
The Icon Analyst 58 / 1

February 2000
Number 58

In this issue

Twills ... 1
From the Library — Complex Arithmetic 2
Residue Sequences ... 4
Weavable Color Patterns 7
Graphics Corner — Custom Palettes 10
Name Drafts Revealed 15
What’s Coming Up .. 16

In-Depth Coverage of the Icon Programming Language

Twills

In the article on name drafting in the last issue
of the Analyst [1], we mentioned that name drafts
usually are woven in overshot, which uses twill tie-
ups.

Twills typically have a diagonal texture. See
Figures 1 and 2.

Figure 1. A Twill Weave

Figure 2. Twill Weave Enlarged

The diagonal effect is the result of an interlac-
ing in which threads pass over or under two or
more perpendicular threads in a shifting pattern.
This is accomplished by tie-ups that have corre-
sponding shift. The effect of a tie-up like this is
shown clearly when the threading and treadling
are straight draws. See Figure 3.

Figure 3. Twill Drafts

A twill tie-up is characterized by a row pat-
tern that rotates left or right by one square for

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

2 / The Icon Analyst 58

successive rows. For example, the top row of the
tie-up for the bottom-right draft in Figure 3 has the
pattern 2-over, 3-under, 1-over, 2-under.

Weavers have several ways of representing
such patterns. One is exemplified by

2 1
3 2

This notation, although graphically suggestive, is
difficult to produce typographically. At the present
time, the notation

/2/3/1/2
is most commonly used. Incidentally, this notation
indicates the number of treadles, and unless other-
wise stated, the number of shafts is the same.

Here’s a procedure that converts this kind of
notation to a bi-level image string:

procedure twill_tieup(pattern, shift)
 local row, i, rows, count

 count := 1 # odd/even over/under toggle

 row := ""

 pattern ? {
 while ="/" do {
 i := tab(many(&digits)) | fail
 row ||:= repl(count, i)
 count +:= 1
 count %:= 2
 }
 if not pos(0) then fail
 }

 if ∗row < 2 then fail

 rows := []

 put(rows, row)

 every i := 1 to ∗row – 1 do
 put(rows, row := rotate(row, shift))

 return rows2pat(rows)

end

The procedure rows2pat() is from the library mod-
ule patutils.

As shown in Figure 3, the over/under pattern
has a marked effect on the appearance of weaves.
With different threadings and treadlings, as shown
in the article on name drafts, the effects can be even
more varied.

The subject of twills is enormous. All kinds of
variations and devices are used, and there are

entire books devoted to the subject [2-6]. Most of
this material is beyond the scope of the Analyst,
although it may crop up from time to time in future
articles.

References

1. “Name Drafting”, Icon Analyst 57, pp. 11-14.

2. A Twill of Your Choice, Paul R. O’Connor, Inter-
weave Press, 1981.

3. Fascination of Twills (Fourshafts), Master Weaver
Library ,Vol. 9, S. A. Zielinski, Nilus Leclerc, 1981.

4 Fascination of Twills (Multishafts), Master Weaver
Library ,Vol. 10, S. A. Zielinski, Nilus Leclerc, 1981.

5. Extended Divided Twill Weaves, Virginia Harvey,
Shuttle Craft Guild Monograph 39, Shuttle-Craft
Books, 1988.

6. Extended Manifold Twill Weaves, Virginia Harvey,
Shuttle Craft Guild Monograph 40, Shuttle-Craft
Books, 1989.

From the Library — Complex
Arithmetic

For books are more than books. They are the
life, the very heart and core of ages past, the
reason why men lived and worked and died,
the essence and quintessence of their lives.

— Amy Lowell

Complex numbers are familiar to anyone who
has taken courses in basic mathematics. Although
they often are introduced in particular application
contexts, it’s worth remembering that complex
numbers are just pairs of numbers. Gauss intro-
duced the concept for integers — “Gaussian inte-
gers” — although most modern applications are
for pairs of real numbers.

The Icon Analyst 58 / 3

The usual representation of complex num-
bers is as

a + bi

where a is the real part, b is the imaginary part, and
i = −1 .

The main use of complex numbers is to repre-
sent points in the ”complex plane” as illustrated in
Figure 1.

b

a

a + bi

y

x

Figure 1. The Complex Plane

Complex numbers provide a way of manipu-
lating quantities in the plane. Despite the terminol-
ogy, this is just arithmetic in the x-y plane.

The rules of arithmetic for complex numbers
reflect the geometry:

(a + bi) + (c + di) = (a + c) + (b + d)i
(a + bi) – (c + di) = (a – c) + (b – d)i
(a + bi) × (c + di) =
 ((a × c) – (b × d)) + ((a × d) + (b × c))i
(a + bi) / (c + di) =
 ((a × c) + (b × d)) / (c2 + d2) +
 (((b × c) – (a × d)) / (c2 + d2))i

Two functions defined for complex numbers
are useful: the complex conjugate and absolute
value:

conj(a + bi) = a – bi

abs(a + bi) = a b2 2+

Library Module

The Icon program library module complex
provides complex arithmetic. The implementation
is similar in style to that for rational numbers [1].

The string representation of a complex num-
ber is exemplified by "(3.0+5.25i)". The internal
representation uses records:

 record complex(rpart, ipart)

There are seven procedures for manipulating
complex numbers:

strcpx(s) convert string to record

cpxstr(z) convert record to string

cpxadd(z1, z2) add complex numbers

cpymul(z1, z2) multiply complex numbers

cpxdiv(z1, z2) divide complex numbers

cpxconj(z) form complex conjugate

cpxabs(z) form absolute value

The implementation of these procedures is
straightforward. An example is

procedure cpxadd(z1, z2)

 return complex(z1.rpart + z2.rpart,
 z1.ipart + z2.ipart)

end

The current version of complex.icn is on the
Web page for this issue of the Analyst.

Reference

1. “From the Library — Rational Arithmetic”, Icon
Analyst 57, pp. 19-20.

4 / The Icon Analyst 58

Residue Sequences

Given a sequence S = {tn}, its residue sequence
modulo m is {tn mod m}. For example, the residue
sequence of the squares mod 7, {n2 mod 7}, is

1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1,
0, 1, 4, 2, 2, 4, 1, 0, 1, 4, 2, 2, 4, 1, …

while the residue sequence of the squares mod 11
is

1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4,
1, 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1, 0, 1, ...

If the tn are all nonnegative we can compute
the terms of the residue sequence using tn % m;
otherwise we need to use the library procedure
residue(tn) [1]. For example,

(seq() ^ 2) % 11

generates the residue sequence of the squares mod
11.

Residue sequences are of interest to us for two
reasons:

• The magnitudes of their terms are bounded.

• Many residue sequences are periodic.

Having all the terms within a fixed range — 0
to m – 1 or 1 to m for shaft arithmetic [1] —
obviously is useful for threading and treadling
sequences in weaving. Periodic sequences provide
the natural basis for repeats in weaves and other
kinds of designs. Periodic sequences also have
finite data representations.

If you look at the two sequences shown above,
you’ll note the residue sequence of the squares
mod 7 is periodic with period 7 and the residue
sequence of the squares mod 11 is periodic with
period 11. This is no accident, but don’t jump to the
conclusion that all residue sequences of the squares
mod m are periodic with period m. They all are
periodic, but not all with period m. For example,
for m = 12, the period is 6.

We’ll come back to this and related issues in
another article.

Modular Arithmetic

Modular arithmetic, invented by Gauss, has
many important uses, including random number
generation, hardware design, and cryptography.

Two integers a and b are equal modulo m,
written

a ≡ b mod m

if the remainder of a divided by m is equal to the
remainder of b divided by m. Put another way, a ≡
b mod m if and only if a – b is a multiple of m.

There are numerous laws and relations in
modular arithmetic. The most important for us are

if a ≡ b and c ≡ d mod m then
 a + c ≡ b + d mod m
 a – c ≡ b – d mod m
 a × c ≡ b × d mod m

Cancellation (division) does not hold in gen-
eral in modular arithmetic. We’ll come back to this
point in a later article.

These laws enable us to compute many resi-
due sequences more efficiently than computing
terms of the sequence and then taking their resi-
dues. For example, for the Fibonacci sequence
given by the recurrence relation

t1 = t2 = 1
tn = tn–1 + tn–2 n > 2

Its residue sequence modulo m can be computed
by

t1 = t2 = 1
tn = (tn–1 + tn–2) mod m n > 2

This avoids computation with very large inte-
gers (on a computer with 32-bit words, the forty-
seventh term in the Fibonacci sequence,
2,971,215,073, exceeds the word size). Thus many
residue sequences can be computed using pro-
gramming languages that don’t support large-
integer arithmetic and avoiding the slower com-
putation and storage allocation for those that do.

There are many ways to cast the computation
of the Fibonacci sequence in Icon. Here’s one that
you may not have seen before:

procedure fibseq()
 local terms

 terms := [1, 1]

 repeat {
 put(terms, terms[1] + terms[2])
 suspend get(terms)
 }

end

The use of a list instead of specific identifiers

The Icon Analyst 58 / 5

allows easy generalization to other recurrence re-
lations.

The computation of the residue sequences of
the Fibonacci sequence can be cast as

procedure fibmodseq(m)
 local terms

 terms := [1, 1]

 repeat {
 put(terms, (terms[1] + terms[2]) % m)
 suspend get(terms)
 }

end

Properties of Residue Sequences

There are several properties of residue se-
quences that may be of interest:

• Are they periodic?

• If so, what are their periods?

• If periodic, do they have pre-periodic parts?

• What residues are present?

• What is distribution of the residues?

Contrary to an ill-considered claim we’ve seen
that all residue sequences are periodic, some are
not. Examples of non-periodic residue sequences
are the primes and the digits of the decimal (or any
other base) expansion of π. Another sequence we’ve
mentioned before is the “multi” sequence which
consists of n copies of n:

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, …

Its residue sequences are not periodic because the
span of equal numbers constantly increases.

Some sequences have periodic residue se-
quences only for certain moduli. For example,
versum sequences always have periodic residue
sequences for moduli 9 and 11 but not for most
other moduli. (If you’ve followed the articles on
versum sequences, the reason for the periodicity
for modulus 11 should be obvious; 9 is another
story that we’ll get to later.)

Whether or not a residue sequence is periodic,
the residues it contains are important. In weaving,
for example, missing residues correspond to un-
used shafts or treadles. For example, for the squares
mod 7, only four of the seven possible residues are
present: 0, 1, 2, and 4, while for 11, only six of the 11

possible residues are present: 0, 1, 3, 4, 5, and 9.
Of the questions posed above, few general

results are known. Even when it’s known a priori
that a residue sequence is periodic, predicting its
period is difficult if not intractable.

For some sequences, however, a considerable
amount is known. The Fibonacci sequence is the
prime example [2-4].

All Fibonacci residue sequences are purely
periodic. The periods do not exceed 6 × m, and
periods of 6 × m are achieved only for m = 2 × 5n for
n > 0 — 10, 50, 250, and so on.

We cannot find any information, however, on
the residues present in these sequences or on their
distribution. These matters may never have been
considered.

Figure 1 on the next page shows the Fibonacci
residue sequences for m = 2 through 18.

Recurrence Relations

The following sequences are known to have
periodic residue sequences for all moduli:

{ nk }
{ kn }
{ n × (n + 1) / 2 } (the triangular numbers)

What do these have in common? They all can
be represented by linear recurrence relations with
constant coefficients — that is, by relations of the
form

tn = c1 × tn –1 + c2 × tn –2 + … + ck × tn–k

where each term is determined by a fixed number
of previous terms.

The subject of recurrence relations is enor-
mous. We’ll start to take up part of it in the next
issue of the Analyst.

References

1. “Shaft Arithmetic”, Icon Analyst 57, pp. 1-5.

2. Fibonacci Numbers, N. N. Vorob’ev, Pergamon
Press, 1961.

3. Linear Recursion and Fibonacci Sequences, Brother
Alfred Brousseau, Fibonacci Association, 1971.

4. Fibonacci and Related Number Theoretic Tables,
Brother Alfred Brousseau, Fibonacci Association,
1972.

6 / The Icon Analyst 58

Figure 1. Fibonacci Residue Sequences

modulus
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

period
3

8

6

20

24

16

12

24

60

10

24

28

48

40

24

36

24

The Icon Analyst 58 / 7

Weavable Color Patterns

Nature uses only the longest threads to weave
her patterns, so each small piece of her fabric
reveals the organization of the entire tapestry.

 — Richard Feynman [1]

Suppose you see a color image that strikes
your fancy and think “Hey! That would make
great place mats. I’ll ask Aunt B to weave some for
me.” This is not as simple as it sounds. In the first
place, Aunt B would need a weaving draft. We’ve
shown how to create drafts from two-color images
[2], but for more colors, the problem is consider-
ably more difficult. And there are color patterns
that can’t be woven. In fact, most can’t. This article
explores the problem of determining if a color
pattern can be woven.

The Problem

From a weaving point of view, every pixel in
a color image corresponds to a point of interlace-
ment between a vertical (warp) thread and hori-
zontal (weft) thread. Therefore, either the warp
thread or the weft thread must be the color of the
pixel.

We can consider a colored image as a rectan-
gular grid of squares that contain characters stand-
ing for colors. Columns correspond to warp threads
and rows correspond to weft threads. In order for
the grid to be weavable, the columns and rows
must be labeled in a way that the label for every
square is its column label or its row label— “satis-
fied”. Figure 1 shows an example grid.

A B C

C B A

r1

r2

c1 c2 c3

Figure 1. A Labeled Grid

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

We can assign column and row labels as fol-
lows. Starting with square (c1, r1), either c1 or r1
must be A. Arbitrarily pick c1 to be A. This forces r2
to be C. Figure 2 shows the labeling to this point.

A B C

C B A

r1

r2

c1 c2 c3

A

C

Figure 2. First Labeling Step

We now see that c3 must be A. This requires r1
to be C and hence c2 must be B. Figure 3 shows the
final labeling.

A B C

C B A

r1

r2

c1 c2 c3

A

C

B A

C

Figure 3. The Final Labeling

So far, so good. But what about the grid shown
in Figure 4?

A B C

C A B

r1

r2

c1 c2 c3

Figure 4. Another Grid

We can start as we did before, assigning A to
c1. This forces r2 to be C, which in turn forces c2 and
c3 to be A and B, respectively, as shown in Figure 5.

A B C

C A B

r1

r2

c1 c2 c3

A

C

BA

Figure 5. First Step in Labeling

Now we’re stuck: r1 cannot be both B and C. If
we start anywhere else and try any other combina-
tion of labelings, we find it’s not possible to satisfy

8 / The Icon Analyst 58

the grid, and the pattern cannot be woven.
Note that if a larger pattern contains such a

subpattern, the larger pattern cannot be woven
either.

This is a very small pattern by weaving stan-
dards and it has only three colors. What then of
more colors and larger patterns?

The Number of Colors

Suppose a pattern has k colors. We already
know that for k = 2, all patterns can be woven [2] —
assign one color to all columns (warp threads) and
the other color to all rows (weft threads) and pick
one or the other depending on the color at every
intersection.

We’ve illustrated by example that for k = 3,
there are some patterns that cannot be woven. For
larger k there is a more fundamental problem. If a
pattern has m columns and n rows, there are only
m + n colors available. If k is greater than m + n, then
the pattern can’t be woven at all. Thus, there are
2×3 patterns that can’t be woven for this reason.
See Figure 6.

A B C

D E F

r1

r2

c1 c2 c3

Figure 6. A Pattern with Too Many Colors

For what follows, we’ll assume k ≤ m + n.

Approaches to Solving the Problem

There are several possible ways the problem
might be solved.

One way would be to write out the constraints
a pattern imposes and cast them as an expression
with mutual evaluation. For Figure 1, a program
might look like this:

procedure main()
 local r1, r2, c1, c2, c3

 every {
 (r1 := "A" | "B" | "C") &
 (r2 := "C" | "B" | "A") &
 (c1 := "A" | "C") &
 (c2 := "B") &
 (c3 := "C" | "A") &
 (\r1 | \c1) == "A" &

 (\r1 | \c2) == "B" &
 (\r1 | \c3) == "C" &
 (\r2 | \c1) == "C" &
 (\r2 | \c2) == "B" &
 (\r2 | \c3) == "A"
 }
 do {
 write("rows=", r1, r2)
 write("cols=", c1, c2, c3)
 write()
 }

end

This program works as expected and pro-
duces two solutions, the second of which is the one
we showed earlier:

rows=AA
cols=CBC

rows=CC
cols=ABA

It’s not that hard to write a “compiler” that
reads in a grid and produces such a program:

procedure main()
 local rows, col, i, j

 rows := []

 while put(rows, read()) # build array of rows

 write("procedure main()")
 write(" every {")
 every i := 1 to ∗rows do
 write(" (r", i, " := !",
 image(string(cset(rows[i]))), ") & ")
 every j := 1 to ∗rows[1] do {
 col := ""
 every col ||:= (!rows)[j]
 write(" (c", j, " := !",
 image(string(cset(col))), ") & ")
 }
 every i := 1 to ∗rows do
 every j := 1 to *rows[1] do
 write(" (r", i, " | c", j, ") == ",
 image(rows[i,j]), " &")
 write(" &null") # terminate conjunction
 write(" }")
 write(" do {")
 write(" writes(\"rows=\")")
 every i := 1 to ∗rows do
 write(" writes(r", i, ")")
 write(" write()")
 write(" writes(\"cols=\")")

The Icon Analyst 58 / 9

 every j := 1 to *rows[1] do
 write(" writes(c", j, ")")
 write(" write()")
 write(" write()")
 write(" }")
 write("end")

end

A more compact program can be produced by
using an array in place of individual variables, but
we won’t bother, since this solution method takes
far too long for all but simple small patterns. The
reason is obvious: In general, all possible combina-
tions must be tried until there is a solution.

We have two viable solutions. One recognizes
the problem as an instance of the 2-satisifiabilty (2-
SAT) problem, for which there is a known algo-
rithm.

The other solution is heuristic in nature. We’ll
describe the heuristic solution here for several
reasons:

• It’s original as far as we know.

• It’s interesting.

• It’s fast for most patterns.

• It illustrates an approach that is worth con-
sidering for other problems.

The Heuristic Solution

A Word About Heuristics

A word about heuristics is in order, since they
often are misunderstood. Heuristics use insights
into the nature of a problem and intelligent guesses
to build a solution method tailored to the problem.

Using heuristics doesn’t mean wild guessing
or proceeding blindly, just hoping to find a solu-
tion. Nor need a heuristic solution give incorrect
answers, although proving a heuristic method is
correct and terminates — and hence is an algo-
rithm — may be difficult.

Heuristics can be used in many ways. For the
problem here, one possibility would be look for a
fast way to reject a pattern because it contains an
unsolvable subpattern (such as the ones shown
earlier). Of course, the absence of a known
unweavable subpattern does not prove the whole
pattern is weavable — so that problem would still
exist.

Checking for special cases such as this one
often takes more time on average than it saves. A

notable example occurred in an implementation of
SNOBOL4, in which a heuristic was used with the
intention of saving time in storage management.
Instead, it wasted time on average [3].

Since it’s difficult — even impractical — to
analyze the effects of such heuristics without imple-
menting them and doing performance testing, such
heuristics should be viewed with skepticism.

A good heuristic method relies on under-
standing the nature of the problem and, if possible,
breaking the problem down into smaller, more
tractable, subproblems.

Insights into Color Weavability

For the color weavability problem, the fol-
lowing observations are particularly useful.

• If a row or column is all one color, that color
can be assigned to the corresponding row or
column without affecting the rest of the prob-
lem. Hence such rows and columns can be
eliminated from further consideration.

• Duplicate rows and columns can be elimi-
nated for the same reason.

• The pattern can be rotated without changing
the problem; in this sense, there is no differ-
ence between rows and columns.

• Rows can be interchanged (rearranged) with-
out changing the problem, and the same is
true of columns.

To get ideas for the heuristic approach to the
problem, we can look at small patterns and see
what implications they have for the pattern as a
whole. Consider the 3-colored 2×2 patterns shown
in Figure 7.

A B

C A

r1

r2

c1 c2

A A

B C

r1

r2

c1 c2

a b

Figure 7. Three-Colored 2×××××2 Patterns

These are the only distinct 3-colored 2×2 pat-
terns; all others are equivalent to these by rotation
or row and column interchange.

Figure 7a imposes some constraints on any
larger pattern in which it is embedded: c1 must be
A or C, c2 must be B or A, and similarly for the two

10 / The Icon Analyst 58

rows. For Figure 7b, however, c1, c2, and r2 are not
constrained but r1 is completely determined and
must be A for the entire pattern in which this
subpattern is embedded. This particular subpattern
turns out to provide a sufficient basis for a heuristic
solution; no others need be considered.

We’ll leave you with that thought and de-
scribe the program in the next article.

References

1. The Character of Physical Law, Richard Feynman,
MIT Press, 1967.

2. “Drawups”, Icon Analyst 56, pp. 18-20.

3. “Performance of Storage Management in an
Implementation of SNOBOL4”, Ralph E. Griswold,
David R. Hanson, and David G. Ripley. IEEE Trans-
actions on Software Engineering, Vol SE-4, No. 2
(1978), pp. 130-137.

Graphics Corner—Custom Palettes

If you love the intense cloud, pour into every
image its warm summer blood.

— Paul Eluard

Background

We described Icon’s built-in palettes in an
earlier article on image strings [1] and complete
documentation is available in the Icon graphics
book [2].

Built-in palettes are adequate for most images
and uses. It’s more typical to have problems be-
cause of the limitation to 256 different colors in an
image. The colors provided by built-in palettes,
however, are fixed and in some situations they
give poor or even misleading results.

One situation the built-in palettes cannot
handle is many shades of the same color, such
renderings of illuminated reflective surfaces. While
the built-in grayscale palettes can handle most
“black-and-white” images, there is no correspond-
ing capability for, say, shades of green.

The images shown in Figure 1 illustrate this
problem. The top-left image is the result of ray
tracing a dimly illuminated glass sphere. The im-
age to its right is the result of reducing the number
of colors to 256 to get a GIF. You probably can’t tell

 original GIF

c1 palette c2 palette

c3 palette c4 palette

c5 palette c6 palette

Figure 1. Interpreting an Image Using Palettes

the difference between the two, given the way the
Analyst is printed, but if you look at the images on
our Web site, you’ll see the consequences of the
reduction in the number of colors. The remaining
six images are the results of reading the GIF image
with Icon’s color palettes.

The Icon Analyst 58 / 11

The user should be allowed to chose the name
for a color palette, except possibly excluding the
names of the built-in palettes, and to specify the
keys.

Finally, there should be no limit to the num-
ber of custom palettes that can be used except the
memory required for them.

Data Structures

A record is used to encapsulate the informa-
tion associated with a custom palette:

record Palette_(name, keys, table)

where name is the name of the palette, keys is a list
of the palette keys, and table is a table. The table is
indexed by the palette keys whose corresponding
values are the colors. Note that keys is redundant;
it is provided to avoid repeated computation dur-
ing use.

Here’s a simple example, constructed manu-
ally:

rgb_palette := Palette_("rgb", "012", table())

rgb_palette.table["0"] := "red"
rgb_palette.table["1"] := "green"
rgb_palette.table["2"] := "blue"

One difficulty with managing custom pal-
ettes is that they must be accessible to programs
that use them. In addition, different sets of custom
palettes may be needed in different situations.

To handle these needs, custom palettes are
accessed through “databases” that are tables in-
dexed by the palette names whose associated val-
ues are Palette_() records. A palette database can
be saved in a file using xencode() and loaded into
a program using xdecode() as shown in previous
articles.

The current palette database is the value of
the global variable PDB_. The use of a global
variable is awkward, but it works and there seems
to be no better way to interface the custom palette
mechanism.

Procedures

The module palettes links two other modules
and declares PDB_ and two records:

link imrutils
link lists

global PDB_

record Palette_(name, keys, table)

The c1 palette is a general-purpose palette
with 90 colors based on Icon’s color naming system.
It works well for most color images but not for this
one. Palettes c2 through c6 have equally spaced
colors in RGB space (plus extra grays) and range
from 9 to 241 colors. You’d expect c2 to give poor
results, but you might hope for a good rendering
with the color palettes with more colors. This is not
the case. In fact, only 32 of the 241 colors from the
c6 palette are usable — the colors in the image are
packed close together in small regions of the RGB
cube where there are only a few colors in the c6
palette.

The Palette Mechanism

For reference, here’s a brief description of
Icon’s palette mechanism:

DrawImage(x, y, ims) draws the image corre-
sponding to the specified image string.

PaletteChars(name) returns the keys in the
named palette.

PaletteColor(name, key) returns the color in
the named palette for the given key.

PaletteGrays(name) returns the keys for
shades of gray in the named palette.

PaletteKey(name, color) returns a key in
named palette for a color that is close to the given
color.

ReadImage(file, x, y, name) reads the speci-
fied image file using only the colors in the named
palette.

Custom Palettes

To overcome the limitations of built-in pal-
ettes, we’ve added a library module for program-
mer-defined, custom palettes.

Design Considerations

One design requirement was that custom pal-
ettes be a transparent addition to the built-in mecha-
nism. That is, it should be possible to create and use
color palettes in all contexts that built-in palettes
can be used, and the user should not have to know
whether a built-in or custom palette is being used.

In addition, to make color palettes as useful as
possible, they should be able to represent any color
that Icon’s color system can handle. And, unlike
built-in palettes, custom palettes should allow du-
plicate colors (we’ll show uses for this capability in
a later article).

12 / The Icon Analyst 58

record Color_(r, g, b)

Underscores are used to reduce the probability of
collision with names in programs that use this
module.

It’s obviously necessary to be able to distin-
guish between built-in palettes and custom pal-
ettes. For this, we use a bit of trickery:

procedure BuiltinPalette(name)

 BuiltinPalette := proc("PaletteChars", 0)

 return BuiltinPalette(name)

end

This procedure takes advantage of the fact
that the built-in palette functions fail if given a
name that is not the name of a built-in palette. Here
BuiltinPalette is assigned the built-in function
PaletteChars, which is called in the first invocation
of the procedure and then subsequently.

Creating a custom palette is relatively straight-
forward:

procedure CreatePalette(name, keys, colors)
 local i, k, t

 initial InitializePalettes()

 if BuiltinPalette(name) then fail

 if ∗labels ~= ∗cset(keys) then fail # duplicate
 if ∗labels ~= ∗colors then fail # mismatch

 t := table()

 every i := 1 to ∗colors do
 t[keys[i]] := ColorValue(colors[i]) | fail

 PDB_[name] := Palettes_(name, keys, t)

 return PDB_[name]

end

Here name is the palette name, keys is a string of
key characters, and colors is a list of color specifi-
cations.

The procedure InitializePalette() is called by
all procedures that deal with custom palettes be-
fore they do anything else. It doesn’t do much, but
it provides the necessary abstraction and a place
other work could be done:

procedure InitializePalettes()

 /PDB_ := table()

 InitializePalettes := 1 # make it a no–op

 return

end

Note that InitializePalettes() changes itself into an
operation that does nothing, so that only the first
call of it is effective.

CreatePalette() allows — and requires — the
caller to specify the keys. In most cases, the specific
keys used in a palette are not of interest or even
known to the user. The following utility procedure
provides keys automatically to facilitate the cre-
ation of custom palettes:

procedure makepalette(name, clist)
 local keys
 static alphan

 initial alphan := &digits || &letters

 if ∗clist = 0 then fail

 keys := if ∗clist < ∗alphan then alphan else &cset

 return CreatePalette(name, keys[1+:∗clist], clist)

end

Some procedures overload built-in ones of
the same names. The simplest are:

procedure PaletteChars(args[])
 local name
 static palette_chars

 initial {
 InitializePalettes()
 palette_chars := proc("PaletteChars", 0)
 }

 if type(args[1]) == "window" then get(args)

 name := args[1]

 if BuiltinPalette(name) then
 return palette_chars(name)
 else
 return (\PDB_[name]).keys

end

and

procedure PaletteColor(args[])
 local palette_lookup, name, s
 static palette_color

 initial {
 InitializePalettes()
 palette_color := proc("PaletteColor", 0)
 }

 if type(args[1]) == "window" then get(args)

The Icon Analyst 58 / 13

 name := args[1]
 s := args[2]

 if BuiltinPalette(name) then
 return palette_color(name, s)

 palette_lookup := (\PDB_[name]).table | fail

 return \palette_lookup[s]
end

These procedures illustrate a minor compli-
cation that has to be handled. All the built-in pal-
ette functions have an optional window first argu-
ment. This argument is not used (although a win-
dow must be open to allow access to platform-
dependent color names). In the procedures above,
if the first argument is a window, it is discarded.

Note that the built-in versions of
PaletteChars() and PaletteColor() are assigned to
static variables and used if the palette name is a
built-in one.

The procedure PaletteKey(name, color) re-
turns the key for a color in the named palette that
is close to the specified color. For custom palettes,
this procedure is implemented by finding a palette
color that is the minimum distance from the given
color in RGB space:

procedure PaletteKey(args[])
 local name, s
 static palette_key

 initial {
 InitializePalettes()
 palette_key := proc("PaletteKey", 0)
 }

 if type(args[1]) == "window" then get(args)

 name := args[1]
 s := args[2]

 if BuiltinPalette(name)
 then return palette_key(name, s)
 else return NearColor(name, s)

end

NearColor() returns a color near to s:

procedure NearColor(name, s)
 local palette_lookup, k, measure, close_key, color

 measure := 3 ∗ (2 ^ 16 – 1) ^ 2 # maximum

 color := ColorValue(s) | fail

 palette_lookup := (\PDB_[name]).table | fail

 every k := key(palette_lookup) do{
 if measure >:= Measure(palette_lookup[k], color)
 then {
 close_key := k
 if measure = 0 then break # exact match
 }
 }

 return \close_key

end

Measure() produces a value that determines
how far apart the colors are. The distance between
two colors is given by

sqrt((color1.r – color2.r) ^ 2 +
 (color1.g – color2.g) ^ 2 + (color1.b – color2.b) ^ 2)

It is not necessary, however, to take the square root
to compare values for different colors:

procedure Measure(s1, s2)
 local color1, color2

 color1 := RGB(s1)
 color2 := RGB(s2)

 return (color1.r – color2.r) ^ 2 +
 (color1.g – color2.g) ̂ 2 + (color1.b – color2.b) ̂ 2

end

The procedure RGB() parses the color value
and returns a record:

procedure RGB(s)
 local color

 color := Color_()

 ColorValue(s) ? {
 color.r := tab(upto(',')) &
 move(1) &
 color.g := tab(upto(',')) &
 move(1) &
 color.b := tab(0)
 } | fail

 return color

end

The procedure DrawImage() is the most chal-
lenging to implement. Since it requires drawing
individual pixels, efficiency is important. The ap-
proach is to create a table with the same keys as the
custom palette but with corresponding values that
are lists of the coordinates at which the keys appear
in the image string. Once all the coordinates have
been computed, all the pixels for one key are writ-

14 / The Icon Analyst 58

Supplementary Material

Supplementary material for this issue of the Analyst, including images and program material,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia58/

ten in a single call of DrawPoint().

 procedure DrawImage(args[])
 local palette_pixels, palette_lookup
 local keys, c, x, y, row, imr
 static draw_image

 initial {
 InitializePalettes()
 draw_image := proc("DrawImage", 0)
 }

 if type(args[1]) ~== "window" then
 push(args, &window)

 imr := imstoimr(args[4]) | return draw_image ! args

 if BuiltinPalette(imr.palette) then
 return draw_image ! args

 palette_lookup := (\PDB_[imr.palette]).table | fail
 palette_pixels := copy(palette_lookup)

 keys := cset(imr.pixels)

 every !palette_pixels := [args[1]]

 x := args[2]

 every c := !keys do {
 y := args[3]
 imr.pixels ? {
 while row := move(imr.width) do {
 row ? {
 every put(palette_pixels[c],
 x + upto(c) – 1, y)
 }
 y +:= 1
 }
 }
 }

 every c := !keys do {
 Fg(args[1], palette_lookup[c]) | fail
 DrawPoint ! palette_pixels[c]
 }

 return

end

This procedure must deal with the case in
which DrawImage() is called with a bi-level pattern
[3]. This possibility is detected (more or less) by the
failure of imstoimr() when given a bi-level pattern.
For this case, the built-in version of DrawImage() is
used. The procedure imstoimr() is from the imrutils
module [4].

Loose Ends

Three palette capabilities have not yet been
implemented: transparency, PaletteGrays(), and
the specification of a palette in ReadImage(). When
these are done, they will be added to the palettes
module, which is on the Web site for this issue of
the Analyst.

The Next Step

The palettes module provides the necessary
infrastructure for creating and using custom pal-
ettes. Creating custom palettes from scratch is,
however, cumbersome.

In a subsequent article, we’ll describe pro-
grams that facilitate the creation of custom pal-
ettes, including one for creating custom palettes
from images and an interactive application that
allows the construction and modification of cus-
tom palettes in various ways.

References

1. “Graphics Corner — Drawing Images”, Icon
Analyst 49, pp. 11-13.

2. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend, Peer-
to-Peer Communications, 1998.

3. “Graphics Corner — Bi-Level Patterns”, Icon
Analyst 56, pp. 4-5.

4. “Graphics Corner — Fun with Image Strings”,
Icon Analyst 50, pp. 10-13.

The Icon Analyst 58 / 15

Name Drafts Revealed

In the article on name drafts [1], we showed
eight woven images based on name drafts and said
we’d show the strings and tie-ups used in a subse-
quent article. It is of course reasonable if not obliga-
tory to provide this information.

We obtained the woven images by relatively
uncontrolled experimentation. From perhaps 25
images, we selected eight that we thought were the
most interesting and visually distinctive.

When we offered to “reveal all”, we’d forgot-
ten what silly things we’d tried. Now we’re con-
fronted with a more embarrassing revelation than
we expected. Nonetheless, here it is.

 The general model for producing the thread-
ing and treadling sequences is

s1 := reflect(s)
OddEvenPDCO{genmapshafts(s1, p(s1))}

where s is the string used, reflect() creates a pattern
palindrome, and p is a procedure that determines
how the characters of s are mapped onto shaft
numbers. See the previous article for details [1].

Figure 1 shows the woven images again for
reference and Figure 2 on the next page lists the
corresponding parameters. The columns map1 and

map2 in Figure 2 give the maps for the threading
and treadling sequences, respectively (which are
the same except for image d). See the article about
twills that starts on page 1 for an explanation of the
tie-up notation.

Because we were experimenting and not al-
ways thinking through what we were doing, there
are some unusual effects. For example, fchars(s)
produces the characters of s in decreasing order of
frequency. It does not take into account the order in
s in which characters of the same frequency occur,
and because of the way it is coded (which might
deserve changing), it scrambles the order of the
characters that appear equally frequently. For ex-
ample, fchars(&letters) produces

"kKxhXHueUErbRBoOlLyiYIvfVFscSCpPmMzjZJ_
 wgWGtdTDqaQAnN"

This is an interesting effect, but we weren’t aware
of it until we wrote this article.

As to the results, one thing we found particu-
larly interesting was the striking difference in ap-
pearance between images a and b, although they
only differ in their tie-ups and number of shafts
used.

We said we’d reveal all and we have. Don’t
you wish we hadn’t?

 a b c d

 e f g h

Figure 1. Weaves from Name Drafts

16 / The Icon Analyst 58

What’s Coming Up

We’ll continue our series on sequences in the
next issue of the Analyst with an article on recur-
rence relations.

We’ll follow up the article on weavable color
patterns in this issue with the description of the
program itself. We also plan an article on tie-ups.

Once again we failed to make a start on the
planned series of articles on classical cryptogra-
phy. We do, however, have the first article in draft
form and it may make it into the next issue of the
Analyst.

More directly related to Icon, we’ll have an
article that explains the Icon linker and how to
avoid some problems that arise from its removal of
unreferenced procedures.

image string map1 map2 tie-up

a &letters fchars() fchars() /2/1/2

b &letters fchars() fchars() /1/2/1

c "Metropolitan Lace Pudding" fchars() fchars() /1/2/1

d &letters ++ &digits fchars() cset() /1/2/1

e "Spring has sprung. The grass has ris. I wonder where the flowers is." csort() csort() /1/2/1

f "Moses supposes his toeses are roses, but Moses supposes erroneously." fchars() fchars() /1/2/1

g "Long, long, ago, far, far, away." fchars() fchars() /1/2/1

h "The Icon Project" ochars() ochars() /3/1

Figure 2. Name-Draft Parameters

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2000 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

Reference

1. “Name Drafting”, Icon Analyst 57, pp. 11-14.

