The Implementation of Graphics
Facilitiesin Icon Version 9 *

Clinton L. Jeffery

Technical Report CS-94-3
August 25, 1994

Abstract

The graphicsfacilitiesin Icon Version 9 are alarge addition to the Icon system. This document
describestheinternals of the graphicsimplementation. It isintended primarily for those porting
the graphics and windowing facilities to a new window system.

Division of Mathematics, Computer Science, and Statistics
The University of Texasat San Antonio
San Antonio, TX 78249

*This work was supported in part by the National Science Foundation under Grants CCR-8713690 and CCR-8901573, a grant
from the AT& T Research Foundation, a software donation from Microsoft, and a UTSA Faculty Research Award.

I ntroduction

Thisdocument describestheinternal sof theimplementation of Icon’sgraphicsand window system facilities.
Much of thecodeisdevoted to hiding specific features of C graphicsinterfacesthat were deemed overly com-
plex or not worth the coding effort they entail. Other implementati on techniques are motivated by portability
concerns. The graphicsinterface described below has been implemented to various levels of completeness
under X Window, OS/2 Presentation Manager, Microsoft Windows, and Macintosh platforms.

The X Implementation

The reference implementation of Icon’s graphicsfacilitiesiswrittenin terms of Xlib, thelower-level X Win-
dow C interface [Nye88]. It does not use the X resource manager. The end result of these two factsis that
the implementation is relatively visible: the semantics are expressed fairly directly in the source code. Al-
though it is necessary to understand the semantics of the underlying X routines, hidden behavior has been
minimized.

The X implementationemploysthe XPM X pixmap library if itisavailable; XPM isaproposed extension
to Xlib for storing color images in external files [LeH091]. XPM provides color facilities analogous to the
built-in X black-and-white bitmap routines. In addition to the image formats native to each platform, Icon
also supports GIF as amore universal image file format.

Relevant Source File Summary

This document assumes a familiarity with the general organization and layout of 1con sources and the con-
figuration and installation process. For more information on these topics, consult Icon Project Documents
IPD 238 [Gris94a] and IPD 243 [Gris94b]. Icon’sgraphicsfacilities consist of several sourcefiles, al inthe
runtime directory unless otherwise noted. They are discussed in more detail later in this document.

header files —h/graphics.h contains structures and macros common across platforms. Each platform adds
platform-specific e ementsto the common window structuresdefined inthisfile. Inaddition, each plat-
form getsitsown header file, currently these consist of X Windows (h/xwin.h), Presentation Manager
(h/pmwin.h), Microsoft Windows and WindowsNT (h/mswin.h) and the Macintosh (h/mac.h). Ev-
ery platform defines several common macros in the window-system specific header file in addition to
its window system specific structures and macros. The common macros are used to insert platform-
dependent pieces into platform-independent code.

I con functions — fwindow.r contains the RTL (Run-Time Language) interface code used to define built-
in functions and operators for the Icon interpreter and compiler. Thisfileis entirely window system
independent.

internal support routines —rwindow.r, rwinrsc.r, rgfxsys.r, and rwinsys.r are basically C fileswith some
window system dependencies but mostly consisting of code that isused on all systems.

window-system specific files — Each window system gets its own source files for C code, included by the
variousr*.r files in the previous section. Currently these include rxwin.ri and rxrsc.ri for X Window;
rpmwin.ri, rpmrsc.ri, and rpmgraph.ri for Presentation Manager; rmswin.ri for MS Windows and
Windows NT; and rmac.ri for the Macintosh. Each platform will implement one or more such r*.ri
files. In addition, common/xwindow.c containsso many X Window includesthat it won't even com-
pileunder UNIX SysV/386 R 3.2if all of thelcon includesare also present —soitsa.c file instead of
a.rfile

Tainted “regular” I con sources —Many of the regular |con source filesinclude code under #ifdef Graph-
ics and/or one or more specific window system definitions such as #ifdef XWindows or #ifdef Pre-
sentationManager. Thetained filesthat typically haveto be edited for anew window systeminclude
h/grttin.h, h/features.h, h/rexterns.h, h/rmacros.h, h/rproto.h, h/rstructs.h, and h/sys.h. Other
files also contain Graphics code. This means that most of the system has to be recompiled with rtt and
cc after Graphicsis defined in h/define.h. You will aso want to study the Graphics stuff at the end
of h/grttin.h since several profound macros are there. Also, any new types (such as structures) defined
in your window system include files will need dummy declarations (of the form typedef int foo;) to
be added there.

Under UNIX the window facilities are turned on at configuration time by typing make X-Configure
name=system instead of the standard make Configure invocation. TheX configuration modifies makefiles
and defines the symbolic constant Graphics in h/define.h. Anaogous configuration handling is performed
for other systems; for example, an alternate .bat fileis used in place of 0s2.bat or turbo.bat.

Graphics#define-d symbols

The primary, window-system-independent defined symbol that turns on window facilitiesis simply Graph-
ics. Undernesath this parent #ifdef, the symbol XWindows is meant to mark all X Window code. Other
window systems have a definition comparable to XWindows: for Microsoft Windows, MSWindows, for
0S/2, PresentationManager, and for the Macintosh, MacGraph. Turning on any of the platform specific
graphics#define symbolsturns on Graphics implicitly.

Structures Defined in graphics.h

graphics.h defines a collection of C structures that contain pointers to other C structures from graphics.h
as well as pointers into the window system library structures. The internals for the simplest Icon window
structure are depicted in Figure 1.

Atthetop, Iconlevel, thereisasimplestructure called abinding that containsapointer to awindow state
and a window context. Pointers to bindings are stored in the FILE * variable of the Icon file structure, and
most routinesthat deal with awindow take a pointer to abinding astheir first argument. Beneath thisfacade,
severa structures are accessed to perform operations on each window.

W ndow St at e

am -
- ~
~
- -
- ~
- ~~

" S

~

-
~ -

~ -
"""""""

- ~
- ~a

........
e ~e

N
-
..........
< -
-

Figure 1: Internal Structure of an Icon Window Value

The window state holds the typical window information (size, text cursor location, an Icon list of events
waiting to be read) as well as awindow system pointer to the actual window, a pointer to a backing pixmap
(a“compatible device context” used to handle redraw requests), and a pointer to the display state.

Thewindow context containsthe current font, foreground, and background col ors used in producing out-
put on the canvas. It also contains drawing style attributes such as the fill style. Contexts are separate from
the window state so that they may be shared among windows. Thisisabig win, and Icon programs tend to

useit heavily, soin porting the window functionsacentral design issue must be the effective use of acompa-
rable facility on other window systems, or emulating the context abstraction if necessary. Nevertheless, one
might start out with Couple() and Clone() disabled and only allow one hardwired context associated with
each window.
The display state contains whatever system resources (typically pointers or handles) that are shared
among all the windowson agiven display in therunning program. For example, in X thisincludesthe fonts,

the colors, and awindow system pointer for an internal Display structure required by all X library callsto
denote the connection to the X server.

Macros and Coding Conventions Defined in the Window System Header

Since the above structure is many layers deep and sometimes confusing, Icon’s graphics interface routines
employ coding conventionsto simplify things. In order to avoid many extramemory referencesin accessing
fields in the multi-level structure, “standard” local variables are declared in most of the interface routines
in rwindow.r. The macro STDLOCALS(w) declares local variables pointing to the most commonly used
pieces of the window binding, and initializesthem from the supplied argument; each window system header
should define an appropriate STDLOCALS(w) macro.

Some common standard local s (taken from the X Window implementation) are wc, ws, wd, stdgc, std-
dpy, stdwin, and stdpix. Whilewc, ws and wd are pointersto structures copied from the window binding,
stdgc, stddpy, stdwin, and stdpix are actual X entitiesthat are frequently supplied to the Xlib routines as
arguments. Other window systems may have more or fewer standard locals.

In much of the source code, the window system calls are performed twice. Thisis because many plat-
formssuch as X and PresentationManager do not remember the contentsof windowswhen they arereduced to
iconic size or obscured behind other windows. When thewindow is once again exposed, it is sent amessage
to redraw itself. Icon hidesthis entirely, and remembers the contents of the window explicitly in awindow-
sized bitmap of memory. The calling of platform graphicsroutinestwiceisso common that aset of macrosis
defined in xwin.h to facilitate it. The macros are named RENDER?2 through RENDERSG, and each of them
takes an Xlib function and then some number of argumentsto passthat function, and then callsthat function
twice, once on the window and once on the bitmap.

Patforms that provide backing store may avoid this duplicated effort. In practice however it seems
most window systems have redraw events even if they implement retained windows (for example, MGR
[Uhless]).

Window M anipulation in rxwin.ri

Most of the actua Xlib calls are in rxwin.ri in the Icon run-time system directory. This module includes
routinesin several major aress:

e Window creation and destruction
e Low-level event processing
e Low-level text output operations

e Window and context attribute manipulation

Window Creation and Destruction

A graphics window is created when the Icon programmer calls open() with file attribute "g”. The window
opening sequence consists of a call to wopen() to allocate appropriate Icon structures for the window and
evaluate any initial window attributes given in additional arguments to open(). After these attributes have
been eva uated, platform resources such as fontsand colorsare allocated and and the window itself isinstan-
tiated. wopen() busy-waitsuntil the window has received itsfirst expose event, ensuring that no subseguent
window operation takes place before the window has appeared onscreen.

A window is closed by acall to wclose(); this removes the on-screen window even if other bindings
(Icon window values) refer to it. A closed window remains in memory until all Icon values that refer to it
are closed. A call to unbind() removes a binding without necessarily closing the window.

Event Processing

The system software for each graphics platform has a huge number of different types of events. Iconignores
most of them. Of the remainder, some are handled by the runtime system code in the .ri filesimplicitly, and
some are explicitly passed on to the Icon program.

Most native graphic systems require that applications be event-driven; they must be tightly 1/0 bound
around the user’sactions. The interaction between user and program must be handled at every instant by the
program. lcon, on the other hand, considers this event-driven model optional.

Making the event-driven model optional meansthat thelcon interface must occasionally read and process
events when the Icon program itself is off in some other computation. In particular, keystrokes and mouse
events must be stored until the user requests them, but exposure events and resizes must be processed im-
mediately. The Icon interpreter pauses at regular intervals in between its virtual machine instructions! and
pollsthe system for eventsthat must be processed; this technique fails when no virtual machine instructions
are executing, such as during garbage collections or when blocked on file I/O.

Thisprobably could be doneusing the Xlib event queue manipul ation routines. Instead, the |con window
interface maintains its own keystroke and mouse event queue from which the Icon functions obtain their
events. Thisadditiona queue makestheimplementation more portabl e (variouswindow systemsprobably do
not support queue manipul ationto the extent or in the sameway that X does). It a so providesthe programmer
with ahigher level event processing abstraction which has proven useful.

Window resizing is partly handled by theinterface. The old contents of the window are retained in their
origina positions, but the program isinformed of theresize so it can handle the resize in a more reasonable
manner. Ashas already been noted exposure events are hidden entirely viathe use of abacking pixmap with
identical contentsfor each window. The pixmap startsout the same sizeasthewindow. It isresized whenever
thewindow growsbeyond one of itsdimensions. It could be reduced whenever the window shrinks, but then
part of the window contents would be lost whenever the user accidentally made the window smaller than
intended.

rwindow.r aso contains tables and routines mapping strings for various attributes and values to native
window system integer constants. Binary search is employed. Thisapproach isfar from satisfactory, but in

'the Icon compiler emits polling codein its generated C code, so window system facilities are supported by the compiler aswell

the absence of language support for integer constantsit isan adequate way to provide symbolic access“ built-
in” to the language. Additional tables mapping stringsto integers are found in the window-system-specific
source files.

Memory Management and r*rsc.ri Files

Memory management for internal window structuresisindependent of Icon’s standard memory management
system. Xlib memory isallocated using malloc(2). Most interna 1con window structures could be allocated
in Icon’s block region, but since they are acyclic and cannot contain any pointersto Icon values, thiswould
serve little purpose 2. In addition when an incoming event is being processed it has to be matched up with
the appropriate window state structure, so some of the window structures must be easily reached, not lost in
the block region. The window interface structures are reference counted and freed when the reference count
reaches 0.

Color Management

Managing colors under X Windowsis painful. In particular, if the same color is allocated twice the color
table entry is shared (which is good) and that entry may only be freed once (which isbad). For thisreason,
every color allocated by Iconisremembered and duplicate requests areidentified and freed only once. Inthe
genera caseit isimpossibleto detect when aparticular color isno longer being displayed, and so colors are
only freed on window closure or when awindow is cleared.

Font M anagement

Icon supports a portable font name syntax. Since the available fonts on systems vary widely, “interesting”
code has been written to support these portable names on various X servers. Each window system may need
toinclude heuristicsto pick an appropriate font in the font all ocation routinein the window system’sr*.ri file.

External Image Files

Reading and writing window contents to externa files is accomplished by the routines loadimage() and
dumpimage(), implemented in each platform’s window system specific file, such as rxwin.ri. These rou-
tines take a window binding and a string filename and perform the I/O transfer. Presently, the file format is
assumed to be indicated by the filename extension; thisis likely to change. Ideally Icon should tolerate dif-
ferent file formats more flexibly, inferring input file formats by reading the file header where possible, and
running external conversion programs where appropriate. GIF files are self-identifying, so they are always
recognized independent of name.

2 Actually, it is probably the right thing to do, and will probably happen some day, but its just not in the cards right now unless
you feel like messing with the garbage collector.

Porting Reference

This section documents the window-system specific functions and macros that generally must be imple-
mented in order to port Icon’s graphics facilities to a new window system. Thelist is compiled primarily
by studying fwindow.r, rwindow.r, and the existing platforms.

A noteontypes: w isawindow binding pointer (wbp), thetoplevel Icon“window” value. i isaninteger,
sisastring. wsp isthewindow state (ak.a. canvas) pointer, and wcp isthewindow context pointer. A bool
return value returns one of the C macro values Succeeded or Failed.

ANGLE(a)

Convert from radians into window system units. For example, under X these are 1/64 of a degree
integer values, whileunder PresentationManager it convertsto unitsof 1/65536 of adegreein afixed-
point format.

ARCHEIGHT (arc)

The height component of an XArc

ARCWIDTH(arc)

The width component of an XArc

ASCENT(w)

Returnsthe number of pixelsabovethebaselinefor the current font. Notethat when Icon writestext,
the (x,y) coordinate gives the left edge of the character at its baseline; some window systems may
need to trandlate our coordinates.

int blimage(w, X, y, width, height, ch, s, len)

Draws a bi-level (i.e. monochrome, 1-bit-per-pixel) image; used in Drawlmage() which draws
bitmap data stored in Icon strings.

wcp clone_context(w)

Allocate anew context, cloning attributesfrom w’s context.

COLTOX(W, i)

Return integer conversion from a 1-based text column to a pixel coordinate

copyArea(wl1,w2,x,y,width,height,x2,y2)

Copiesarectangular block of pixelsfrom w1 tow2.

DESCENT(w)

Returnsthe number of pixelsbelow the baseline for the current font.

DISPLAYHEIGHT(w)

Return w’s display height in pixels.

DISPLAYWIDTH(w)

Return w’s display width in pixels.

bool do_config(w, i)

Performs move/resize operations after one or more attributes have been evaluated. Configisaword
with two flags: the one bit indicates a move, the two bit indicates aresize. The desired sizesarein
thewindow state pointer, e.g. w-¢window-¢width.

drawarcs(w, thearcs, i)

Drawiarcsonw, giveninanarray of XArc structures. Define an appropriate XArc structurefor your
window system; it must include fields x, y and width and height fields accessible through macros
ARCWIDTH() and ARCHEIGHTY(). Also, astarting angle angle1 and arc extent angle2, assigned
through macros ANGLE(), EXTENT(), and FULLARC. Thisis currently a mess. Imitation of the
X or PresentationManager codeisin order.

drawlines(w, points, i)

Draw i—1 connected lines, connecting the dots given in points.

drawpoints(w, points, i)

Draw i points.

drawsegments(w, segs, i)

Draw i disconnected line segments; define an XSegment structure appropriate do your window sys-
tem, consistingof fieldsx1, y1, x2, y2. Thistype definition requirement should be cleaned up some-

day.

drawstring(w, X, y, S, s_len)

Draw string s at coordinate (x,y) on w. Note that y designates a baseline, not an upper-left corner,
of the string.

drawrectangles(w, rectangles, i)

Draw i rectangles. Define an X Rectangl e structure appropriate to your window system.

int dumpimage(w, s, X, y, width, height)

Write an image of a rectangular area in w to file s. Returns O for failure; should change to Suc-
ceeded/Failed.

eraseArea(w, X, y, width, height)

Erase arectangular ares, that is, set it to the current background color. Compare with and fillrectan-
gles().

10

EXTENT(a)

Convert from radiansinto window system units, e.g. under PresentationManager it convertsto units
of 1/65536 of a circle and does some weird type conversion.

fillarcs(w, arcs, i)

Fill wedge-like arc sections (pie pieces). See drawarcs().

fillrectangles(w, rectangles, i)

Fill i rectangles. See drawrectangles().

fillpolygon(w, points, i)

Fill apolygon defined by i points. Connect first and last pointsif they are not the same.

FHEIGHT(w)

Returnsthe pixel height of the current font, hopefully ASCENT + DESCENT.

free_binding(w)

Freebinding associated withw. Thisgetsrid of abindingthat referstow, without necessarily closing
thewindow itself (other bindings may point to that window).

free_context(wc)

Free window context wc.

free_mutable(w, i)

Free mutable color index i.

11

free_window(ws)

Free window canvas ws.

freecolor(w, s)

Free acolor allocated on w’s display.

FS_SOLID

Define thisto be the window system’s solid fill style symbol.

FS_STIPPLE

Define thisto be the window system’s stippled fill style symbol.

FULLARC

Window-system vaue for a complete (360 degree) circle or arc.

FWIDTH(w)

Returnsthe pixel width of the widest character in the current font.

wsp getactivewindow()

Return awindow state pointer to an active window, blocking until awindow isactive. Probably will
be generadized to include a non-blocking variant. Returns NULL if no windows are opened.

getbg(w, s)

Returns (writes into s) the current background color.

12

getcanvas(w, S)

Returns (writesinto s) the current canvas state.

getdefault(w, s_prog, s_opt, S)

Get any window system defaults for a program named s_prog resource named s_opt, writeresult in
S.

getdisplay(w, s)

Write astring to s with the current display name.

getdrawop(w, S)

Return current drawing operation, one of various logical combinations of source and destination
bits.

getfg(w, s)

Returns (writes into s) the current foreground color.

getfntnam(w, s)

Returns (writesinto s) the current font. Thisinterface may get changed since a portablefont naming
mechanismistobeinstalled. Nameispresently awaysprefixed by "font=" (pretty stupid, huh); must
be an artifact of merging window system ports, will be changed.

geticonic(w, S)

Return current window iconic statein s, could “iconify” or whatever. Obsolete (subsumed by canvas
attribute, getcanvas()).

13

geticonpos(w, s)

Returnicon’s positionto s, an encoded “x,y” type string.

int getimstr(w, x, y, width, height, paltbl, data)

Getsan image as a string. Used in GIF code.

getlinestyle(w, s)

Return current line style, one of solid, dashed, or striped.

get_mutable_name(w, i)

Returns the string color name currently associated with a mutable color.

getpattern(w, s)

Return current fill patternin s.

getpixel(w, x, y, long *rv)

Assign RGB valuefor pixel (x,y) into *rv.

getpixel_init(w, x, y, width, height)

Prepare to fetch pixel values from window, obtaining contentsfrom server if necessary.

getpointername(w, S)

Write mouse pointer appearance, by name, to s.

14

getpos(w)

Update the window state’s posx and posy fields with the current window position.

getvisual(w, s)

Writeastringto s that explainswhat type of display wison, e.g. "visual=x,y,z”, wherexisaclass, y
isthe bitsper pixel, and z isnumber of colormap entriesavailable. Thisterrible X-specific anachro-
nismis going to go away.

HideCursor(wsp ws)

Hide the text cursor on window state ws.

ICONFILENAME(w)

Produce char * for window’sicon image file name if thereisone.

ICONLABEL (W)

Produce char * for icon’stitleif thereisone.

isetbg(w, i)

Set background color to mutable color table entry i. Mutable colors are not available on al display
types.

isetfg(w, i)

Set foreground color to mutable color table entry i. Mutable colors are not available on all display
types.

15

ISICONIC(w)

Return 1 if the window is presently minimized/iconic, O otherwise.

ISFULLSCREEN(w)

Return 1 if the window is presently maximized/fullscreen, O otherwise.

ISNORMALWINDOW (W)

Return 1 if the window is neither minimized nor maximized, O otherwise.

LEADING(W)

Return current integer leading, the number of pixelsfrom lineto line.

LINEWIDTH(w)

Return current integer line width used during drawing.

lowerWindow(w)

Lower the window to the bottom of the stack.

mutable_color(w, dptr dp, i, C_integer *result)

Allocate amutable color from color spec given by dp and i, placing result (a small negativeinteger)
in*result.

nativecolor(w, s, 1, g, b)

Interpret a platform-specific color name s (define appropriately for your window system). Under X,
we can do thisonly if thereisawindow.

16

pollevent()

Poll for availableeventson all opened displays. Thisiswheretheinterpreter callsthewindow system
interface. Return a -1 on an error, otherwise return count of how long before it should be polled
(400).

query_pointer(w, XPoint *xp)

Produce mouse pointer location relative to w.

query_rootpointer(XPoint *xp)

Produce mouse pointer location relative to root window on default screen.

raiseWindow(w)

Rai se the window to the top of the stack.

bool readimage(w, s, X, y, int *status)

Read imagefromfiles intow and (x,y). StatusisOif everythingwaskosher, 1 if some colorsweren’t
available but the image was read OK; if amajor problem occursit returns Failed.

rebind(w, w2)

Assign w’s context to that of w2.

RECHEIGHT(rec)

The height component of an XRectangle. Gets“fixed up” (converted) into an Y2 valueif necessary,
in window system specific code.

17

RECWIDTH(rec)

Thewidth component of an XRectangle. Gets“fixed up” (converted) into an X2 valueif necessary,
in window system specific code.

RECX(rec)

The x component of an XRectangle

RECY(rec)

They component of an XRectangle

ROWTOY (W, i)

Return integer conversion from a 1-based text row to a pixel coordinate

SCREENDEPTH(w)

Returns the number of bits per pixel.

int setbg(w, s)

Set the context background color to s. Returns O for failure, 1 for success. Should be changed to
Succeeded/Failed.

setcanvas(w, s)

Set canvas stateto s, make it “iconic”, “hidden” or whatever.

setclip(w)

Set (enable) clipping on w from its context.

18

setcursor(w, i)

Turn text cursor on or off. Text cursor is off (invisible) by default.

setdisplay(w, s)

Set the display to use for thiswindow; failsif the window is aready open somewhere.

setdrawop(w, S)

Set drawing operation to one of various logical combinations of source and destination bits.

int setfg(w, s)

Set the context foreground color to s. Returns O for failure, 1 for success. Should be changed to
Succeeded/Failed.

setfillstyle(w, s)

Set fill styleto solid, masked, or textured.

bool setfont(w, char **s)

Set the context font to s. Thisfunction first attempts to use the portable font naming mechanism; it
resorts to the system font mechanism if the name is not in portabl e syntax.

setgamma(w, gamma)

Set the context’s gamma correction factor

setgeometry(w, S)

Set the window’s size and/or position

19

setheight(w, i)

Set window height to i, whether or not window is open yet.

seticonicstate(w, Ss)

Set window iconic stateto s, could “iconify” or whatever. Obsolete; setcanvas() is more important.

seticonimage(w, dptr d)

Set window icontod. Could be string filename or existing pixmap (i.e. another window’s contents).
Pixmap assignment no longer possible, so one could simplify thisto just take a string parameter.

seticonlabel(w, s)

Set icon’sstring titleto s.

seticonpos(w, s)

Moveicon's positionto s, an encoded “x,y” type string.

setimage(w, S)

Set an initial image for thewindow from files. Only valid during call to open().

setleading(w, i)

Set line spacing to i pixelsfrom line to line. Thisincludes font height and externa leading, soi <
fontheight means lines draw partly over preceding lines, i > fontheight means extra spacing.

setlinestyle(w, s)

Set line styleto solid, dashed, or striped.

20

setlinewidth(w, i)

Set linewidthtoi.

set_mutable(w, i, S)

Set mutable color index i to color s.

SetPattern(w, s, s_len)

Set fill pattern to bitsgivenins. Fill pattern isnot used unlessfillstyle attributeis changed to “ pat-
terned” or “opaguepatterned”.

SetPatternBits(w, width, bits, nbits)

Set fill patternto bitsgiven inthearray of integersnamed bits. Fill patternisnot used unlessfillstyle
attributeis changed to “ patterned” or “ opaquepatterned”.

setpointer(w, s)

Set mouse pointer appearance to shape named s.

setpos(w, S)

Move window to s, a string encoded “ (x,y)” thing.

setwidth(w, i)

Set window width to i, whether or not window is open yet.

setwindowlabel(w, s)

Set window’sstring titleto s.

21

ShowCursor(wsp ws)

Show the text cursor on window state ws.

int strimage(w, X, y, width, height, e, s, len)

Draws a character-per-pixel image, used in Drawlmage(). See blimage().

SysColor

Define thistype to be the window system’sRGB color structure.

TEXTWIDTH(W, s, s_len)

Returns the integer text width of s usingw’s current font.

toggle_fghg(w)

Swap the foreground and background on w.

unsetclip(w)

Disable clipping on w from its context.

UpdateCursorPos(wsp ws, wcp wc)

Move the text cursor on window state ws and context wc.

walert(w, i)

Sounds an dert (beep). i isavolume; it can range between -100 and 100; 0 is normal.

22

warpPointer(w, X, y)

Warp the mouse location to (x,y)

wclose(w)

Closes window w. If there are other bindings that refer to the window, they are converted into
pixmaps, i.e. the window disappears but the canvas is still there and can be written on and copied
from.

wflush(w)

Flush output to window w; a no-op on some systems.

wgetq(w, dptr result)

Get an event from w’s pending queue, put results in descriptor *res. Returns-1 for an error, 1 for
success (should fix this).

WINDOWLABEL(w)

Produce char * for window’stitleif thereisone.

FILE * wopen(s, struct b_list *Ip, dptr attrs, i, int *err_index)

Open window named s, with various attributes. This ought to be merged from various window
system dependent files, but presently each one defines its own. Copy and modify from rxwin.ri or
rpmwin.ri. Thereturn valueisreally awbp, cast to aFILE *.

wputc(c, w)

Draw character ¢ on window w, interpret newlines, carriage returns, tabs, deletes, backspaces, and
the bell.

23

wsync(w, i)

Synchronize server and client (ano-op on some systems). iisalif pending eventsareto be dropped,
a0if not. Should be cleaned up.

xdis(w, s, s_len)

Draw string s on window w, low-level.

XTOCOL(w, i)

Return integer conversion from a 0-based pixel coordinate to text column.

YTOROW(w, i)

Return integer conversion from a 0-based pixel coordinate to text row.

References

[Gris94a] Griswold, R. E., Jeffery, C. L., and Townsend, G. M. Configuring the Source Code for Version
9.0 of Icon. Technical Report 1PD238, Department of Computer Science, University of Arizona,
May 1994.

[Gris94b] Griswold, R. E., Jeffery, C. L., and Townsend, G. M. Installing Version 9.0 of Icon on UNIX
Platforms. Technical Report IPD243, Department of Computer Science, University of Arizona,
June 1994.

[LeHo91] LeHors, A. The X PixMap Format. Groupe Bull, Koala Project, INRIA, France, 1991.

[Nye88] Nye, A., editor. Xlib Reference Manual. O'Reilly & Associates, Inc., Sebastopol, California,
1988.

[UhleB88] Uhler, S. A. MGR — C Language Application Interface. Technical report, Bell Communications
Research, July 1988.

24

