
The Icon Analyst 60 / 1

June 2000
Number 60

In this issue

Continued Fractions 1
Subscription Renewal 5
Drafting Color Patterns 6
Polyalphabetic Substitution 9
Graphics Corner — Creating Custom
 Palettes .. 13
Message Drafting .. 18
What’s Coming Up 20

In-Depth Coverage of the Icon Programming Language and Applications

Continued Fractions

Continued fractions are part of the “lost math-
ematics,” the mathematics now considered
too advanced for high school and too elemen-
tary for college.

— Petr Beckmann [1]

A continued fraction is a fraction in which the
numerators and denominators may contain (con-
tinued) fractions. Displayed in their full laddered
form, they are imposing:

See Figure 1 on the next page for other examples.
The numerators and denominators in a con-

tinued fraction can themselves be complicated, as
evidenced by Figure 1i. Most work on continued
fractions deals with ordinary continued fractions,
in which the numerators and denominators are
numbers:

Two sequences completely characterize an
ordinary continued fraction: a1, a2, a3, a4, … and b1,
b2, b3, b4 … .

A simple continued fraction is an ordinary
continued fraction in which all the numerators are
1 and all the denominators are integers and posi-
tive except possibly a1:

Only one sequence is needed to characterize a
simple continued fraction. For example, the con-
tinued-fraction sequence for π is

3, 7, 15, 1, 292, 1, 1, 1, … .

As you’ d expect, this sequence is infinite.
We’ll stick to simple continued fractions in

this article.
There are five important facts about simple

continued-fraction sequences:

1. Rational numbers (fractions) have finite se-
quences. An example is 11/13, which has the
sequence 0, 1, 5, 2.

2. Irrational numbers have infinite sequences.

3. Quadratic irrationals have periodic se-
quences. An example is 7 , which has the
sequence 2 1 1 1 4, , , , .

2 / The Icon Analyst 60

Figure 1. A Gallery of Continued Fractions

a

b

c

d

e

f

h

g

i

The Icon Analyst 60 / 3

4. All other irrational numbers have non-peri-
odic sequences. The sequence for π, shown
above, is an example.

5. There is a one-to-one correspondence be-
tween an irrational number and its simple
continued-fraction sequence. Furthermore,
any infinite sequence of positive integers rep-
resents a unique irrational number. (For ra-
tional numbers, there are two equivalent se-
quences: one that ends … am, 1 and one that
ends … am – 1.)

Computing Continued Fractions

Continued fractions are closely related to the
familiar Euclidean algorithm for computing the
greatest common divisor of two integers. Here’s
Euclid’s algorithm cast as an Icon procedure:

procedure gcd(i, j)
 local r

 repeat {
 r := i % j
 if r = 0 then return j
 i := j
 j := r
 }

 return i

end

Next, we’ll modify to code slightly to get a
form that is easily modified to get continued frac-
tions:

procedure gcd(i, j)
 local r

 until j = 0 do {
 r := i % j
 i := j
 j := r
 }

 return i # previous value of j

end

To generate the terms in the continued frac-
tion for i/j, a line is needed to generate the denomi-
nators and the line that returns the greatest com-
mon is deleted:

procedure cfseq(i, j)
 local r

 until j = 0 do {

Srinivasa Ramanujan

R a m a n u j a n
stands as one of the
greatest mathemati-
cal geniuses of all
times. It’s well to re-
member that genius
is not the same as
unusually high intel-
ligence. Webster’s
3rd has this defini-
tion: “extraordinary
intellectual capacity
for creative activity of
any kind”.

Ramanujan would know a mathematical
result was true — and later prove it if pressed.

Ramanujan grew up in abject poverty in
southern India. He lacked a university educa-
tion but struck out on his own to follow his
intense interest in mathematics.

In 1913, Ramanujan wrote a letter to the
world-famous mathematician G. H. Hardy at
Cambridge University seeking his support. In
his letter, he included (without proof) some of
his mathematical results. Here’s one of several
continued fractions in his letter:

Hardy at first dismissed the letter as the
work of a crank. But he couldn’t get
Ramanujan’s results out of his mind. He even-
tually concluded “They must be true, if they
were not true, no one would have the imagina-
tion to invent them.”

Ultimately Hardy arranged for
Ramanujan to come to Cambridge. What fol-
lowed was a most unusual and fruitful col-
laboration.

The story of Ramanujan’s life is fascinat-
ing, poignant in places, and ultimately tragic.

(continued)

1887-1920

4 / The Icon Analyst 60

 suspend i / j
 r := i % j
 i := j
 j := r
 }

end

This procedure can be adapted to handle real
(floating-point) numbers by changing

suspend i / j

to

suspend integer(i / j)

The problem with trying to compute contin-
ued fractions for irrational numbers is that float-
ing-point numbers are finite approximations of
real numbers, and hence they really are rational
numbers whose values are “close” to the corre-
sponding real numbers. For example, standard 64-
bit floating-point encoding for π is

7074237752028440/251

The corresponding continued-fraction se-
quence is, of course, finite:

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3, 2,
 1, 3, 3, 7, 2, 1, 1, 3, 2, 42, 2

and only the first 13 terms are the same as for the
sequence for the actual irrational number:

3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1,
 2, 2, 2, 2, 1, 84, 2, 1, …

For what it’s worth, as of this writing, the
simple continued-fraction sequence for π has been
computed to 20,000,000 terms. It is available on the
Web <1>.

Convergents

As mentioned earlier, simple continued frac-
tions for irrational numbers are infinite and can be
represented by an integer sequence of the form a1,
a2, a3, a4, … .

Finite initial seqences of such a sequence rep-
resent rational approximations to the irrational
number, getting better as the initial subsequence
becomes longer.

The rational numbers formed by initial se-
quences of an irrational sequence are called
convergents.

One of the reasons continued fractions are
important is that they often converge to the actual
value much more rapidly than other approxima-
tion methods, such as power series.

For example, the first 10 convergents for the
sequence for π are

3/1
22/7
333/106
355/113
103993/33102
104348/33215
208341/66317
312689/99532
833719/265381
1146408/364913

The fourth convergent, 355/113, already is accurate to
six decimal places.

Convergents can be calculated using recur-
rence relations [5]. Here’s a procedure that gener-
ates convergents:

procedure convergents(seq)
 local prev_p, prev_q, p, q, t

 seq := copy(seq)

 prev_p := [0, 1]
 prev_q := [1, 0]

 while t := get(seq) do {
 p := t ∗ prev_p[2] + prev_p[1]
 q := t ∗ prev_q[2] + prev_q[1]
 suspend rational(p, q, 1)
 prev_p[1] := prev_p[2]

There are several books about the man and his
contributions to mathematics [1-4]. We recom-
mend the first — it’s well worth reading.

References

1. The Man Who Knew Infinity: A Life of the
Genius Ramanujan, Robert Kanigel, Washing-
ton Square Press, 1991.

2. Srinivasa Ramanujan: A Mathematical Genius,
K. Srinivasa Rao, Eastwest Books, 1998.

3. Ramanujan Letters and Commentary, Bruce C.
Brendt and Robert A. Rankin, American Math-
ematical Society, 1995.

4. Ramanujan: The Man and the Mathematician,
S. R. Ranganthan, Asia Publishing House, 1967.

The Icon Analyst 60 / 5

References

1. A History of Pi, Petr Beckmann, Barnes & Noble,
1993.

2. Continued Fractions, C. D. Olds, Mathematical
Association of America, 1963.

3. The Higher Arithmetic, H. Davenport, Cambridge
University Press, 1999.

4. What is Mathematics?, Richard Courant and
Herbert Robbins, Oxford University Press, 1996.

5. Numerical Recipes: The Art of Scientific Computing,
William H. Press, Brian P Flannery, Saul A.
Teukolsky, and William T. Vettering, Cambridge
University Press, 1986, p. 136.

Links

1. http://www.lacim.uqam.ca/piDATA/
 CFPiTerms20.txt

2. http://mathworld.wolfram.com/topics/
 ContinuedFractions.html

3. http://archives.math.utk.edu/articles/atuyl/
 confrac/

4. http://www.mathsoft.com/asolve/constant/
 cntfrc/cntfrc.html

5. http://www.mathsoft.com/asolve/constant/
 pi/frc.html

6. http://www.mathsoft.com/asolve/constant/
 e/cntfrc.html

 prev_p[2] := p
 prev_q[1] := prev_q[2]
 prev_q[2] := q
 }

end

Patterns

Simple continued-fraction sequences for ra-
tional numbers usually are short and any patterns
are accidental.

Since quadratic irrationals have periodic
simple continued-fraction sequences, they have
patterns that may be of interest in graphic design.

Simple continued-fraction sequences for other
irrationals are not periodic and most have no evi-
dent patterns.

Some, however, do. An example is tan(1) (see
Figure 1f), whose simple continued-fraction se-
quence is

1 1 2 1, , n + n = 1, 2, 3, …

Another example is e – 1 (see Figure 1a),
whose simple continued-fraction sequence is

1 1 2 1, , ,n n = 1, 2, 3, …

Such sequences have periodic forms. The
simple continued-fraction sequence for π has no
such structure, but there is an ordinary continued-
fraction for π/4 (see Figure 1d) that has numerator
and denominator sequences with periodic forms:

numerators: ()2 1 2n − n = 1, 2, 3, …

denominators: 1 2,

Sequences with periodic forms are on our
agenda.

Learning More About Continued
Fractions

Much of the literature about continued frac-
tions is highly technical and specialized. There are,
however, a few books that are accessible [2-4].
There also are Web resources <2-6>.

Next Time

As mentioned earlier, simple continued-frac-
tion sequences for quadratic irrationals are peri-
odic. We’ll take up this topic in the next article in
our series on sequences.

Subscription Renewal
For many of you, this is your last issue in your

Analyst subscription. If so, you’ll find a renewal
form in the center of this is-
sue.

Don’t miss an issue. Re-
new now.

Your prompt renewal
helps us by reducing the num-
ber of follow-up notices we
have to send. Knowing where
we stand on subscriptions
also lets us plan our budget
for the next fiscal year.

6 / The Icon Analyst 60

Drafting Weavable Color Patterns

In two previous articles [1,2], we described
the problem of determining if a color pattern can be
woven and showed a heuristic method for solving
the problem.

What remains is to use the results of a solution
to create a draft — threading and treadling se-
quences and a tie-up.

A solved pattern provides color assignments
for columns and rows — colors for the warp and
weft threads. From this we can get a drawdown —
a grid that shows where warp and weft threads are
on top — by looking at the color of each point of
intersection. Then from this we can get a draft [3].

At every point in the pattern, there are three
possibilities:

1. The corresponding row and column colors
are the same, in which case either the warp or
weft thread can be on top.

2. The column color is the same as the color of
the point, in which case the warp thread is on
top.

3. The row color is the same as the color of the
point, in which case the weft thread is on top.

The first case, an option point, presents a
problem — how to choose? The choice potentially
is important, because it can affect the length of
floats [4] and the loom resources required. We’ll
come back to this later.

The output of the heuristic program with the
–r (raw) option consists of three lines: the palette
color keys for the columns, the color keys for the
rows, and a color grid in terms of keys as one long
string.

Figure 1 shows the solution for the pattern we
used in the last article and which we’ll continue to
use here.

Figure 1. Solved Pattern

Figure 2 shows the output for –r. (Sometimes
it’s worth looking at raw data to get a feeling for
what’s really going on.)

00000Na@Ob%Pc%Qd.Re:Sf-Tg/Uh'Vi00iV'hU/gT-fS:eR.dQ%cP%bO@aN00000
00000Na@Ob%Pc%Qd.Re:Sf-Tg/Uh'Vi00iV'hU/gT-fS:eR.dQ%cP%bO@aN00000
00000Na@00%Pc%00000:0f0T00U00V0000V00U00T0f0:00000%cP%00@aN00000000000a@O00P0%Q0.00:00-Tg0U00Vi00iV00U0gT-00:00.0Q%0P00O@a000000
0000000@Ob0000Qd.R0000-0g/0h00i00i00h0/g0-0000R.dQ0000bO@000000000000000Ob%0c00d0Re0S0000/0h'000000'h0/0000S0eR0d00c0%bO00000000
00000N000b%Pc%0000e:Sf0T000h'V0000V'h000T0fS:e0000%cP%b000N00000000NNNaNNN%Pc%QN.NN:Nf-TgNUNNVi00iVNNUNgT-fN:NN.NQ%cP%NNNaNNN000
a000aaa@aaaPa%Qd.Ra:aa-Tg/UaaVi00iVaaU/gT-aa:aR.dQ%aPaaa@aaa000a@@000@@@O@@@@@Qd.Re@S@-@g/@@'@i@@i@'@@/g@-@S@eR.dQ@@@@@O@@@000@@
OOO00NOOObOOOOOdOReOSfOOO/Oh'OOOOOO'hO/OOOfSOeROdOOOOObOOON00OOO0bbb0Nabbb%bcbbbbbebSfbbbbUh'bbbbbb'hUbbbbfSbebbbbbcb%bbbaN0bbb0
00%%%Na@%%%Pc%%%%%%:%f%T%%U%%V%00%V%%U%%T%f%:%%%%%%cP%%%@aN%%%00P00PPPa@OPPPP%QP.PP:PP-TgPUPPVi00iVPPUPgT-PP:PP.PQ%PPPPO@aPPP00P
00cccNa@cc%Pc%ccccc:cfcTccUccVc00cVccUccTcfc:ccccc%cP%cc@aNccc00%00%%%a@O%%P%%Q%.%%:%%-Tg%U%%Vi00iV%%U%gT-%%:%%.%Q%%P%%O@a%%%00%
QQ00QQQ@ObQQQQQd.RQQQQ-Qg/QhQQiQQiQQhQ/gQ-QQQQR.dQQQQQbO@QQQ00QQ0dd00dddOb%dcddddRedSdddd/dh'dddddd'hd/ddddSdeRddddcd%bOddd00dd0
..00...@Ob....Qd.R....-.g/.h..i..i..h./g.-....R.dQ....bO@...00..0RR00RRROb%RcRRdRReRSRRRR/Rh'RRRRRR'hR/RRRRSReRRdRRcR%bORRR00RR0
00ee0Neeeb%Pc%eeeee:SfeTeeeh'Ve00eV'heeeTefS:eeeee%cP%beeeN0ee00:00:::a@O::P:%Q:.:::::-Tg:U::Vi00iV::U:gT-:::::.:Q%:P::O@a:::00:
00SS0NSSSb%Pc%SSSSe:SfSTSSSh'VS00SV'hSSSTSfS:eSSSS%cP%bSSSN0SS00000ffNafff%Pc%Qf.ff:ff-TgfUffVi00iVffUfgT-ff:ff.fQ%cP%fffaNff000
--00---@Ob----Qd.R------g/-h--i--i--h-/g------R.dQ----bO@---00--T00TTTa@OTTPT%QT.TT:TT-TgTUTTVi00iVTTUTgT-TT:TT.TQ%TPTTO@aTTT00T
gg00ggg@ObggggQd.Rgggg-gg/ghggiggigghg/gg-ggggR.dQggggbO@ggg00gg0//00///Ob%/c//d/Re/S//////h'//////'h//////S/eR/d//c/%bO///00//0
U000UUa@UUUPU%Qd.RU:UU-Tg/UUUVi00iVUUU/gT-UU:UR.dQ%UPUUU@aUU000U0hhh0Nahhb%hchhhhhehSfhhhhUh'hhhhhh'hUhhhhfShehhhhhch%bhhaN0hhh0
00''0N'''b%Pc%''''e:Sf'T'''h'V'00'V'h'''T'fS:e''''%cP%b'''N0''00V00VVVa@OVVPV%QV.VV:VV-TgVUVVVi00iVVVUVgT-VV:VV.VQ%VPVVO@aVVV00V
ii00iii@ObiiiiQd.Riiii-ig/ihiiiiiiiihi/gi-iiiiR.dQiiiibO@iii00ii000000a@O00P0%Q0.00:00-Tg0U00Vi00iV00U0gT-00:00.0Q%0P00O@a000000
000000a@O00P0%Q0.00:00-Tg0U00Vi00iV00U0gT-00:00.0Q%0P00O@a000000ii00iii@ObiiiiQd.Riiii-ig/ihiiiiiiiihi/gi-iiiiR.dQiiiibO@iii00ii
V00VVVa@OVVPV%QV.VV:VV-TgVUVVVi00iVVVUVgT-VV:VV.VQ%VPVVO@aVVV00V00''0N'''b%Pc%''''e:Sf'T'''h'V'00'V'h'''T'fS:e''''%cP%b'''N0''00
0hhh0Nahhb%hchhhhhehSfhhhhUh'hhhhhh'hUhhhhfShehhhhhch%bhhaN0hhh0U000UUa@UUUPU%Qd.RU:UU-Tg/UUUVi00iVUUU/gT-UU:UR.dQ%UPUUU@aUU000U
0//00///Ob%/c//d/Re/S//////h'//////'h//////S/eR/d//c/%bO///00//0gg00ggg@ObggggQd.Rgggg-gg/ghggiggigghg/gg-ggggR.dQggggbO@ggg00gg
T00TTTa@OTTPT%QT.TT:TT-TgTUTTVi00iVTTUTgT-TT:TT.TQ%TPTTO@aTTT00T--00---@Ob----Qd.R------g/-h--i--i--h-/g------R.dQ----bO@---00--
000ffNafff%Pc%Qf.ff:ff-TgfUffVi00iVffUfgT-ff:ff.fQ%cP%fffaNff00000SS0NSSSb%Pc%SSSSe:SfSTSSSh'VS00SV'hSSSTSfS:eSSSS%cP%bSSSN0SS00
:00:::a@O::P:%Q:.:::::-Tg:U::Vi00iV::U:gT-:::::.:Q%:P::O@a:::00:00ee0Neeeb%Pc%eeeee:SfeTeeeh'Ve00eV'heeeTefS:eeeee%cP%beeeN0ee00
0RR00RRROb%RcRRdRReRSRRRR/Rh'RRRRRR'hR/RRRRSReRRdRRcR%bORRR00RR0..00...@Ob....Qd.R....-.g/.h..i..i..h./g.-....R.dQ....bO@...00..
0dd00dddOb%dcddddRedSdddd/dh'dddddd'hd/ddddSdeRddddcd%bOddd00dd0QQ00QQQ@ObQQQQQd.RQQQQ-Qg/QhQQiQQiQQhQ/gQ-QQQQR.dQQQQQbO@QQQ00QQ
%00%%%a@O%%P%%Q%.%%:%%-Tg%U%%Vi00iV%%U%gT-%%:%%.%Q%%P%%O@a%%%00%00cccNa@cc%Pc%ccccc:cfcTccUccVc00cVccUccTcfc:ccccc%cP%cc@aNccc00
P00PPPa@OPPPP%QP.PP:PP-TgPUPPVi00iVPPUPgT-PP:PP.PQ%PPPPO@aPPP00P00%%%Na@%%%Pc%%%%%%:%f%T%%U%%V%00%V%%U%%T%f%:%%%%%%cP%%%@aN%%%00
0bbb0Nabbb%bcbbbbbebSfbbbbUh'bbbbbb'hUbbbbfSbebbbbbcb%bbbaN0bbb0OOO00NOOObOOOOOdOReOSfOOO/Oh'OOOOOO'hO/OOOfSOeROdOOOOObOOON00OOO
@@000@@@O@@@@@Qd.Re@S@-@g/@@'@i@@i@'@@/g@-@S@eR.dQ@@@@@O@@@000@@a000aaa@aaaPa%Qd.Ra:aa-Tg/UaaVi00iVaaU/gT-aa:aR.dQ%aPaaa@aaa000a
000NNNaNNN%Pc%QN.NN:Nf-TgNUNNVi00iVNNUNgT-fN:NN.NQ%cP%NNNaNNN00000000N000b%Pc%0000e:Sf0T000h'V0000V'h000T0fS:e0000%cP%b000N00000
00000000Ob%0c00d0Re0S0000/0h'000000'h0/0000S0eR0d00c0%bO000000000000000@Ob0000Qd.R0000-0g/0h00i00i00h0/g0-0000R.dQ0000bO@0000000
000000a@O00P0%Q0.00:00-Tg0U00Vi00iV00U0gT-00:00.0Q%0P00O@a00000000000Na@00%Pc%00000:0f0T00U00V0000V00U00T0f0:00000%cP%00@aN00000

Figure 2. Solution Output

The Icon Analyst 60 / 7

Here’s a program that reads raw output in the
form of Figure 2 and produces an ISD [5].

link numbers
link options
link patutils
link patxform
link weavutil
link xcode

procedure main(args)
 local warp, weft, pattern, rows, i, j, opts, count
 local threading, treadling, color_list, colors, choice
 local symbols, symbol, drawdown, draft
 local warp_colors, weft_colors, pixels

 opts := options(args, "o+")

 choice := opts["o"] | 1

 (warp := read() & weft := read() &
 pattern := read()) | stop("∗∗∗ short file")

 pixels := real(∗pattern)

 colors := warp ++ weft

 color_list := []
 warp_colors := []
 weft_colors := []
 drawdown := []

 every put(color_list, PaletteColor("c1", !colors))

 every put(warp_colors, upto(!warp, colors))
 every put(weft_colors, upto(!weft, colors))

 pattern ? {
 while put(drawdown, move(∗warp))
 }

 count := 0

 every i := 1 to ∗weft do {
 every j := 1 to ∗warp do {
 if weft[i] == warp[j] then {
 count +:= 1
 drawdown[i, j] := case choice of {
 0 : ?2 – 1 # random
 1 : "1" # warp
 2 : "0" # weft
 3 : 1 – (count % 2) # alternate
 }
 }
 else if drawdown[i, j] == weft[i]
 then drawdown[i, j] := "0"
 else drawdown[i, j] := "1"
 }
 }

 treadling := analyze(drawdown)
 drawdown := protate(drawdown, "cw")
 threading := analyze(drawdown)

 symbols := table("")

 every pattern := !treadling.patterns do {
 symbol := treadling.rows[pattern]
 symbols[symbol] := repl("0", ∗threading.rows)
 pattern ? {
 every i := upto('1') do
 symbols[symbol][threading.sequence[i]] := "1"
 }
 }

 symbols := sort(symbols, 3)
 rows := []

 while get(symbols) do
 put(rows, get(symbols))

 draft := isd()

 draft.name := "colorup"
 draft.threading := threading.sequence
 draft.treadling := treadling.sequence
 draft.warp_colors := warp_colors
 draft.weft_colors := weft_colors
 draft.color_list := color_list
 draft.shafts := ∗threading.rows
 draft.treadles := ∗treadling.rows
 draft.tieup := rows

 xencode(draft, &output)

end

The command-line option –o provides four
alternatives for handling option points:

0: random choice
1: chose warp (the default)
2: chose weft
3: chose warp and weft alternately

Figure 3 on the next page shows a warp-
choice draft obtained in this manner using –o 1 for
the pattern shown Figure 1.

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

8 / The Icon Analyst 60

Figure 3. Warp-Choice Draft

Option Points

For many patterns that might be candidates
for weaving, the number of option points is large.
For Figure 1, 256 of the 4,096 points are option
points. So there are 2256 possible drafts.

It’s clearly hopeless to explore even a small
fraction of possible drafts that result from different
choices at option points. Trying each of the four
methods usually gives an idea of how important
the method used is.

The choices made at option points affects float
lengths. See Figures 4 through 7.

Figure 4. Random-Choice Floats

Figure 5. Warp-Choice Floats

Figure 6. Weft-Choice Floats

Figure 7. Alternating-Choice Floats

The Icon Analyst 60 / 9

Another, often more important, consideration
is the number of shafts and treadles the draft
requires. The warp-choice draft shown in Figure 3
requires 31 shafts and 31 treadles. The weft-choice
draft, shown in Figure 8, requires only 16 shafts
and 16 treadles.

Figure 8. Weft-Choice Draft

Very few weavers have looms that can handle
drafts that require 31 shafts and treadles, but many
have looms with 16 shafts and treadles. More strik-
ingly, the random-choice draft requires 56 shafts
and 52 treadles, while the alternating choice draft
requires 62 shafts and 31 treadles, making them
out of the question for actual weaving.

Next Time

The question of what color patterns are
weavable has led us to develop an application in
which the user can create weavable color patterns.

We’ll describe this application and comment
on the problem from a designer’s viewpoint in the
next article in this series.

References

1. “Weavable Color Patterns”, Icon Analyst 58,
pp. 7-10.

2. “Weavable Color Patterns”, Icon Analyst 59,
pp. 10-15.

3. “Drawups”, Icon Analyst 56, pp. 18-20.

4. “Floats”, Icon Analyst 59, pp. 1-3.

5. “Weave Draft Representation”, Icon Analyst
56, pp. 1-3.

Polyalphabetic Substitution

L oryh wuhdvrq exw kdwh d wudlwru.
— Mxolxv Fdhvdu

The first article in this series [1] described
monoalphabetic substitution ciphers in which
characters of the plain text are replaced on a one-
for-one basis by characters of a cipher alphabet.

Monoalphabetic cryptograms are easy to de-
crypt because of the one-for-one correspondence.
Known letter frequencies and patterns usually re-
veal a few characters and the rest follow by context.

This weakness of monoalphabetic ciphers can
be overcome by using multiple alphabets and us-
ing different alphabets at different positions in the
plain text.

There are many types of such polyalphabetic
substitution ciphers. The Vigenére Square is best
known and illustrates the principles [2-5].

In a Vigenére Square, there is a cipher alpha-
bet for each character in the plain alphabet. The
cipher alphabets can be formed in any manner
provided they are distinct.

The simplest Vigenére Square is due to Charles
Lutwidge Dodgson (Lewis Carroll). It consists of
the plain alphabet successively rotated. For a plain
alphabet consisting of the lowercase letters, it looks
like this:

abcdefghijklmnopqrstuvwxyz
bcdefghijklmnopqrstuvwxyza
cdefghijklmnopqrstuvwxyzab
defghijklmnopqrstuvwxyzabc
efghijklmnopqrstuvwxyzabcd
fghijklmnopqrstuvwxyzabcde
ghijklmnopqrstuvwxyzabcdef
hijklmnopqrstuvwxyzabcdefg
ijklmnopqrstuvwxyzabcdefgh
jklmnopqrstuvwxyzabcdefghi
klmnopqrstuvwxyzabcdefghij
lmnopqrstuvwxyzabcdefghijk
mnopqrstuvwxyzabcdefghijkl
nopqrstuvwxyzabcdefghijklm
opqrstuvwxyzabcdefghijklmn
pqrstuvwxyzabcdefghijklmno
qrstuvwxyzabcdefghijklmnop
rstuvwxyzabcdefghijklmnopq
stuvwxyzabcdefghijklmnopqr
tuvwxyzabcdefghijklmnopqrs
uvwxyzabcdefghijklmnopqrst
vwxyzabcdefghijklmnopqrstu
wxyzabcdefghijklmnopqrstuv
xyzabcdefghijklmnopqrstuvw
yzabcdefghijklmnopqrstuvwx

zabcdefghijklmnopqrstuvwxy

10 / The Icon Analyst 60

A key with characters from the plain alphabet
is used to select the alphabets for enciphering. The
characters of the keys are used in order, cyclically.
For example, the key kaleidoscope uses the k al-
phabet to encipher the first character of the plain
text, the a alphabet for the second, and so on,
continuing with k after the final e. For example,
using the Carroll Vigenére Square, the plain text

thaw the casserole for dinner

gives the cryptogram

dhla wvw qpwcecsth xqf hsnyiz

Another classical method of producing a
Vigenére Square is to start with a keyed alphabet in
place of the plain alphabet. A keyed alphabet is
constructed by using a string of plain-text charac-
ters. The keyed alphabet begins with the distinct
characters of the key, followed by the remaining
characters of the plain alphabet in their usual or-
der. For example, the key hexamorph with the
plain alphabet consisting of lowercase letters pro-
duces the keyed alphabet

hexamorpbcdfgijklnqstuvwyz

The resulting Vigenére Square with the al-
phabets ordered by their first characters is:

amorpbcdfgijklnqstuvwyzhex
bcdfgijklnqstuvwyzhexamorp
cdfgijklnqstuvwyzhexamorpb
dfgijklnqstuvwyzhexamorpbc
examorpbcdfgijklnqstuvwyzh
fgijklnqstuvwyzhexamorpbcd
gijklnqstuvwyzhexamorpbcdf
hexamorpbcdfgijklnqstuvwyz
ijklnqstuvwyzhexamorpbcdfg
jklnqstuvwyzhexamorpbcdfgi
klnqstuvwyzhexamorpbcdfgij
lnqstuvwyzhexamorpbcdfgijk
morpbcdfgijklnqstuvwyzhexa
nqstuvwyzhexamorpbcdfgijkl
orpbcdfgijklnqstuvwyzhexam
pbcdfgijklnqstuvwyzhexamor
qstuvwyzhexamorpbcdfgijkln
rpbcdfgijklnqstuvwyzhexamo
stuvwyzhexamorpbcdfgijklnq
tuvwyzhexamorpbcdfgijklnqs
uvwyzhexamorpbcdfgijklnqst
vwyzhexamorpbcdfgijklnqstu
wyzhexamorpbcdfgijklnqstuv
xamorpbcdfgijklnqstuvwyzhe
yzhexamorpbcdfgijklnqstuvw
zhexamorpbcdfgijklnqstuvwy

For the plain text and selection key used in the
example above, the cryptogram is

Cryptology in Literature

Coded messages have appeared many
times as a plot element in popular fiction. A
multiply-encoded Latin cryptogram sent Jules
Verne’s characters on their Voyage to the Center
of the Earth. Simple substitution ciphers using
unusual alphabets figure prominently in two
short stories that achieved great popularity.

“The Gold Bug”, by Edgar Allen Poe,
won a $100 prize and was published in the
Dollar Newspaper of Philadelphia in 1843. In
this improbable but captivating tale, a recluse
on a South Carolina island deciphers a mes-
sage that leads him to Captain Kidd’s buried
treasure chest. Poe’s clear explanation of the
cryptanalysis process popularized the subject
for the first time.

In “The Adventure of the Dancing Men”,
by Arthur Conan Doyle, Sherlock Holmes en-
counters a series of whimsical-looking mes-
sages; the first is reproduced above. Holmes
breaks the code and sends a message of his
own to catch the criminal. Again a straightfor-
ward exposition, ostensibly for the benefit of
Dr. Watson, brought cryptanalysis to the gen-
eral public.

In The Codebreakers [1], his authoritative
book on cryptology, David Kahn cites many
other literary examples including a nonfiction
treatise on the use of the astrolabe by Geoffrey
Chaucer. Kahn analyzes errors that have per-
sisted since the first printing of “Dancing Men”
and concludes that we must blame Dr.
Watson’s transcriptions, for if they appeared
in the original messages they would have fore-
closed Holmes’ method of solution.

Reference

[1] The Codebreakers, David Kahn , Macmillan,
1996.

The Icon Analyst 60 / 11

bdlw agw ppspppkyj ywv mwlaom

Keys that select alphabets in an irregular fash-
ion provide more security than keys that don’t, and
long keys that use more alphabets provide more
security than short keys. A key consisting of a
single character obviously is unacceptable. The
seven-character key security, in which all the char-
acters are different, is preferable to the seven-
character key selects, in which there are only five
distinct characters and is equivalent to the five-
character key selct.

Using a key to select alphabets in a cyclic
manner makes the resulting cryptograms suspect-
able to cryptographic techniques [6]. One method
used to avoid this problem is a running key that
consists of the plain-text characters of some pas-
sage of text known to both the encipherer and
decipherer. For example, with case folded, Lincoln’s
Gettysburg address for the lowercase letters gives
the running key

fourscoreandsevenyearsagoourfathersbroughtforth
onthiscontinentanewnationconceived …

For the plain text and keyed alphabet used in
the examples above, the cryptogram is

mgua xgf onxfoikxx bud kiqbff

A running key is, of course, just a key at least
as long as the message. The advantage of using
such a key known to both the encipher and deci-
pherer is that the key itself does not have to be
transmitted; only an identification for it.

Another method for choosing cipher alpha-
bets in a noncyclic fashion is auto-key enciphering, in
which the characters of the plain text are used to
select the cipher alphabets. It is, of course, neces-
sary to know where to start. For auto-key
enciphering, this key is the first character of the
starting alphabet. For the key j, the plain text for
our example produces the cryptogram

pehz tem ccufwqtlt fzv dqhmuq

Classical methods were devised to be easy to
use and to minimize the possibility of errors. They
therefore sometimes seem simplistic. When using
computer programs to implement ciphers, these
concerns are largely irrelevant

For the Vigenére Square, the alphabets can be
constructed using any technique that produces
distinct alphabets. The key used for selecting al-
phabets also can be of any kind as long as many

Letter Frequencies
The frequencies with which letters occur in

written material vary from language to language
and somewhat depending on the subject matter.
However, there is considerable consistency,
which aids in decrypting. Here are two lists of
letter frequencies based on two large corpora for
American and British English.

American British
e 577230 12.68 e 588441 12.51
t 418668 9.20 t 435707 9.26
a 364302 8.00 a 378602 8.05
o 345419 7.59 o 357304 7.59
i 330074 7.25 i 342873 7.29
n 323360 7.10 n 333890 7.10
s 293976 6.46 s 307900 6.54
r 281270 6.18 r 288319 6.13
h 255365 5.61 h 255817 5.44
l 188647 4.14 l 194577 4.14
d 181973 4.00 d 186853 3.97
c 133292 2.93 c 145711 3.10
u 125487 2.76 u 127675 2.71
m 112287 2.47 m 119566 2.54
f 106172 2.33 f 108816 2.31
g 89612 1.97 p 94928 2.02
w 88413 1.94 g 91690 1.95
p 85086 1.87 w 88639 1.88
y 81787 1.80 y 81175 1.73
b 70994 1.56 b 72257 1.54
v 45186 0.99 v 46948 1.00
k 30182 0.66 k 30946 0.66
x 10081 0.22 x 9320 0.20
j 6462 0.14 j 7549 0.16
q 5079 0.11 q 5039 0.11

Notice that the only difference in order of
frequency of occurrence is for p, g, and w.

It is possible, of course, to deliberately dis-
tort letter frequencies in messages. In fact, an
entire novel was written without using the letter
e [1]. It’s said that the missing letter is barely
noticeable. The novel also is reported to be dread-
ful. Don’t bother to look for a copy; only a few
hundred were printed and existing copies are
exceedingly rare.

Incidentally, a composition that deliber-
ately omits certain letters is called a lipogram [2].

References

1. Gadsby, Ernest Vincet Wright, Wetzel, 1939.

2. The Game of Words, Willard R. Espy, Bramhall
House, 1971.

12 / The Icon Analyst 60

(preferably all) alphabets are used in a nonregular
order. Alphabets do not have to be selected by their
first character; in fact, it’s easier to index into a list.
Thus, selection keys can be integer sequences
modulo the number of alphabets.

Implementation

A procedure for producing keyed alphabets
is:

procedure key_alpha(plain, alpha)

 /alpha := &lcase # default alphabet

 plain := ochars(plain) # unique characters

 return plain || deletec(alpha, plain)

end

The procedures ochars() and deletec() are from the
strings module in the Icon program library.

For classical methods, a table is the natural
way to represent a Vigenére Square. For a keyed
alphabet, it looks like this:

 alpha := key_alpha(alpha_key, plain_alpha)

 vigenere := table()

 every 1 to ∗alpha do {
 vigenere[alpha[1]] := alpha
 alpha := rotate(alpha, 1)
 }

The enciphering goes as follows:

 while plain := read() do {
 crypto := ""
 key := sel_key # selection key
 every c := !plain do {
 crypto ||:=
 map(c, plain_alpha, vigenere[key[1]])
 key := rotate(key, 1)
 }
 write(crypto)
 }

The deciphering is symmetric:

 while crypto := read() do
 plain := ""
 key := sel_key
 every c := !crypto do {
 plain ||:=
 map(c, vigenere[key[1]], plain_alpha)
 key := rotate(key, 1)
 }

 write(plain)
 }

Auto-key encipheringis similar except for the
use of the plain text to construct the selection key:

 while plain := read() do {
 crypto := ""
 key := sel_key || plain
 every c := !plain do {
 crypto ||:=
 map(c, plain_alpha, vigenere[key[1]])
 key := rotate(key, 1)
 }
 write(crypto)
 }

…

 while crypto := read() do {
 key := sel_key || plain
 plain := ""
 every c := !crypto do {
 plain ||:=
 map(c, vigenere[key[1]], plain_alpha)
 key := rotate(key, 1)
 }
 write(plain)
 }

Next Time

In the next article on classical cryptography,
we’ll take up polygram substitution, in which sub-
stitution is based on groups of characters instead of
single characters.

Following that, we’ll start on transposition
ciphers.

References

1. “Classical Cryptography”, Icon Analyst 59,
pp. 7-9.

2. Cryptanalysis: A Study of Ciphers and Their Solu-
tion, Helen Fouché Gaines, Dover, 1956.

3. The Codebreakers, David Kahn, Scribner, 1996.

4. Cryptography: The Science of Secret Writing,
Laurence Dwight Smith, Dover, 1943.

5. Codes, Ciphers, and Secret Writing, Martin Gar-
dener, Dover, 1972.

6. Elementary Cryptanalysis: A Mathematical Ap-
proach, Abraham Sinkov, Random House, 1968.

The Icon Analyst 60 / 13

 makepalette(name, clist) |
 write(&errout, "∗∗∗ could not make palette for ",
 image(file))
 }
 xencode(PDB_, &output)

end

Fracint color lists (called maps) give RGB
color specifications one per line, but the range of
intensity is from 0 to 255, so it’s necessary to change
the range for Icon:

…
 clist := []
 while line := read(input) do {
 line ? {
 tab(upto(&digits))
 color := (tab(many(&digits)) ∗ 257) || ","
 tab(upto(&digits))
 color ||:= (tab(many(&digits)) ∗ 257) || ","
 tab(upto(&digits))
 color ||:= (tab(many(&digits)) ∗ 257)
 }
 put(clist, color)

…

 WIFs [5] contain color palettes that are em-
bedded along with other data. The color range can
be specified and varies from file to file. The WIF
format is verbose and rather messy to parse, but
the color palettes in WIFs are useful in weaving, so
it’s worth the effort to create custom palettes from
them:

link basename
link palettes
link xcode

global PDB_

procedure main(args)
 local file, wifname, input, clist, line, range, i

 every file := !args do {
 wifname := basename(file, ".wif")
 input := open(file) | {
 write(&errout, "∗∗∗ cannot open ", image(file))
 next
 }
 clist := []
 range := &null
 while line := trim(map(read(input))) do {
 if line == "[color table]" then {
 while line := trim(read(input)) do {
 if ∗line = 0 then break
 line ?:= {

Graphics Corner —
Creating Custom Palettes

In a previous article, we described custom
palettes as an addition to Icon’s built-in palette
mechanism [1]. In this article, we’ll describe some
tools for creating custom palettes.

Derived Custom Palettes

One way to create a custom palette is to take
colors from an existing source.

Color Lists

There are many sources of color lists. For
example, we have some left over from numerical
carpets [2] and many color lists are available for the
popular fractal program Fractint [3].

If a file contains one color specification per
line using any of the ways that Icon can represent
colors [4], creating a custom palette from these
colors is very simple. Here’s a program that creates
a custom palette database with palettes from color
lists whose file names are given on the command
line.

link basename
link palettes
link xcode

global PDB_

procedure main(args)
 local file, input, clist, name

 every file := !args do {
 input := open(file) | {
 write(&errout, "∗∗∗ cannot open ", image(file))
 next
 }
 name := basename(file, ".clr")
 clist := []
 while put(clist, read(input))
 close(input)

14 / The Icon Analyst 60

 }
 name := basename(file, ".gif")
 colors := set()
 every insert(colors, Pixel(win))
 WClose(win)
 makepalette(name, sort_colors(colors))
 }

 xencode(PDB_, &output)

end

There are many possibilities for giving a user
control over the selection of colors from an image.
We’ll defer that subject for now.

An Interactive Custom-Palette Application

The creation of custom palettes invites user
interaction. There are many issues in the design of
such an application. The problem obviously is
open-ended and vulnerable to over-generalization
and excessive complexity.

The basic functionality we’ve chosen includes
these features:

• creating custom palettes in a variety of ways

• modifying existing custom palettes in a vari-
ety of ways

• viewing custom palettes

• saving custom palettes in databases

• loading databases of custom palettes

Figure 1 shows the application interface.

Figure 1. Interface

The scrolling text list displays the names of
palettes in the current database. One palette is the
current focus of attention and its name is shown at
the bottom of the window.

Clicking on a name in the text list brings up a
dialog. See Figure 2.

 if ="[" then break
 tab(upto('=') + 1)
 tab(0)
 }
 put(clist, line)
 }
 }
 else if line == "[color palette]" then {
 while line := trim(map(read(input))) do {
 if ∗line = 0 then break
 line ? {
 if ="[" then break
 else if ="range=" then {
 tab(upto(',') + 1)
 range := tab(0) + 1
 break
 }
 }
 }
 }
 }
 close(input)

 if (\range ~= 65536) then { # adjust RGB values
 every i := 1 to ∗clist do
 clist[i] := color_range(clist[i], range)
 }
 makepalette(wifname, clist)
 }

 xencode(PDB_, &output)

end

Images

Images provide handy sources of colors. The
following program creates a custom palette data-
base from GIF images whose file names are given
on the command line:

link basename
link palettes
link graphics
link xcode

global PDB_

procedure main(args)
 local file, name, output, colors, win

 every file := !args do {
 win := WOpen("image=" || file, "canvas=hidden") |
 {
 write(&errout, "∗∗∗ cannot open image: ",
 image(file))
 next

The Icon Analyst 60 / 15

Capturing Colors

The Capture menu, shown in Figure 5, pro-
vides items for creating a custom palette from a file
of color specifications or an image.

Figure 5. Capture Menu

At present, the methods of capturing colors
are limited to getting colors from color list and
image files. Possible extensions include specifying
the format of a file that contains color specifications
and providing various ways by which a user can
select desired colors from an image.

Creating New Palettes

The Create menu, shown in Figure 6, pro-
vides other ways for creating new palettes.

Figure 6. Create Menu

The copy item (@K) in the Create menu makes
a copy of a palette already in the database.

The list item (@L) allows the user to enter
color specifications in a text dialog. See Figure 7.

Figure 2. A Palette Dialog

The chosen palette can be approved, in which
case it is made the current one, displayed, or de-
leted. A palette is displayed in a separate window
in the style of the palette program in the Icon
program library. Figure 3 shows an example.

Figure 3. A Custom Palette

The File menu, shown in Figure 4, has items
for opening and saving palette databases and quit-
ting the application.

Figure 4. File Menu

The write item (@E) writes a list of colors in
the current palette. The clear item (@Z) discards
the current database an creates a new, empty one.

The remaining functionality is divided into
three parts: capture, creation, and modification.

Supplementary Material

Supplementary material for this issue of the Analyst, including images and Web links, is
available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia60/

16 / The Icon Analyst 60

Figure 7. A List Dialog

The More button provides an additional text dialog
if more colors are needed.

It’s worth noting that it’s possible to create a
palette with just one color. Such single-colored
palettes are useful for creating other kinds of pal-
ettes.

The mimic item (@M) allows the creation of a
custom palette with the same colors as a built-in
palette. See Figure 8. This is useful for creating a
custom palette with modifications to a built-in
palette.

Figure 8. A Mimic Dialog

The blend item (@B) facilitates the creation of
palettes with colors in equally spaced steps be-
tween beginning and ending colors. The number
of steps between pairs of colors is specified as
shown in Figure 9.

Figure 9. A Blend Dialog

Figure 10 shows the resulting palette.

Figure 10. The Rainbow Palette

As usual, it’s better to view such images in
color. They are available on the Web page for this
issue of the Analyst.

The interleave item (@V) creates a palette
with the colors of two palettes interleaved. Figure
11 shows an example of the dialog.

Figure 11. An Interleave Dialog

If one palette is shorter than the other, it is
extended by repetition as necessary.

At present, only two palettes can be inter-
leaved. This limitation could be removed, but a use
for the more general feature needs to be demon-
strated.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 60 / 17

The concatenate item (@C) allows several
palettes to be concatenated to form a new palette.
See Figure 12.

Figure 12. A Concatenation Dialog

Modifying Existing Palettes

The Modify menu, shown in Figure 13, pro-
vides ways for changing existing palettes.

Figure 13. Modify Menu

Items in the Modify menu apply to the current
palette.

The edit item (@E) is intended to allow the
user to edit a palette interactively. This feature is
not yet implemented. See the remarks in the next
section.

The extend (@X) item extends a palette to a
specified number of colors by repetition. If the
specified number is less than the number of colors
in the palette, the palette is truncated.

The remaining menu items allow the colors in
existing palettes to be re-ordered.

The reverse (@R) item reverses the order of
the colors in a palette, while the rotate item (@T)
rotates them by a specified amount.

The shuffle item (@U) randomizes the order
of the colors in a palette, and the swap (@W) item
swaps adjacent colors.

The sort item (@O) sorts the colors of a palette
by intensity. Other sorting methods could be added.

Editing Palettes

There are many problems with providing
facilities for interactively editing palettes. The rela-
tively weak features in commercial paint programs
suggest the problem is fundamentally difficult.

It’s easy to imagine things that would be
useful, such as:w

• adding new colors

• deleting existing colors

• changing existing colors

• rearranging the order of colors

On the surface, these may seem simple, but
it’s not so easy to design good methods for doing
them, and implementation may be tricky.

We haven’t come up with satisfactory specifi-
cations for editing palettes. At present the edit item
just produces a notice that the facility is not yet
implemented.

We’re still working on this and plan to add
some form of palette editing to a future version of
the application.

Implementation

As you might imagine, the program described
above is large — too large to list in the Analyst.
You’ll find a link to the code on the Web page for
this issue of the Analyst. A word of caution: The
program is functional but still a little raw. We’ll
update the Web version as the application evolves
and, of course, we welcome suggestions as well as
reports of problems and bugs.

18 / The Icon Analyst 60

Message Drafting

In two previous articles [1,2], we described
name drafting, a technique for designing weave
drafts that uses a name or phrase (string) to pro-
duce threading and treadling sequences.

From our viewpoint, name drafting is just a
device for producing numerical sequences that
well could be produced by other means. We real-
ize, however, that incorporating a name or phrase
with personal meaning makes the resulting fabric
of special significance.

One limitation of name drafting is that it’s not
possible to easily recover the string used from the
drafting sequences. The encoding techniques used
map several characters onto one shaft or treadle.
This encoding table is an example:

AEIMQUY shaft 1
BFJNRVZ shaft 2
CGKOSW shaft 3
DHLPTX shaft 4

There is no inverse; a numerical sequence
composed this way could stand for many strings.
It might be possible to decrypt it, but it’s not
possible to decipher it. [3].

In this article we’ll present an approach, called
message drafting, in which each different charac-
ter is mapped into a unique sequence.

The method is straightforward. Obvious cod-
ing techniques, such as mapping characters into
their internal binary representation, could be used
except for the fact that the weaving technique that
produces attractive patterns requires an odd/even
sequence [1].

Our approach is to build a list of odd/even
coding patterns based on the number of shafts and
treadles used (which must be even). We’ll limit
ourselves to a maximum of eight shafts or treadles
to simplify the code. At the expense of complexity,
it could be extended to any even number, but this
kind of weaving usually is done on four shafts and
treadles and rarely, if ever, on more than eight.

Here’s a procedure to produce a code list for
enciphering using n shafts with a character set of
size k:

procedure mcodes(n, k)

 /k := ∗&cset

 if n % 2 ~= 0 then fail # must be even
 if n > 8 then fail # can't handle

 odds := ""
 evens := ""

 every odds ||:= (1 to n by 2)
 every evens ||:= (2 to n by 2)

 old_codes := [""]
 new_codes := []

 repeat {
 new_codes := []
 every code := !old_codes do {
 every put(new_codes, code || (!odds || !evens))
 if ∗new_codes >= k then return new_codes
 }
 old_codes := new_codes
 }

end

All the codes must begin with a number of the
same parity (we arbitrarily picked odd) so that
when they are concatenated, the odd/even se-
quence is preserved.

To use these codes, it is necessary to map the
characters of the message into indices for the list. If
the entire character set is used, this is easy. It’s only
necessary to make the adjustment from 0-origin
indexing to 1-origin indexing:

code := mcode(n, ∗&cset)
…

seqcode := code[ord(c) + 1]

If another character set is used, the index of a
character in the character set can be used. For
example, if &letters is the character set,

code := mcode(n, ∗&letters)

References

1. “Graphics Corner — Custom Palettes”, Icon
Analyst 58, pp. 10-14.

2. “Anatomy of a Program — Numerical Carpets”,
Icon Analyst 45, pp. 1-10.

3. Fractal Creations, Timothy Wegner and Mark
Peterson, Waite Group Press, 1991.

4. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, 1998, pp. 139-142.

5. “Weaving Drafts”, Icon Analyst 53, pp. 1-4.

The Icon Analyst 60 / 19

…

seqcode := code[upto(c, &letters)]

Using this more general approach, a mes-
sage-drafting procedure is:

procedure mdraft(text, charset, shafts)
 local seq, code

 code := mcodes(shafts, ∗charset) | fail

 seq := ""

 every seq ||:= code[upto(!text, charset)]

 return seq

end

Figure 1 shows some drawdowns for four
shafts, treadled as drawn in, with a /2/2 twill [4].
The sequences have been mirrored to add symme-
tries.

"Life is a beach."

"666 is the number of the beast."

"Fire the stupid #&%*~&^$%!"

"Check the square root of 13."

Figure 1. Drawdowns for Message Drafts

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2000 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

20 / The Icon Analyst 60

What’s Coming Up

Simplicity does not precede complexity, but
follows it.

— Alan Perlis

Our plans for the next Analyst include ar-
ticles on polygram substitution ciphers, continued
fractions for quadratic irrationals, and adaptive
name drafting.

We didn’t have enough room in this issue for
the planned article on derived tie-ups, so that’s on
the agenda for the next issue also.

If we make enough progress on the program
for designing color weaves, we’ll include that.

Colored threads can be used to make the
weaves appear more visually complex.

It’s important to note that long messages lead
to large weaves and may, in fact, be a limiting
factor.

Cryptographic Possibilities

Message drafting can be thought of as a way
to encipher a message into a fabric. There are
several aspects to such an enciphering:

• the method used to assign code sequences to
characters

• the number of shafts and treadles used

• any modifications made, such as mirroring

• the tie-up

• thread colors

These can be considered to be keys.
For decrypting, fabric analysis techniques [5]

can be used to determine the number of shafts and
treadles used for a weave, as well as possible tie-
ups and threading and treadling sequences (they
are not unique).

While various methods can be used to make
analysis more difficult and the results more am-
biguous, it’s probably best to encipher the message
before doing message drafting if you wish to keep
the message a secret.

If this idea caught on, it would lend a new
meaning to dress code.

References

1. “Name Drafting”, Icon Analyst 57, pp. 11-14.

2. “Name Drafting Revealed”, Icon Analyst 58,
pp. 15-16.

3. “Classical Cryptography”, Icon Analyst 59,
pp. 7-9.

4. “Twills”, Icon Analyst 58, pp. 1-2.

5. From Drawdown to Draft — A Programmer’s View,
Ralph E. Griswold, http://www.cs.arizona.edu/
patterns/weaving/FabricAnalysis.pdf.

Cryptograms in Textiles

Garments have been used to convey
messages by their design and pattern since
ancient times. Such messages often have
been less than secret and sometimes quite
blatant.

Incorporating secret messages into tex-
tiles and textile-related objects is not new.
We can hardly forget Madame DeFarge
noting testimony in trials during the French
Revolution using stitches in her knitting, as
portrayed in Charles Dickens’ A Tale of Two
Cities.

Recently we were reminded of an-
other instance, this one in quilting. Before
and during the Civil War, quilts were cre-
ated that contained stops on the Under-
ground Railroad encoded in their design.

