
The Icon Analyst 59 / 1

April 2000
Number 59

In this issue

Floats ... 1
Satin .. 4
Tie-ups .. 5
Classical Cryptography 7
Subscription Renewal 9
Weavable Color Patterns 10
Understanding Icon’s Linker 16
Recurrence Relations 18
What’s Coming Up 20

In-Depth Coverage of the Icon Programming Language and Applications

Floats

An aspect of weaving that is of great practical
importance is the strength and durability of the
fabric produced, which depends not only on the
kind of threads used and how tight the weave is
but also on the manner of interlacing.

The interlacing that gives the strongest fabric
is the one used in plain weave, also called tabby,
which has a strict 1-over, 1-under interlacement
pattern. Figure 1 shows an example.

Figure 1. A Plain Weave Fabric

When a thread passes over or under more
than one perpendicular thread, the result is called
a float.

A fabric with long floats does not have the
strength and durability of one with short floats or
none at all. Not only is there less interlacement, but
floats tend to snag.

The importance of snagging depends on the
use to which a fabric is put. Long floats sometimes
appear on the back of upholstery fabrics, where
they cause few problems.

On the other hand, floats allow the creation of
textures and patterns that cannot be achieved oth-
erwise. Floats also produce a surface that feels
smoother and drapes better than a float-free one.
The sheen and luxurious texture of satins is due to
their floats.

Figure 2 shows an example in which floats are
used to achieve a decorative effect. Notice that one
thread has pulled loose where there is a float.

Figure 2. Floats on a Decorative Fabric

Drafts that produce very long floats are unde-
sirable or even unweavable. Unintended floats can
occur when designing drafts. For example, in the
drawdown shown in Figure 3, there are places
where weft threads float all the way across the
fabric.

2 / The Icon Analyst 59

Figure 3. An Unweavable Draft

If an attempt were made to weave this fabric,
these weft threads would not be interfaced with
the warp at all and would not be attached to the
fabric — the fabric would be unweavable.

Weavers avoid such extremes intuitively, but
they have to watch for float problems nonetheless.
Weavers have methods of modifying drafts with
this kind of problem without affecting the appear-
ance of the woven fabric [1]. For example, tiny
threads, which are too fine to be noticed, can be
used as “incidentals” to add interlacement.

We’ve ignored the problem of floats in the
drafts we’ve shown in previous articles, since it’s

not a problem in creating images. Our “virtual”
weaving is much easier than real weaving. (There
is an interpretation of weaving drafts as patterns in
which the interlacement is not a concern. That’s on
our agenda for a future article.)

Weaving programs have various ways of
showing floats. WeaveMaker One uses “float indi-
cators” — over-and-under diagrams for selected
warp and weft threads. See Figure 4. The selected
threads are indicated by small markers at the top
and right edges of the drawdown. We’ve added
arrows to help locate them. The markers can be
moved to show the floats for other threads.

A fabric surface simulation, such as the one
shown in Figure 5 (also from WeaveMaker One),
provides a more intuitive but less precise view of
floats.

Figure 5. Fabric Surface Simulation

Creating such diagrams is fairly
difficult and few weaving programs at-
tempt it. Realistic rendering of fabric
surfaces is in another class altogether.

Most weaving programs can pro-
duce tabulations or histograms of the
number of floats by length. Figure 6
shows a WeaveMaker One histogram
for the draft shown in Figure 3:

Figure 6. Float Histogram
Figure 4. Float Indicators

float indicators

float indicators

The Icon Analyst 59 / 3

Floats of length 15 and longer are lumped
together without comment. Note that 1 is included,
although strictly speaking it is not a float.

Here’s a program to produce a float tabula-
tion. It works from an image string of a drawdown.
A drawdown image for the back of the fabric is
created by exchanging black and white pixels —
where a thread is on top on the face of the fabric, it
is in back on the back of the fabric. Weft floats are
determined by rotating the fabric by 90º.

link imrutils

procedure main()
 local front, back, black, white

 front := imstoimr(read()) |
 stop("∗∗∗cannot create image record")

 black := PaletteKey(front.palette, "black")
 white := PaletteKey(front.palette, "white")

 analyze("Front weft floats", front, white)

 front := imrrot90cw(front)

 analyze("Front warp floats", front, black)

 back := imrcopy(front)
 back.pixels := map(back.pixels,
 white || black, black || white)

 analyze("Back weft floats", back, white)

 back := imrrot90cw(back)

 analyze("Back warp floats", back, black)

end

procedure analyze(caption, imr, color)
 local counts, length, row

 counts := table(0)

 imr.pixels ? {
 while row := move(imr.width) do {
 row ? {
 while tab(upto(color)) do {
 length := ∗tab(many(color))
 if length > 1 then
 counts[length] +:= 1
 }
 }
 }
 }

 if ∗counts = 0 then fail # no output

 write(caption)

 counts := sort(counts, 3)

 write()

 while write(right(get(counts), 6),
 right(get(counts), 6))

 write()

 return

end

The output for the drawdown shown in Fig-
ure 3 is:

Front weft floats

2 16
3 328
4 8
5 184
7 56

64 8

Back warp floats

2 24
3 440
4 8
5 112
6 8
7 56

64 8

Reference

1. Designing for Weaving: A Study Guide for Drafting,
Design and Color, Carol S. Kurtz, Hastings House,
1981.

4 / The Icon Analyst 59

Satin

Satin usually is thought of as a kind of silk
fabric that is characterized by a glossy surface and
a smooth texture. Weavers, on the other hand,
consider satin to be a weave structure — a system
for interlacement — that is not associated with any
particular kind of fiber.

The conflict of meaning came into focus with
the introduction of fabrics called satins but made
with rayon. This use of the word led to a legal
dispute, which eventually was settled (in the United
States, at least) in 1930 by the Circuit Court of
Appeals, which ruled satin was the name of a
weave construction and not the name of a textile
made from any particular fiber [1].

The common perception remains largely un-
changed, however.

As a weave structure, satin is characterized by
long floats (which gives satin fabrics their smooth-
ness) and a system of interlacing that avoids the
regularity of twills [2].

This is accomplished by having only one warp
interlacement with the weft per shaft. These inter-
lacements are arranged so that no two are adjacent
on successive treadlings. Figure 1 shows an ex-
ample of a satin tie-up.

Figure 1. A Satin Tie-Up

The location of interlacement points is deter-
mined by a counter that depends on the number of
shafts used.

Weaving literature is not noted for its clarity
and precision. Here are four quotations on the
subject from sources dating from 1888 to 1994:

1. Divide the number of harness for the satin
into two parts, which must neither be equal
nor the one a multiple of the other; again it
must not be possible to divide both parts by a
third number. [3]

Harness is used as a collective noun and cor-
responds to shafts in current terminology.

2. Divide the number of ends (or shafts) on
which the satin … is to be woven into two
unequal parts, so that one shall not be a mea-
sure of the other, nor shall it be divisible by a
common number. [4]

The word ends means the number of warp
threads. “Measure of the other” is British English
and means (we think) “divisible by the other”.

3. Find two numbers which give a sum equal
to the number of frames. None of these num-
bers can be 1; the two numbers cannot divide
one another, or by any other number at the
same time. [5]

The word frames is synonymous with shafts.

4. The satin counter cannot be 1, or the inter-
lacement forms a twill. It cannot be one fewer
than the number in the unit … , or the inter-
lacement forms a twill in the opposite direc-
tion. The counter cannot share a divisor with
the number in the unit, or some warp threads
interlace more than once and others not at all.
[6]

Grammatical errors, tortured prose, question-
able meaning, and definition by elimination aside,
it comes down to this:

Given n shafts, find i and j such that i >
1, i + j = n, and the greatest common
divisor of i and j = 1.

Either i or j can be used as the counter; the smaller
one usually is chosen.

Well, that wouldn’t make sense to most weav-
ers either, and it’s no wonder most of them rely on
tables of satin counters. In one sense, tables aren’t
that bad: there are not that many different counters
for the number of shafts that are available for hand
looms. Here is a table for 2 to 24 shafts:

shafts small counters number

2 0
3 0
4 0
5 2 1
6 0
7 2 3 2
8 3 1
9 2 4 2
10 3 1
11 2 3 4 5 4
12 5 1
13 2 3 4 5 6 5
14 3 5 2
15 2 4 7 3

The Icon Analyst 59 / 5

16 3 5 7 3
17 2 3 4 5 6 7 8 7
18 5 7 2
19 2 3 4 5 6 7 8 9 8
20 3 7 9 3
21 2 4 5 8 10 5
22 3 5 7 9 4
23 2 3 4 5 6 7 8 9 10 11 10
24 5 7 11 3

Notice that satin requires at least five shafts
and cannot be woven with six shafts. By the way, if
the number of shafts is a prime, p > 2, any number
2 ≤ i ≤ p – 1 is a valid counter: If i + j = p, gcd(i, j) must
be 1 — otherwise the common factor would divide
p.

 But a weaver who just uses a table of counters,
and who doesn’t understand the formula or the
reason for it, is limited to the designs of others.

Computing satin counters is easy. Here’s a
procedure that generates the smaller counter from
each pair for a given number of shafts:

procedure satin_counter(shafts)
 local candidate

 every candidate := 2 to shafts / 2 do
 if gcd(candidate, shafts – candidate) = 1
 then suspend candidate

end

The procedure gcd() is in the Icon program library
module numbers.

Once the counter is chosen, the tie-up is con-
structed starting with first position of the first row,
adding the counter to that value modulo the num-
ber of shafts, using shaft arithmetic [7], to get the
position in the second, and so on. Refer to Figure 1
on the previous page.

Here’s a procedure that produces a satin tie-
up as a row array:

procedure satin_tieup(counter, shafts, treadles)
 local rows, m, k

 rows := list(shafts, repl("0", treadles))

 m := 1
 rows[1, 1] := "1"

 every k := 2 to shafts do
 rows[k, residue(m +:= counter, shafts, 1)] := "1"

 return rows

end

The procedure residue() is in the Icon pro-
gram library module numbers.

Tie-Ups

Depending on what you read, the tie-up in a
weaving draft is the essence of the draft or it’s just
something that is produced mechanically after a
weave structure is designed. Both are true in dif-
ferent contexts.

We’ve shown how to derive the threading,
treadling, and tie-up from a drawdown — an
interlacement pattern. This is a case when the tie-
up follows as a matter of course.

On the other hand, as we’ve shown for twills
and satins (see the article Satins that starts on page
4), tie-ups can be fundamental to design and work
for many kinds of threadings and treadlings.

A tie-up also can serve as a motif, such as a
diagram of a leaf, that is replicated in the draw-
down. Geometric designs also are used in tie-ups
to achieve certain kinds of effects. Some tie-ups
are specific to certain kinds of weaving.

Many tie-ups are derived from others. And
there’s the ever-present miscellaneous category.

Basic Tie-Ups

The basic tie-ups are direct, tabby, twill, and
satin.

The figures that follow are for eight shafts
and treadles. The principles apply equally well to

References:

1. Contemporary Satins, Harriet Tidball, Shuttle Craft
Guild Monograph Seven, 1962.

2. “Twills“, Icon Analyst 58, pp. 1-2.

3. Technology of Textile Design, E. A. Posselt, 1888, p.
25.

4. The Structure of Weaving, Ann Sutton, Lark Books,
1982, p. 122.

5. More About Fabrics, S. A. Zielinski, Master Weaver
Library, Vol. 20, LeClerc, 1985, p. 14.

6. The Complete Book of Drafting for Handweavers,
Madelyn van der Hoogt, Shuttle Craft Books, 1994,
p. 23.

7. “Shaft Arithmetic”, Icon Analyst 57, pp. 1-5.

6 / The Icon Analyst 59

other numbers of shafts and treadles.
A direct tie-up consists of tie-up points in a

diagonal line. See Figure 1.

Figure 1. Direct Tie-Up

Direct tie-ups always are square, with the same
numbers of shafts and treadles.

We’ll consider the effect of direct tie-ups in a
later article on the interaction of tie-ups with
threading and treadling sequences.

A tabby tie-up, used to produce plain weaves,
is a simple checkerboard as shown in Figure 2 .

Figure 2. Tabby Tie-Up

We covered twill tie-ups in an earlier article
[1]. Figure 3 shows an example for reference.

Figure 3. A /2/2 Twill Tie-Up

For classification purposes, tabby might be
considered to be a /1/1 twill, but weavers think in
terms of texture, and plain weave does not have
the diagonal texture associated with twill.

Satin tie-ups break the diagonal effect of
twills. See the article Satin, which begins on page
4. Figure 4 provides an example to compare with
the other types here.

Figure 4. A Satin Tie-Up

Satin can be thought of as a kind of twill in
which the shift is greater than one. But, again, it
does not have the diagonal appearance expected of
twill; it fact, it is designed not to have such an
appearance.

The basic tie-ups shown above can be charac-
terized by a “under-and-over” row pattern that is
circularly shifted by a fixed number of columns for
each successive row. A positive shift is to the right;
negative to the left. If the sum of the numbers in a
pattern is less than the number of treadles, the
pattern is extended to fill out the row.

Direct, tabby, and twill tie-ups are circularly
shifted by one column for each successive row (in
twill tie-ups, positive and negative shifts produce
different but complementary effects). In satin tie-
ups the shift is chosen to break the diagonal regu-
larity of twills.

Here are the values for the tie-ups in the
figures given previously:

figure pattern shift type

1 /1/7 1 direct
2 /1/1 1 (or –1) tabby
3 /2/2 1 twill
4 /3/5 11 satin

We can represent such tie-ups by strings in
which the pattern is separated from the shift by a
colon:

• direct: "1/n–1:1", where n is the number of
shafts

• tabby: "/1/1:1"

• twill: "p:1"

• satin: "1/n–1:n+c " where n is the number of
shafts and c is the counter

This form of characterization invites the de-
sign of other tie-ups that do not fall into any of the
basic types given above. Figures 5 through 8 show
some examples.

The Icon Analyst 59 / 7

Figure 5. /2/2:2 Tie-Up

Figure 6. /1/1:0 Tie-Up

Figure 7. /1/3/4:3 Tie-Up

Figure 8. /2/1/3/2:5 Tie-Up

Be aware that simply coming up with a new
tie-up using this formula does not insure a weave
using it will be interesting or structurally sound.

More to Come

In the next article on tie-ups, we’ll consider
derivatives of the basic ones.

Reference

1. “Twills”, Icon Analyst 58, pp. 1-2.

Classical Cryptography

Cryptography deals with methods for encod-
ing messages to hide their meaning, decoding the
results to recover the messages, and “cracking”
coded messages when the encoding method is not
known.

Classical cryptography deals with the subject
from ancient times until approximately World
War I. It does not include sophisticated devices
developed this century or more recent mathemati-
cal methods like public-key encryption.

In our articles on the subject, we’ll restrict
ourselves to methods that manipulate strings and
not attempt to cover various mechanical devices
that have been used.

Terminology

Before going on, we need to define some
terms. Some of these terms are used inconsistently
in the literature; what follows are the meanings we
will use.

A message in its unencoded form is called
plain text. The coded form is called a cryptogram. A
cipher is a method of coding. The process of encod-
ing plain text is called enciphering, while the pro-
cess of decoding a cryptogram is called deciphering.
Ciphers often use a key to parameterize the basic
method.

 Decryption is the process of decoding a mes-
sage without knowing the cipher and/or key.
We’ll be concerned primarily with ciphers and
deal with decryption only tangentially.

The Nature of Ciphers

Abstractly, deciphering is the inverse of
enciphering — recovering the plain text from the
cryptogram. In practice, many ciphers discard in-
formation that is not essential to the message or
add material that is not relevant or even intended
to be confusing to a would-be decryptor. We’ll
generally deal with the ideal situation in which no

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

8 / The Icon Analyst 59

information is lost in the process of enciphering
and deciphering; that is, when deciphering is the
inverse of ciphering:

decipher(encipher(pt, key), key) == pt

Figure 1 shows the situation schematically.

Kinds of String Ciphers

Most string ciphers fall into one of two catego-
ries or a combination of them [1]:

• substitution

• transposition

Substitution replaces characters or combina-
tions of characters with others in plain text. Trans-
position rearranges the characters.

Substitution Ciphers

Substitution raises the question of the alpha-
bets used in the enciphering and deciphering pro-
cesses. In most textbook examples, the alphabet
for the plain text and cryptograms is restricted to
the uppercase letters. In practice, there is no reason
to be so limited: numbers, spaces, and punctuation
often are needed and most methods place no inher-
ent restriction on the characters used.

Another way of dealing with this issue is to
leave unchanged characters in plain text that are
not in the alphabet used.

In our description of substitution ciphers,
we’ll use an alphabet limited to letters and just not
make substitutions for other characters.

In any event, an alphabet is an ordered se-
quence of characters — a string.

Figure 1. Enciphering and Deciphering

cryptogramplain text plain text

communicaton channel

enciphering deciphering

key key

Simple Monoalphabetic Substitution Ciphers

A simple substitution cipher is one in which
plain text characters in an input alphabet are re-
placed on a one-to-one basis by characters in output
alphabets to form a cryptogram. The keys for the
cipher are the alphabets.

A monoalphabetic substitution cipher uses
only one output alphabet. This is, of course, just
what map() does. Procedures to implement a simple
monoaphabetic cipher might look like this:

procedure encipher(plain, in, out)

 return map(pt, in, out)

end

procedure decipher(crypto, out, in)

 return map(crypto, out, in)

end

where in and out are the keys.
It is commonly assumed that in is globally

known and the key is just out. In this case the
procedures might be cast as

procedure encipher(plain, out)

 return map(pt, in, out)

end

procedure decipher(crypto, out)

 return map(crypto, out, in)

end

The easiest way to create a simple mono-
alphabetic substitution cipher is to use an output
alphabet that is a rearrangement of the input al-

The Icon Analyst 59 / 9

phabet. Reversal is commonly used to illustrate
this:

input alphabet: "abc … xyz"
output alphabet: "zyx … cba"

That is, all as in the plain text are replaced by zs, all
bs by ys, and so on.

In the case where the output alphabet is a
rearrangement of the input alphabet, the key can
be the rearrangement method, which usually is
simpler and shorter than the resulting output al-
phabet. Procedures might look like this:

procedure encipher(plain, p)

 return map(pt, in, p(in))

end

procedure decipher(crypto, p)

 return map(crypto, p(in), in)

end

where p() is a procedure applied to the (known)
input alphabet to get the output alphabet. For
example,

crypto := encipher(plain, reverse)

enciphers plain using the reversal of the input
alphabet as the output alphabet.

For some such ciphers, arguments to the pro-
cedure for forming the output alphabet may be
needed. In this case our model can be extended as
follows:

procedure encipher(plain, p, args[])

 return map(pt, in, p ! args)

end

procedure decipher(crypto, p, args[])

 return map(crypto, p ! args, in)

end

For example,

crypto := encipher(plain, rotate, 3)

uses the input alphabet circularly rotated by three
characters as the output alphabet. This is known as
Caeser’s cipher because it was used by Julius Cae-
sar.

The procedure and its arguments can be en-
capsulated in a single key as follows:

procedure encipher(plain, key[])
 local p

 p := get(key)
 push(key, in)

 return map(pt, in, p ! key)

end

procedure decipher(crypto, key[])
 local p

 p := get(key)
 push(key, in)

 return map(crypto, p ! key, in)

end

One can imagine all kinds of ways of con-
structing simple monoalphabetic substitution ci-
phers. They are easily broken, however, by using
tables of known letter frequencies for material
written in the input alphabet.

Next Time

The next more sophisticated approach is to
use more than one output alphabet — so-called
polyalphabetic substitution ciphers.

We’ll start with this topic in the next article on
classical cryptography and then move on to trans-
position ciphers.

Reference

1. Cryptanalysis: A Study of Ciphers and Their Solu-
tion, Helen Fouché Gaines, Dover, 1956.

Subscription Renewal
For many of you, your present subscription to

the Analyst expires with the next issue. If so, you’ll
find a renewal form in the
center of this issue.

Renew now so that you
won’t miss an issue.

Your prompt renewal
helps us by reducing the num-
ber of follow-up notices we
have to send. Knowing where
we stand on subscriptions
also lets us plan our budget
for the next fiscal year.

10 / The Icon Analyst 59

Weavable Color Patterns
(continued)

In the first article on this subject [1], we showed
examples of small colored patterns that cannot be
created by the interlacement of colored threads.
We also showed a “forcing” pattern that provides
a sufficient basis for the solution of larger patterns
in which it is embedded. The forcing pattern is
shown again for reference in Figure 1.

A A

B C

r1

r2

c1 c2

Figure 1. The Forcing Pattern

In Figure 1, c1, c2, and r2 are not constrained
but r1 is completely determined and must be A for
the entire pattern in which this subpattern is em-
bedded.

In this article, we’ll list the program and de-
scribe its more important components.

Data Structures

Columns and rows are treated alike as vec-
tors, for which the record declaration is:

record vector(
 index, # index of this row/column (1–based)
 label, # row/column label: "rnnn" or "cnnn"
 mchar, # character used in mapping
 cells, # colors in row/column cells
 live, # colors in active row/column cells
 fam, # color family
 ignored # non–null if solved or redundant
)

Another record is used to represent the set of
vectors that must be the same color:

record family
 vset, # set of vectors
 color # assigned color (null if not yet set)
)

Two global variables, rows and columns, con-
tain lists of the respective vectors. Each row and
column is identified by a unique “mapping” char-
acter.

The pattern is represented using the c1 pal-

ette with its keys identifying the colors.

Program Organization

The program starts by reading in the pattern,
which may be an image file or an image string, and
then initializing the data structures.

Next, duplicate rows and columns, as well as
solid-colored vectors, are ”removed” by marking
them “ignored”. This may reduce the problem size
significantly.

The main loop in the program then iterates
over the pattern, developing constraints and set-
ting colors determined by instances of the forcing
pattern.

If at any time the pattern can be completely
solved by arbitrarily assigning any remaining un-
specified colors, the problem is solved. Otherwise,
all 2×2 subpatterns are examined for instances of
the forcing pattern. If a forcing pattern is found, the
colors it forces are set and the loop continues.

If at any point there are no more instances of
the forcing pattern, an attempt is made to assign
colors to the remaining vectors arbitrarily. If this
succeeds, the pattern is solved. If it fails, the pattern
cannot be solved.

Procedures

Here’s an overview of the procedures in the
program:

• active() generates the active vectors in a list.

• addvector() adds a vector.

• chkforce() checks forced colorings.

• dupls() checks for duplicate vectors.

• quad() finds forcing patterns.

• samecolor() links two vectors that must be
the same color.

• setcolor() sets a vector to a color and checks
the consequences.

• setmaps() resets mapping strings for active
vectors.

• setpattern() initializes the data structures.

• solids() checks for families of vectors that are
all one color.

• success() reports a successful solution.

• trivial() determines if the pattern can be solved
by arbitrary color assignment.

The Icon Analyst 59 / 11

• vectmap() concatenates the mapping charac-
ters of active vectors.

Figure 1 shows a procedure call graph for the
program.

Program Listing

Here’s a somewhat abbreviated listing of the
program. Initialization, diagnostics, information
logging, and code to display the output have been
omitted. The complete program is available on the
Web site for this issue of the Analyst.

link graphics
link imscolor
link imsutils
link numbers
link options
link random

record vector(# one row or column
 index, # index of this row/column (1–based)
 label, # row/column label: "rnnn" or "cnnn"
 mchar, # char used in mapping
 cells, # string of colors in row/column cells
 live, # string of colors in active row/column cells
 fam, # color family

 ignored # non–null if solved or redundant
)

record family(# family of vectors that must be the same color
 vset, # set of vectors
 color # assigned color (null if not yet set)-
)
global opts # command options
global imstring # image string of original pattern specification
global data # raw cell data
global rows # list of row vectors
global cols # list of column vectors
global mapchars # string of chars used for col & row mapping
global rowvalid # valid columns in row
global colvalid # valid columns in column

procedure main(args)
 local n, v

… # process options
… # load image and check validity

 setpattern(imstring) | abort("can't parse pattern string")
 setmaps() # initialize mapping strings

 while dupls(rows | cols) | solids() do
 setmaps() # reduce problem size

 # check for quads until no longer worthwhile
 while (not trivial()) & quad(rows | cols) do
 setmaps() # reduce problem size

Figure 2. Program Call Graph

trivial solids quad dupls

setcolor samecolor

vectmap

ckforce

insoluable

active

main

setpattern

addvector

setmaps

success

12 / The Icon Analyst 59

 every v := active(rows | cols) do # solve or show
 setcolor(v, ?v.live) # impossible
 setmaps() # detect solved problem

end

active(vlist) –– generate vlist entries that are not being ignored

procedure active(vlist)
 local v

 every v := !vlist do
 if /v.ignored then suspend v
end

addvector(vlist, lchar, data) –– add new vector to vlist, labeled
with lchar

procedure addvector(vlist, lchar, data)
 local v, f

 v := vector()
 f := family()
 v.index := ∗vlist + 1
 v.label := lchar || v.index
 v.mchar := mapchars[∗vlist + 1]
 v.cells := data
 v.fam := f
 f.vset := set()
 insert(f.vset, v)
 put(vlist, v)

 return

end

ckforce(v) –– check forced colorings of vectors intersecting v

procedure ckforce(v)
 local c, cs, vlist

 cs := &cset –– v.fam.color
 vlist := case v.label[1] of {
 "r": cols
 "c": rows
 }

 v.cells ? while tab(upto(cs)) do
 setcolor(vlist[&pos], move(1))

 return

end

dupls(vlist) –– check for duplicate (identical) vectors in a list;
succeeds if it accomplishes anything

procedure dupls(vlist)
 local s, t, v, w, n

 t := table()
 n := 0

 every v := active(vlist) do {
 s := v.cells
 if not (/t[s] := v) then {
 samecolor(t[s], v)
 v.ignored := 1 # set inactive
 n +:= 1
 }

 }

 return 0 < n

end

dupls(vlist) –– check for duplicate (identical) vectors in a list;
succeeds if it accomplishes anything

procedure dupls(vlist)
 local s, t, v, w, n

 t := table()
 n := 0

 every v := active(vlist) do {
 s := v.cells
 if not (/t[s] := v) then {
 samecolor(t[s], v)
 v.ignored := 1 # set inactive
 n +:= 1
 }
 }

 return 0 < n

end

quad(vlist) –– find a 2x2 forcing subproblem; looks
for AABC pattern with AA oriented along one vector of vlist;
succeeds after finding one quad pattern and forcing colors.

procedure quad(vlist)
 local wlist, a, b, c, s, t, x1, x2, y1, y2, ss, ts

 every put(wlist := [], active(vlist))

 shuffle(wlist) # for better chance of quick solution

 every x1 := 1 to ∗wlist do {
 s := wlist[x1].live # potential AA vector
 ss := cset(s)
 every x2 := (x1 ~= (1 to ∗wlist)) do {
 t := wlist[x2].live # potential BC vector
 ts := cset(t)
 if ∗(ss ++ ts) < 3 then next
 every y1 := 1 to ∗s do {
 a := s[y1]
 b := t[y1]
 if a == b then next
 if ∗(ts –– a –– b) = 0
 then next
 every y2 := y1 + 1 to ∗s do {
 if s[y2] ~== a then next
 # now have found AA at subscripts y1, y2
 c := t[y2]
 if c == (a | b) then next
 setcolor(wlist[x1], a)
 return # return after finding and forcing one
 }
 }
 }
 }

 fail

end

samecolor(v, w) –– link together two vectors that must be the

The Icon Analyst 59 / 13

same color

procedure samecolor(v, w)
 local vfam, wfam, f, x

 vfam := v.fam
 wfam := w.fam
 if vfam === wfam then return

 if \vfam.color ~== \wfam.color then
 insoluble("cannot merge " || v.label || " and " || w.label)

 f := family()
 f.vset := vfam.vset ++ wfam.vset
 f.color := \vfam.color | \wfam.color | &null

 every x := !f.vset do
 x.fam := f

 return

end

setcolor(v, c) –– force vector v to color c, checking the
consequences

procedure setcolor(v, c)
 local f, fc
 static depth, todo

 initial {
 depth := 0
 todo := set()
 }

 f := v.fam
 fc := f.color
 if \v.ignored & fc === c then return

 if \fc ~== c then {
 f.color := &null
 insoluble(v.label || " cannot be both " || fc || " and " || c)
 }

 f.color := c
 v.ignored := 1 # set inactive
 insert(todo, v) # but make note to check forcings

 if depth > 0 then # avoid deep recursion
 return

 # check forcings only if not nested

 depth +:= 1

 while v := ?todo do {
 ckforce(v)
 delete(todo, v)
 }

 depth –:= 1

 return

end

setmaps() –– recompute mapping strings for ignoring cols
and rows

procedure setmaps()
 local v

 rowvalid := vectmap(cols)

 colvalid := vectmap(rows)

 every v := active(rows) do
 v.live := map(rowvalid, mapchars[1+:∗cols], v.cells)
 every v := active(cols) do
 v.live := map(colvalid, mapchars[1+:∗rows], v.cells)

 if (∗colvalid = 0) | (∗rowvalid = 0) then success()

 return

end

setpattern(im) –– initialize pattern data from image string

procedure setpattern(im)
 local ncols, nrows, i, j, s

 mapchars := string(&cset)

 imstring := im
 ncols := imswidth(imstring) | fail
 nrows := imsheight(imstring) | fail
 data := (imstring ? 3(tab(upto(',')+1), tab(upto(',')+1), tab(0)))

 rows := []

 data ? while addvector(rows, "r", move(ncols))

 cols := []

 every i := 1 to ncols do {
 s := ""
 every j := i to ∗data by ncols do
 s ||:= data[j]
 addvector(cols, "c", s)
 }

 return

end

solids() –– check for families with remaining members all one
color; succeeds if it accomplishes anything

procedure solids()
 local f, v, n

 n := 0
 every v := active(rows) | active(cols) do {
 if ∗cset(v.live) = 1 then {
 setcolor(v, v.live[1])
 n +:= 1
 }
 }

 return 0 < n

end

success() –– report successful solution

procedure success()
 local v, r, c

 every v := !rows | !cols do # set colors for don't–cares
 /v.fam.color := ?v.cells

… # display solution
 exit()

end

trivial() –– succeed if this is a trivial case; a trivial case is one
that can be solved by coloring remaining vectors arbitrarily

14 / The Icon Analyst 59

with any of the colors they contain (color one vector, force
others, repeat until done)

procedure trivial()
 local c, s, cs, union, isectn

 if (∗rowvalid < 3) & (∗colvalid < 3) then
 return # trivial (2x2 or smaller)
 if (∗rowvalid < 2) | (∗colvalid < 2) then
 return # trivial (1xn)

 union := ' '
 isectn := &cset

 every cs := cset(active(rows | cols).live) do {
 union ++:= cs
 isectn ∗∗:= cs
 }

 if ∗union < 3 then return # trivial (bi–level or solid pattern)

If a pattern can be permuted into a solid color except for
one diagonal line (or parts of one), then it is trivially solved.

 if ∗isectn = 1 then { # if single background color
 c := string(isectn)
 every s := active(rows | cols).live do {
 s ? {
 tab(many(c))
 move(1)
 tab(many(c))
 if not pos(0) then fail # if not a diagonal case
 }
 }

 return # trivial (diagonal case)
 }

 fail # not a trivial case

end

vectmap(vlist) –– concatenate mapping chars of active
vector entries

procedure vectmap(vlist)
 local s, v

 s := ""
 every v := active(vlist) do
 s ||:= v.mchar

 return s

end

Output

On completion, the program writes a line
indicating whether or not the pattern could be
solved. An enlarged version of the pattern then is
displayed in a window with row and column color
assignments along the top, bottom, and sides. If the
pattern could not be solved, the colors just reflect
the program state at termination. Figure 3 shows a
solved color pattern. This image is much better
viewed in color; see the Web site for this issue of the
Analyst.

Figure 3. Solution

Command-Line Options

The program supports several command-line
options that are not shown in the listing above:

–b Run in batch mode (no window for results).

–d Show details of solution on standard error
output.

–n No shortcuts; retain solid and duplicate
vectors.

–r Raw output to standard output of columns,
rows, and grid data.

–t Provide timing information.

–v Write verbose commentary to standard
output.

Comments About the Program

The c1 palette is used because it is the largest
palette all of whose keys are “printable”. This
simplified program development and debugging
as well as the representation of colors in the pro-
gram output. Because of the use of the c1 palette, at
most 90 colors in a pattern can be discriminated. In
practice, weaves rarely have many colors, so this is
not a problem for patterns that might actually be
woven. However, the colors shown in the result
may be slightly different than the original colors,
or worse, different colors may be mapped into the
same color (yarns used in weaves sometimes differ
only subtly in color).

The Icon Analyst 59 / 15

The maximum number of colors could be
increased to 256 by using the c6 palette. This would
make some of the keys used “unprintable” unless
they were written with escapes.

The problem with color discrimination could
be removed by using a custom palette [2].

Because characters are used to identify rows
and columns, the maximum size of an image the
program can handle is 256×256. This limit is a
result of the coding techniques used but not of the
method.

If you looked closely at the code, you may
have wondered about the line

shuffle(wlist)

at the beginning of quad(). This deliberately disor-
ganizes the vectors on the theory that adjacent
vectors are more likely to be similar than randomly
chosen ones, so that if one is unproductive, it’s
likely the next one is. (Recall that quad() returns
after finding the first forcing pattern.) This heuris-
tic has not been tested.

An alternative would be to sort the vectors by
the number of colors they contain on the theory
that vectors with more colors are more likely to
have forcing patterns.

The program only determines if a color pat-
tern can be woven and, if so, assigns colors. It does
not consider floats, which can render the pattern
”unweavable” from the standpoint of fabric integ-
rity. See the article Floats that starts on page 1.

In most cases, if there is one solution, there are
many different solutions. However, even if a pro-
gram were structured to provide all solutions,
there usually would be so many that it would be
impractical to find one with the shortest floats.
Finding a solution with the shortest floats (or with
other constraints) is a much harder problem than
determining color weavability.

A related problem is determining the mini-
mum changes that would be needed to render an
unweavable pattern weavable.

Timings

As mentioned in the first article on weavable
color patterns [1], the combinatorial nature of the
problem makes the efficiency of a solution method
of paramount importance.

We have three solution methods to compare:
the brute-force, try-all-possibilities method, a 2SAT

algorithmic solution, and the heuristic solution
described here.

We have a general idea of the relative effi-
ciency of the different methods from trying many
cases, but we have not conducted systematic tim-
ing tests. To give at least one representative ex-
ample, we used all three methods on a 64×64
pattern (the heuristic method is so fast on smaller
problems that it’s not possible to get meaningful
comparisons with the other methods). Here are the
results in CPU seconds on a 400 MHz Linux PC:

heuristic 0.21
2SAT 3.51
brute force > 1696560.

We don’t know how long it would have taken
for the brute-force program to complete; we had to
terminate the job because of an equipment up-
grade. 1,696,560 seconds is about 19.6 days — and
that’s CPU time.

What Remains

The programs give color assignments for
weavable color patterns. In order to actually weave
a pattern, it’s necessary to have a draft — threading
and treadling sequences and a tie-up.

We’ll show how to convert color thread as-
signments to a draft in the next article in this series.

Acknowledgment

Will Evans wrote the 2SAT version of the
solution.

References

1. “Weavable Color Patterns”, Icon Analyst 58,
pp. 7-10.

2. Graphics Corner — Custom Palettes”, Icon
Analyst 58, pp. 10-14.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

16 / The Icon Analyst 59

Understanding Icon’s Linker

The Icon compiler produces ucode, which con-
sists of instructions for a virtual machine [1]. Ucode
files need not comprise a complete program. For
example, a module consisting of one or more pro-
cedures can be converted to ucode for use in vari-
ous programs.

Icon’s linker combines ucode files and pro-
duces executable icode files.

Scope Resoluton

The linker performs several tasks, one of the
most important of which is resolving the scope of
undeclared variables.

If there is a global declaration for a variable in
any of the ucode files the linker combines, unde-
clared variables by that name become global; oth-
erwise they become local.

There are three kinds of global declarations:
global, procedure, and record. Except for global,
only one global declaration is allowed for a vari-
able.

Elimination of Unreferenced Code

Another function Icon’s linker performs is the
elimination of global declarations for variables
that do not appear explicitly in a program. For
example, in the program

procedure main()

 while write(∗read())

end

procedure uc(s)

 return map(s, &lcase, &ucase)

end

the variable uc does not appear in the code and the
procedure uc() is eliminated by the linker; the code
is unreachable.

The elimination of unreferenced code allows
the use of modules in which some procedures are
needed without adding the excess baggage for
those that are not.

The reduction in the size of icode files can be
substantial, especially in programs that use graph-
ics. For example, the simple program

link graphics

procedure main(args)

 WOpen("image=" || args[1])

 Event()

end

produces a 762-byte icode file. If unreferenced
code is not deleted, the icode file is 509,811 bytes!
Of course, for more complicated programs that use
more of the graphics facilities, the savings are less.

The difficulty with eliminating code that is
not explicitly referenced is that it is not necessarily
unreachable. String invocation [2] allows any pro-
cedure to be referenced by the string name of a
variable as opposed to a variable itself. Here’s a
program contrived to illustrate this:

procedure main()

 while write("uc"(read()))

end

procedure uc(s)

 return map(s, &lcase, &ucase)

end

In this program there is no occurrence of the
variable uc; instead the procedure uc() is called
using the string "uc". The linker, on the other hand,
eliminates the procedure uc(). The program termi-
nates with a run-time error because there is no code
for uc() in the icode file.

The program above is silly, but this program,
which applies a procedure name given on the
command line, is not:

procedure main(args)

 while write(args[1](read()))

end

procedure uc(s)

 return map(s, &lcase, &ucase)

end

What happens when this program is executed
depends on what’s given on the command line. For
example, if the program is named xform,

xform trim

works properly and trims the input file. But

xform uc

results in a run-time error.

The Icon Analyst 59 / 17

Supplementary Material

Supplementary material for this issue of the Analyst, including images and program material,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia59/

Unfortunately, the symptoms of this problem
are mysterious. Looking at the program, uc() is
there. Icon novices (and sometimes, in more com-
plicated situations, experienced Icon programmers)
search in vain for the cause of such an error. Stu-
dents learning Icon typically jump to the conclu-
sion that there’s a bug in Icon.

About all the advice we can give on this
problem is to file it on a list of things to check when
a program mysteriously malfunctions because a
an expected procedure is not present.

When implicit references to procedures are
known to occur, the problem can be avoided by
using the invocable declaration. The easiest and
safest way is to include

invocable all

in the program. This prevents Icon’s linker from
eliminating code. The invocable declaration also
can be used with a list of procedures that may be
invoked implicitly, as in

invocable "uc", "lc"

Note the quotation marks.
Listing the procedures that are invocable is, of

course, prone to error, especially in large programs
that are developed over time.

An alternative, which we prefer, is to add
explicit references that do nothing but prevent the
linker from removing needed code. For the ex-
ample given above, an expression consisting of just
the variable uc can be added to the main proce-
dure:

procedure main(args)

 uc

 while write(args[1](read()))

end

procedure uc(s)

 return map(s, &lcase, &ucase)

end

The variable uc, standing alone, has no effect
on program function.

Linking Information

Icon’s linker can provide information about
what it does. The command-line option –vn con-
trols the “verbosity” of its standard error output as
follows:

–v0: no advisory output; equivalent to –s
–v1: default output
–v2: show space allocation in icode file
–v3: also list discarded globals

Typical –v2 output, with space in bytes, is:

 bootstrap 176
 header 108
 procedures 3344
 records 4
 fields 0
 globals 208
 statics 0
 linenums 920
 strings 380
 total 5140

The list of discarded globals shown by –v3
can be quite long. Here’s part of the results from
linking the small graphics program shown earlier:

 discarding procedure args
 discarding record bev_record
 discarding global bev_table
 discarding procedure BevelTriangle

 … [435 similar lines omitted]

 discarding procedure XPMImage
 discarding procedure XPM_Key
 discarding procedure XPM_RdStr
 discarding procedure XPM_Nth

Reference

1. “An Imaginary Icon Computer”, Icon Anayst
8, pp. 2-6.

18 / The Icon Analyst 59

Recurrence Relations

A recurrence relation gives the terms of a
sequence as a function of previous terms. For ex-
ample, the Fibonacci sequence is given by the
recurrence

an = an–1 + an–2

with the initial terms a1 = a2 = 1 to get the sequence
started. Different initial terms produce different
but related sequences.

The number of initial terms required is deter-
mined by how far back in the sequence terms are
specified — called the order of the recurrence rela-
tion. For example,

an = an–1 + 2an–3

is a recurrence relation of order 3 and requires
three initial terms, a1, a2, and a3, to specify the
sequence it produces.

The examples given above are linear recur-
rence relations with constant coefficients — LRRCs
for short — and are instances of the general form

an = c1an –1 + c2an –2 + … + ckan–k (1)

where only the first powers of previous terms are
used and the coefficients are constant.

There are other kinds of recurrence relations.
For example,

an = a2
n–1 + a2

n–2 + an–4

is a quadratic recurrence of order 4, while

an = an–1 + nan–2

is a linear recurrence of order 2 but with a non-
constant coefficient.

LRRCs are important in subjects including
pseudo-random number generation, circuit de-
sign, and cryptography, and they have been stud-
ied extensively. LRRCs also have periodic residue
sequences [1], which is the main reason for our
interest in them. Despite the importance of LRRCs
and the work done on them, much about them
remains unknown. Very little of a general nature is
known about nonlinear recurrence relations. We’ll
focus mainly on LRRCs.

LRRCs

LRRC Canonical Form

Equation 1 above shows the canonical form
for LRRCs. This form does not provide for a con-

stant term, as in

a
n
 = a

n–1 + 1

The reason for not having a constant term in
the canonical form has to do with manipulations of
LRRCs in which a constant term would require
special handling.

A linear recurrence of order k with a constant
term can be converted to a linear recurrence of
order k + 1 in canonical form. Consider the example
above:

a
n
 = a

n–1 + 1 (2)

From this it follows that

a
n–1 = a

n–2 + 1 (3)

Subtracting Equation 3 from Equation 2, we get

an – an–1 = an–1 + 1 – an–2 – 1

and hence

an = 2an–1 – an–2

which is in the required canonical form.

Problems Related to LRRCs

There are many interesting problems related
to LRRCs. In the article on residue sequences, we
touched on the properties of their residue se-
quences. Other problems of interest are:

• computing the sequence for an LRRC

• determining if a sequence can be represented
by an LRRC and, if so, finding it

• solving an LRRC to produce an explicit for-
mula for its nth term

An LRRC Generator

An LRRC can be completely characterized by
two lists: one containing its coefficients and an-
other containing its initial terms. For an LRRC of
order k, both lists are of length k. For example, the
recurrence relation

an = an–1 + 2an–3

has the coefficient list [1, 0, 2]; the initials list, as
always, determines the actual sequence. For ex-
ample, the initials list [1,1,0] produces the sequence

 1, 1, 0, 2, 4, 4, 8, 16, 24, 40, 72, 120, …

Following the model for the Fibonacci se-
quence given in the article on residue sequences
[1], here’s a general-purpose generator for LRRCs:

The Icon Analyst 59 / 19

procedure lrrcseq(terms, coeffs)
 local i, term

 suspend !terms

 repeat {
 term := 0
 every i := 1 to ∗coeffs do
 term +:= terms[i] ∗ coeffs[–i]
 suspend term
 get(terms)
 put(terms, term)
 }

end

Finding LRRCs

Many sequences can be represented by LRRCs,
even if the recurrences are not obvious.

The difference method often works and it can be
done by hand or with a simple program [2]. This
method starts with a row containing the terms of
the original sequence. The second row consists of
the differences of successive terms in the first row,
and so on. The rows are labeled ∆0, ∆1, ∆2, … .
Here’s an example:

∆0 1 7 18 34 55 81 112 148 189 …

∆1 6 11 16 21 26 31 36 41 …

∆2 5 5 5 5 5 5 5 …

∆3 0 0 0 0 0 0 …

If a constant row appears, as it does in this ex-
ample, the process is complete, there is an LRRC,
and it can be obtained by using Equation 4 below,
which is a consequence of the way the differences
are computed:

∆k
n

i

i

k

n k ia ai
k= −∑ ()

=
+ −()1

0
(4)

where i
k() is the binomial coefficient

i
k k

k i i() =
−

!
()! !

To get an LRRC in canonical form, it is neces-
sary to go to a row of zeroes; ∆3 in this case.
Therefore, by Equation 4

∆3

0

3
3

31 0a an
i

i
i n i= −∑ () =

=
+ −()

Expanding this, we get

0
3

1
3

2
3

3
3

3 2 1 0() − () + () − () =+ + +a a a an n n n

and hence

a a a an n n n+ + +− + − =3 2 13 3 0

from which we get the LRRC

a a a an n n n= − +− − −3 31 2 3

The initial terms are, of course, the first three in ∆0.

Here’s a program to produce LRRCs by the
method described above. The sequence is read
from standard input.

link lists
link math

procedure main()
 local sequence, order, sol, i, original, initials, c

 original := []

 while put(original, integer(read()))

 sequence := copy(original)

 order := 0

 until c := constant(sequence) do {
 sequence := delta(sequence)
 order +:= 1
 if ∗sequence = 0 then
 stop("No recurrence relation found")
 }

 if c > 0 then order +:= 1

 initials := original[1+:order]

 sol := []

 every i := 1 to order do
 put(sol, (–1 ^ (i + 1)) ∗ binocoef(order, i))

 write("recurrence of order ", order)
 write("coefficients: ", limage(sol))
 write("initial values: ", limage(initials))

end

procedure delta(seq)
 local deltaseq, i

 deltaseq := []

 every i := 2 to ∗seq do
 put(deltaseq, seq[i] – seq[i – 1])

 return deltaseq

end

procedure constant(seq)
 local c

 c := seq[1]

20 / The Icon Analyst 59

What’s Coming Up

In the next issue of the Analyst, we plan to
have another article on tie-ups, an article on creat-
ing drafts for weavable color patterns, and a second
article on classical cryptography.

Continuing the series related to periodic se-
quences, we plan an article on continued fractions,
and in particular those for quadratic irrationals.

For the Graphics Corner, we expect to have an
article on an interactive application for construct-
ing custom palettes.

 if !seq ~= c then fail
 else return c

end

The output for the sequence given earlier is

recurrence of order 3
coefficients: [3,–3,1]
initial values: [1,7,18]

Any recurrence derived from a finite num-
ber of terms is, of course, conjectural.

Explicit Formulas for LRRC Terms

Any sequence that leads to a 0 ∆ sequence

can be represented by a polynomial in n. Con-
versely, all polynomials in n can be represented by
a single LRRC; the coefficients of the polynomial
only affect the initial terms for the LRRC.

This follows from another equation that re-
sults from the method of differences:

a an m
k

n
k

mk
n

+
=

= ()∑
0

∆ (5)

From this, we can obtain an explicit formula
for the nth term of the corresponding LRRC. Set-
ting m to 1 in Equation 5 gives

an
n n n n

+ = () + () + () + ()1 1 6 5 00 1 2 3

(1, 6, 5, and 0 are the leading terms in ∆0, ∆1, ∆2, and
∆3.) This evaluates to

a n nn+ = + +1
21

7
2

5
2

Implementing this is similar to finding LRRCs
by the difference method. We’re out of space, so
we’ll leave it as an exercise.

References

1. “Residue Sequences”, Icon Analyst 58, pp. 4-6.

2. The Encyclopedia of Integer Sequences, N. J. A.
Sloane and Simon Plouffe, Academic Press, 1995,
pp. 10-13.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2000 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

e − = +
+

+
+

+
+

+
+ …

1 1
1

1
1

2
1

1
1

1
1

4
1

1
1

1

