ord(s) : i-produce ordinal

ord() produces an integer (ordinal) between 0 and 255 that is the internal
representation of the one-character string s.

See also: char()

pop(L) : a - pop from list

pop() produces the left-most element of Land removes it from L, but fails
if Lis empty. pop is a synonym for get.

See also: get(), pull(), push(), and put()

pos(i1) : i2 - test scanning position

pos() produces &pos if i1 or its positive equivalent is equal to &pos but
fails otherwise.

See also: &pos and &subject

pull(L) : a - pull from list

pull() produces the right-most element of L and removes it from L, but
fails if L is empty.

See also: get(), pop(), push(), and put()

push(L, a1, a2, ... an) : L - push onto list

push() adds a1 , a2, ..., an to the left end of Land produces L. Values are
added to the left in the order a1, a2, ... , an, so an becomes the left-most
element of L. If no value to add is given, a null value is added.

See also: get(), pop(), pull(), and put()

put(L, a1, a2, ... an) : L - put onto list

put() adds a1, a2, ..., an to the right end of Land produces L. Ifno value
to add is given, a null value is added.

See also: get(), pop(), pull(), and push()



418 Procedures Appendix E

read(f) : 5 - read line

readO produces the next line from f, but it fails on an end of file.

Default: f &input

See also: readsO

read5(f, i) : 5 - read string

readsO produces a string consisting of the next i characters from f, or the
remaining characters of f if fewer remain, but fails on an end of file. In
readsO, unlike readO, line termination sequences have no special signifi­
cance. readsO should be used for reading binary data.

Defaults: f &input
1

See also: readO

real(a) : r - convert to real

realO produces a real number resulting from converting a, but fails if the
conversion is not possible.

See also: integerO and numericO

remove(5): n - remove file

removeO removes (deletes) the file named 5, but fails if 5 cannot be
removed.

See also: renameO

rename(51, 52) : n - rename file

renameO renames the file named 51 to be 52, but fails if the renaming
cannot be accomplished.

See also: removeO

repl(51, i) : 52 - replicate string

replO produces a string consisting of i concatenations of 51.



Appendix E Procedures

reverse(s1) : s2 - reverse string

rever5eO produces a string consisting of the reversal of 51.

419

right(s1, i, s2) : s3 - position string at right

rightO produces a string of size i in which s1 is positioned at the right,
with s2 used for padding at the left as necessary.

Defaults: i 1
52 II II (blank)

See also: centerO and leftO

rtod(r1) : r2 - convert radians to degrees

rtodO produces the degree equivalent of r1 given in radians.

See also: dtorO

runerr(i, a) - terminate execution with run-time error

runerrO terminates program execution with error i and offending value
a.

Default: no offending value

seek(f, i) : f - seek to position in file

seekO seeks to position i in f but fails if the seek cannot be performed.
The first byte in the file is at position 1. seek(f, 0) seeks to the end of file
f. If i is negative, the position is relative to the end of the file.

See also: whereO

seq(i1, i2) : i3, i4, ... - generate sequence of integers

5eqO generates an endless sequence of integers starting at i1 with
increments of i2.

Defaults: i1 1
i2 1

See also: i1 to i2 by i3



420 Procedures Appendix E

set(L) : S - create set

setO produces a set whose members are the distinct values in the list L.

Default: L [ ]

sin(r1) : r2 - compute sine

sinO produces the sine of r1 given in radians.

See also: asinO

sort(A, i) : L - sort structure

sortO produces a list containing values from A. If Ais a list, record, or set,
sortO produces the values of A in sorted order. If A is a table, sortO
produces a list obtained by sorting the elements of A, depending on the
value of i. For i =1 or 2, the list elements are two-element lists of key/
value pairs. For i =3 or 4, the list elements are alternative keys and values.
Sorting is by keys for i odd, by values for i even.

If Acontains multiple types, the elements ofeach type are sorted together
and the types are sorted in this order: null, integer, real, string, cset, file,
procedure, list, set, table, and finally record types.

Default: 1

See also: sortf0

sortf(A, i) : L - sort structure by fields

sortfO produces a sorted list of the values of A. Sorting is primarily by
type and in most respects is the same as with sortO. However, among
lists and among records, two structures are ordered by comparing their
ith fields. ican be negative but not zero. Two structures having equal ith
fields are ordered as they would be in regular sorting, but structures
lacking an ith field appear before structures having them.

Default: 1

See also: sortO

sqrt(r1) : r2 - compute square root

sqrtO produces the square root of r1.

See also: N1 1\ N2



Appendix E Procedures 421

stop(a1, a2, ..., an) - stop execution

stopO terminates program execution with an error exit status after
writing strings a1, a2, ... , an. If ai is a file, subsequent output is to ai.
Initial output is to standard error output.

Default: ai 1111 (empty string)

See also: exitO and writeO

string(a) : s - convert to string

stringO produces a string resulting from converting a, but fails if the
conversion is not possible.

system(s) : i-call system function

systemO calls the C library function system to execute S and produces the
resulting integer exit status. This procedure is not available on all
platforms.

tab(i) : s - set scanning position

tabO produces &subject[&pos:i] and assigns i to &pos, but fails if i is out
of range. It reverses the assignment to &pos if it is resumed.

See also: moveO

table(a) : T - create table

tableO produces a table with a default value a.

Default: a &null

tan(r1) : r2 - compute tangent

tanO produces the tangent of r1 given in radians.

See also: atanO

trim(s1, c) : s2 - trim string

trimO produces a string consisting of the characters of s1 up to the
trailing characters contained in c.

Default: c I I (blank)



422 Procedures Appendix E

type(a) : s - produce type name

typeO produces a string corresponding to the type of a.

upto(c, s, i1, i2) : i3, i4, ... in - locate characters

uptoO generates the sequence of integer positions in s preceding a
character of c in s[i1 :i2]. It fails if there is no such position.

Defaults: s &subject
i1 &pos if s is defaulted, otherwise 1
i2 0

See also: balO and findO

where(f) : i-produce position in file

whereO produces the current byte position in f. The first byte in the file
is at position 1.

See also: seekO

write(a1, a2, ..., an) : an - write line

writeO writes strings a1, a2, ... , an with a line termination sequence
added at the end. If ai is a file, subsequent output is to ai. Initial output
is to standard output.

Default: ai 1111 (empty string)

See also: writesO

writes(a1, a2, ..., an) : an - write string

writesO writes strings a1, a2, ... , an without a line termination sequence
added at the end. If ai is a file, subsequent output is to ai. Initial output
is to standard output.

Default: ai 1111 (empty string)

See also: writeO



Appendix F

Keywords

Keywords in Icon are global names that have a special notation (an identifier
preceded by an ampersand) and sometimes have special behavior. Some key­
words can be assigned a value; these variable keywords are indicated in the
individual descriptions.

&ascii : c - ASCII characters

The value of &ascii is a cset consisting of the 128 ASCII characters.

&clock : s - time of day

The value of &clock is a string consisting of the current time of day in
the form hh:mm:ss, as in "19:21 :00".

&col : i-mouse column

The value of &col is normally the column location of the mouse at the
time of the last receivedwindow event. Ifa window is open, &col also can
be changed by assignment, which affects &x, or as a side effect of
assignment to &x.

&control : n - state of control key during window event

The value of &control is the null value if the control key was depressed
at the time of the last received window event; otherwise, a reference to
&control fails.

&cset : c - all characters

The value of &cset is a cset consisting of all 256 characters.

423



424 Keywords Appendix F

&date : 5 - date

The value of &date is the current date in the form ywy/mm/dd, as in
"1997/10/31 ".

&dateline : 5 - date and time of day

The value of &dateline is the current date and time of day, as in "Friday,
October 31, 1997 7:21 pm".

&digit5 : c - digits

The value of &digits is a cset containing the ten digits.

&dump : i-termination dump

If the value of &dump is nonzero at the time of program termination, a
dump in the style of displayO is provided. &dump is zero initially.

&e : r - base of natural logarithms

The value of &e is the base of the natural logarithms, 2.71828....

&errout : f - standard error output

The value of &errout is the standard error output file.

&fail - failure

The keyword &fail produces no result.

&feature5 : 51, 52, ... , 5n - implementation features

The value of &features generates strings identifying the features of the
executing version of Icon.

&h05t : 5 - host system

The value of &host is a string that identifies the host system on which
Icon is running.

&input : f - standard input

The value of &input is the standard input file.



Appendix F Keywords 425

&interval : i-elapsed time between window events

The value of &interval is the time, in milliseconds, between the last
received window event and the previous event in thatwindow.&interval
is zero if this information is not available.

&Icase : c - lowercase letters

The value of &Icase is a cset consisting of the 26 lowercase letters.

&Idrag : i-left-button drag event

The value of &Idrag is the integer that represents the event of dragging
the mouse with the left button depressed.

&Ietters : c - letters

The value of &Ietters is a cset consisting of the 52 upper- and lowercase
letters.

&Ipress: i -left-button press event

The value of &Ipress is the integer that represents the event of pressing
the left mouse button.

&Irelease : i-left-button release event

The value of &Irelease is the integer that represents the event of releasing
the left mouse button.

&mdrag : i-middle-button drag event

The value of &mdrag is the integer that represents the event of dragging
the mouse with the middle button depressed.

&meta : n - state of meta key during window event

The value of &meta is the null value if the meta key was depressed at the
time of the last received window event; otherwise, a reference to &meta
fails.



426 Keywords Appendix F

&mpress : i-middle-button press event

The value of &mpress is the integer that represents the event of pressing
the middle mouse button.

&mrelease : i-middle-button release event

The value of &mrelease is the integer that represents the event of
releasing the middle mouse button.

&null : n - null value

The value of &null is the null value.

&output : f - standard output

The value of &output is the standard output file.

&phi : r - golden ratio

The value of &phi is the golden ratio, 1.61803....

&pi : r - ratio of circumference to diameter of a circle

The value of &pi is the ratio of the circumference of a circle to its diameter,
3.14159....

&pos : i-scanning position

The value of &pos is the position of scanning in &subject. The scanning
position may be changed by assignment to &pos. Such an assignment
fails if it is out of range of &subject.

&progname : s - program name

The value of &progname is the file name of the executing program. A
string can be assigned to &progname to replace its initial value.

&random : i-random seed

The value of &random is the seed for the pseudo-random sequence. The
seed may be changed by assignment to &random. &random is zero
initially.



Appendix F Keywords 427

&rdrag : i - right-button drag event

The value of &rdrag is the integer that represents the event of dragging
the mouse with the right button depressed.

&resize : i-window resize event

The value of &resize is the integer that represents a window resizing
event.

&row : i-mouse row location

The value of &row is normally the column location of the mouse at the
time of the last received window event. If a window is open, &row also
can be changed by assignment, which affects &y, or as a side effect of
assignment to &y.

&rpress : i - right-button press event

The value of &rpress is the integer that represents the event of pressing
the right mouse button.

&rrelease : i - right-button release event

The value of &rrelease is the integer that represents the event of releas­
ing the right mouse button.

&shift : n - state of shift key during window event

The value of &shift is the null value if the shift key was depressed at the
time of the last received window event; otherwise, a reference to &shift
fails.

&subject : 5 - subject of scanning

The value of &subject is the stringbeing scanned. The subjectofscanning
may be changed by assignment to &subject.

&time : i-elapsed time

The value of &time is the number of milliseconds of CPU time since
beginning of program execution.



428 Keywords Appendix F

&trace : i-procedure tracing

Procedure tracing is enabled by assigning a nonzero integer to &trace. A
trace message is produced when a procedure is called, returns, sus­
pends, or is resumed. &trace is decremented for each message produced.
&trace is zero initially.

&ucase : c - uppercase letters

The value of &ucase is a cset consisting of the 26 uppercase letters.

&version : s - Icon version

The value of &version is a string identifying the version of Icon.

&window : W - subject window

The value of &window is the subject window, the default window for
most graphics procedures. It may be changed by assignment. If there is
no subject window, &window is null.

&x : i-mouse x-coordinate

The value of &x is normally the x-coordinate of the mouse at the time of
the last received window event. If a window is open, &x also can be
changed by assignment, which affects &col, or as a side effect of assign­
ment to &col.

&y : i-mouse y-coordinate

The value of &y is normally the y-coordinate of the mouse at the time of
the last received window event. If a window is open, &y also can be
changed by assignment, which affects &row, or as a side effect of
assignment to &row.



AppendixG

Window Attributes

Window attributes describe and control various characteristics of a window.
Some attributes are fixed and can only be read; others can be set only when the
window is opened. Most can be changed at any time.

There are two classes of attributes: canvas attributes and graphics context
attributes. In general, canvas attributes relate to aspects of the window itself,
while graphics context attributes affect drawing operations. Alternate graphics
contexts, each with its own set of graphics context attributes, are created by
CloneO. Canvas attributes, however, are shared by all clones of a window.

Initial attribute settings can be passed as arguments to WOpenO or
CloneO. For an existing window, attributes can be read or written by calling
WAttribO. Incase of duplicate attributes, the last one applies. Specific procedures
also exist for reading or writing certain attributes; these are noted in the See also
sections of the individual attribute descriptions.

In the tables that follow, the letter R indicates attributes that can be read
by WAttribO and the letter W indicates attributes that can be written - either
initially or by calling WAttribO. Writable graphics context attributes also can be
set by CloneO.

429



430

Canvas Attributes

Window Attributes Appendix G

The following attributes are associated with a canvas and shared by all
windows that reference that canvas.

Usage Canvas Attribute Interpretation

R, W label window label (title)

R, W pos, posx, posy window position on screen
R, W resize user resizing flag
R, W size, height, width window size, in pixels
R, W rows, columns window size, in characters

W image initial canvas contents

R, W canvas window visibility state

W iconpos icon position

R, W iconlabel icon label
R, W iconimage icon image

R, W echo character echoing flag
R, W cursor text cursor visibility flag
R, W x, y cursor location, in pixels
R, W row, col cursor location, in characters

R, W pointer pointer (mouse) shape
R, W pointerx, pointery pointer location, in pixels
R, W pointerrow, pointercol pointer location, in characters

R, W display device on which the window appears

R depth display depth, in bits

R displayheight display height, in pixels

R displaywidth display width, in pixels



Appendix G Window Attributes

Graphics Context Attributes

The following attributes are associated with graphics contexts.

Usage Graphics Attribute Interpretation

R, W fg foreground color
R, W bg background color
R, W reverse color reversal flag
R, W drawop drawing operation
R, W gamma color correction factor

R, W font text font
R fheight, fwidth maximum character size
R ascent, descent dimensions from baseline
R, W leading vertical advancement

R, W linewidth line width
R, W linestyle line style
R, W fillstyle fill style
R, W pattern fill pattern

R, W clipx, clipy clipping rectangle position
R, W c1ipw, c1iph clipping rectangle extent
R, W dx,dy output translation

431



432

Attribute Descriptions

Window Attributes Appendix G

ascent - text font ascent

The read-only graphics context attribute ascent gives the distance, in
pixels, that the current text font extends above the baseline.

See also: descent and fheight

bg - background color

The graphics context attribute bg specifies current background color.

Initial value: "white"

See also: fg, drawop, gamma, reverse, and 890

canvas - window visibility

The canvas attribute canvas specifies the window visibility.

Values: "hidden", "iconic", "normal", "maximal"

Initial value: "normal"

See also: LowerO and RaiseO

cliph - height of clipping region

The canvas attribute cliph specifies the height of the clipping region.

Initial value: &null (clipping disabled)

See also: clipw, c1ipx, c1ipy, and CliPO

clipw - width of clipping region

The graphics context attribute clipw specifies the width of the clipping
region.

Initial value: &null (clipping disabled)

See also: cliph, clipx, c1ipy, and CliPO

clipx - x-coordinate of clipping region

The graphics context attribute clipx specifies the left edge of the clipping
region.



Appendix G Window Attributes

Initial value: &null (clipping disabled)

See also: cliph, c1ipw, c1ipy, and CliPO

433

clipy - y-coordinate of clipping region

The graphics context attribute clipy specifies the top edge of the clipping
region.

Initial value: &null (clipping disabled)

See also: c1iph, c1ipw, c1ipx, and CliPO

col - text cursor column

The canvas attribute col specifies the horizontal position of the text
cursor, measured in characters.

See also: cursor, row, x, and y

columns - window width in characters

The canvas attribute columns specifies the number of text columns
available using the current font.

Initial value: 80

See also: rows and width

cursor - text cursor visibility flag

The canvas attribute cursor specifies whether the text cursor is actually
visible on the screen. The text cursor appears only when the program is
blocked waiting for input.

Values: "on", "off"

Initial value: "off"

See also: col, echo, row, x, and y

depth - number of bits per pixel

The read-only canvas attribute depth gives the number of bits allocated
to each pixel by the graphics system.

descent - text font descent



434 Window Attributes Appendix G

The read-only graphics context attribute descent gives the distance, in
pixels, that the current text font extends below the baseline.

See also: ascent and fheight

display - name of display screen

The canvas attribute display specifies the particular monitor on which
the window appears. It cannot be changed after the window is opened.

displayhelght - height of display screen

The read-only canvas attribute displayheight gives the height in pixels of
the display screen on which the window is placed.

See also: displaywidth

displaywidth - width of display screen

The read-only canvas attribute displaywidth gives the width in pixels of
the display screen on which the window is placed.

See also: displayheight

drawop - drawing mode

The graphics context attribute drawop specifies the way in which newly
drawn pixels are combined with the pixels that are already in a window.

Values: "copy", "reverse"

Initial value: "copy"

See also: bg, fg, and reverse

dx - horizontal translation

The graphics context attribute dx specifies a horizontal offset that is
added to the x value of every coordinate pair before interpretation.

Initial value: 0

See also: dy

dy - vertical translation

The graphics context attribute dy specifies a vertical offset that is added



Appendix G Window Attributes

to the y value of every coordinate pair before interpretation.

Initial value: 0

See also: dx

435

echo - character echoing flag

The canvas attribute echo specifies whether keyboard characters readby
WReadO and WReadsO are echoed in the window. When echoing is
enabled, the characters are echoed at the text cursor position.

Values: "on", "off"

Initial value: "on"

See also: cursor, WReadO, and WReadsO

fg - foreground color

The graphics context attribute fg specifies the current foreground color.

Initial value: "black"

See also: bg, drawop, gamma, reverse, and FgO

fheight - text font height

The read-only graphics context attribute fheight gives the overall height
of the current text font.

See also: ascent, descent, fwidth, and leading

fillstyle - area filling style

The graphics context attribute fillstyle specifies whether a pattern is to be
used when drawing. The fill style affects lines and text as well as solid
figures. The pattern itself is set by the pattern attribute.

Values: "solid", "textured", "masked"

Initial value: ·solid"

See also: Iinestyle and pattern

font - text font name

The graphics context attribute font specifies the current text font.



436

Initial value: "fixed"

See also: FontO

Window Attributes Appendix G

fwidth - text font width

The read-only graphics context attribute fwidth gives the width of the
widest character of the current text font.

See also: fheight

gamma - color correction factor

The graphics context attribute gamma specifies the amount of color
correction applied when converting between Icon color specifications
and those of the underlying graphics system. A value of 1.0 results in no
color correction. Larger values produce lighter, less saturated colors.

Values: real values greater than zero

Initial value: system dependent

See also: fg and bg

height - window height in pixels

The canvas attribute height specifies the height of the window.

Initial value: enough for 12 lines of text

See also: rows, size, and width

iconimage - window image when iconified

The canvas attribute iconimage names a file containing an image to be
used as the representation of the window when iconified.

Initial value: 1111

See also: iconlabel, iconpos, and image

iconlabel - window label when iconified

The canvas attribute iconlabel specifies a label to be used as the represen­
tation of the window when iconified.

Initial value: initial value of label attribute

See also: iconimage, iconpos, and label



Appendix G Window Attributes 437

iconpos - window position when iconified

The write-only canvas attribute iconpos specifies the location of the
iconified window as a string containing comma-separated x- and y­
coordinates.

See also: iconimage and iconlabel

image - source of window contents

The write-only canvas attribute image names a file containing an image
to be used as the initial contents of a window when it is opened.

See also: iconimage

label - window label

The canvas attribute label specifies a title used to identify the window.

Initial value: ""

See also: iconlabel

leading - text line advancement

The graphics context attribute leading specifies the vertical spacing of
successive lines of text written in a window.

Initial value: font height

See also: fheight

Iinestyle -line style

The graphics context attribute linestyle specifies the form of drawn lines.

Values: "solid", "dashed", "striped"

Initial value: "solid"

See also: fillstyle and Iinewidth

Iinewidth -line width

The graphics context attribute linewidth specifies the width of drawn
lines.

Initial value: 1

See also: linestyle



438 Window Attributes Appendix G

pattern - filling pattern specification

The graphics context attribute pattern specifies the particular pattern to
be used for drawing when the fillstyle attribute is set to "textured" or
"masked".

Values: "black", "verydark", "darkgray", "gray", "Iightgray",
"verylight", "white", "vertical", "diagonal", "horizontal",
"grid", "trellis", "checkers", "grains", "scales", "waves",
"width,#hexdigits"

Initial value: "black"

See also: fillstyle and PatternO

pointer - shape ofmouse indicator

The canvas attribute pointer specifies the shape of the figure that repre­
sents the mouse position.

Values: system dependent

Initial value: system dependent

See also: pointercol, pointerrow, pointerx, and pointery

pointercol - mouse location column

The canvas attribute pointercol gives the horizontal position of the
mouse in terms of text columns.

See also: pointer, pointerrow, pointerx, and pointery

pointerrow - mouse location row

The canvas attribute pointerrow gives the vertical position of the mouse
in terms of text lines.

See also: pointer, pointercol, pointerx, and pointery

pointerx - mouse location x-coordinate

The canvas attribute pointerx specifies the horizontal position of the
mouse in pixels.

See also: pointer, pointercol, pointerrow, and pointery



Appendix G Window Attributes 439

pointery - mouse location y-coordinate

The canvas attribute pointery specifies the vertical position of the mouse
in pixels.

See also: pointer, pointercol, pointerrow, and pointerx

pos - position of window on display screen

The canvas attribute pos specifies the window position as a string
containing comma-separated x- and y-coordinates. Attempts to read or
write the position fail if the canvas is hidden.

See also: posx and posy

posx - x-coordinate of window position

The canvas attribute posx specifies the horizontal window position.
Attempts to read or write the position fail if the canvas is hidden.

See also: pos and posy

posy - y-coordinate of window position

The canvas attribute posy specifies the vertical window position. At­
tempts to read or write the position fail if the canvas is hidden.

See also: pos and posx

resize - user resizing flag

The canvas attribute resize specifies whether the user is allowed to resize
the window by interaction with the graphics system.

Values: "on", "off"

Initial value: "off"

reverse - color reversal flag

The graphics context attribute reverse interchanges the foreground and
background colors when it is changed from "off" to "on" or from ·on" to
"offll

•

Values: "on", "off"

Initial value: "off"

See also: bg, fg, and drawop



440 Window Attributes Appendix G

row - text cursor row

The canvas attribute row specifies the vertical position of the text cursor,
measured in characters.

See also: cot cursor, x, and y

rows - window height in characters

The canvas attribute rows specifies the number of text lines available
using the current font.

Initial value: 12

See also: columns and height

size - window size in pixels

The canvas attribute size specifies thewindow size as a stringcontaining
comma-separated width and height values.

Initial value: enough for 12 lines of 80-column text

See also: columns, height, rows, and width

width - window width in pixels

The canvas attribute width specifies the width of the window.

Initial value: enough for 80 columns of text

See also: columns, height, and size

x - text cursor x-coordinate

The canvas attribute xspecifies the horizontal position of the text cursor,
measured in pixels.

See also: col, cursor, row, and y

y - text cursor y-coordinate

The canvas attribute y specifies the vertical position of the text cursor,
measured in pixels.

See also: col, cursor, row, and x



Appendix H

Palettes

Palettes are predefined sets of colors that are used with DrawlmageO. Palettes
also can be used to limit the colors used by ReadlmageO. These procedures,
along with others for obtaining information about palettes, are described in
Chapter 8.

This appendix documents the contents of Icon's palettes and serves as a
reference for the programmer. It is difficult, though, to understand a palette just
by reading about it. The program palette, which displays and labels the colors
of the palette, provides a clearer introduction.

Grayscale Palettes

Icon's grayscale palettes contain colorless shades that range from black
to white in 1 to 255 equal steps.

For the g2 through g64 palettes, the n shades are labeled from black to
white using the first n characters of this list:

0123456789ABC ... XYZabc ... xyz{}

Figure H.I illustrates several of these grayscale palettes, with their labels.

345

Figure H.t

Small Grayscale Palettes

Grayscale palettes through
964 are labeled using print­
able characters.4

3

2

3

2

cegikmoqsuwy{

dfhjlnprtvlCz}

9 ABC 0 E F

IJICL.NOPQRSTUV

01234567

01234567 89ABCO E F

02468ACEGIKMOQSU

13579BOFHJ lNPRTV

g4

g5

g6

g2

g3

g32

g64

g16

441



442 Palettes Appendix H

For the 965 through 9256 palettes, the shades are labeled using the first
n characters of &cset. An example appears in figure H.2.

965 \xOO \x05 \n \xOf \x14 \x19 \xl e

\x01 \x06 \v \xlO \x15 \xl a \xl f

\x02 \x07 \f \xll \x16 \e

\x03 \b \r \x12 \xl? \xl c

\x04 \ t \xOe \x13 \x18 \xl d

2 7 <
A Larger Grayscale Palette

3 8 "Unprintable" characters
I 4 9 > are shown in hexadecimal.

+ 0 5

1 6 @ FigureH.2

The c1 Palette

The palette c1, shown in Plate 8.1, is designed for constructing color
images by hand. It is based on Icon's color-naming system and is defined by the
table below.

hue deep dark medium light pale weak

black 0
gray 1 2 3 4 5
white 6
brown ! p ? C 9
red n N A a # @

orange 0 0 B b $ %
red-yellow p P C c & I
yellow q Q D d I

yellow-green r R E e ,
green s S F f + -
cyan-green t T G 9 * /

u U H h
,

Icyan
blue-eyan v V I i < >
blue w W J j ( )
purple x X K k [ ]
magenta y Y L I { }

magenta-red z Z M m 1\ =
pink 7
violet 8

Note that in the Icon color-naming system, "dark brown" and "light
brown" are the same as two shades of red-yellow.



Appendix H Palettes

Uniform Color Palettes

443

Programs that compute images can more easily use a palette having
colors that are in some sense "equally spaced". The e2, e3, e4, c5, and e6 palettes
are organized in this way. The larger palettes allow better color selection and
subtler shadings but use up more of the limited number of simultaneous colors.

For any of these en palettes, the palette provides n levels of each RGB
primary color; letting m = n -I, these levels range from a(off) to m (full on). The
palette also provides all the colors that canbe obtained by mixing different levels
of the primaries in any combination. Mixing equal levels produces black (0,0,0),
white (m,m,m), or a shade of gray. Mixing unequal levels produces colors.

Each en palette also provides (n -1)2 additional shades of gray to allow
better rendering of monochrome images. n -1 intermediate shades are added in
each interval created by the original n regular achromatic entries, giving a total
of n2 - n + 1 grayscale entries.

The lists below specify the characters used byeach palette. The n3 regular
entries are ordered from (0,0,0) to (m,m,m), black to white, with the blue
component varying most rapidly and the red component varying most slowly.
These are followed in the right column by the additional shades of gray from
darkest to lightest.

e2:
e3:
e4:
e5:
e6:

kbgermyw
@ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789ABC...XYZabe...wxyz{}
\000\001 yz{ I
\000\001 \327

x
abed
$%&*-/?@
}-\d\200\201 ... \214
\330\331 ... \360

For example, the regular portion of the e3 palette is interpreted this way:

char. r g b char. r g b char. r g b

@ 0 0 0 I 1 0 0 R 2 0 0
A 0 0 1 J 1 0 1 S 2 0 1
B 0 0 2 K 1 0 2 T 2 0 2
C 0 1 0 L 1 1 0 U 2 1 0
0 0 1 1 M 1 1 1 V 2 1 1
E 0 1 2 N 1 1 2 W 2 1 2
F 0 2 0 0 1 2 0 X 2 2 0
G 0 2 1 P 1 2 1 Y 2 2 1
H 0 2 2 Q 1 2 2 Z 2 2 2



444 Palettes Appendix H

The complete set of grayscale entries in c3, merging regular and extra
entries, is @abMcdZ (from black to white). (For any palette p, PaletteGrays(p)
produces a string that enumerates the merged grayscale entries.)

The sizes of c5 and c6 require that they include some nonprinting
characters, so they are better suited for computed images than direct specifica­
tion.

PIate 8.1 shows all the color palettes as displayed by the palette program.
For each of the uniform color palettes, the n3 regular entries appear first. They are
followed by the grayscale entries, including duplicates from the regular portions
plus the extra grayscale entries.



Appendix I

Drawing Details

Sometimes it's important to know exactly which pixels are drawn by graphics
procedures. Experimentation can be helpful, but it also can be misleading
because in some cases the same program can produce different results on
different graphics systems.

This appendix describes some of the finer points of graphical output in
Icon. The specifications given here apply to all graphics systems. Many details
are left unspecified, however; these may vary, depending on the particular
graphics system.

Most of the sections that follow are accompanied by illustrative ex­
amples. Each figure's caption contains the code that was used to draw the figure.

Lines

A line segment includes the two endpoints and all pixels in between. For
slanted lines, the precise meaning of "in between" may vary. A line drawn from
point A to point B is identical to a line drawn from B to A.

If the Iinewidth attribute is set greater than 1, wide lines are drawn. Wide
lines are centered on the path between the endpoints and project beyond the
endpoints by approximately half the line width. If the line width is even, it is
honored even if that requires drawing the line off-eenter in a system-dependent
manner.

When the Iinestyle attribute is set to "dashed" or "striped", the details of
the line breaks are system-dependent.

445



446 Drawing Details Appendix I

DrawLineO with Two Line Widths

WAttrib(llinewidth=7", "fg=pale gray")
DrawLine(O, 0, 0, 15, 20, 15, 10, 0)
WAttrib(llinewidth=1", "fg=black")
DrawLine(O, 0, 0, 15, 20, 15, 10, 0)

Figure 1.1

Rectangles

For outlined rectangles produced by DrawRectangle(x, y, w, h), the
width and height are measured between the centers of the lines surrounding the
rectangle. The points (x, y) and (x + W, Y+ h) are always part of the outline. The
interior of the rectangle has dimensions w -linewidth and h -Iinewidth; exterior
dimensions are w + linewidth and h + linewidth.

DrawRectangleO with Two Line Widths

WAttrib(llinewidth=7", "fg=pale gray")
DrawRectangle(O, 0, 20, 15)
WAttrib(llinewidth=1 1 ,lfg=black")
DrawRectangle(O, 0, 20, 15)

Figure 1.2

Polygons and Curves

Lines or curves produced by DrawPolygonO and DrawCurveO pass
through and include each of the specified points. For wide lines, the center of the
path passes through these points.

Circles and Arcs

A circle produced by DrawCircle(x, y, r) is tangent to the outlined
rectangle produced by DrawRectangle(x - r, y - r, 2 * r, 2 * r). The exact set of
points forming the circle is system-dependent.

An outlined ellipse produced by DrawArc(x, y, w, h) is tangent to the
outlined rectangle produced by DrawRectangle(x, y, w, h). The exact set of
points drawn is system-dependent.



Appendix I Drawing Details 447

For partial circles or ellipses, the measurement of angles may be inexact;
tiny gaps may appear between sectors that are mathematically adjacent.

o
Filled Figures

DrawCircle() and Tangent Rectangle

Fg("pale gray")
DrawRectangle(O, 0, 24, 24)
Fg("black")
DrawCircle(12, 12, 12)

Figure 1.3

A filled figure covers all of the pixels in the interior of the corresponding
outlined figure drawn with a line width of 1. Additionally, the filling procedure
may set none, some, or all of the border pixels. To draw a figure with an outline,
fill the interiorfirst and then draw the outline. These rules apply for FillRectangleO,
FiliPolygonO, FiIICircleO, and FillArcO.

DrawCircle() then FiIICircle()

Fg("black")
DrawCircle(12, 12, 12)
Fg("pale gray")
FiIlCircle(12, 12, 12)

Figure 1.4

o
FiIICircle() then DrawCircle()

Fg("pale gray")
FiIlCircle(12, 12, 12)
Fg("black")
DrawCircle(12, 12, 12)

Figure 1.5



448

Rectangular Areas

Drawing Details Appendix I

For many procedures, a rectangular area is specified by four parameters
(x, y, w, h). If wand h are positive, the point (x, y) is the upper-left comer of the
area, which measures w by h pixels. This means that the point (x +w, Y+ h) is just
outside the rectangle.

If wor h is zero, the rectangle hasno area. This is legalwith all procedures
except WritelmageO, where it results in failure.

If w or h is negative, the effect is as if x or y (respectively) is adjusted by
that amount and the absolute value of w or h is used as the width or height. In
either case, the original point (x, y) is just beyond the edge of the resulting
rectangle.

For FillRectangleO, this rule is consistent with the general rules for filled
figures but more precise.

r - --I

I I
1

oJ

FiIIRectangle() and DrawRectangle()

Fg("pale gray")
FiIiRectangle(O, 0, 30, 20)
Fg("black")
WAttrib("linestyle=dashed")
DrawRectangle(O, 0, 30, 20)

Figure 1.6



AppendixJ

Keyboard Symbols

Pressing a key on the keyboard produces an Icon event unless the key is a
modifier key, such as the shift key. Releasing a key does not produce an event.
Keyboard events can be explored using the sample program illustrated in
Chapter 10 (Figure 10.2), which prints the value of each event along with other
information.

A key that represents a member of the ASCII character set, including
traditional actions such as return and backspace, produces a string containing a
single character. The control and shift modifiers can affect the particular charac­
ter produced. For example, pressing control-H produces "\b" (the backspace
character).

Other keys, such as function and arrow keys, produce integer-valued
events. These values may be referenced symbolically by including the defini­
tions contained in the library file keysyms.icn, as in

$include "keysyms.icn"

The following table lists the values of some of the most commonly used
keys.

449



450 Keyboard Symbols Appendix J

defined symbol key

Key_PrSc print screen
Key_ScrollLock scroll lock
Key_Pause pause

Key_Insert insert
Key_Home home
Key_PgUp page up
Key_End end
Key_PgDn page down

Key_Left arrow left
Key_Up arrow up
Key_Right arrow right
Key_Down arrow down

Key_F1 function key Fl

Key_F2 function key F2

Key_F3 function key F3

Key_F4 function key F4

Key_F5 function key FS

Key_F6 function key F6

Key_F7 function key F7

Key_F8 function key F8

Key_F9 function key F9

Key_F10 function key FlO
Key_F11 function key Fll

Key_F12 function key F12

Some keyboards have other keys that are not listed here.



AppendixK

Event Queues

Each window has an event queue, which is an ordinary Icon list.
Pending(W) produces the event queue of the window W. An event is repre­
sented by three consecutive values on the list. The first value is the event code:
a string for a keypress event or an integer for any other event. The next two
values are Icon integers whose lower-order 31 bits are interpreted as fields
having this format:

000 0000 0 000 0 S MC XXXX XXXX XXXX XXXX (second value)

EEE MMMM MMMM MMMM YYYY YYYY YYYY YYYY (third value)

The fields have these meanings:

X X &x: 16-bit signed x-coordinate value

Y Y &y: 16-bit signed y-eoordinate value

SMC &shift, &meta, and &control flags

E. ..M &interval, interpreted as Mx16E milliseconds

o unused; should be zero

Coordinate values do not reflect any translation specified by dx and dy
attributes; the translation is applied by EventO when an event is read.

A malformed event queue error is reported if an error is detected when
trying to read the event queue. Possible causes for the error include an event
queue containing fewer than three values, or second or third entries that are not
integer values or that are out of range. Only artificially constructed events can
produce such errors.

451





Appendix L

Vidgets

Vidgets are implemented by Icon records, with a different record type for each
kind of vidget. The set of vidgets is fixed and there are no provisions for adding
new kinds of vidgets.

Vidget Fields

Vidgets have fields that contain their attributes. Some fields are common
to all kinds ofvidgets, while some are peculiar to a particular kind of vidget. The
attributes of a vidget can be accessed through these fields.

Every vidget has an id field, which is the identifying name given to the
vidget in VIR

The most commonly used fields are the ones that give the locations and
sizes of vidgets:

ax x coordinate of the upper-left comer of the vidget
ay y coordinate of the upper-left comer of the vidget
aw width of the vidget
ah height of the vidget

The a stands for"absolute". All vidgets except for lines have these attributes.
Lines are specified by their end points:

x1 x coordinate of the beginning of the line
y1 y coordinate of the beginning of the line
x2 x coordinate of the end of the line
y2 y coordinate of the end of the line

Regions also have attributes that give their usable dimensions inside the
decorating border they may have:

453



454 Vidgets Appendix L

ux x coordinate of the upper-left comer of the usable area
uy y coordinate of the upper-left comer of the usable area
uw width of the usable area
uh height of the usable area

Vidget States and Callbacks

The following vidgets can have callbacks. Some maintain states; for
these, the values passed generally are the same as their states at the time the
callback occurs.

For text lists, the state always is a list of integers; this differs from the
callback value. The first integer indexes the top line currently displayed; this
reflects the position of the scrollbar thumb. Additional integers, if any, index the
currently selected items.

vidget state callback value

multiple-selection text list j

text-entry j

slider j

scrollbar j

j

j

j

region

menu

regular button

toggle button

radio buttons

single-selection text list

1

1 if on, null if off

text of selected button

list of selected items

selected item, or null if nothing
is selected

list of selected items

text entered

numerical value for position

numerical value for position

event and the x,y coordinates
where it occurred

The state of some vidgets when they are not activated is indicated
visually:

vidget visual indication

toggle button

radio buttons

highlighted if on (foreground and background
reversed), not highlighted if off

selected button highlighted



Appendix L Vidgets

text list

text-entry

slider

scrollbar

Vidget Activation

selected lines highlighted

current text displayed

slider thumb position

slider thumb position

455

A vidget is activated by pressing a mouse button while the mouse
pointer is positioned within the area of the vidget. (Note that the entire area
occupiedby a vidget may notbe visually evident.) For a vidget thathas a callback
procedure, the callback occurs in the following situations following the activa­
tion of the vidget:

vidget

button

radio buttons

menu

text list

text-entry

slider

scrollbar

region

callback time

when the mouse button is released

when the mouse button is released

when the mousebutton is releasedwith the mouse
cursor on a selected item

when the mouse button is released

when return is entered with the mouse pointer
within the field

if unfiltered, when the mouse is dragged on the
slider; otherwise when the mouse button is re­
leased

if unfiltered, when the mouse is dragged on the
slider or released on an end button; otherwise
when the mouse button is released

when anykeyboard or mouse event occurswithin
the region

The state of some vidgets is indicated visually while they are activated:

vidget

button

visual indication

highlighted (foreground and background re­
versed)



456

menu

radio buttons

text list

text-entry

slider

scrollbar

Vidgets Appendix L

items pulled down, with the potentially selected
one highlighted

selected button highlighted

selected lines highlighted

text highlighted

thumb position

thumb position

There is no visual indication when the callback occurs for a slider or
scrollbar vidget. The user cannot tell if the vidget is filtered or if a callback only
occurs when the mouse button is released. There is no visual indication when a
callback occurs when the user finishes with a text-entry vidget. To produce a
callback for a text-entryvidget, the user must type return while the I-beam cursor
is in the text-entry field. If the user forgets this, no callback occurs. Since this is
easy to forget, the user may think there has been a callback to accept the contents
of the text-entry field when there has not been one. For this reason, text-entry
vidgets are best used in dialogs and not directly on interfaces.



AppendixM

VIS

This is a reference manual for VIB, an Icon program that can be used to create
interfaces and custom dialogs for Icon programs.

See Appendix L for detailed information about the vidgets that can be
used in VIB.

The VIB Window

The window for VIB is shown in Figure M.l.

457



458 VIS Appendix M

The VIB Window Figure M.I

The VIB window has a menu bar at the top. Below this there is a vidget
bar with icons representing the various kinds ofvidgets. The remaining
portion of the VIB window contains the canvas for the interface, which
is indicated by a rectangular area with a box on its lower-right comer.

The File menu provides several services related to files and the overall
application, as shown in Figure M.2

The File Menu

­apen­_85
refresh III
pratDtype II'
quit ~

The new item creates a new file for an interface. open opens an
existing file. save and save as write interface files. refresh
redraws the canvas. prototype is used to run the interface to
see what it will look like in an application. quit terminates the
VIB session.

Figure M.2

The Edit menu provides services related to manipulating vidgets, as
shown in Figure M.3.



Appendix M VIS 459

The Edit Menu

The copy item copies a vidget, while delete deletes one. The
undelete item can be used to restore the last deleted vidget.
The final two items allow vidgets to be visually aligned.

FigureM.3

The Select menu allows one of the vidgets to be selected for manipula­
tion, as shown in Figure MA.

Vidgets

buttDnl
button2
cal1brate
d1~18Y
-.J line
-.wl
occupation
references
scroll
511der boundary 1
sl1der boundary 2
stations
top

The Select Menu

Every vidget has an identifying name, as shown in this
menu.

Figure M.4

VIB provides several kinds of vidgets. These are shown in Figures M.5
through M.14.

Buttons

There are two kinds ofbuttons; regular
buttons thatjustproducecallbacks and
togglebuttons that alsomaintainstates.
Different styles provide different ap-
pearances.

Figure M.5



460 VIS Appendix M

fl'llqlBlCy llltfCIll
...HbIdB l.ttClll
phese llltfClll

Radio Buttons

Radio buttons allow the user to select
one of a number of choices.

Figure M.6

seve
{:85
quit

directory:

rne
1:1
_in>
- >1:Z

1 :4
.1 :1

To enable the 1nterfac;e1 start
by dleck1ng thet the .....15.te
is disabled IN the 81.1'11 panel
is in stlNby status.

Then estebHsfl CCIlltact with the t

I color
di.log
drag
1nterac:t

Menus

A menu's items are exposed when the
menu's button is pushed. Menus can
have submenus.

FigureM.7

Text Lists

Textlists allow the user to scroll though
lines of text and select one or more of
them.

FigureM.8

Text-Entry Fields

Text-entry fields provide the user with
an area to enter and edit text.

user:~== group:

FigureM.9

Sliders

Slidershave thumbs thatcanbemoved
to select a numerical value within a
specified range. Sliders canbe vertical
or horizontal.

FigureM.I0



Appendix M VIS

tabuleclon of detll entries

461

Scrollbars

Scrollbars perform the same function
as sliders but have buttons on the ends
as well as a thumb for adjusting the
position.

FigureM.ll

Regions

Regions are rectangular areas that can
accept user events. Regions are avail­
able in several styles to provide differ­
ent visual appearances.

FigureM.12

Labels

Labels provide text but do not accept
events.

o\nom:OHI sin(x)/x

FigureM.13

The Application Canvas

Lines

Lines can be used to decorate the inter­
face. Lines do not accept events.

Figure M.14

The application canvas is configured by using the box on its lower-right
comer. Dragging this box resizes the application canvas. Clicking the right
mouse button on this box brings up a dialog, as shown in Figure M.tS.



462 VIS Appendix M

procedure _: ~=::;;;;;;-====::;::::=;;;;;;:;=;;1.._--;1
wtndow 1...1:

wtdth:
Might:

C8nCe1

Application Canvas Dialog Figure M.ts

The dialog window button is checked when a custom dialog, instead of
an application interface, is being constructed. In this case, the name of
a procedure for invoking the dialog can be specified. Neither of these is
relevant for building an application interface.

The VIB window can be resized by using the window manager if it is not
large enough to accommodate the application canvas.

Creating Vidgets

A vidget is created by clicking on its icon in the vidget bar and dragging
it into position on the application canvas. It can be repositioned later. The result
of creating and placing a slider vidget is shown in Figure M.16.



Fne Edlt select

Appendix M VIS

r--=~:~ H:_==..:",:_ -:_- ~ ~:~ __~". _:.~=:=::~_ ... ~_ -. -,- -- - - - ---
f ;' • .'. j ~J!, ~,q

I

463

A

A Newly Created Vidget Figure M.16

Although it's usually worthwhile to position a newly created vidget
approximately where you expectyou will want it, fine-tuning is best left
until later.

Vidget Attributes

Vidgets have a variety of attributes, some that are common to all vidgets
and some that are specific to the type of the vidget.Every vidget has an ID
attribute. Vidgets are identified by their IDs, bothin VIB and in the application
that uses the interface. All vidgets also have a position, given as the x-y
coordinates ofits upper-left comer. Most kinds ofvidgets have size attributes as
well. All vidgets except for labels and lines have a callback attribute that names
the application procedure that is called when the user manipulates the vidget.

When a vidget is created, it has default attributes. These attributes canbe
changed later.

Clicking with the right mouse button on a vidget brings up a dialog
showing the vidget's attributes. The attribute dialog for a button is shown in
Figure M.17.



464

1I11e1:
D:
callb8dc:

y:

wtdth:
height:

VIS Appendix M

Attribute Dialog for a Button

Thisdialogshows thedefault attribute
values for a button.

Figure M.17

The label attribute is what appears on the button. The radio buttons in the
center and the outline button at the right provide choices for the visual appear­
ance of the button. The toggle button allows a choice of a regular button or one
that maintains an onloff state. The dialog default button is used to designate a
default button that in turn is used to dismiss a custom dialog when the user
enters return.

Figure M.18 shows that attribute dialog for a set of radio buttons.

app.lcn

IItIMMiijjdi
radi o...bUttOlLcbl

x: 221
y: 49

Dialog for a Set of Radio Buttons

Three buttons with default names
are provided initially. These names
can be changed by editing their text­
entry fields.

FigureM.18

Additional buttons can be added by clicking on one of the add buttons
that appear at the left; the top and bottom add buttons insert a field above and
below the first and last fields, respectively. The other add buttons insert fields
between existing ones, as indicated by their positions. The del buttons at the
right delete the fields to their immediate left.

The attribute dialog for a menu is shown in Figure M.19.



Appendix M VIS 465

r ... - . - -_. - --- ------. .. .. -
I
I 1., t ~. ,

- 1.1: ~~==========nJD:
c:allbeck:

Il: 52

y: 135

Dialog for a Menu

Three items are pro­
vided initially with de­
fault names. The items
canbeedited, and items
can be added and de­
leted in the manner
used for radio buttons.

FigureM.19

Clicking on create submenu brings up a dialog for a submenu, as shown
in Figure M.20.

del
"'---'-"--------.....:--...-- dill

del

Okay C8nCe1
,-

Dialog for a Submenu

Except for the label, ID,
position, and callback
attributes, the dialog for
a submenu is the same
as for a menu.

Figure M.20

The attribute dialog for a text list is shown in Figure M.21.

ID:
callbeck:

Il: 153 width: 1110

y: 51 height: 1110

Dialog for a Text List

There are three choices for user selec­
tion: read only, which allows the user
to scroll through the lines butnot select
any; select one, which allows the user
to select a single line; and select many,
which allows selection of any or all
lines.

FigureM.21

Figure M.22 shows the attribute dialog for a text-entry field.



.xl_ V81118 1engtt1: -a-

466

y:
---1..1: Text::....--====- ,

V8ll18:

VIS Appendix M

Dialog for a Text-Entry Field

The label field provides for
text that appears at the left of
the field. An initial value for
the text canbe entered and the
number ofcharacters allowed
in the field can be specified.

Figure M.ll

The attribute dialog for a slider is shown in Figure M.23.

m:
callback:

II: 211

y: T1

1engttI: IiO

width: lS

+-vertical
lionzonal

filter

Dialog for a Slider

The orientation and dimensions for a
slider can be changed as indicated.

Figure M.23

The default values of the extreme positions of the thumb default to 0.0
and 1.0, allowing scaling in the application. If the filter toggle is on, a callback
occurs only when the user releases the thumb. Otherwise, a callback occurs
whenever the user moves the thumb.

The attribute dialog for a scrollbar is shown in Figure M.24.



Appendix M VIS 467

Okay C8ncel

Dialog for a Scrollbar

The dialog for a scrollbar is the same as
the dialog for a slider, since the only
differences between the two types of
vidgets are their visual appearance
and the functionality by which the
user can change the position of the
thumb.

FigureM.24

The attribute dialog for a region is shown in Figure M.25.

ID: IIIIIIIIIIIJ
1:811 bKk: regt Oll.dJl

x: 3GS width: 32

y: 202 hei~t: 2lJ

Okay C8ncel

invisible
SIricen

+ grooved

raised

Dialog for a Region

The dialog of a region provides four
choices for the appearance of the bor­
der.

Figure M.25

18l1el:
ID:

Figure M.26 shows the attribute dialog for a label.

Dialog for a Label

Label vidgets are the simplest
of all vidgets.

x: 42lJ

y: 1

Okay C8ncel
,I

FigureM.26

Figure M.27 shows the attribute dialog for a line.



468

~. -....- - ...."..--- - . - _. --~.- - - .. --_. _.- - .-.

L . j·H.:i;:"t '

D: I!!!:!:!!~====-"==~=~
X1:

Manipulating Vidgets

Selecting and Deselecting Vidgets

VIS Appendix M

Dialog for a Line

A line vidget differs from other vidgets in
having x,y coordinates for its end points.

FigureM.27

A vidget can be moved or modified only when it is selected. Only one
vidget can selected at a time. A vidget can be selected by clicking on it, which
highlights its comers to indicate it is selected. When a vidget is selected, any
previously selected vidget is deselected. Clicking on the canvas at any place
other than on a vidget deselects the currently selected vidget, leaving no vidget
selected.

A vidget also can be selected by using the Select menu, which displays
the IDs of all vidgets as shown earlier. This method of selection is useful if a
vidget is "lost" because it is behind another vidget or because it is too small to
be selected by clicking on it.

Resizing Vidgets

A vidget can be resized by selecting it, pressing the mouse on one of its
four comers, and dragging that comer to a new location. The diagonally
opposite comer remains anchored, and the size changes. Some vidgets enforce
constraints on resizing. For example, a button cannot be made smaller than its
label. Other vidget types, such as menus, cannot be resized at all.

Positioning Vidgets

A vidget can be repositioned by selecting it and dragging with the left
mouse button depressed. A selected vidget can be moved one pixel at a time by
using the arrow keys on the keyboard. They are useful for small movements and
precise positioning. A vidget also can be repositioned by using its dialog and
changing the x-y coordinates of its upper-left comer.

Vidgets can be aligned by selecting an "anchor" vidget and then choos­
ing align horiz or align vert from the Edit menu. Horizontal alignment aligns the



Appendix M VIS 469

left edges of vidgets with the left edge of the anchor vidget, while vertical
alignment aligns the tops.

When an alignment is chosen from the Edit menu, the cursor is changed
to ¢:::> or n, depending on the choice of alignment. (These cursor shapes may be
different on some platforms.) Subsequently, clicking on a vidget aligns it with
the anchor vidget. Several vidgets canbe aligned in this manner. Clicking on the
canvas off any vidget restores the cursor to an arrow and its normal functional­
ity.

Figure M.28 shows four scrollbars that need to be aligned horizontally
with the topmost one selected as the anchor.

Vidgets to Be Aligned Figure M.28

In this example, the vidgets are obviously misaligned. Even if the
alignment is just slightly off, it's worth fixing it to make the interface
look tidy and professional.

The result of selecting align horiz and clicking on each of the three
scrollbars below the anchor is shown in Figure M.29.



470 VIB Appendix M

r, "

Aligned Vidgets

Note that the anchor vidget still is selected.

Deleting Vidgets

FigureM.29

The selected vidget can be deleted by choosing delete from the Edit
menu, by pressing the delete key, or by entering @ X. This operation can be
undone by choosing undelete from the Edit menu or by entering @ U, provided
no other action has been performed since the vidget was deleted.

Copying Vidgets

The selected vidget can be copied by choosing copy from the Edit menu
or by entering @C.

The copied vidget is selected when it is created. It is offset vertically and
horizontally from the vidget from which it was copied. Attributes other than the
ID, callback, and position are inherited from the vidget from which it was
created.



Appendix M VIS

Custom Dialogs

471

A custom dialog is very similar to a visual interface for an application:
Vidgets with various functionalities can be positioned as desired.

There are two noticeable differences between custom dialogs and visual
interfaces:

• Menus, regions, and text lists cannot be used in custom dialogs. They
may be created and placed, but they are ignored when the dialog is
saved.

• A custom dialog must have at least one regular button, so that it can
be dismissed. VIB refuses to save a custom dialog without a regular
button.

VIB must be told that it is creating a custom dialog rather than a visual
interface, which is the default. This is done in the canvas dialog that comes up
as a result of clicking with the right mouse button on the lower-right comer of
the application canvas.

Two things are needed to create a custom dialog: providing a procedure
name by which the dialog will be called and setting the dialog window toggle.
Figure M.30 shows an example.

-I
procedure _: IIEIIIIII
wl ndow 1abel : attnbutes

wldth: 370

height: 400 • dialog wlndow

1·1-1
Custom Dialog Settings

Theprocedurename field
is ignored for a visual in­
terface butis required for
a custom dialog.

Okay cancel

Figure M.30

One button can be designated as the default button for dismissing a
custom dialog. This is done by setting the dialog default toggle in the attribute
dialog for the button, as shown in Figure M.31.



472

y:

width:
Might: cI1alOl1 default

Prototyping

VIS Appendix M

A Default Button

The default button is outlined as it is
for standard dialogs. Entering return
to dismiss a custom dialog is equiva­
lent to clicking on the default button.

FigureM.31

The application canvas as shown by VIB is very similar to the way it
appears when the application is run. The dashed lines that show the boundary
of a region with an invisible border do not, of course, show when the visual
interface is used in an application.

The exact appearance of the interface can be obtained by selecting
prototype (@ P) from the File menu. This constructs and launches an application
with the current interface and a dummy program for handling events.

Manipulating vidgets on the prototype produces information about
callbacks, IDs, and vidget values.

A prototype for a visual interface can be terminated by typing q with the
cursor not on a vidget. The prototype for a custom dialog can be dismissed by
clicking on one of its regular buttons. A dialog is presented to confirm that you
wish to terminate the prototype instead of continuing to test it.

Limitations

VIB has several limitations that should be considered before designing
an interface:

• VIB can handle only one interface section in a file.

• The location and attributes of vidgets cannot be changed when an
application is running.

• There is no provision for adding new kinds of vidgets.

• There is no provision for decorating vidgets with images.



AppendixN

Platform Dependencies

Microsoft Windows

Icon for Windows runs on pes with Windows 95 and above, Windows
NT, and Windows 3.1 (with Win32s). Windows machines vary greatly in their
hardware capabilities, so we can't describe precisely how things work in all
situations.

Font Specifications

Windows comes with very few fonts. The set of fonts available on a given
machine is a function of the set of applications and fonts that havebeen installed.
As a result, Windows machines vary widely in their interpretation of font
requests. The same specification in Icon can produce fonts of different appear­
ance on different machines.

Windows' native font specifications are complex structures that specify
a set of desired characteristics, from which a "nearest match" is chosen by
Windows when a font is requested. Windows has fonts based on different
character sets. The standard Icon font names (fixed, sans, serif, mono, and
typewriter) return a font that uses the so-called ANSI character set.

Color Specifications

Windows does not provide a built-in set of color names, so Icon's
standard color names comprise the complete set of recognized names.

Depending on the hardware configuration, Windows may use dithered
colors in response to any particular color request. This results in an unattractive
appearance in applications where solid colors are expected. Most colors are
dithered on 16-color machines, and color-intensive applications are ugly or

473



474 Platform Dependencies Appendix N

unusable on those systems.

Color correction is controlled by the gamma attribute. The default value
of the gamma attribute is 1.0 (the operating system handles gamma correction).

Images

In ReadlmageO, ifan image file is not a valid GIF file, an attempt is made
to read it as a Windows bitmap file.

In WritelmageO, if the file name ends in .bmp or .BMP, a Windows
bitmap file is written. In all other cases a GIF file is written. WritelmageO fails if
GIF formatis selected butthe area beingwritten contains more than 256 different
colors.

Keyboard Event Codes

Icon uses Windows scan codes as integer event codes for special keys.
Symbolic definitions given in Appendix Jand located in file keysyms.icn allow
applications to refer to these special keys in a system-independent way.

Cursors and Pointers

The text cursor is a slowly flashing solid block. It is visible only when the
cursor attribute is "on" and the program is awaiting input from WReadO or
WReadsO·

The pointer attribute can take any of the values shown in Figure N.1.

Windows Pointers

arrow
+

cross

I

ibeam uparrow wait

The appearance of these pointers
varies somewhat with the version
of Windows used.

Figure N.1

Limitations

• The attribute linestyle is ignored by Windows when the line width is
greater than 1; line widths greater than 1 are always drawn using a
solid line style.

• The attribute fillstyle does not support the value "masked". When
masked fills are requested, textured fills are performed instead.

• Mutable colors do not work correctly.



Appendix N Platform Dependencies 475

• Reversible drawing ("drawop=reverse~l)does not work correctly.

The X Window System

Under X, an Icon program is a client that performs graphical I/O on a
server. The client and server can be the same machine, as when a program runs
and displays locally on a workstation, or they can be on different machines. A
remote server can be specified by using the display attribute when opening a
window.

There are many implementations of X, and different systems provide
different features, so we can't describe precisely how things work in all situa­
tions.

Font Specifications

The XWindow System provides both tuned and scalable fonts using a
complex naming scheme. The font chosen by Font("Helvetica,19") may be
designated

-adobe-helvetica-medium-r-normal- -19-0-75-75-p-O-iso8859-1

which is actually a scaled instance of the master font

-adobe-helvetica-medium-r-normal- -O-O-O-O-p-o-iso8859-1

Icon translates font specifications into X form, so that this underlying
complexity can be ignored by the programmer.

In interpreting a font specification, Icon recognizes the following font
characteristics and tries to match them as well as possible against the available
X fonts:

condensed, narrow, normal, wide, extended
light, medium, demi, bold, demibold
roman, italic, oblique
mono, proportional
sans, serif

The same specification can produce fonts of different appearance on different
servers.

If a font specification is not understood or matched by Icon's font­
naming system, it is passed verbatim to X as a font name. This allows the use of
native X font specifications, including wild cards. As a special case, a font
specification of "fixed" (without any size or other characteristics) is passed to X
as a font name without interpretation.



476

Color Specifications

Platform Dependencies Appendix N

The X implementation of Icon is limited to a maximum of 256 colors at
anyone time, even if the hardware supports more.

Color specifications that are not recognized by Icon are passed to X for
interpretation. X servers typically offer large sets of color names, including
unusual ones, such as orchid and papayawhip.

Color correction is controlled by the gamma attribute. The default value
of gamma is based on the color returned by Xfor the device-independent Xcolor
specification RGSi:.5/.5/.5. On older X systems that do not recognize this
specification, a configuration default value is used.

The interpretation of RGSi:.5/.5/.5 depends on properties associated with
the root window. These properties are set by the xcmsdb utility. The library
program xgamma can be used to set the properties to approximate a particular
gamma value.

Images

In ReadlmageO, if an image file is not a valid GIF file, an attempt is made
to read it as an X Bitmap or X Pixmap file.

In WritelmageO, if the file name ends in .xbm or .xSM, an X Bitmap file
is written. If the file name ends in .xpm or .XPM, an X Pixmap file is written. If
the file name ends in .xpm.Z, a compressed X Pixmap file is written. In all other
cases a GIF image is written.

Keyboard Event Codes

Icon uses X keysym codes as event codes. The actual code returned for a
particular key depends on the configuration of the X server; this can be altered
dynamically by the xmodmap utility. For example, the Sun keypad has one key
labeled "3", "PgDn", and "R15". Whether this key produces an Icon event "3",
Key_PgDn, Key_R15, or even something else, depends on the X configuration.

The library file keysyms.icn lists many of the possible codes. For maxi­
mum portability, use only those that appear in Appendix J.

Cursors and Pointers

The text cursor is an underscore character. It is visible only when the
cursor attribute is "on" and the program is awaiting input in WReadO or
WReadsO. The cursor does not blink and may be difficult to locate in a window
containing a large amount of text.



Appendix N Platform Dependencies 477

The mouse location indicator, setby the pointer attribute, is selected from
the X cursor font. The default is nleft ptrn. The available values and the corre­
sponding cursor shapes are shown in Figure N.2.

x X cursor [J dotbox X man 'I:J,J sizing

;If arrow t donble arrow a mi ddl ebntton *' spider

T based a r row down ;( draft large e monse ~"
spraycan

J; based a r row np
/ draft small ~ pencil A star

~ boat 1:':1 draped box ,t; pi rate 0 target

m bogosity "" exchange + plns + tcross
""

I..!::. bottom 1eft co rne r + flenr ? questi on arrow '" top 1eft a r row

.::!.I bottom ri ght co rne r '[J" gobbler
~

right ptr r;::; top 1eft corner

.±. bottom side 'lit> gnmby --+1 right side '3i1 top ri ght co rne r

.L bottom tee -# handl -l right tee 'T" top side

IJ] box spi ral 'V> hand2 III ri ghtbntton T top tee

+ center ptr Q heart Ei!J rtl logo
~

trek

0 ci rcle C icon
,j~

sailboat r nl angle

lfJl clock m i ron cross ~ sb down a r row 1" nmbrella

~ coffee mng It left ptr -sb h donble arrow .., nr angle

9F cross If- 1eft si de _sb left arrow CZ> watch

~ cross reve rse I- left tee - sb ri ght arrow I xterm

+ crosshai r QI 1eftbntton
t

sb np arrow

Llto. di amond cross L 11 angle t sb v donble arrow'Or

• dot ...J 1r angle
.:1)

shnttle

X Window Cursors FigureN.2

XWindows provides many cursors, some of them whimsical. Can you
think of uses for all of them?

X Resources

Under X, WDefaultO returns values registered with the X Resource
Manager. These values often are set by an .Xresources or .Xdefaults file.





Appendix 0

Running an Icon Program

The implementation of Icon is based on the concept of a virtual machine - an
imaginary computer that executes instructions for Icon programs. The Icon
compiler translates Icon programs into assembly language for the virtual
machine and then converts the assembly language into virtual machine code.
This virtual machine code is then run on a real computer by an interpreter. This
implementation method allows Icon to run on many different computer plat­
forms.

Compiling and running Icon programs is easy. It is not necessary to
understand Icon's virtual machine, but knowing the nature of the implementa­
tion may help answer questions about what is going on in some situations.

How Icon programs are run necessarily varies from platform to plat­
form. On some platforms, Icon is run from the command line. On others, it is run
interactively through a visual interface. This chapter describes how Icon is run
in a command-line environment, such as under UNIX, and under Microsoft
Windows. Even for these environments, the details depend on the platform. In
any event, the user manual for a specific platform is the best guide to running
Icon.

Running Icon from the Command Line

The name of a file that contains an Icon source program must end with the suffix
.icn, as in hello.icn. The .icn suffix is used by the Icon compiler to distinguish Icon
source programs from other kinds of files.

The Icon compiler usually is named icont. To compile hello.icn, all that
is needed is

icont hello.icn

479



480 Running Icon Appendix 0

The suffix .icn is assumed if none is given, so this can be written more simply as

icont hello

The result is an executable icode file. The name of the icode file depends on the
platform on which Icon is run. On some platforms, notably UNIX, the name is
the same as the name of the source file, but without the suffix. On these
platforms, the compilation of hello.icn produces an icode file named hello. For
Microsoft Windows, the name is hello.bat. Other platforms have other naming
conventions.

After compilation, entering

hello

runs the program.

An Icon program can be compiled and run in a single step using the -x
option following the program name. For example,

icont hello -x

compiles and executes hello.icn. An icode file also is created, and it can be
executed subsequently without recompiling the source program.

There are command-line options for icont. Options must appear before
file names on the icont command line. For example,

icont -5 hello

suppresses informative messages that icont ordinarily produces.

Input and Output Redirection

In a command-line environment, most input and output is done using standard
input, standard output, and standard error output. Standard input typically is
read from the keyboard, while standard output and standard error output are
written to the console.

Standard input and standard output can be redirected so that files can be
used in place of the terminal. For example,

hello < hello.dat > hello.out

executes hello with hello.dat as standard input and hello.out as standard output.
(The directions in which the angular brackets point, relative to the program
name, are suggestive of the information flow.)



Appendix 0 Running Icon

Command-Line Arguments

481

Arguments on the command line following an icode file name are available to
the executing Icon program in the form of a list of strings. This list is the
argument to the main procedure. For example, suppose args.icn consists of

procedure main(arguments)

every write(!arguments)

end

This program simply prints the command-line arguments with which it is
executed. Thus,

icont args
args Hello world

writes

Hello
world

When -x is used, the arguments follow it, as in

icont args -x Hello world

Arguments are separated by blanks. The treatment of special characters,
methods of embedding blanks in arguments, and so forth, vary from platform
to platform.

Environment Variables

Environment variables can be used to configure Icon and specify the location of
files. For example, the environment variable IPATH can be used to specify the
location of library modules. If graphics is in

/usr/icon/ipl/gprogs

and IPATH has that value, then

link graphics

will find it.

Here are other environment variables that may be useful. Their default
values are given in parentheses.



482

BLKSIZE (500000)

IPATH (undefined)

LPATH (undefined)

MSTKSIZE (10000)

STRSIZE (500000)

TRACE (undefined)

Running Icon Appendix 0

The initial size of the allocated block re­
gion, in bytes.

The location of files specified in link decla­
rations. IPATH is a blank-separated list of
directories. The current directory is always
searched first, regardless of the value of
IPATH.

The location of source files specified in
preprocessor $include directives. LPATH is
a blank-separated list of directories. The
current directory is always searched first,
regardless of the value of LPATH.

The size, in words, of the interpreter stack.

The initial size of the allocated string region,
in bytes.

The initial value of &trace.

Running Icon under Microsoft Windows

The Microsoft Windows implementation of Icon runs under Windows
95, Windows NT, and Windows 3.1. The compiler and interpreter can be
invoked either using command-line invocation or through a visual develop­
ment environment, except on Windows 3.1, which only supports the visual
development environment. This section briefly describes running Icon under
Microsoft Windows. For details on hardware and software requirements, see
Jeffery (1997).

When Windows Icon is installed, it produces the files shown in Figure
0.1.

Frequently Graphics
Asked 0... Facilities

Windows Intro 10 Icon Lcnguage
Icon Help Reference

i# ~
IPI. Ubrary Uninstall
Reference Windo...

Icon Files in Microsoft Windows

The files shown as question marks pro­
vide on-line help.

Figure 0.1



Appendix 0 Running Icon 483

Editing, Compiling, and Executing

Double-clicking the Windows Icon icon launches Wi, the Windows Icon
programming environment. Wi is written in Icon and allows you to edit,
compile, and execute programs. To start, select the name of a file to edit, as in
Figure 0.2:

Fileneme:

FielI 01 JYpe: Icon Sources(".icn)

r Open lIS [8ed-only

Opening an Icon File Figure 0.2

You can easily select an existing Icon source file or name a new one. If
you clickOpen withoutchoosing aname, the defaultname of noname.icn
is used.

Editing occurs within the main Wi window, as shown in Figure 0.3.



484 Running Icon Appendix 0

opened C:\WINICON\BIN\nonarne.icn, l1ines, 29 characters

Editing a File Figure 0.3

The top area shows program source code, while the bottom portion
shows messages such as compiler errors. You can change the font and
the number of lines used to show messages from the Edit menu.

When you are done editing your program, you can save it, compile it,
make an executable, and run your program using menu options. The on-line
help includes a more detailed explanation of these operations.

Error Handling

A compilation error results in a message in which the editor highlights
the line at which the error was detected. Figure 0.4 shows an example.



Appendix 0 Running Icon 485

end

'cont -8 -0 C:\WINICON\BIN\noname C:\WINICON\BIN\noname.icn
execution complete

ranslating:
C:\WINICON\BIN\noname.icn:
File C:\WINICON\BIN\noname.icn; Line 2 # ")": invalid argument
1 error

A Syntactic Error Figure 0.4

Run-time errors also result in a message for which the source line is
highlighted. When the error messages become long, you can either
increase the number oflines for the message window (as was done here)
or scroll through the message window's entire text using the scrollbar.

User Manuals

The best source of information for running Icon on a particular platform
is the Icon user manual for that platform. User manuals are included with
distributions of Icon. They also are available on-line. See Appendix P.





Appendix P

Icon Resources

Many resources are available to Icon programmers. These include implementa­
tions for many platforms, a program library, source code, books, technical
reports, newsletters, and a newsgroup.

Most Icon material, except for books, is available free of charge.

The CD-ROM

The CD-ROM that accompanies this book includes almost all Icon
material except books and newsletters. See Appendix Q.

On-Line Access

The Icon home page on the World Wide Web is located at

http://www.cs.arizona.edulicon/

The Icon Web site includes general information about Icon, reference
material, the current status of Icon, implementations, the Icon program library,
documentation, technical support, and so on.

Updates to this book will be posted on the Icon Web site.

The address for anonymous FrP is

ftp.cs.arizona.edu

From there, use cd /icon and get README for instructions on navigating.

Implementations

All implementations of Icon are in the public domain and available as
described in the preceding section.

487



488 Icon Resources Appendix P

The current version, Version 9, presently is available for the Acorn
Archimedes, the Amiga, Macintosh/MPW, MicrosoftWindows, MS-DOS, many
UNIX platforms, VAX/VMS, and Windows NT. Icon's graphics facilities pres­
ently are supported for Microsoft Windows, UNIX, and Windows NT.

Documentation

Documentation on Icon is extensive. In addition to this book, there two
other books devoted to Icon:

The Icon Program Language (Griswold and Griswold, 1996) contains a
description of Version 9.3 of Icon, including a detailed reference manual.

The Implementation of the Icon Programming Language (Griswold and
Griswold, 1986) contains a detailed description of how Icon is implemented.
Although it describes an earlier version, it still is a useful reference.

There are two newsletters:

fJ11e Icon 9{g.wsfetter (Griswold, Griswold, and Townsend, 1978-) is
published three times a year and contains material of a topical nature, such as
work in progress and new implementations. This newsletter also is available on
the Icon Web site.

mlfe ;Ucon J\nal\!lid (Griswold, Griswold, and Townsend, 1990-) pro­
vides in-depth coverage of technical matters related to Icon, including program­
ming techniques and applications.

There are many technical reports and user manuals for various plat­
forms.

The newsgroup comp.lang.icon discusses issues related to Icon. There
also is a mailing list connected to the newsgroup via a gateway. To subscribe,
send mail to

icon-group-request@cs.arizona.edu

Information about Icon also is available from

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice:
fax:

e-mail:

(520) 621-6613
(520) 621-4246

icon-project@cs.arizona.edu



AppendixQ

About the CD-ROM

The CD-ROM that accompanies this book contains a vast amount of material
related to Icon, including:

• programs, procedures, and images from this book

• additional example programs and images not found in this book

• the Icon program library

• implementations of Icon for Microsoft Windows and UNIX

• implementations without graphics support for other platforms, in-
cluding the Amiga, MS-DOS, and the Macintosh

• C source code for the implementation of Icon

• user's manuals, technical reports, and other documentation

• Adobe Acrobat Reader for viewing PDF documents

• images and 3-D models depicting Icon program behavior

How to Use the CD-ROM

The CD-ROM can be used on Windows, UNIX, and other platforms. It is
like a Web site that is self-contained except for a few links to external Web pages
related to Icon.

All you need to use the CD-ROM is a Web browser, such as Netscape
Navigator or Internet Explorer. You do not need an Internet connection unless
you want to access external sites.

Start by launching your browser and opening index.htm at the top level
of the CD-ROM. From there, you can get to everything on the CD-ROM.
Navigational aids are provided.

489



490 About the CD-ROM Appendix Q

The CD-ROM Web page should look something like this (the appearance
varies somewhat from browser to browser):

8, ----=..:Ne"'ts"'-c_ap'--e_:_G_rap-'-h_ic_S_I'l'o~g~ram_m_in~g~in_l_co_n ~I j~
View Go Window Help

Graphics Programming in Icon

Software

• Icon for Windows
• Icon for UNIX
• Icon for other platforms
• Inside Icon

• The Icon program library
• Adobe Acrobat Reader

IntroductolY Documentation

• An Overview of Icon (Griswold)
• A Brief Introduction to Icon (Hanson)
• Frequently Asked Questions

Reference Documentation

• Language Reference
• Program library indexes
• Documentation index
• Books about Icon

From the Graphics Book

• Images and sample code

The Icon Web Site

• On the Internet: http://www.cs.arizona.edu/icon/
• On this CD- ROM: web site snapshot

File Formats

The CD-ROM contains files in several different formats, with the format of
each file indicated by its extension. Most files fall into one of the categories listed
here:

.C and.H

.GIF

.HTM

.ICN

.PDF

.PS

.R and .RI

C source code
GIFimages

HTML documentation ("Web pages")
Icon source code

Acrobat documentation (a viewer is supplied)
PostScript documentation

Icon run-time system source code



Appendix Q About the CD-ROM 491

.TAZ

.TGZ

.TXT

.WRL

.ZIP

none

compressed UNIX tar files (.Z format)

gzipped UNIX tar files (.gz format)

simple text files
VRML 1.0 worlds

ZIP format compressed archives

generally, simple text files

Web pages, images, text files, and source code can be viewed directly using
a Web browser. Some other formats, including PostScript, PDF, and VRML, can
be viewed from a browser if the appropriate plug-in or helper application is
installed. The files that remain are generally not intended for display but rather
for other uses. These files can be saved or "downloaded" to your hard disk using
the browser.

Most text files incorporate line terminators in the style of MS-DOS (return
followed by linefeed). This is the standard format under Microsoft Windows.
Under UNIX, such files can be read without problems by Icon programs, web
browsers, and many other programs. The return character may be visible when
viewing one of these files in a text editor.

External Links

There are a few links on Web pages on the CD-ROM that reference
external sites. If you have an Internet connection, you can access these to get
more information and see what others are doing with Icon. If not, you'll get an
error message if you try to follow an external link.

Be sure to visit the Icon Web site. It is updated frequently and contains
the latest information and software.

The external links on the CD-ROM were functional at the time the CD­
ROM was prepared. Realize, however, that Web sites change location and
sometimes disappear.





References

Abelson, Harold, and diSessa, Andrea. 1980. Turtle Geometry. Cambridge, Mass.:
MIT Press.

Apple Computer Inc. 1987. Human Interface Guidelines: The Apple Desktop Interface.
Reading, Mass.: Addison-Wesley. .

Barry, Phillip J., and Goldman, Ronald N. 1988. A Recursive Evaluation Algo­
rithm for a Class of Catmull-Rom Splines. In SIGGRAPH '88 Conference Proceed­
ings. New York: Association for Computing Machinery.

Berk, Toby; Brownston, Lee; and Kaufman, Arie. A New Color-Naming System
for Graphics Languages. IEEE Computer Graphics and Applications, May 1982, 37­
44.

Brennan, Susan E. 1985. Caricature Generator: The Dynamic Exaggeration of
Faces by Computer. Leonardo 18:170-178.

Delahaye, Jean-Paul. 1986. Geometric and Artistic Graphics. London: Macmillan
Education Ltd.

Dewdney, A. K. 1988. Facebender. In The Armchair Universe: An Exploration of
Computer Worlds. New York: W. H. Freeman.

Forman, Yale, et aI., eds. 1980. Colour. London: Grange Books.

Gardner, Martin. 1989. Penrose Tiles to Trapdoor Ciphers. New York: W. H.
Freeman.

Gerritsen, Frans. 1988. Evolution in Color. West Chester, Pa.: Schiffer Publishing.

Griswold, Ralph E., and Griswold, Madge T. 1996. 3d ed. The Icon Programming
Language. San Jose, Calif.: Peer-to-Peer Communications.

Griswold, Ralph E.; Griswold, Madge T.; and Townsend, Gregg M., eds. 1978-.
The Icon Newsletter. Tucson, Ariz.: Department of ComputerScience, The Univer­
sity of Arizona and The Bright Forest Company.

493

References

Abelson, Harold, and diSessa, Andrea. 1980. Turtle Geometry. Cambridge, Mass.:
MIT Press.

Apple Computer Inc. 1987. Human Interface Guidelines: The Apple Desktop Interface.
Reading, Mass.: Addison-Wesley. .

Barry, Phillip J., and Goldman, Ronald N. 1988. A Recursive Evaluation Algo­
rithm for a Class of Catmull-Rom Splines. In SIGGRAPH '88 Conference Proceed­
ings. New York: Association for Computing Machinery.

Berk, Toby; Brownston, Lee; and Kaufman, Arie. A New Color-Naming System
for Graphics Languages. IEEE Computer Graphics and Applications, May 1982, 37­
44.

Brennan, Susan E. 1985. Caricature Generator: The Dynamic Exaggeration of
Faces by Computer. Leonardo 18:170-178.

Delahaye, Jean-Paul. 1986. Geometric and Artistic Graphics. London: Macmillan
Education Ltd.

Dewdney, A. K. 1988. Facebender. In The Armchair Universe: An Exploration of
Computer Worlds. New York: W. H. Freeman.

Forman, Yale, et aI., eds. 1980. Colour. London: Grange Books.

Gardner, Martin. 1989. Penrose Tiles to Trapdoor Ciphers. New York: W. H.
Freeman.

Gerritsen, Frans. 1988. Evolution in Color. West Chester, Pa.: Schiffer Publishing.

Griswold, Ralph E., and Griswold, Madge T. 1996. 3d ed. The Icon Programming
Language. San Jose, Calif.: Peer-to-Peer Communications.

Griswold, Ralph E.; Griswold, Madge T.; and Townsend, Gregg M., eds. 1978-.
The Icon Newsletter. Tucson, Ariz.: Department of ComputerScience, The Univer­
sity of Arizona and The Bright Forest Company.

493



494 References

Griswold, Ralph E.; Griswold, Madge T.; and Townsend, Gregg M., eds. 1990-.
The Icon Analyst. Tucson, Ariz.: Department ofComputer Science,The University
of Arizona and The Bright Forest Company.

Griswold, Ralph E.; Jeffery, Clinton L.; and Townsend, Gregg M. 1996. Version 9.3
of the Icon Programming Language. Tucson, Ariz.: Department of Computer Sci­
ence, The University of Arizona, IPD278.

Griswold, Ralph E., and Townsend, Gregg M. 1997. The Icon Program Library:
Version 9.3.1. Tucson, Ariz.: Department of Computer Science, The University of
Arizona, IPD283.

Hope, Augustine, and Walch, Margaret. 1990. The Color Compendium. New York:
Van Nostrand Reinhold.

Jeffery, Clinton L. 1997. Version 9 of Icon for Microsoft Windows. Tucson, Ariz.:
Department of Computer Science, The University of Arizona; and San Antonio,
Texas: Department ofComputer Science, The University ofTexas atSan Antonio;
IPD271.

Kain, Richard Y. 1972. Automata Theory: Machines and Languages. New York:
McGraw-Hill.

Lasseter, John. 1987. Principles of Traditional Animation Applied to 3D Com­
puter Animation. In SIGGRAPH '87 Conference Proceedings. New York: Associa­
tion for Computing Machinery.

Laurel, Brenda, eel. 1990. The Art ofHuman-Computer Interface Design. Reading,
Mass.: Addison-Wesley.

Lauwerier, Hans. 1991. Fractals: Endlessly Repeated Geometric Figures. Princeton,
N.J.: Princeton University Press.

Murray, James D., and vanRyper, William. 1994. Encyclopedia of Graphics File
Formats. Sebastopol, Calif.: O'Reilly & Associates.

Open Software Foundation. 1991. OSFIMotifStyle Guide. Englewood Cliffs, N.J.:
Prentice-Hall.

Peitgen, Heinz-Otto; Jiirgens, Hartmut; and Saupe, Dietmar. 1992. Chaos and
Fractals: New Frontiers ofScience. New York: Springer-Verlag.

Prusinkiewicz,Przemyslaw,andHanan,James. 1989.LindenmayerSystems,Fractals,
and Plants. Berlin: Springer-Verlag.

Prusinkiewicz, Przemyslaw, and Lindenmayer, Aristid. 1990. The Algorithmic
Beauty ofPlants. New York: Springer-Verlag.

Rossotti, Hazel. 1983. Colour: Why the World Isn't Grey. Princeton, N. J.: Princeton
University Press.

494 References

Griswold, Ralph E.; Griswold, Madge T.; and Townsend, Gregg M., eds. 1990-.
The Icon Analyst. Tucson, Ariz.: Department ofComputer Science,The University
of Arizona and The Bright Forest Company.

Griswold, Ralph E.; Jeffery, Clinton L.; and Townsend, Gregg M. 1996. Version 9.3
of the Icon Programming Language. Tucson, Ariz.: Department of Computer Sci­
ence, The University of Arizona, IPD278.

Griswold, Ralph E., and Townsend, Gregg M. 1997. The Icon Program Library:
Version 9.3.1. Tucson, Ariz.: Department of Computer Science, The University of
Arizona, IPD283.

Hope, Augustine, and Walch, Margaret. 1990. The Color Compendium. New York:
Van Nostrand Reinhold.

Jeffery, Clinton L. 1997. Version 9 of Icon for Microsoft Windows. Tucson, Ariz.:
Department of Computer Science, The University of Arizona; and San Antonio,
Texas: Department ofComputer Science, The University ofTexas atSan Antonio;
IPD271.

Kain, Richard Y. 1972. Automata Theory: Machines and Languages. New York:
McGraw-Hill.

Lasseter, John. 1987. Principles of Traditional Animation Applied to 3D Com­
puter Animation. In SIGGRAPH '87 Conference Proceedings. New York: Associa­
tion for Computing Machinery.

Laurel, Brenda, eel. 1990. The Art ofHuman-Computer Interface Design. Reading,
Mass.: Addison-Wesley.

Lauwerier, Hans. 1991. Fractals: Endlessly Repeated Geometric Figures. Princeton,
N.J.: Princeton University Press.

Murray, James D., and vanRyper, William. 1994. Encyclopedia of Graphics File
Formats. Sebastopol, Calif.: O'Reilly & Associates.

Open Software Foundation. 1991. OSFIMotifStyle Guide. Englewood Cliffs, N.J.:
Prentice-Hall.

Peitgen, Heinz-Otto; Jiirgens, Hartmut; and Saupe, Dietmar. 1992. Chaos and
Fractals: New Frontiers ofScience. New York: Springer-Verlag.

Prusinkiewicz,Przemyslaw,andHanan,James. 1989.LindenmayerSystems,Fractals,
and Plants. Berlin: Springer-Verlag.

Prusinkiewicz, Przemyslaw, and Lindenmayer, Aristid. 1990. The Algorithmic
Beauty ofPlants. New York: Springer-Verlag.

Rossotti, Hazel. 1983. Colour: Why the World Isn't Grey. Princeton, N. J.: Princeton
University Press.



Index
Symbols

$define 42, 51, 372
$else 43, 374
$endif 43, 374
$error 374
$ifdef 43, 374
$ifndef 374
$include 43, 46, 371
$Iine 372
$undef 43, 372
&ascii 423
&c1ock 423
&col 186, 423
&control 186, 423, 451
&cset 423
&date 424
&dateline 424
&digits 30, 424
&dump 56, 424
&e 102, 424
&errout 40, 424
&fail 424
&features 373, 424
&host 424
&input 40, 424
&interval 187, 425, 451
&Icase 425
&Idrag 184, 425
&Ietters 30, 425
&Ipress 184, 425
&Irelease 184, 425
&mdrag 184, 425
&meta 186, 425, 451
&mpress 184, 426
&mrelease 184, 426
&null 21, 426
&output 40, 426
&phi 426
&pi 426
&pos 426
&progname 426
&random 102, 426
&rdrag 184, 427
&resize 184, 185, 427
&row 186, 427
&rpress 66, 184, 427
&rrelease 66, 184, 427

&shift 186, 427, 451
&subject 427
&time 427
&trace 56, 428
&ucase 428
&version 428
&window 59, 165, 166, 387, 428
&x 185, 428, 451
&y 185, 428, 451
! (element generation) 25, 27, 28, 380
! (procedure invocation) 37, 386
% (remainder) 22, 48, 381
& (conjunction) 11, 49, 382
o(grouping) 49, 51
o(procedure invocation) 386
* (product) 22, 48, 381
* (size) 25, 27, 28, 31, 380
** (intersection) 27, 382
+ (positive) 379
+ (sum) 22, 48, 381
++ (union)
- (difference) 22, 48, 381
- (negative) 22, 379
-- (difference) 27, 382 27, 382
. (dereferencing) 381
. (field reference) 24, 48, 382
.bat files 44, 480
.icn files 44, 479
.u1 / .u2 files 45
.Xdefaults 477
.Xresources 477
/ (null test) 21, 380
/ (quotient) 22, 48, 381
:= (assignment) 19, 49, 50, 383
:=: (exchange) 20, 384
; (expression separator) 8, 50
< (numerical comparison) 22, 383
<....: (reversible assignment) 17, 384
<-> (reversible exchange) 384
« (string comparison) 32, 383
«= (string comparison) 32, 383
<= (numerical comparison) 22, 383
= (numerical comparison) 22, 383
= (string matching) 34, 379
== (string comparison) 32, 383
=== (value comparison) 383
> (numerical comparison) 22, 383

495

Index
Symbols

$define 42, 51, 372
$else 43, 374
$endif 43, 374
$error 374
$ifdef 43, 374
$ifndef 374
$include 43, 46, 371
$Iine 372
$undef 43, 372
&ascii 423
&c1ock 423
&col 186, 423
&control 186, 423, 451
&cset 423
&date 424
&dateline 424
&digits 30, 424
&dump 56, 424
&e 102, 424
&errout 40, 424
&fail 424
&features 373, 424
&host 424
&input 40, 424
&interval 187, 425, 451
&Icase 425
&Idrag 184, 425
&Ietters 30, 425
&Ipress 184, 425
&Irelease 184, 425
&mdrag 184, 425
&meta 186, 425, 451
&mpress 184, 426
&mrelease 184, 426
&null 21, 426
&output 40, 426
&phi 426
&pi 426
&pos 426
&progname 426
&random 102, 426
&rdrag 184, 427
&resize 184, 185, 427
&row 186, 427
&rpress 66, 184, 427
&rrelease 66, 184, 427

&shift 186, 427, 451
&subject 427
&time 427
&trace 56, 428
&ucase 428
&version 428
&window 59, 165, 166, 387, 428
&x 185, 428, 451
&y 185, 428, 451
! (element generation) 25, 27, 28, 380
! (procedure invocation) 37, 386
% (remainder) 22, 48, 381
& (conjunction) 11, 49, 382
o(grouping) 49, 51
o(procedure invocation) 386
* (product) 22, 48, 381
* (size) 25, 27, 28, 31, 380
** (intersection) 27, 382
+ (positive) 379
+ (sum) 22, 48, 381
++ (union)
- (difference) 22, 48, 381
- (negative) 22, 379
-- (difference) 27, 382 27, 382
. (dereferencing) 381
. (field reference) 24, 48, 382
.bat files 44, 480
.icn files 44, 479
.u1 / .u2 files 45
.Xdefaults 477
.Xresources 477
/ (null test) 21, 380
/ (quotient) 22, 48, 381
:= (assignment) 19, 49, 50, 383
:=: (exchange) 20, 384
; (expression separator) 8, 50
< (numerical comparison) 22, 383
<....: (reversible assignment) 17, 384
<-> (reversible exchange) 384
« (string comparison) 32, 383
«= (string comparison) 32, 383
<= (numerical comparison) 22, 383
= (numerical comparison) 22, 383
= (string matching) 34, 379
== (string comparison) 32, 383
=== (value comparison) 383
> (numerical comparison) 22, 383

495



496

>= (numerical comparison) 22, 383
» (string comparison) 32, 383
»= (string comparison) 32, 383
? (random selection) 23, 25, 27, 28, 102,

380
? (string scanning) 33, 49, 377
[-:] (subscript) 386
[+:] (subscript) 385
[:] (substring or section) 31-32, 385
[,] (multiple subscript) 303, 385
[] (subscript) 25, 27, 31-32, 385
[...] (list creation) 24, 384
\ (limitation) 15, 377
\ (nonnull test) 21, 99, 381
1\ (power) 22, 48, SO, 382
{} (expression grouping) 10, 49
I (alternation) 11, 18, 377
I (repeated alternation) 377
II (string concatenation) 30, 382
III (list concatenation) 382
- (complement) 379
-= (numerical comparison) 22, 383
-== (string comparison) 32, 383
-=== (value comparison) 383

A

absO 409
acos() 23, 409
ActiveO 189, 191, 258, 388
Alert() 192, 388
alternation 11, 13, 18, 377
analysis, string 32
angles 84, 106, 447
animation 94-97, 151-153, 177, 181
anyO 409
arcs 81-85, 446
arithmetic 21-22
arrays See lists
ascender 132
ascent 133, 432
ASCII 29
asin() 23, 410
assignment 19, 49, 50, 383-384

augmented 19, 383
associativity 48, 49
atanO 23, 410
attributes 60, 62-64, 69, 429-440

of canvases 168, 430
of graphics contexts 168, 431
of lines 85

Index

of vidgets 463
with VIB 262

augmented assignment 19, 383
automatic type conversion 20

B

background color 62, 64, 78, 86, 88, 144,
151, 158

backspace character 128, 194, 212
backtracking 16, 17
bal() 410
base line 132
bg 63, 432
B90 63, 143, 388
binary tree 53
BLKSIZE 482
blocking 189
BMP image format 474
braces 10, 49
break 12, 375
buttons 208, 237, 459, 464

dialog default 293, 464, 471
in text dialogs 297

c
callbacks 191, 215-217, 271-283, 454

sharing 264
canvas 167-173, 173

attributes 168
VIB 225, 461

canvas 173, 432
case 13, 375
CD-ROM 489-491
center() 31, 410
CenterString() 388
coercion See conversion
char() 410
character positions 31
characters 29-34

codes 29
chdir() 411
circles 81-85, 446
client 192, 475
Clip() 89, 388
cliph 89, 432
clipping 65, 89-90, 178
clipw 89, 432
c1ipx 89, 432
clipy 89, 433

496

>= (numerical comparison) 22, 383
» (string comparison) 32, 383
»= (string comparison) 32, 383
? (random selection) 23, 25, 27, 28, 102,

380
? (string scanning) 33, 49, 377
[-:] (subscript) 386
[+:] (subscript) 385
[:] (substring or section) 31-32, 385
[,] (multiple subscript) 303, 385
[] (subscript) 25, 27, 31-32, 385
[...] (list creation) 24, 384
\ (limitation) 15, 377
\ (nonnull test) 21, 99, 381
1\ (power) 22, 48, SO, 382
{} (expression grouping) 10, 49
I (alternation) 11, 18, 377
I (repeated alternation) 377
II (string concatenation) 30, 382
III (list concatenation) 382
- (complement) 379
-= (numerical comparison) 22, 383
-== (string comparison) 32, 383
-=== (value comparison) 383

A

absO 409
acos() 23, 409
ActiveO 189, 191, 258, 388
Alert() 192, 388
alternation 11, 13, 18, 377
analysis, string 32
angles 84, 106, 447
animation 94-97, 151-153, 177, 181
anyO 409
arcs 81-85, 446
arithmetic 21-22
arrays See lists
ascender 132
ascent 133, 432
ASCII 29
asin() 23, 410
assignment 19, 49, 50, 383-384

augmented 19, 383
associativity 48, 49
atanO 23, 410
attributes 60, 62-64, 69, 429-440

of canvases 168, 430
of graphics contexts 168, 431
of lines 85

Index

of vidgets 463
with VIB 262

augmented assignment 19, 383
automatic type conversion 20

B

background color 62, 64, 78, 86, 88, 144,
151, 158

backspace character 128, 194, 212
backtracking 16, 17
bal() 410
base line 132
bg 63, 432
B90 63, 143, 388
binary tree 53
BLKSIZE 482
blocking 189
BMP image format 474
braces 10, 49
break 12, 375
buttons 208, 237, 459, 464

dialog default 293, 464, 471
in text dialogs 297

c
callbacks 191, 215-217, 271-283, 454

sharing 264
canvas 167-173, 173

attributes 168
VIB 225, 461

canvas 173, 432
case 13, 375
CD-ROM 489-491
center() 31, 410
CenterString() 388
coercion See conversion
char() 410
character positions 31
characters 29-34

codes 29
chdir() 411
circles 81-85, 446
client 192, 475
Clip() 89, 388
cliph 89, 432
clipping 65, 89-90, 178
clipw 89, 432
c1ipx 89, 432
clipy 89, 433



Index

CloneO 169, 389, 429
cloning 169-171
closeO 42, 411
col 128, 433
ColorO 146, 389
ColorDialogO 291, 389
colors 139-153 See also gamma correction

additive 141
brightness 144
decimal specifications 142
dialogs 204, 291
hexadecimal specifications 142
interface design 261
limited number 145, 476
maps 145-146
mutable 146, 146-148, 474
names 139-141, 145
numerical specifications 141
palettes 441-444
portability 145
primary 141
random 163
specification 139-144, 473, 476
subtractive 142

ColorValueO 142, 145, 390
columns 128, 133
columns 167, 433
comments 8
comparison

numerical 22, 383
string 32, 383
success and failure 10
value 383

compilation 44, 479
compound expressions 10
concatenation, string 30
conditional compilation 43, 374
conjunction 11, 49
continuation lines 50
control key 186, 197
control structures 12-13, 375-377
conversion 20, 98
coordinate system 60, 88-89, 100, 178
cOPYO 53, 323, 411
CopyAreaO 174, 178, 390
cosO 23, 411
CoupleO 171, 390
coupling 167-173
csetO 411
csets 29-30

literals 30, 369

cursor
mouse See pointer
text 128, 194, 212, 474, 476

cursor 128, 433, 474, 476
curves 85, 446
custornization, of graphics system 175

D

data types 18
checking 20
conversion 20, 98
errors 56
notation 365

debugging 55-56
declarations

global 36-37
initial 36
link 45
local 36-37
procedure 35-36
record 23
static 36-37

default
case clause 13
dialog button 293, 464, 471
parameter value 35, 102
program options 175
table value 28

default 13
delayO 411
delete character 128
deleteO 27, 411
depth 145, 433
descender 132
descent 133, 433
detabO 412
dialog_value 194, 287, 289, 290, 291
dialogs 287-298

colors 204
custom 292-295, 471-472
field order 297
hidden 298
standard 193-196, 287-291
standard versus custom 296

difference 27
directives

conditional compilation 374
define 42, 51, 372
error 374
include 43, 46, 371-372

497Index

CloneO 169, 389, 429
cloning 169-171
closeO 42, 411
col 128, 433
ColorO 146, 389
ColorDialogO 291, 389
colors 139-153 See also gamma correction

additive 141
brightness 144
decimal specifications 142
dialogs 204, 291
hexadecimal specifications 142
interface design 261
limited number 145, 476
maps 145-146
mutable 146, 146-148, 474
names 139-141, 145
numerical specifications 141
palettes 441-444
portability 145
primary 141
random 163
specification 139-144, 473, 476
subtractive 142

ColorValueO 142, 145, 390
columns 128, 133
columns 167, 433
comments 8
comparison

numerical 22, 383
string 32, 383
success and failure 10
value 383

compilation 44, 479
compound expressions 10
concatenation, string 30
conditional compilation 43, 374
conjunction 11, 49
continuation lines 50
control key 186, 197
control structures 12-13, 375-377
conversion 20, 98
coordinate system 60, 88-89, 100, 178
cOPYO 53, 323, 411
CopyAreaO 174, 178, 390
cosO 23, 411
CoupleO 171, 390
coupling 167-173
csetO 411
csets 29-30

literals 30, 369

cursor
mouse See pointer
text 128, 194, 212, 474, 476

cursor 128, 433, 474, 476
curves 85, 446
custornization, of graphics system 175

D

data types 18
checking 20
conversion 20, 98
errors 56
notation 365

debugging 55-56
declarations

global 36-37
initial 36
link 45
local 36-37
procedure 35-36
record 23
static 36-37

default
case clause 13
dialog button 293, 464, 471
parameter value 35, 102
program options 175
table value 28

default 13
delayO 411
delete character 128
deleteO 27, 411
depth 145, 433
descender 132
descent 133, 433
detabO 412
dialog_value 194, 287, 289, 290, 291
dialogs 287-298

colors 204
custom 292-295, 471-472
field order 297
hidden 298
standard 193-196, 287-291
standard versus custom 296

difference 27
directives

conditional compilation 374
define 42, 51, 372
error 374
include 43, 46, 371-372

497



498

line 372
undefine 43, 372-373

display 166, 434, 475
displayheight 173, 434
displaywidth 173, 434
displays 145-146
documentation, about Icon 488, 489
double spacing 133
DrawArcO 84-85, 390, 446
DrawCircleO 81-85, 390, 446
DrawCurveO 85, 89, 391, 446
Drawlmage() 155, 157, 391
drawing 71-72

details 445-448
on interfaces 262
reversible 88, 135, 200, 475

DrawLineO 73, 391, 446
drawop 88, 135, 434, 475
DrawPointO 71, 391
DrawPolygonO 79, 391, 446
DrawRectangleO 61, 77, 78, 391, 446, 448
DrawSegmentO 75, 392
DrawStringO 134, 392
dtorO 23, 412
dx 88, 90, 180, 186, 434, 451
dy 88, 90, 180, 186, 434, 451

E

echo 188,435
echoing, keypresses 188
elements

list 24-26
table 27

empty string 30
end 7, 35
EnqueueO 189, 392
entabO 412
enter key See return key
environment variables 45-46, 481
EraseAreaO 64, 78, 146, 392
errors

compilation 484
conversion 11
data types 56
directed 374
event queue 451
offending value 56
preprocessor 374
run-time 56
stack overflow 101

Index

standard error output 40
escape sequences 369
even-odd rule 80
event loops 190-191
EventO 66, 184, 189, 393, 451
events 66-67, 183-189

artificial 189, 451
dispatching 190
keyboard 66, 183, 188, 449-450, 474, 476
mouse 66, 183
mouse drag 183
multiple windows 191
polling 189
queues 66, 180, 183, 184­

189, 188, 204, 451
setting keywords 185-189

every-do 15-16, 17, 376
exchange 20
execution 44
exitO 412
expO 23, 412
exponentiation 50
expressions 8-18

compound 10
evaluation 9-18
interactive evaluation 57
success and failure 10-11

F

fail 38, 376
failure 10-11
fg 63, 435
FgO 63, 143, 393
fheight 133, 435
fields, record 23-24
figure orientation 100-101
files 39-42

binary 40
closing 42
dialogs 193-196
opening 40
reading 10, 39-41
redirection 480
standard 40
writing 41

FiIIArcO 85, 393, 447
FiliCircleO 81, 393, 447
FillPolygonO 79-81, 393, 447
FiliRectangleO 64, 77, 78, 394, 447, 448
fillstyle 158, 160, 435, 474

498

line 372
undefine 43, 372-373

display 166, 434, 475
displayheight 173, 434
displaywidth 173, 434
displays 145-146
documentation, about Icon 488, 489
double spacing 133
DrawArcO 84-85, 390, 446
DrawCircleO 81-85, 390, 446
DrawCurveO 85, 89, 391, 446
Drawlmage() 155, 157, 391
drawing 71-72

details 445-448
on interfaces 262
reversible 88, 135, 200, 475

DrawLineO 73, 391, 446
drawop 88, 135, 434, 475
DrawPointO 71, 391
DrawPolygonO 79, 391, 446
DrawRectangleO 61, 77, 78, 391, 446, 448
DrawSegmentO 75, 392
DrawStringO 134, 392
dtorO 23, 412
dx 88, 90, 180, 186, 434, 451
dy 88, 90, 180, 186, 434, 451

E

echo 188,435
echoing, keypresses 188
elements

list 24-26
table 27

empty string 30
end 7, 35
EnqueueO 189, 392
entabO 412
enter key See return key
environment variables 45-46, 481
EraseAreaO 64, 78, 146, 392
errors

compilation 484
conversion 11
data types 56
directed 374
event queue 451
offending value 56
preprocessor 374
run-time 56
stack overflow 101

Index

standard error output 40
escape sequences 369
even-odd rule 80
event loops 190-191
EventO 66, 184, 189, 393, 451
events 66-67, 183-189

artificial 189, 451
dispatching 190
keyboard 66, 183, 188, 449-450, 474, 476
mouse 66, 183
mouse drag 183
multiple windows 191
polling 189
queues 66, 180, 183, 184­

189, 188, 204, 451
setting keywords 185-189

every-do 15-16, 17, 376
exchange 20
execution 44
exitO 412
expO 23, 412
exponentiation 50
expressions 8-18

compound 10
evaluation 9-18
interactive evaluation 57
success and failure 10-11

F

fail 38, 376
failure 10-11
fg 63, 435
FgO 63, 143, 393
fheight 133, 435
fields, record 23-24
figure orientation 100-101
files 39-42

binary 40
closing 42
dialogs 193-196
opening 40
reading 10, 39-41
redirection 480
standard 40
writing 41

FiIIArcO 85, 393, 447
FiliCircleO 81, 393, 447
FillPolygonO 79-81, 393, 447
FiliRectangleO 64, 77, 78, 394, 447, 448
fillstyle 158, 160, 435, 474



Index

filtering, of vidget events 217, 239, 466
findO 14, 16, 34, 412
finite state machine 198-199
floating point See real numbers
flushO 413
FontO 131, 394
font 131, 435
fonts 129-133

characteristics 132
families 129, 130
monospaced 129-130, 130
portability 130, 138
proportional 130, 133
sans-serif 130
screen 129
serif 130
size 129
specification 130, 473, 475
standard 130, 473
styles 129
typewriter 130

foreground color 62, 86, 88, 144
fractal stars 91-92, 116
frame, window 67
FreeColorO 146, 394
FfP, Icon 487
functions See procedures
fwidth 133, 436

G

gamma 144, 162, 436, 474, 476
gamma correction 144-145, 162, 474, 476
generators 13-15, 17-18
getO 25, 413
getenvO 413
GetEventsO 255, 394
GIF image format 161, 164, 474
global 36
global variables 36, 305
goal-directed evaluation 16-17
GotoRCO 128, 394
GotoXYO 128, 395
graphicS contexts 167-173

attributes 168
graphics systems 67--68, 473-477
grouping 22, 48
GUI See visual interface builder

H

halftones 148

499

height 166, 436
HLS color model 150
HSV color model 143, 150, 291
hue 139-141, 143

I

iandO 413
icode 44, 480
icomO 413
icon (small image) 173
Icon program library 46-47, 388, 489

core modules 47
organization 46-47

Icon Project 488
Icon resources 487-488
iconimage 162, 173, 436
iconlabel 173, 436
iconpos 173, 437
icont 44, 45, 56, 479
identifiers 370
if-then-else 9, 12, 376
imageO 56, 172, 413
image 161, 437
image file formats

BMP 474
GIF 161, 164, 474
XBM 476
XPM 476

images 155-164
bi-Ievel 157
drawing 155-157
in files 161-162, 474, 476

infix operators 48-51
initial 36
input See reading; events
insertO 26, 413
integerO 21, 414
integers 21
intensity See light, intensity of
interaction 183-204

model 217-218
interactive expression evaluation 57
interface builder See VIB
interface design 221, 260
interface tools 208-215 See also the individual

tools; vidgets
choosing 219

interpreter 479
intersection 27
iorO 414

Index

filtering, of vidget events 217, 239, 466
findO 14, 16, 34, 412
finite state machine 198-199
floating point See real numbers
flushO 413
FontO 131, 394
font 131, 435
fonts 129-133

characteristics 132
families 129, 130
monospaced 129-130, 130
portability 130, 138
proportional 130, 133
sans-serif 130
screen 129
serif 130
size 129
specification 130, 473, 475
standard 130, 473
styles 129
typewriter 130

foreground color 62, 86, 88, 144
fractal stars 91-92, 116
frame, window 67
FreeColorO 146, 394
FfP, Icon 487
functions See procedures
fwidth 133, 436

G

gamma 144, 162, 436, 474, 476
gamma correction 144-145, 162, 474, 476
generators 13-15, 17-18
getO 25, 413
getenvO 413
GetEventsO 255, 394
GIF image format 161, 164, 474
global 36
global variables 36, 305
goal-directed evaluation 16-17
GotoRCO 128, 394
GotoXYO 128, 395
graphicS contexts 167-173

attributes 168
graphics systems 67--68, 473-477
grouping 22, 48
GUI See visual interface builder

H

halftones 148

499

height 166, 436
HLS color model 150
HSV color model 143, 150, 291
hue 139-141, 143

I

iandO 413
icode 44, 480
icomO 413
icon (small image) 173
Icon program library 46-47, 388, 489

core modules 47
organization 46-47

Icon Project 488
Icon resources 487-488
iconimage 162, 173, 436
iconlabel 173, 436
iconpos 173, 437
icont 44, 45, 56, 479
identifiers 370
if-then-else 9, 12, 376
imageO 56, 172, 413
image 161, 437
image file formats

BMP 474
GIF 161, 164, 474
XBM 476
XPM 476

images 155-164
bi-Ievel 157
drawing 155-157
in files 161-162, 474, 476

infix operators 48-51
initial 36
input See reading; events
insertO 26, 413
integerO 21, 414
integers 21
intensity See light, intensity of
interaction 183-204

model 217-218
interactive expression evaluation 57
interface builder See VIB
interface design 221, 260
interface tools 208-215 See also the individual

tools; vidgets
choosing 219

interpreter 479
intersection 27
iorO 414



500

IPATH 45, 481, 482
ishiftO 414
iteration 15-16
ixorO 414

K

keyO 28, 414
Key_symbols 450
keyboard

events 66, 183, 188, 474, 476
symbols 449

keys, table 27-28
keysyms.icn 449, 476
keywords 19, 423-428

L

L-systems 117-125
label 67, 69, 437
labels 215, 244, 461, 467
leading 133
leading 133, 437
lettO 31, 414
LettStringO 395
lexical comparison 32
libraries 45 See also Icon program library
light, intensity of 144
lightness 139-141, 143
limitation 15, 377
Lindenmayer systems 117-125
line attributes 85-87
line segments 75
line terminators 39, 41, 50, 491
lines 63, 73, 106, 445-446

attributes 85
on interfaces 215, 227-229, 461, 467

linestyle 86, 437, 445, 474
linewidth 63, 85-86, 437, 445-446, 446, 474
link 45
link graphics 59, 388, 481
listO 24, 415
lists 24-26 See also structures

as procedure arguments 37, 75, 101
empty 24
of attributes 69

local 36
local variables 36-37
logO 23, 102, 415
Logo 106
LowerO 167, 395
LPATH 46, 371, 482

M

mailing list, Icon 488
main procedure See procedures, main
manyO 34, 415
mapO 415
matchO 415
mathematical procedures 22
matrices 302
memberO 27, 416
members, set 26
menu bar 223
menus 210-211, 233, 460, 465

callbacks 216
meta key 186, 196, 207
Microsoft Windows 44, 68, 473, 482
mixed-mode arithmetic 22
monitors See displays
Motif Window Manager 68
mouse

button 66, 183
click 183
drag 183
events 66, 183
pointer 66, 192, 474, 477
position 197

moveO 33, 416
MSTKSIZE 102, 482
mutable colors 146-148, 151-153, 474

N

names, predefined 43, 373
NewColorO 146, 395
newline character 128
newsgroup, Icon 488
newsletters, Icon 488
next 12, 376
not 12, 376
NoticeO 193, 287, 297, 395
null character 29
null value 21, 35-36, 36, 39, 41, 99
numericO 416

o
openO 40, 42, 416
OpenDialogO 193, 287, 396
operators 379-386

infix 48-51
prefix 48-51

ordO 417

Index500

IPATH 45, 481, 482
ishiftO 414
iteration 15-16
ixorO 414

K

keyO 28, 414
Key_symbols 450
keyboard

events 66, 183, 188, 474, 476
symbols 449

keys, table 27-28
keysyms.icn 449, 476
keywords 19, 423-428

L

L-systems 117-125
label 67, 69, 437
labels 215, 244, 461, 467
leading 133
leading 133, 437
lettO 31, 414
LettStringO 395
lexical comparison 32
libraries 45 See also Icon program library
light, intensity of 144
lightness 139-141, 143
limitation 15, 377
Lindenmayer systems 117-125
line attributes 85-87
line segments 75
line terminators 39, 41, 50, 491
lines 63, 73, 106, 445-446

attributes 85
on interfaces 215, 227-229, 461, 467

linestyle 86, 437, 445, 474
linewidth 63, 85-86, 437, 445-446, 446, 474
link 45
link graphics 59, 388, 481
listO 24, 415
lists 24-26 See also structures

as procedure arguments 37, 75, 101
empty 24
of attributes 69

local 36
local variables 36-37
logO 23, 102, 415
Logo 106
LowerO 167, 395
LPATH 46, 371, 482

M

mailing list, Icon 488
main procedure See procedures, main
manyO 34, 415
mapO 415
matchO 415
mathematical procedures 22
matrices 302
memberO 27, 416
members, set 26
menu bar 223
menus 210-211, 233, 460, 465

callbacks 216
meta key 186, 196, 207
Microsoft Windows 44, 68, 473, 482
mixed-mode arithmetic 22
monitors See displays
Motif Window Manager 68
mouse

button 66, 183
click 183
drag 183
events 66, 183
pointer 66, 192, 474, 477
position 197

moveO 33, 416
MSTKSIZE 102, 482
mutable colors 146-148, 151-153, 474

N

names, predefined 43, 373
NewColorO 146, 395
newline character 128
newsgroup, Icon 488
newsletters, Icon 488
next 12, 376
not 12, 376
NoticeO 193, 287, 297, 395
null character 29
null value 21, 35-36, 36, 39, 41, 99
numericO 416

o
openO 40, 42, 416
OpenDialogO 193, 287, 396
operators 379-386

infix 48-51
prefix 48-51

ordO 417

Index



Index

origin 60, 88, 180
output See writing; drawing

p

PaletteCharsO 157, 163, 396
PaletteColorO 156, 163, 396
PaletteGraysO 157, 163, 396, 444
PaletteKeyO 156, 397
palettes 155-157, 441-444
parameters 35
parentheses 49, 51
parsing, string 33
Pascal 8-9
PatternO 158, 397
pattern 158, 438
patterns 148, 157-160

built-in 158
sizes 160

PendingO 66, 188, 189, 397, 451
PixelO 174, 397
plants 117-125
pointer

mouse 66, 192, 197, 474, 477
text See cursor

pointer semantics 52-55, 323
pointer 192, 198, 438, 474, 477
pointercol 192, 438
pointerrow 192, 438
pointerx 192, 197, 438
pointery 192, 197, 439
points 71-72
polling 189
polygons 73, 79-81, 102, 446
polymorphism 51
popO 26, 417
portability

colors 145
fonts 138
keyboard events 476
monochrome 148-149

pos 167, 439
posO 417
posx 167, 439
posy 167, 439
precedence 48
predefined names 43, 373
prefix operators 48-51
preprocessing 42-44, 51, 371-374
printing, color images 149
procedures 7, 35, 35-39

arguments 37

as values 38
calling 37-38
invocation 37
libraries 45
linking 45
list invocation 37
main 7, 60, 256, 481
mathematical 22
parameters 35
returns 38-39
standard 387-422
suspension 39
traceback 56
tracing 56

ProcessEventO 255, 258, 397
program

command line arguments 481
structure 7, 59, 254, 268-274
termination 42, 62

program library See Icon program library
prototyping 247, 472
pullO 26, 417
pushO 25, 417
putO 25, 417

Q
qei 57
queues 25-26
quotation marks 30

R

radio buttons 209, 242, 289, 460, 464
callbacks 216

RaiseO 167, 398
random colors 163
random numbers 23, 102
random rectangles 64-66, 92-94, 150
random walk 107
RandomColorO 163
readO 10, 40, 418
ReadlmageO 162, 398, 474, 476
reading

from files 10, 39-41
from window 127, 188
images 162, 474, 476

readsO 418
real numbers 21, 97-98

literals 21
realO 418
record constructor 23

501Index

origin 60, 88, 180
output See writing; drawing

p

PaletteCharsO 157, 163, 396
PaletteColorO 156, 163, 396
PaletteGraysO 157, 163, 396, 444
PaletteKeyO 156, 397
palettes 155-157, 441-444
parameters 35
parentheses 49, 51
parsing, string 33
Pascal 8-9
PatternO 158, 397
pattern 158, 438
patterns 148, 157-160

built-in 158
sizes 160

PendingO 66, 188, 189, 397, 451
PixelO 174, 397
plants 117-125
pointer

mouse 66, 192, 197, 474, 477
text See cursor

pointer semantics 52-55, 323
pointer 192, 198, 438, 474, 477
pointercol 192, 438
pointerrow 192, 438
pointerx 192, 197, 438
pointery 192, 197, 439
points 71-72
polling 189
polygons 73, 79-81, 102, 446
polymorphism 51
popO 26, 417
portability

colors 145
fonts 138
keyboard events 476
monochrome 148-149

pos 167, 439
posO 417
posx 167, 439
posy 167, 439
precedence 48
predefined names 43, 373
prefix operators 48-51
preprocessing 42-44, 51, 371-374
printing, color images 149
procedures 7, 35, 35-39

arguments 37

as values 38
calling 37-38
invocation 37
libraries 45
linking 45
list invocation 37
main 7, 60, 256, 481
mathematical 22
parameters 35
returns 38-39
standard 387-422
suspension 39
traceback 56
tracing 56

ProcessEventO 255, 258, 397
program

command line arguments 481
structure 7, 59, 254, 268-274
termination 42, 62

program library See Icon program library
prototyping 247, 472
pullO 26, 417
pushO 25, 417
putO 25, 417

Q
qei 57
queues 25-26
quotation marks 30

R

radio buttons 209, 242, 289, 460, 464
callbacks 216

RaiseO 167, 398
random colors 163
random numbers 23, 102
random rectangles 64-66, 92-94, 150
random walk 107
RandomColorO 163
readO 10, 40, 418
ReadlmageO 162, 398, 474, 476
reading

from files 10, 39-41
from window 127, 188
images 162, 474, 476

readsO 418
real numbers 21, 97-98

literals 21
realO 418
record constructor 23

501



502

records 23-24 See also structures
fields 48
trees and graphs 53

rectangles 61, 64, 77, 446, 448
copying 174
negative dimensions 77, 448
random 64-66
selection 198-203

recursive generation 122
regions 214, 231, 262, 461, 467

callbacks 217
removeO 418
renameO 418
repeat 12, 376
repeated alternation 377
replO 31, 418
reserved words 7, 370
resize 68, 184, 439
return 35, 38, 376
return character 128, 491
return key 188
reverse 144, 439
reverseO 31, 419
reversible assignment 17
reversible drawing 88, 135, 200, 475
rewriting system 118
RGB color model 142, 143, 150, 291
rightO 31, 419
RightStringO 398
root vidget 253, 255
rotation 177
round-off 97-98
row 128, 440
rows 128
rows 167, 440
rtodO 23, 419
runerrO 419
running programs 44, 479--485

s
saturation 139-141, 143
SaveDialogO 195, 287, 398
scaling 218
scanning See strings, scanning
scope, variable 36-37
scrollbars 213, 461, 466

callbacks 217
scaling 218

scrolling 127, 176-177
seed, random 102, 426

Index

seekO 419
SelectDialogO 289, 399
selection, for editing 194, 212
semicolons 8, 50
seqO 419
server 192, 475
setO 26, 420
sets 26-27 See also structures
ShadeO 148, 399
shading, three dimensional 151
shift key 186, 197
Sierpinski triangle 71-72
sinO 23, 420
size 60, 166, 440
sliders 212-213, 239, 460, 466

callbacks 217
scaling 218

sortO 28-29, 420
sortf0 420
sorting 28-29
splines, Catmull-Rom 85
sqrtO 23, 420
stack, evaluation 101
stacks 25-26
standard error output 40
standard input 40
standard output 40
stars 74, 80-81, 83-84, 85, 90, 102

fractal 91, 116
statements 8-9
static 36
static variables 36
stopO 41, 421
stringO 421
strings 29-34

as atomic values 29
character positions 31
comparison 32, 383
drawing 134
literals 30, 369
scanning 32-34, 49
subscripting 31
substrings 32

STRS1ZE 482
structures 23-29 See also lists; records; sets;

tables
pointer semantics 52-55

subject window 165, 166
submenus 211, 216, 465
subscripting

list 25

502

records 23-24 See also structures
fields 48
trees and graphs 53

rectangles 61, 64, 77, 446, 448
copying 174
negative dimensions 77, 448
random 64-66
selection 198-203

recursive generation 122
regions 214, 231, 262, 461, 467

callbacks 217
removeO 418
renameO 418
repeat 12, 376
repeated alternation 377
replO 31, 418
reserved words 7, 370
resize 68, 184, 439
return 35, 38, 376
return character 128, 491
return key 188
reverse 144, 439
reverseO 31, 419
reversible assignment 17
reversible drawing 88, 135, 200, 475
rewriting system 118
RGB color model 142, 143, 150, 291
rightO 31, 419
RightStringO 398
root vidget 253, 255
rotation 177
round-off 97-98
row 128, 440
rows 128
rows 167, 440
rtodO 23, 419
runerrO 419
running programs 44, 479--485

s
saturation 139-141, 143
SaveDialogO 195, 287, 398
scaling 218
scanning See strings, scanning
scope, variable 36-37
scrollbars 213, 461, 466

callbacks 217
scaling 218

scrolling 127, 176-177
seed, random 102, 426

Index

seekO 419
SelectDialogO 289, 399
selection, for editing 194, 212
semicolons 8, 50
seqO 419
server 192, 475
setO 26, 420
sets 26-27 See also structures
ShadeO 148, 399
shading, three dimensional 151
shift key 186, 197
Sierpinski triangle 71-72
sinO 23, 420
size 60, 166, 440
sliders 212-213, 239, 460, 466

callbacks 217
scaling 218

sortO 28-29, 420
sortf0 420
sorting 28-29
splines, Catmull-Rom 85
sqrtO 23, 420
stack, evaluation 101
stacks 25-26
standard error output 40
standard input 40
standard output 40
stars 74, 80-81, 83-84, 85, 90, 102

fractal 91, 116
statements 8-9
static 36
static variables 36
stopO 41, 421
stringO 421
strings 29-34

as atomic values 29
character positions 31
comparison 32, 383
drawing 134
literals 30, 369
scanning 32-34, 49
subscripting 31
substrings 32

STRS1ZE 482
structures 23-29 See also lists; records; sets;

tables
pointer semantics 52-55

subject window 165, 166
submenus 211, 216, 465
subscripting

list 25



Index

nonpositive 31-32
string 31
table 27

substrings 32
SubWindowO 180, 399
subwindows 178
success 10-11
suspend-do 39, 376
synchronization 191
syntax 367-370
system() 421

T

tab character 128
tabO 33, 34, 421
tableO 27, 421
tables 27-28 See also structures

default value 28
sorting 28

tanO 23, 421
TDrawO 106, 111, 400
TDrawtoO 106, 400
technical reports, Icon 489
termination dump 56
termination, program 42, 62
text 127-138

cursor 128, 194, 212, 474, 476
files 39
justification 135-138
positioning 128, 134
scrolling 127
width 133

text lists 213--214, 460, 465
callbacks 217

text position 128
text-entry fields 193, 212, 288, 460, 465

aligning 264
callbacks 217
in custom dialogs 297

TextDialogO 287-289, 297, 400
TextWidthO 133, 401
TFaceO 106, 401
TGotoO 106, 110, 112, 401
THeadingO 106, 401
THomeO 402
thumb 212, 217, 466
TlnitO 112
title bar, window 67, 69, 173
TLeftO 106, 402
to-by 17, 384

503

toggle buttons 208, 290, 459, 464
callbacks 216

ToggleDialogO 290, 402
TRACE 482
traceback 56
tracing 56
translation 88-89, 90, 180, 451
transparency 155, 157, 164
transparent GIFs 164
tree (data structure) 53
TResetO 107, 403
TRestoreO 106, 111, 403
TRightO 106, 111, 403
trigonometric procedures 22
trimO 31, 421
TSaveO 106, 111, 403
TScaleO 404
TSkiPO 106, 110, 404
turtle graphics 105-125
TWindowO 404
TXO 106, 404
TYO 106, 404
typeO 19, 422
types See data types

u
ucode 45
uiO 255, 256
uLattsO 256, 262
UncoupleO 172, 405
undeclared identifiers 56
undo facility 322
union 27
UNIX 44, 45, 479 See also X Window System
until-do 12, 377
uptoO 34, 422

V

variables 19
environment 45-46
global 36-37
local 36-37
parameters 35
static 36-37
undeclared 56
untyped 19

VEchoO 405
VGetltemsO 253, 405
VGetStateO 253, 405
VIB 224-252, 457-472

Index

nonpositive 31-32
string 31
table 27

substrings 32
SubWindowO 180, 399
subwindows 178
success 10-11
suspend-do 39, 376
synchronization 191
syntax 367-370
system() 421

T

tab character 128
tabO 33, 34, 421
tableO 27, 421
tables 27-28 See also structures

default value 28
sorting 28

tanO 23, 421
TDrawO 106, 111, 400
TDrawtoO 106, 400
technical reports, Icon 489
termination dump 56
termination, program 42, 62
text 127-138

cursor 128, 194, 212, 474, 476
files 39
justification 135-138
positioning 128, 134
scrolling 127
width 133

text lists 213--214, 460, 465
callbacks 217

text position 128
text-entry fields 193, 212, 288, 460, 465

aligning 264
callbacks 217
in custom dialogs 297

TextDialogO 287-289, 297, 400
TextWidthO 133, 401
TFaceO 106, 401
TGotoO 106, 110, 112, 401
THeadingO 106, 401
THomeO 402
thumb 212, 217, 466
TlnitO 112
title bar, window 67, 69, 173
TLeftO 106, 402
to-by 17, 384

503

toggle buttons 208, 290, 459, 464
callbacks 216

ToggleDialogO 290, 402
TRACE 482
traceback 56
tracing 56
translation 88-89, 90, 180, 451
transparency 155, 157, 164
transparent GIFs 164
tree (data structure) 53
TResetO 107, 403
TRestoreO 106, 111, 403
TRightO 106, 111, 403
trigonometric procedures 22
trimO 31, 421
TSaveO 106, 111, 403
TScaleO 404
TSkiPO 106, 110, 404
turtle graphics 105-125
TWindowO 404
TXO 106, 404
TYO 106, 404
typeO 19, 422
types See data types

u
ucode 45
uiO 255, 256
uLattsO 256, 262
UncoupleO 172, 405
undeclared identifiers 56
undo facility 322
union 27
UNIX 44, 45, 479 See also X Window System
until-do 12, 377
uptoO 34, 422

V

variables 19
environment 45-46
global 36-37
local 36-37
parameters 35
static 36-37
undeclared 56
untyped 19

VEchoO 405
VGetltemsO 253, 405
VGetStateO 253, 405
VIB 224-252, 457-472



504

creating dialogs 292-295, 471-472
generated code 251-252
limitations 472
menus 248, 458
multiple windows 256
prototyping 247, 472

vidgets 208, 253-254, 453-456, 459-461 See
also interface tools

activation 455
aligning 264, 468-470
attributes 463-468
configuring 468-470
copying 470
deleting 470
events 255
record fields 254, 453
resizing 468
selecting 468
states 253, 454
visual feedback 454

virtual machine 479
visual interface builder See VIB
VSetFontO 405
VSetltems() 254, 406
VSetStateO 253, 406

W

WAttrib() 63, 406, 429
WCloseO 166, 406
WDefault() 175, 406, 477
WDeiayO 65, 94, 192, 407
WDone() 62, 407
Web site, Icon 487
WFlush() 192, 407
whereO 422
while-do 10, 12, 15-16, 377
Wi 483
width, text 133
width 166, 440
windows 165-181

attributes See attributes
closing 166, 172
coordinate system 60, 88, 100
focus 167
hidden 173
iconified 173
label 172
management 67-68, 180
maximal 173
normal 173

Index

opening 60, 62, 166
position 166-167
reading 127, 188
resizing 68, 184, 185
scrolling 127
size 60, 67, 166-167, 180, 226
stacking order 167
string images 172
synchronization 191
writing 127

Windows 95 See Microsoft Windows
WOpen() 60, 62, 69, 165, 166, 168, 407, 429
WQuit() 72, 407
WReadO 127, 188, 189, 408
WReadsO 127, 188, 189, 408
writeO 40, 41, 422
Writelmage() 162, 408, 474, 476
writesO 42, 422
writing

images 162, 474, 476
to files 41-42
to windows 127

WSyncO 192, 408
WWrite() 61, 127, 409
WWritesO 127, 409

x
x 128, 440
X Window System 68, 475-477
X-box buttons 209
XBM image format 476
XPM image format 476

y

Y 128, 440

504

creating dialogs 292-295, 471-472
generated code 251-252
limitations 472
menus 248, 458
multiple windows 256
prototyping 247, 472

vidgets 208, 253-254, 453-456, 459-461 See
also interface tools

activation 455
aligning 264, 468-470
attributes 463-468
configuring 468-470
copying 470
deleting 470
events 255
record fields 254, 453
resizing 468
selecting 468
states 253, 454
visual feedback 454

virtual machine 479
visual interface builder See VIB
VSetFontO 405
VSetltems() 254, 406
VSetStateO 253, 406

W

WAttrib() 63, 406, 429
WCloseO 166, 406
WDefault() 175, 406, 477
WDeiayO 65, 94, 192, 407
WDone() 62, 407
Web site, Icon 487
WFlush() 192, 407
whereO 422
while-do 10, 12, 15-16, 377
Wi 483
width, text 133
width 166, 440
windows 165-181

attributes See attributes
closing 166, 172
coordinate system 60, 88, 100
focus 167
hidden 173
iconified 173
label 172
management 67-68, 180
maximal 173
normal 173

Index

opening 60, 62, 166
position 166-167
reading 127, 188
resizing 68, 184, 185
scrolling 127
size 60, 67, 166-167, 180, 226
stacking order 167
string images 172
synchronization 191
writing 127

Windows 95 See Microsoft Windows
WOpen() 60, 62, 69, 165, 166, 168, 407, 429
WQuit() 72, 407
WReadO 127, 188, 189, 408
WReadsO 127, 188, 189, 408
writeO 40, 41, 422
Writelmage() 162, 408, 474, 476
writesO 42, 422
writing

images 162, 474, 476
to files 41-42
to windows 127

WSyncO 192, 408
WWrite() 61, 127, 409
WWritesO 127, 409

x
x 128, 440
X Window System 68, 475-477
X-box buttons 209
XBM image format 476
XPM image format 476

y

Y 128, 440



®Other Peer-to-Peer Communications Titles
lions' Commentary on UNIX
6th Edition, with Source Code
John Lions
264 pp., $29.95 US, ISBN 1-57398-013-7

"After 20 years, this is still the best exposition
of the workings of a 'real' operating system."

-Ken Thompson, 1996
This hacker classic gives the complete source

code to an early, very elegant version of UNIX
(Thompson and Ritchie wrote all the code) and
also provides a brilliant commentary on the
software's inner workings. Well-suited for
either textbook use or self-study.

Operating System Source Code Secretstm

series
William F. Jolitz and Lynne Greer Jolitz

"If 386BSD had been available when I started on
Linux, Linux would probably never have
happened."

-Linus Torvalds, Linux developer

This will be the most comprehensive operating
systems series ever published. Bill Jolitz (Princi­
pal Developer of Berkeley UNIX 2.8) and his wife
Lynne began the 386BSD project in 1989, devel­
oping a complete, fully-documented x86 operat­
ing system based on BSD UNIX but incorporat­
ing the best ideas from later systems (e.g. NT's
dynamic configuration, Mach's virtual memory
model, Solaris threads). Operating System SOllree
Code Secrets, the fruits of ten years of 386BSD
work, shows in full detail how modem operat­
ing systems really work, emphasizing themes of
system performance, security, scalability, modu­
lar configuration, and extensibility.

Volume 1: The Basic Kernel
530 pp., $49.95 US, ISBN 1-57398-026-9

Extensively describes fundamental kernel
functions (e.g. bootstrap, memory allocation,
and x86 specifics) as well as newer concepts
such as dynamic configuration, role-based se­
curity, and threads. Published 1996.

Future Volumes
(see www.peer-to-peer.com/

for publication dates and prices)

Volume 2: Virtual Memory
ISBN 1-57398-027-7

Extensively describes a modified, thoroughly
documented implementation of the Mach
virtual memory system integrated into the x86
BSD environment. Covers topics such as x86
mmu control, clustering, copy on write, map­
ping, swapping, paging, and fault handling.

Volume 3: Sockets
ISBN 1-57398-003-X

Extensively describes operations conducted
on Berkeley and Winsock sockets including
SOCKS, SSL, connection management, name
binding, data and network security, the recep­
tion and transmission of data, determination of
status or buffering states, dynamic allocation of
sockets on demand, domain category and meth­
ods, and sockets in client/server and peer-to­
peer models.

Volume 4: TCP/IP Networking Protocol
ISBN 1-57398-007-2

Extensively describes methods of implement­
ing an industrial strength TCP /IP protocol
stack, from sockets through driver interfaces.

The RAIDbook, 7th edition: A Handbook
of Storage Systems Technology
RAID Advisory Board
300 pp., $39.95 US, ISBN 1-57398-028-5

The RAIDbook is the definitive technical
handbook on RAID and other state-of-the-art
data storage technologies. Redundant Arrays
of Independent Disks (RAID) offers high per­
formance, reliability, and serviceability as well
as unlimited capacity. This is a must-have book
for system managers, engineers, and program­
mers who need to understand high-end disk
systems.

For information on these and other Peer-to-Peer titles, visit our Web site
http://www.peer-to-peer.com/or your favorite technical bookstores.

®Other Peer-to-Peer Communications Titles
lions' Commentary on UNIX
6th Edition, with Source Code
John Lions
264 pp., $29.95 US, ISBN 1-57398-013-7

"After 20 years, this is still the best exposition
of the workings of a 'real' operating system."

-Ken Thompson, 1996
This hacker classic gives the complete source

code to an early, very elegant version of UNIX
(Thompson and Ritchie wrote all the code) and
also provides a brilliant commentary on the
software's inner workings. Well-suited for
either textbook use or self-study.

Operating System Source Code Secretstm

series
William F. Jolitz and Lynne Greer Jolitz

"If 386BSD had been available when I started on
Linux, Linux would probably never have
happened."

-Linus Torvalds, Linux developer

This will be the most comprehensive operating
systems series ever published. Bill Jolitz (Princi­
pal Developer of Berkeley UNIX 2.8) and his wife
Lynne began the 386BSD project in 1989, devel­
oping a complete, fully-documented x86 operat­
ing system based on BSD UNIX but incorporat­
ing the best ideas from later systems (e.g. NT's
dynamic configuration, Mach's virtual memory
model, Solaris threads). Operating System SOllree
Code Secrets, the fruits of ten years of 386BSD
work, shows in full detail how modem operat­
ing systems really work, emphasizing themes of
system performance, security, scalability, modu­
lar configuration, and extensibility.

Volume 1: The Basic Kernel
530 pp., $49.95 US, ISBN 1-57398-026-9

Extensively describes fundamental kernel
functions (e.g. bootstrap, memory allocation,
and x86 specifics) as well as newer concepts
such as dynamic configuration, role-based se­
curity, and threads. Published 1996.

Future Volumes
(see www.peer-to-peer.com/

for publication dates and prices)

Volume 2: Virtual Memory
ISBN 1-57398-027-7

Extensively describes a modified, thoroughly
documented implementation of the Mach
virtual memory system integrated into the x86
BSD environment. Covers topics such as x86
mmu control, clustering, copy on write, map­
ping, swapping, paging, and fault handling.

Volume 3: Sockets
ISBN 1-57398-003-X

Extensively describes operations conducted
on Berkeley and Winsock sockets including
SOCKS, SSL, connection management, name
binding, data and network security, the recep­
tion and transmission of data, determination of
status or buffering states, dynamic allocation of
sockets on demand, domain category and meth­
ods, and sockets in client/server and peer-to­
peer models.

Volume 4: TCP/IP Networking Protocol
ISBN 1-57398-007-2

Extensively describes methods of implement­
ing an industrial strength TCP /IP protocol
stack, from sockets through driver interfaces.

The RAIDbook, 7th edition: A Handbook
of Storage Systems Technology
RAID Advisory Board
300 pp., $39.95 US, ISBN 1-57398-028-5

The RAIDbook is the definitive technical
handbook on RAID and other state-of-the-art
data storage technologies. Redundant Arrays
of Independent Disks (RAID) offers high per­
formance, reliability, and serviceability as well
as unlimited capacity. This is a must-have book
for system managers, engineers, and program­
mers who need to understand high-end disk
systems.

For information on these and other Peer-to-Peer titles, visit our Web site
http://www.peer-to-peer.com/or your favorite technical bookstores.



Also available

The Icon Programming Language 3/e

This book is the definitive reference manual and text for the Icon programming langua~

It contains all you need to learn and use Icon. This third edition expands on the previo
editions and brings the description up to date with Version 9 of the language.

The language book complements Graphics Programming in Icon by providing complete at

in-depth coverage of all features of the language.

THE ICON
PROGRAMMING

LANGUAGE
.~.

,;;,

Ralph E. Griswold· Madge T. Griswold

ISBN 1-57398-001-3

Peer-to-Peer Communications, paperback,
1996,386 pages

Contents

The Language

1 Getting Started
2 Expressions
3 String Scanning
4 Characters, Csets, and Strings
5 Numerical Computation and Bit

Operations
6 Structures
7 Expression Evaluation
8 Procedures
9 Co-Expressions
10 Data types
11 Input and Output
12 An Overview of Graphics
13 Other Features
14 Running an Icon Program
15 Libraries
16 Errors and Diagnostic Facilities

Programming Techniques

17 Programming with Generators
18 StringScanning and Pattern MatchiI
19 Using Structures
20 Mapping and Labelings

Appendixes, References, Index

For more information, contact:

Peer-to-Peer Communications, Inc.
p.o. Box 640218
San Jose, California 95164-0218, U.S.A.

800-420-2677 • fax: 804-975-0790
info@peer-to-peer.com • http://www.peer-to-peer.con

Also available

The Icon Programming Language 3/e

This book is the definitive reference manual and text for the Icon programming langua~

It contains all you need to learn and use Icon. This third edition expands on the previo
editions and brings the description up to date with Version 9 of the language.

The language book complements Graphics Programming in Icon by providing complete at

in-depth coverage of all features of the language.

THE ICON
PROGRAMMING

LANGUAGE
.~.

,;;,

Ralph E. Griswold· Madge T. Griswold

ISBN 1-57398-001-3

Peer-to-Peer Communications, paperback,
1996,386 pages

Contents

The Language

1 Getting Started
2 Expressions
3 String Scanning
4 Characters, Csets, and Strings
5 Numerical Computation and Bit

Operations
6 Structures
7 Expression Evaluation
8 Procedures
9 Co-Expressions
10 Data types
11 Input and Output
12 An Overview of Graphics
13 Other Features
14 Running an Icon Program
15 Libraries
16 Errors and Diagnostic Facilities

Programming Techniques

17 Programming with Generators
18 StringScanning and Pattern MatchiI
19 Using Structures
20 Mapping and Labelings

Appendixes, References, Index

For more information, contact:

Peer-to-Peer Communications, Inc.
p.o. Box 640218
San Jose, California 95164-0218, U.S.A.

800-420-2677 • fax: 804-975-0790
info@peer-to-peer.com • http://www.peer-to-peer.con





PP PEER-TO-PEER
COMMUNICATIONS

SM

9 781573 980098

ISBN 1-57398-009-9

90000>




