
The Icon Analyst 63 / 1

December 2000
Number 63

In-Depth Coverage of the Icon Programming Language and Applications

Constant Square-Root Palindromes

In the last issue of the Analyst, we described
an application, which we have named qirplore, for
exploring the space of square-root palindromes —
the palindromic parts of the repeats in continued-
fraction sequences for square roots [1].

In this article we’ll use qirplore to gather infor-
mation about constant square-root palindromes
— palindromes in which all terms are the same —
and then deduce some general results.

Formulas for m

In the previous article, we wrote formulas for
m in terms of n, as in

palindrome n m

1 i 2n
1,1,1 3i–1 (4n+1)/3
1,1,1,1 5i–2 2(3n+1)/5

It also is possible to write formulas for m in
terms of i by substituting the formula for n into the
corresponding formula for m (or by computing
them that way in the first place). For example, the
examples above can be written as

1 i 2i
1,1,1 3i–1 4i–1
1,1,1,1 5i–2 6i–2

Note that i does not range independently in the
formulas for n and m.

Writing formulas for m in terms of i does not
reduce the number of distinct parameters — if m is
expressed in terms of n, the quotient in the formula
for m is the same as the multiplier for i in the
formula for n — but formulas for m written in terms
of i are easier to handle.

We revised qirplore to make i an independent
variable rather than implicit in n. Figure 1 shows
the new specification dialog and Figure 2 shows
the new result dialog.

Figure 1. Specification Dialog

Figure 2. Result Dialog

Previous Results

The previous article had several results for
constant palindromes. Here they are with m ex-
pressed in terms of i and using the notation j k to

In this issue

Constant Square-Root Palindromes ...... 1
Packet Sequences ..................................... 7
Understanding T-Sequences ................ 10
Transposition Ciphers ........................... 17
What’s Coming Up ................................ 20



2 / The Icon Analyst 63

indicate a sequence of k values equal to j.

palindrome n m

1
1

i 2i
1

3
3i–1 4i–1

1
4

5i–2 6i–2
1

6
13i–6 16i–7

1
7

21i–10 26i–12
1

9
55i–27 68i–33

2
1

i+1 i+1
2

2
5i+1 4i+1

3
3

3(11i–-5) 20i–9
4

1
2i i

4
2

17i+2 8i+1
4

3
2(18i+1) 17i+1

6
1

3(i+1) i+1
6

2
37i+3 12i+1

8
1

4(i+1) i+1
8

2
65i+4 16i+1

Two possible approaches are to investigate
j

k  
with k constant and j varying or with  j constant

and k varying. We’ll start with k constant and j
varying.

Constant k and Varying j

k = 1

In the last article, we explored unit palin-
dromes, that is k = 1. The results depend on whether
j is odd or even. For j odd, they are:

n = j i k = 1, j odd
m = 2i

and for j even, they are:
n = (j/2)i + j/2 k = 1, j even
m = i + 1

k = 2

Going on to k = 2, we have some values from
the last article:

palindrome n m

2
2

5i+1 4i+1
4

2
17i+2 8i+1

6
2

37i+3 12i+1
8

2
65i+4 16i+1

We showed in the last article that 1 2  does not
exist. The results above suggest that j

2 
 for j odd do

not exist, but that could just be because we were not
looking for such palindromes.

In fact, we can show that j
2 
 for j odd do not

exist by solving the continued fraction for

We’ll say more on this in a subsequent article.
We can get a general result from the formulas

above by inspection. For j even,

n = (j2+1)i + j/2 k = 2, j even
m = 2 j i + 1

These formula are, of course, just conjectures.
However, they hold up for very large j, so we have
considerable confidence in them. (We can prove
these formulas by solving the continued fraction
above; we’ll get to this later.)

k = 3

So far, so good.  What about k = 3? What we
have from the last article, with factors multiplied
out is:

palindrome n m

1 3
3i–1 4i–1

3
3

33i–15 20i–9
4

3
36i+2 17i+1

In this case, the value for j = 2 is missing
simply because we didn’t happen to look for it last
time. Certainly we don’t have enough data points
to find formulas, so getting results for other values
of j is the next order of business. Before going on,
however, note that the constant terms in the for-
mulas have different signs for j odd and j even. We
may therefore expect different formulas for the
two cases.

The filter field of qirplore can be used to limit
results in various ways. For example, to get all
constant palindromes of length 3, we can use the
search dialog shown in Figure 3, which gives the
results shown in Figure 4.

Figure 3. Search Dialog for j 3



The Icon Analyst 63 / 3

Figure 4. Result Dialog for j 3

These results show, among other things, the
expected palindromes for k = 3. But the results for
different values of k are mixed up. By using the fact
that if constant() succeeds, it returns the constant
value, we can confine the search to k = 3. See
Figures 5, 6, and 7.

Figure 5. Specification Dialog for 2
3

Figure 6. Results for 2
3

Figure 7. Solution for 2
3

Continuing in this manner, we can get addi-
tional data points, although it becomes more diffi-
cult as k gets larger to find even the first one.
Fortunately, if we can find the first two, the differ-
ence between them can be used to get more.

Here are the formulas we have, separated into
j odd and j even:

palindrome n m

odd 1
3

3i–1 4i–1
3 3 33i–15 20i–9

5
3

135i–65 52i–25

7 3 357i–175 100i–49

even 2
3 6i+1 5i+1

4
3

36i+2 17i+1

6
3

114 i+3 37i+1

8
3

264 i+4 65i+1

We’ll start with j even, since the formulas are
simpler. If we express the general formulas as

n = ai + b
m = ci + d

it’s easy to see that b = j/2, c = j2 + 1, and d = 1. A
formula for a is not obvious. The method of differ-
ences does not yield a solution, and the sequence 6,
36, 114, 264 is not in the On-Line Encyclopedia of

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.



4 / The Icon Analyst 63

Integer Sequences  (OLEIS) [2].
All the terms in this sequence, however, are

divisible by 6, giving 1, 6, 19, 44, which is in OLEIS
(A5900), which tells us these are the first four
octahedral numbers: (2 t3  + t)/3. Multiplying by 6
and substituting  j/2 for t gives us a = j3/2 + j.

Consequently, the general formulas for j even
are

n = (j3/2 + j)i + j/2 k = 3, j even
m = (j2  + 1)i + 1

Again, testing these formulas for large values
of j gives us confidence of their correctness.

The case for j odd is a bit more difficult, but
using a combination of methods, including OLEIS
(A5917) to find that b is obtained from the rhombic
dodecahedral numbers

t4 – (t – 1)4

we eventually derived these formulas for j odd:

n = (j3 + 2j)i – j(j2 + 1) k = 3, j odd
m = (2j2 + 2)i  –  j2

k = 4

The going gets progressively tougher. For k =
4, we had to resort to OLEIS’s Superseeker, which
tries all kinds of methods to attempt to find formu-
las for sequences that are not in OLEIS. We also
used Mathematica, polyseq() and llrcseq() from the
Icon program library module genrfncs, and some
unorthodox techniques.

We’ll spare you the details and just give the
results. Given the general forms

n = ai + b
m = ci + d

then
n = (j4 + 3j2 + 1)i k = 4, j odd

 – (16j3 – 83j2 + 175j –104)
m = 2(j3 + 2j)i – (j3 + 2j – 1)

n = (j4 + 3j2 + 1)i + j/2 k = 4, j even
m = 2(j3+2j)i + 1

Note that the formulas for a and c are the same
for j odd and j even.

Going On

As gratifying as it was to puzzle out these
formulas and then verify them for large values of
j, their form does not bode well for larger value of

k. (While the formulas can be written in other ways
and somewhat simplified, the powers of j remain.)
In fact, we stalled at k = 5.

The problem is in getting enough initial terms
to derive a formula. Since the powers of j in the
formulas increase as k does (and we expect that to
continue), it requires more initial terms to derive
formulas. As we mentioned in an earlier article [3],
all polynomials of degree t can be represented by a
single recurrence of order t+1, with the initial terms
for the recurrence depending on the coefficients in
the polynomial. For example, to specify a polyno-
mial of degree 3, it takes 4 initial terms.

As k increases, it becomes very difficult to get
even one term for j > 2. For example, the first term
for k = 5 and j = 4 is for n = 648. If you don’t have a
basis for making a good guess, it becomes hopeless
to find such terms.

Patterns

Finding general formulas that work for all k
seems unlikely, at least using the empirical ap-
proach we’ve used here, especially for j odd.

Based on what we have found, we’d conjec-
ture that all the formulas can be represented by
polynomials in j (as, say, opposed to recurrence
relations that do not have polynomial solutions). It
also seems that the highest power of j in n is k and
is k–1 in m.

For j even, the general situation is more prom-
ising. Given the forms we’ve used:

n = ai + b
m = ci + d

we can write a table of coefficients:
j even

k a b c d

1 j/2 j/2 1 1
2 j 2 +1 j/2 2 j 1
3 j3/2 + j j/2  j2  + 1 1
4 j4 + 3j2 + 1 j/2  2j3+4j 1

Just in terms of pattern-matching, it seems
very likely that

b = j/2
d = 1

for all even j. In fact, this is the case for a large
number of individual results we’ve found.

Knowing two of the coefficients a priori con-



The Icon Analyst 63 / 5

siderably simplifies finding results for larger k.
There also are patterns in the coefficients of j in a
and c. But the results in the next section make this
unimportant.

Constant j and Varying k

j = 1

It’s relatively easy to get formulas for 1 k

using qirplore. Here are the first few:
palindrome n m

1
1

1i–0 2i–0

1
3

3i–1 4i–1

1
4

5i–2 6i–2

1
6

13i–6 16i–7

1
7

21i–10 26i–12

1
9

55i–27 68i–33

1
10

89i–44 110i–54

1
12

233i–116 288i–143
1 13 377i–188 466i–232

Note that there are no palindromes for k = 2 mod 3.
We showed earlier using an algebraic solution that
there was no palindrome for  k = 2. For larger values
of k, it is a conjecture. It simplifies the problem
further to separate the cases k = 0 mod 3 and k = 1
mod 3.

Using
n = ai – b
m = ci – d

the sequences for a, b, c, and d are:

a = 3, 13, 55, 233, … k = 0 mod 3
b = 1, 6, 27, 116, …
c = 4, 16, 68, 288, …
d = 1, 7, 33, 143, …

a = 1, 5, 21, 89, 377, … k = 1 mod 3
b = 0, 2, 10, 44, 118, …
c = 2, 6, 26, 110, 466, …
d = 0, 2, 12, 54, 232, …

For both cases, the coefficients a, b, and c are
given by simple recurrences (which do not have
polynomial solutions). For a and c, the recurrence
is

tn = 4tn–1 + tn–2

while for b, it is
tn = 5tn–1 – 3tn–2 – tn–3

The coefficient d is not given by a simple
recurrence, but instead dm =  bm + bm–1, where m > 1
is the position in the two sets of sequences, and b1
is 1, and 0, respectively. (Finding this relation is a
matter of pattern matching combined with elemen-
tary arithmetic; it is crucial in the solution.)

A procedure that writes out the formulas for
a given k is:

link genrfncs

procedure p1k(k)
   local i, a, b, c, x

   case k % 3 of {
      0  :  {
         i := k / 3 # limit
         every a := lrrcseq([3, 13], [4, 1]) \ i
         every b := lrrcseq([1, 6, 27], [5, –3, –1]) \ i
         every x := lrrcseq([1, 6, 27], [5, –3, –1]) \ (i – 1)
         /x := 0 # first term
         every c := lrrcseq([4,16], [4, 1]) \ i
         }
      1  :  {
         i := k / 3 + 1 # limit
         every a := lrrcseq([1, 5], [4, 1]) \ i
         every b := lrrcseq([0, 2, 10], [5, –3, –1]) \ i
         every x := lrrcseq([0, 2, 10], [5, –3, –1]) \ (i – 1)
         /x := 0 # first term
         every c := lrrcseq([2, 6], [4, 1]) \ i
         }
      2  :  fail
      }

   write("n=", a, "∗i–", b, "\tm=", c, "∗i–", b + x)

   return

end

j = 2

As usual, the situation for j even is simpler
than for j odd Here’s the initial data:

palindrome n m

2 1 i+1 1i+1

2 2 5i+1 4i+1

2 3 6i+1 5i+1

2 4 29i+1 24i+1

2 5 35i+1 29i+1

2 6 169i+1 140i+1

As noted earlier, c =1 and d = j/2 = 1, so there
are only two sequences to solve. These both are
given by the same recurrence:



6 / The Icon Analyst 63

tn = 6tn–2 – tn–4

A procedure that writes out the formulas for
a given k is:

link genrfncs

procedure p2k(k)
   local a, c

   every a := lrrcseq([1, 5, 6, 29], [0, 6, 0, –1]) \ k

   every c := lrrcseq([1, 4, 5, 24], [0, 6, 0, –1]) \ k

   write("n=", a, "∗i+1\tm=", c, "∗i+1")

   return

end

k > 1, j Odd

We came up absolutely empty for j > 1, j odd.
We have been unable to find any palindromes for
k > 4 (palindromes for k ≤ 4 were given previously).
We even wonder if such palindromes exist. It seems
they should exist but probably only for k = 0 mod
3 and k = 1 mod 3.

k > 2, j Even

We expected results for j > 2, j even. We did
indeed find them — in fact, more than we expected
— but also discovered a surprising relationship.

First we start with a fact we turned up using
OLEIS for j = 2. The sequence for a,

a = 1, 5, 6, 29, 35, 169, …

gives the convergents to the continued fraction for

8  (A41011). At the time we just thought this was
a curious coincidence.

Going to j = 4, our initial values were

a = 2, 17, 36, 305, 646, …
c = 1, 8, 17, 144, 305, …

with b = j/2 = 2 and d = 1 as expected.
Following our usual plan, we tried first to find

a recurrence for a — and failed. Resorting again to
OLEIS, we found this sequence gives the
convergents for the continued fraction for 20

(A41031).

At this point we observed that cm =  4am–1 for m
even and cm =  am–1 for m  even. See Figure 8.

Figure 8. Relationship between a and c

Consequently, a completely characterizes the
palindromes for j = 4. Or, if you prefer, 20  is a
complete characterization of the palindromes 4 k .

The relationship between c and a also holds
for j = 2, although we did not formulate the solu-
tion of j = 2 in that way. Alternatively, 8  is a
complete characterization of the palindromes 2 k .

Could this be a coincidence? If not, what is the
relationship between the values of j and the square
roots?

Going on to j = 6, 8, and 10, we find the
continued-fraction convergents again, this time
for 40 , 68 , and 104 , respectively.

And what is the relationship between 8, 20,
40, 68, and 104? These numbers all are divisible by
4, so the underlying sequence of interest is 2, 5, 10,
17, 26. That’s easy: i2 +1, i = 1, 2, 3, 4, 5. In terms of
j, the sequence is 4(j/2)2 +1.

So our final result (conjecture) is that the
palindromes j k, j even, can be computed from the
denominators of the convergents to the continued
fractions for

4 2 12( / )j +

Granted, the convergents have to be com-
puted, but we’ve shown how to do that [4].

Summary

This article illustrates how a variety of tools —
qirplore, various procedures in the Icon program
library, OLEIS, and Superseeker — can be used in
combination with deduction, intelligent guessing,
and a lot of work to produce solutions to a prob-
lem.

Sure, the problem is recreational and highly
specialized. But it’s interesting to work on. It re-
minds us of the remark by a professor: “Once a
doctoral student selects a topic and starts to study
it intensively, that student soon knows more about
the topic than anyone else.” This, of course, also is
a telling comment about specialization.



The Icon Analyst 63 / 7

Packet Sequences

A packet sequence is a sequence in which
terms may be sequences.

Packet sequences can be used as a notational
device for grouping terms in a sequence into sub-
sequences to help reveal structures [1].

Consider, for example,

1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6 ...

Arranging terms in groups of three, we have

(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), …

which makes the pattern easier to see.
Here is another example:

1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6,
   6, 6, 6, 6, ...

Clearly there are groups of successive inte-
gers, which we can group as

(1), (2), (3, 3), (4, 4, 4), (5, 5, 5, 5, 5),
   (6, 6, 6, 6, 6, 6, 6, 6), ...

Now look at the lengths of the packets:

1, 1, 2, 3, 5, 8, ...

Ah, the ever-present Fibonacci sequence.

Packets can contain packets, as in

(1, (2, 3)), (2, (3, 4)), (3, (4, 5)), (4, (5, 6)), …

Data Representation

If lists are used to represent sequences, then
packets are lists within lists. The first example
above then would be

seq1a := [1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6 ... ]

and after arranging by packets

seq1b := [ [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6], ... ]

where the ellipses indicate terms that are not shown
but are limited in number. Then

  (!seq1b)[1]

produces 1, 2, 3, 4, ...
The second example would be

seq2a := [1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6,
   6, 6, 6, 6, ...]

seq2b := [ [1], [2], [3, 3], [4, 4, 4], [5, 5, 5, 5, 5],
   [6, 6, 6, 6, 6, 6, 6, 6], ...]

and

∗!seq2b

produces 1, 1, 2, 3, 5, 8, ... .

Packet Sequence Procedures

The following procedures illustrate methods
of creating and manipulating packet sequences.

Here’s a procedure that puts successive du-
plicate values into packets.

procedure packdup(s)
   local result, packet, i, j

   s := copy(s)

   result := [ ]

   j := get(s) | return result
   packet := [j]

   while i := get(s) do {
      if i = j then
         put(packet, i)
      else {
         put(result, packet)
         packet := [i]
         j := i
         }

Next Time

We’ve about reached the limit of what we can
do with the empirical approach used in this article.

In the next article on square-root palindromes,
we’ll look at what can be learned from algebraic
solutions of square-root continued fractions. This
will lead to Diophantine equations — equations
for which the solutions must be in the integers.

References

1. “Square Root Palindromes”, Icon Analyst 62,
pp. 1-5.

2. http://www.research.att.com/~njas/
      sequences/

3. “Recurrence Relations”, Icon Analyst 59, pp.
18-20.

4. “Continued Fractions, Icon Analyst 60, pp. 1-
5.



8 / The Icon Analyst 63

      }

   put(result, packet)

   return result

end

For example, packdup(seq2a) produces seq2b.

This programmer-defined control operation
does the same thing, but for generators:

procedure packdupPDCO(L)
   local packet, i, j

   j := @L[1] | fail
   packet := [j]

   while i := @L[1] do {
      if i = j then
         put(packet, i)
      else {
         suspend packet
         packet := [i]
         j := i
         }
      }

   return packet

end

Here’s a procedure that produces packets of a
specified length:

procedure packlen(s, i)
   local result, packet

   s := copy(s)

   result := [ ]

   while ∗s > 0 do {
     packet := [ ]
      every 1 to i do
         put(packet, get(s)) | break
      put(result, packet)
      }

   return result

end

For example, packlen(seq1a, 3) produces seq1b.
This procedure puts sequences of increasing

values into separate packets:

procedure packup(s)
   local result, packet, i, j

   s := copy(s)

   result := [ ]

   j := get(s) | return result
   packet := [j]

   while i := get(s) do {
      if i > j then {
         put(packet, i)
         }
      else {
         put(result, packet)
         packet := [i]
         }
      j := i
      }

   put(result, packet)

   return result

end

For example, packup(seq1a) produces seq1b, but
for entirely different reasons than packlen().

The following procedure is a generalization
of packlen() in which a second sequence deter-
mines the lengths of successive packets:

procedure packlenv(s1, s2)
   local result, packet, i

   result := [ ]

   s1 := copy(s1)
   s2 := copy(s2)

   while i := get(s2) do {
      put(s2, i) # cyclic shift
      packet := [ ]
      every 1 to i do
         put(packet, get(s1)) | {
            put(result, packet) # short packet
            break break
            }
         put(result, packet)
      }

   return result

end

Note that s2 is cyclically rotated, so the process
continues until s1 is exhausted. There may be a
short packet when s2 runs out.

The following procedure produces a ”flat”
sequence with no packets from one that may have
packets:



The Icon Analyst 63 / 9

procedure flatpack(s)
   local result, x

   result := [ ]

   every x := !s do
      if type(x) == "list" then
         result |||:= flatpack(x)
      else put(result, x)

   return result

end

For example, flatpack(seq1b) produces seq1a.
Here’s a programmer-defined control opera-

tion for flattening generators:

procedure flatpackPDCO(L)
   local x

   while x := @L[1] do
      if type(x) == "list" then
         suspend !flatpack(x)
      else suspend x

end

Finally, this procedure produces string im-
ages of packet sequences:

procedure imagepack(s)
   local result, x

   result := ""

   every x := !s do {
      if integer(x) then result ||:= x else
         result ||:= pimage(x)
      result ||:= ","
      }

   return "[" || result[1:–1] || "]"

end

The result is a string in the fashion of limage()
in the Icon program library module lists, but using
recursion to show packets, packets within packets,
and so on.

Loops in List Structures

Because of Icon’s pointer semantics [2], it is
possible to construct loops in list structures. For
example,

one_seventh := [1, 4, 2, 8, 5, 7]
put(one_seventh, one_seventh)

provides a finite representation of a purely peri-

odic sequence.

The result can be visualized as shown in Fig-
ure 1.

Figure 1. Packet Sequence Loop

Similarly,

one_third := [3]
put(one_third, one_third)
five_sixths := [8, one_third]

can be used to represent a periodic sequence with
a preperiodic part.

It also is possible to construct sequences that
have unreachable portions if loops are traversed
from left to right. An example is

rep := [1, 2, 3]
put(rep, rep)
struct := [3, 4, rep, 5]

The loop in rep prevents the value 5 in struct
from being reached if the pointer to rep is followed.

Lists with loops cause problems when used
with procedures like imagepack() and flatpack()
that expect a finite number of terms. In both cases,
a sequence with (reachable) loops results in stack
overflow because of uncontrolled recursion.

We simply will exclude list structures that
have loops from the packet sequence mechanism.

More to Come

We have one more article on ways of repre-
senting data in sequences — template sequences.

Template sequences consist of expressions
that produce sequences. As you’d expect, a good
way to do this in Icon is to use co-expressions.

Incidentally, the ideas for packet sequences
and template sequences both come from Hofstader
[1].

References

1. “To Seek Whence Cometh a Sequence” in Fluid
Concepts and Creative Analogies: Computer Models of
the Fundamental Mechanisms of Thought, Douglas
Hofstadter, Basic Books, 1995, pp. 13-86.

2. “Pointer Semantics”, Icon Analyst 6, pp. 2-8.



10 / The Icon Analyst 63

Understanding T-Sequences

In the Analyst article on tie-ups and T-se-
quences [1], we showed some simple and frequently
used T-sequences.

As shown in that article, tie-ups play a major
role in the drawdown patterns that result for par-
ticular threading and treadling sequences.

On the other hand, some kinds of T-sequences
work best with specific kinds of tie-ups and many
T-sequences are designed first and appropriate tie-
ups selected later.

In this and subsequent articles, we’ll explore
various aspects of T-sequences, analyzing ones
used in actual weaves in an attempt to develop a set
of operations that can be used both for describing
T-sequences and for constructing them.

It’s worth noting that while many T-sequences
used in weaving are constructed using formulas
and variations on themes, others are constructed
by means whose results cannot be usefully de-
scribed by patterns. Examples are some forms of
name drafting, T-sequences produced by digitiz-
ing curves, and T-sequences derived from complex
integer sequences [2]. And some T-sequences are
created by whim and have no evident pattern.

Examples

Conventions

The plots of T-sequences that  are too long to
show horizontally are displayed vertically. A ver-
tical plot begins at the upper-left corner. Values
increase to the right and downward. Plots show at
least one repeat.

Uppercase italic letters are used to designate
sequences, as in S, T, and U. Lowercase letters are
used to designate integers, as in i, k, and j.

Examples

Figure 1 shows five T-sequences that have
patterns commonly found in weaving drafts.
Runs

The T-sequence in Figure 1a consists of runs of
consecutive integers, such as 1, 2, 3, 4 and 4, 5, 6, 7,
8.

For runs, also the basis for straight draws and
wave draws, we’ll use the notation

i → j run

Figure 1. Example T-Sequences

     a                b              c                d                 e



The Icon Analyst 63 / 11

If j > i, the run is ascending, while if j < i, it is
descending. Examples are 1 → 8 and 6 → 2, which
produce 1, 2, 3, 4, 5, 6, 7, 8 and 6, 5, 4, 3, 2,
respectively. See Figures 2a and 2b.

An obvious generalization is the specification
of an increment other than 1, for which we’ll use
the notation

i  j run

where k is the increment. For example,

1  7
produces 1, 3, 5, 7 and

9  3

produces 9, 6, 3. See Figures 2c and 2d.
Notice the increment is expressed as a posi-

tive integer for both ascending and descending
runs.

If the run does not “come out even” at the
right bound, it stops at the preceding value. For
example,

1  8
produces 1, 3, 5, 7. See Figure 2e.

                                

       1 → 8          6 → 2     1  7    9  3    1  8
          a                     b             c            d            e

Figure 2. Runs

Concatenation
Concatenation, appending one sequence to

the end of another, is the most basic operation for
creating sequences from other sequences. For ex-
ample, the T-sequence in Figure 1a consists of the
concatenation of many runs.

For the concatenation of two sequences, we’ll
use the notation

S , T concatenation
For example,

(1 → 6) , (5 → 2)

produces 1, 2, 3, 4, 5, 6, 5, 4, 3, 2. See Figure 3.

(1 → 6) , (5 → 2)

Figure 3. Concatenation

You may wonder about the apparent ambi-
guity of using commas both for the concatenation
of sequences and also for separating the terms in
sequences. We will address this issue later.

Repeats
Repeats are a part of almost all T-sequences.

Figure 1a has repeats and repeats within repeats
(can you find them?).  Figure 1b consists entirely of
a length-16 repeat. Figure 1c consists of the concat-
enation of two sequences with different repeats.

For repeats, we’ll use the standard math-
ematical notation

repeat

which indicates an indefinite number of repeats of
S. Although actual T-sequences are finite, it some-
times is useful to specify an indefinite number of
repeats during their construction. For a specific
number of repeats, we’ll use

repeat

For example
3

produces 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4. See Figure 4.

3

Figure 4. Repeat

Extension
Sometimes a sequence needs to be extended

by repetition to a specific length that may not be an
even multiple of the length of the repeat. For this
we’ll use the notation

S ⇒  i extension
to indicate that S is repeated as necessary to pro-
duce a sequence of length i. For example,

(1 → 4) ⇒ 10

produces 1, 2, 3, 4, 1, 2, 3, 4, 1, 2. See Figure 5.



12 / The Icon Analyst 63

(1 → 4) ⇒ 10

Figure 5. Extension

If the specified length is less than the length of
the sequence, the sequence is truncated at the right.

It sometimes is necessary to know the length
of a sequence, for which we’ll use the notation

λ(S) length
For example,

S ⇒ λ(T)

extends S  to the length of T.

Palindromes
Palindromes play an important role in T-

sequences by providing an element of symmetry
that is aesthetically pleasing.

There are two forms of palindromes: open
and closed. In an open palindrome, the last term of
the reversed sequence is omitted. This allows open
palindromes to be repeated without introducing
duplicate terms at the boundaries of the repeats. In
a closed palindrome, the term is not omitted and
the result is a true palindrome. (A palindrome also
can be open at the beginning instead of the end.
We’ll handle this another way.)

Figure 1d shows an open palindrome, while
Figure 1e shows a closed one.

We’ll use the notation

open palindrome

to indicate an open palindrome and the notation

closed palindrome

to indicate a closed palindrome. For example,

produces 1, 2, 3, 4, 3, 2, while

produces 1, 2, 3, 4, 3, 2, 1. Either way, the center
term (4) is not duplicated. See Figures 6a and 6b.

A sticky point remains. Open palindromes
often are used in repeats. In a complete T-sequence,
however, the last repeat is closed. In published
drafts it’s common to see a remark like this: ”By the
way, be sure to add a thread to the end of the
repeated palindrome so the whole comes out sym-
metrically.”

We haven’t found a good way to deal with this
problem, but since the pattern is so common, we’ll
use this notation

 i closed palindrome

to mean i repeats of

and then closed. For example,
 3

produces 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2,1.
See Figure 6c.

              

                              3

             a                 b                           c
Figure 6. Palindromes

Reflections
Horizontal reflection, or reversal, is the basis

for the construction of palindromes. It also is used
in other ways. We’ll use the notation

horizontal reflection

For example,

produces 8, 7, 6, 5, 4, 3, 2, 1. See Figure 7a.
Horizontal reflection can be used to convert a

palindrome open at one end to a palindrome open
at the other.

While we’re at it, we’ll add vertical reflection,
using the notation

S vertical reflection

For example,

( )
produces 4, 3, 2, 1, 2, 3, 4. See Figure 7b.

               

                            ( )
                             a                           b

Figure 7. Reflections

Vertical reflection requires knowing the bound



The Icon Analyst 63 / 13

on the sequence, that is, its largest term (since T-
sequences are finite, they are bounded). For this,
we’ll use the notation

β(S) bound

For example, β(1 → 4) produces 4.

Summary
The relatively simple T-sequences in Figure 1

have led to the following operations on sequences,
which also can be viewed as patterns:

i  j run

S , T concatenation
i repeat

S ⇒  i extension

open palindrome
 i closed palindrome

horizontal reflection

S vertical reflection

We also have two scalar operations that pro-
duce integers from sequences.

λ(S) length

β(S) bound

Using the Operations

We’re now in a position to see how these
operations can be used to describe the T-Sequences
in Figure 1.

Figure 1a
By inspecting Figure 1a, we can determine

that it has two structural components, one a short
run at the beginning that we’ll call S and another,
more complicated component that we’ll call T that
then is repeated. The two components are shown
in Figure 8.

Figure 8. The Basic Components of Figure 1a

S is easy enough: 1 → 4. For T, it’s more
complicated but still straightforward:

T = 1 → 4, 1 → 5, 2 → 6, 3 → 6, 3 → 7, 4 → 8,
   5 → 8, 5 → 7, 4 → 6, 3 → 6, 3 → 5, 2 → 4

where we assume that the concatenation operation

has lower precedence than the run operation.
The entire sequence then is

S ,  3

There is actually more structure in T than is
evident in the formulation above. Hint: Look at the
end points of the runs. We’ll take this up in a
subsequent article.

Figure 1b
The T-sequence in Figure 1b is simpler than

the one in Figure 1a. It consists entirely of the
repeat shown in Figure 9.

Figure 9. The Repeat in Figure 1b

There are many ways one can describe such
sequences. We prefer to use runs, even when they
are short, and to choose them in a way that repeats
are most effective. Here’s our version of the repeat:

S = (1 → 2)
3, 

2
, 

3

and the entire sequence is
11

Figure 1c
The T-sequence in Figure 1c consists of the

concatenation of two dissimilar sequences. Both
consist of repeats. See Figure 10.

   

                  S                       T

Figure 10. The Repeats of Figure 1c

S is just 1 → 2. T is rather a mess:

T = U, V, 6, V,  5, (1 → 3), V

where

U = 6, 1 → 3
V = 1, 4, 2, 3
W = 1, 2, 6

Perhaps you can find a better formulation for
T.

The entire sequence is
 25,  3

Figure 1d
The T-sequence in Figure 1d is an open palin-

drome. Figure 11 shows the sequence that forms
the basis of the palindrome. There is a closed



14 / The Icon Analyst 63

Supplementary Material

Supplementary material for this issue of the Analyst, including images and Web links, is
available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia63/

palindrome, P, within this sequence. See Figure 11.

Figure 11. The Closed Palindrome in Figure 1d

The basis of this palindrome can be composed
using yet more palindromes:

S = , 7 → 2, , 8 → 1

Now

T = 1 → 3, , 1 → 4

and the entire sequence is

Figure 1e
The T-sequence in Figure 1e is a closed palin-

drome. Figure 12 shows the sequence that forms
the basis of the palindrome. There is a closed
palindrome, T, at the beginning of this sequence
followed by the vertical reflection of T. See Figure
12.

Figure 12. Basis for the Palindrome in Figure 1e

We can construct this sequence as follows:

S = (1 →  8)

Τ =  
U = T
V = T, U, 2,  2

and the entire sequence is

Implementing T-Sequence Operations

Implementing operations such as those de-
scribed above has advantages beyond making it

possible to carry them out quickly and accurately.
Implementation often reveals ambiguities, incon-
sistencies, incomplete specifications, and concep-
tual problems. In what follows we’ll have to deal
with much that went unsaid (or unthought) in
what has gone before.

Sequences as Data Values

In previous articles on sequences, we have
represented them in programs in various ways.
The most natural way to represent T-sequences is
by lists or generators. Generators are more general
and flexible than lists in many contexts. On the
other hand, there is no a priori length or bound on
the size of values associated with most generators.
T-sequences, on the other hand, are finite, even
though they may be derived from infinite se-
quences. T-sequences also are bounded by the
number of shafts and treadles used. Of course, all
finite sequences are bounded. In addition, there
are many operations that can be performed on lists,
such as concatenation and reversal, that cannot be
performed, in general, on generators.

For these reasons, we choose to represent T-
sequences by lists. We can, however, always get a
list from a generator.

Data Types

We’re dealing with two types of data: integers
and sequences. We have implied, but not specifi-
cally stated, that the values in sequences are inte-
gers. We’ll come back to this in a subsequent ar-
ticle, but for now, we’ll take sequences to be com-
posed of integers.

Questions now arise about the contexts in
which these two types of data can occur.

There are several operations that have integer
arguments. There are contexts, however, in which
we have assumed without comment that integers
can be interpreted as unit sequences. For example,
concatenation was defined for sequences, but we’ve
used 1, 2 as a sequence.



The Icon Analyst 63 / 15

In programming terms, using an integer where
a sequence is expected amounts to promoting the
integer to a sequence, much in the way that inte-
gers are promoted to real (floating-point) values in
mixed-mode arithmetic, such as 5 + 2.3. In general,
we will assume that an integer that occurs in a
context where a sequence is expected is promoted
to a unit sequence.

Here’s a procedure to promote an integer to a
sequence. If the argument, on the other hand, is a
sequence, it is returned unchanged.

procedure spromote(x)

   if type(x) ~== "list" then x := [x]

   return x

end

The procedures that follow are written in a
straightforward manner to illustrate what’s in-
volved. In some places more clever code could
reduce their size and increase their speed. There
also is no error checking.

The first operation on our list is the creation of
runs:

procedure srun(i, j, k)
   local lseq

   /k := 1
   if j < i then k:= –k

   lseq := [ ]

   every put(lseq, i to j by k)

   return lseq

end

The concatenation of sequences uses list con-
catenation after promoting the arguments:

procedure sconcat(x1, x2)

   return spromote(x1) ||| spromote(x2)

end

Since it is common to concatenate several
sequences at a time, a more convenient form of
sconcat() is:

procedure sconcat(x[ ])
   local lseq

   lseq := [ ]

   every lseq |||:= spromote(!x)

   return lseq

end

A repeat is, of course, just successive concat-
enation:

procedure srepeat(x, i)
   local lseq

   x := spromote(x)

   lseq := copy(x)

   every 1 to i – 1 do
      lseq |||:= x

   return lseq

end

Notice that there is no default for i.

Extension is repetition with truncation:

procedure sextend(x, i)
   local lseq

   x := spromote(x)

   lseq := copy(x)

   until ∗lseq >= i do
      lseq |||:= x

   return lseq[1+:i]

end

Next come the procedures for creating palin-
dromes:

procedure sopal(x)

   x := spromote(x)

   return x ||| sreflecth(x)[2:–1]

end

procedure scpal(x, i)
   local lseq

   /i := 1

   x := spromote(x)

   if i = 1 then return x ||| sreflecth(x)[2:0]
   else {
      lseq := srepeat(sopal(x), i)
      put(lseq, lseq[1])
      return lseq
      }

end

The procedures for reflection are:



16 / The Icon Analyst 63

procedure sreflecth(x)
   local lseq

   lseq := [ ]

   every push(lseq, !spromote(x))

   return lseq

end

procedure sreflectv(x)
   local lseq, m

   x := spromote(x)

   m := sbound ! x

   lseq := [ ]

   every put(lseq, m – !x + 1)

   return lseq

end

where the bound is given by

procedure sbound(args[ ])

   return sort(args)[–1] # last is largest

end

Finally, we have the procedure for producing
the length of a sequence:

procedure slength(x)

   return ∗spromote(x)

end

Using the Procedures

The following procedures construct the T-
sequences shown in Figure 1.

procedure figure1a()
   local S

   S := sconcat(
      srun(1, 4),
      srun(1, 5),
      srun(2 ,6),
      srun(3, 6),
      srun(3, 7),
      srun(4, 8),
      srun(5, 8),
      srun(5, 7),
      srun(4, 6),
      srun(3, 6),
      srun(3, 5),
      srun(2, 4)
      )

   retrun sconcat(srun(1, 4), srepeat(S, 3))

end

procedure figure1b()
   local S

   S := sconcat(
      srepeat(srun(1, 2), 3),
      srepeat(srun(3, 2), 2),
      srepeat(srun(3, 4), 3)
      )

   return srepeat(S, 11)

end

procedure figure1c()
   local S, T, U, V, W

   S := srun(1, 2)

   U := sconcat(6, srun(1, 3))

   V := sconcat(1, 4, 2, 3)

   W := sconcat(1, 2, 6)

   T := sconcat(
      U,
      V,
      6,
      V,
      srepeat(W, 5),
      srun(1, 3),
      V
      )

   return  sconcat(srepeat(S, 25), srepeat(T, 3))

end

procedure figure1d()
   local S, T

   S := sconcat(
      scpal(srun(8, 5)),
      srun(7, 2),
      scpal(srun(1, 4)),
      srun(8, 1)
      )

   T := sconcat(
      srun(1,3),
      scpal(S),
      srun(1,4)
      )

   return sopal(T)

end

procedure figure1e()
   local S, T, U



The Icon Analyst 63 / 17

Transposition Ciphers

Unlike substitution ciphers, transposition ci-
phers do not change the characters in a message
but instead change their order.

A simple transposition cipher reverses the
order of the characters, so that for example,

we attack at six

becomes

xis ta kcatta ew

Reversal is, of course, easy to detect.
Most transposition ciphers work on fixed-

length segments of the message, using the same
transposition for each segment. For example, suc-
cessively reversing and concatenating two-charac-
ter segments of the message above produces

ewak ttca tas xi

Such ciphers require the length of the mes-
sage to be an even multiple of the segment length.
There are various ways to adjust the message length.
Here is a procedure that extends a message if
necessary by appending part of the reversal of the
message to the end, where i is the segment length.

procedure rextend(message, i)
   local j

   j := ∗message % i

   if j = 0 then return message

   return message || reverse(message)[1+:(i – j)]

end

As is the case with most classical ciphers, the
practical problems of enciphering and deciphering
by hand played an important role in the methods
that were used and limited the generality and
sophistication of the techniques.

Most classical transposition ciphers use rect-
angular arrays into which characters are entered
(written in) according to one rule and written out
according to another. The rules constitute routes
through the array. Figure 1 illustrates a pair of
routes for a 4-by-4 array.

     

        write in read out

Figure 1. A Transposition Cipher

Figure 2  shows the message above written in
according to the route in Figure 1.

Figure 2. Message as Written In

When written out according to the route in
Figure 1, resulting cryptogram is

att sat ea ixkcw

Routes do not have to be connected, although
systematic and fairly simple routes were favored.

   S := srun(1, 8)

   T := scpal(S)

   U := sreflectv(T)

   return scpal(
      sconcat(
         T,
         U,
         srepeat(S, 2),
         srepeat(srun(5, 8), 2)
         )
      )

end

On the Agenda

In the next article on T-sequences, we’ll go on
to more complicated T-Sequences, including those
that combine different T-Sequences by interleav-
ing.

References

1. “Tie-Ups and T-Sequences”, Icon Analyst 61,
pp. 5-9.

2. “Fractal Sequences”, Icon Analyst 61, pp. 2-5.



18 / The Icon Analyst 63

Figure 3 illustrates some other routes.

      

Figure 3. Transposition Routes

More elaborate routes use magic squares and
knights’ tours.

A pair of routes for reading in and writing out
constitutes a key for a transposition cipher. The
Nihilist transposition [1] adds an additional degree
of security by using words that specify rearrange-
ments of the columns and rows of the array after
the message is written in, with the inverse rear-
rangements being applied before the message is
written out. The lengths of the column and row
words, after the removal of duplicate letters, must
correspond to the number of columns and rows,
respectively.

For our example, dumb and modem are pos-
sible words (modem being reduced to mode by
deleting the second m). The letters are then con-
verted to numbers according to their order in the
alphabet. Thus, dumb becomes 2431 and mode
becomes 3412. 2431 is interpreted as meaning
column 2 moves to the first column, column 4
moves to the second column, column 3 to the third,
and column 1 to the fourth. The interpretation of
row rearrangements is the same.

Figure 4 shows the array of Figure 2 with
columns and rows rearranged according to these
numbers.

        

             columns changed  →  rows changed

 Figure 4. Example of a Nihilist Transposition

The result of reading out is

ai  ewkxct ta ast

Here is a procedure for converting words to
rearrangement strings, where it is assumed that
there are no more than nine rows or columns:

procedure worder(word)

   local chars

   chars := cset(word)

   return map(
      ochars(word),
      chars,
      &digits[2+:∗chars]
      )

end

The procedure ochars() is from the Icon pro-
gram library module strings:

# Order unique characters in order of first
#  appearance.

procedure ochars(w)
   local out, c

   out := ""

   every c := !w do
if not find(c, out) then
    out ||:= c

   return out

end

This computation can be done more com-
pactly and efficiently by tailoring the code to the
problem rather than by using a library procedure.
Compactness and efficiency, however,  are of little
importance in this case and using a library proce-
dure saves programming and debugging time.

Transposition ciphers based on arrays are
straightforward to implement using the matrix
module in the Icon program library. There is, how-
ever, a more general and more interesting way.

Transposition ciphers can be characterized in
terms of a pair of strings, one that labels the char-
acters in the message by position and another that
is the transposition of labels. Consider, for ex-
ample, the write-in route shown in Figure 1 with a
message consisting of the lowercase letters in order
as shown in Figure 5.

Figure 5. Labeled Route Positions

Applying the Nihilist transposition described
above, the rearranged rows and columns are shown



The Icon Analyst 63 / 19

in Figure 6.

      

            columns changed  →  rows changed

Figure 6. Rearranged Routes

The result of writing out the labels according
to the route in Figure 1 is

gojbaiphemldcknf

This string is a key that characterizes the
entire transposition, independently of the way it
was constructed.

Transpositions can be implemented by an
easy if unobvious use of the function map().

The function map(s1, s2, s3) is, of course, the
natural way to implement monoliteral substitu-
tions in Icon [2]. For transpositions, s2 is the label-
ing of the positions in the message (such as the first
16 lowercase letters), s1 is the desired transposi-
tion of these labels, and s3 is the message. How a
string can be reversed by this method is shown in
Figure 7, which was taken from the third edition of
The Icon Programming Language [3].

Figure 7. Transposition by Mapping

In this reversal, the strings are

s1 := "654321" # transposition
s2 := "123456" # labels
s3 := "quotas" # string to reverse

and

s4 := map(s1, s2, s3)

produces

satouq

For our example above, we have

s1 := "gojbaiphemldcknf" # transposition
s2 := "abcdefghijklmnop" # labels
s3 := "we attack at six" # message

and

s4 := map(s1, s2, s3)

produces the cryptogram

ai ewkxct ta ast

An interesting extension of this method is to
add extraneous characters to the transposition
string that are not in the label string, perhaps to
further obscure the enciphered message. For the
example above, the transposition string might be

s1 := "gotjbaiyphvewmldcknuf"

so that

s4 := map(s1, s2, s3)

produces the cryptogram

ait ewkyxcvtw ta asut

In deciphering,

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)



20 / The Icon Analyst 63

What’s Coming Up

There are two ways to write error-free pro-
grams; only the third one works.

— Alan Perlis

In the next issue of the Analyst, we plan to
have another article on square-root palindromes,
this time focusing on the results of solving contin-
ued fractions algebraically.

We’ll continue our sequence of articles on T-
sequences with more complicated examples and
additional operations.

And we plan a Graphics Corner article on
applying permutations to images.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

                     Bright Forest Publishers
                     Tucson Arizona

© 2000 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

s5 := map(s2, s1, s3)

the extraneous characters in s1 (t, u, v, w, and y)
that do not appear in s2 do not participate in the
mapping and hence drop out, producing the origi-
nal message as before.

Summary

This concludes our series of articles on classi-

cal cryptography. Many ciphers can be constructed
using the techniques we have described, including
compound ciphers that first use one method to
produce a cryptogram, then apply another method
to the result, and so on. Typical compound ciphers
use both substitutions and transpositions.

Classical cryptography now is largely  in the
province of puzzles, although scholars in some
fields still find themselves having to deal with real
cryptograms from times past.

References

1. Cryptanalysis: A Study of Ciphers and Their Solu-
tion, Helen Fouché Gaines, Dover, 1956, pp. 17-36.

2. “Classical Cryptography”, Icon Analyst 59,
pp. 7-9.

3. The Icon Programming Language, third edition,
Ralph E. Griswold and Madge T. Griswold, Peer-
to-Peer Communications, San Jose, California, 1996,
p. 238.


