
The Icon Analyst 56 / 1

October 1999
Number 56

In this issue …

Weave Draft Representation 1
From the Library ... 3
Graphics Corner .. 4
Exploring Sequences Interactively 7
Answers to Quiz ... 9
Woven Images ... 10
Shadow-Weave Wallpaper 13
Animation — Making Movies 15
Sending E-Mail about the Analyst 17
Quiz — Pointer Semantics 17
Drawups ... 18
What’s Coming Up 20

In-Depth Coverage of the Icon Programming Language

aquadesign name
[[1>8]∗5][[7<1]8∗4]765432[[1>8]∗5][[7<1]8∗4][7<1] threading
[[1>8]∗10] treadling
[G∗20][H∗39][G∗20][G∗19][H∗39][G∗20] warp colors
[0–>80] weft colors
c1 palette
8;8;1001001111000001111000000111000000111001100101000100101000100101 tie-up

Figure 1. A Pattern-Form Draft

Weave Draft Representation

Pattern-Form Drafts Revisited

We designed pattern-form drafts (PFDs) so
that patterns in threading and treadling sequences
could be preserved [1]. The file format we chose
was designed to be compact and to be processed by
programs. Each line contains one component of the
draft as shown in Figure 1. Notice that the number
of shafts and number of treadles are encoded in the
tie-up.

Since information is positional and not self-

identifying, it is not well suited for manual editing,
although that’s possible: It’s ASCII text with few
enough lines that individual components can be
identified.

Pattern-form drafts have been central to our
work on weave structure. It’s important that PFDs
can represent all the information we need and do
that in a convenient way.

The original format did not handle all aspects
of weave structures that we subsequently found to
be important, such as liftplans.

As we mentioned in the article about Dobby
looms and liftplans [2], liftplans often are large
compared to tie-ups. Although using a bit-string
representation for liftplans is possible, it’s awk-
ward and impractical. And while we once hoped to
deal with patterns in tie-ups in a way similar to the
what we did with threading and treadling se-
quences, the kinds of patterns they have require a
different approach. This freed us from an immedi-
ate need to represent them in drafts in a manner
that made their structure evident.

Both liftplans and tie-ups are binary matrices.
We therefore decided to us Icon’s bi-level pattern
format for conciseness (see the Graphics Corner
article that starts on page 4). An important consid-
eration in making this choice was the existence of
several programs and procedures in the Icon pro-
gram library for creating and manipulation bi-
level patterns. The interactive pattern manipulator
is described in Graphics Programming in Icon [3] is
particularly useful.

2 / The Icon Analyst 56

It’s worth noting that bi-level pattern strings,
while compact, are not easy to decipher without
the aid of a program. For example, consider the tie-
up grid diagram in Figure 2.

Figure 2. A Tie-Up Grid

The corresponding bi-level pattern is

16,#0f3f1e7e3cfc79f8f3f0e7e1cfc39f873f0f7
e1efc3cf879f0f3e1e7c3cf879f

This string is 68 characters long compared to the
262 characters the bit-string representation would
require.

While we were revamping the PFD format,
we decided that we needed more generality in
dealing with warp and weft color sequences. Origi-
nally they were strings of palette keys. In the new
PFD format, they are strings of characters that
index a string of palette keys (the character encod-
ing for indexes that are greater than 9 is the same
as used in the threading and treadling sequences).

The new PFD format has 11 lines:

name text
threading pattern form
treadling pattern form
warp colors pattern form
weft colors pattern form
palette palette name
keys palette keys
tie-up bi-level pattern
shafts integer
treadles integer
liftplan bi-level pattern

The lines for the number of shafts and treadles are
included so that it’s not necessary to extract them
from the tie-up.

The liftplan may be empty. If it is present, the
tie-up and treadling may be empty, although in
WIFs [1] they usually are included in addition to a
liftplan so the draft can be used on a loom without
a dobby device.

Problems with Pattern-Form Drafts

Pattern-form drafts have several limitations.
The number of shafts and treadles is limited to the
number of characters that are available for encod-
ing integers. Although this is not a problem for real
looms, some computer weaving programs are ca-
pable of dealing with 256 shafts and/or treadles.

The use of palettes instead of actual color
values is more limiting than it might seem. Most
drafts do not have a large number of colors (al-
though some do). But built-in palettes provide no
way for representing, say, 32 equally spaced shades
of blue. A more serious practical problem is that
some drafts specify combinations of subtly differ-
ent hues. For these, no Icon color palette may be
able to separate them and they may come out to be
the same using PaletteKey().

Internal Representation of Drafts

PFD is a file format. In order to manipulate a
draft in a program in a reasonable way, it’s neces-
sary to convert it to an internal format that typi-
cally involves lists and arrays (lists of lists) [4].

It would be useful to be able to save an inter-
nal draft as-is and to be able to use it later, perhaps
in a different program. The procedures xencode()
and xdecode() in the Icon program library module
xcode [5], make this easy to do.

In order to encode an entire internal draft
structure as a single file, it’s necessary to have all
the components in one structure — a top-level
structure that includes the rest. A record is the
natural choice for this.

A record declaration for an internal structure
draft (ISD) has 12 fields:

record isd(
 name,
 threading,
 treadling,
 warp_colors,
 weft_colors,

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 56 / 3

 color_list,
 shafts,
 treadles,
 width,
 height,
 tieup,
 liftplan
)

The name field contains a string. The shafts,
treadles, width, and height fields contain integers.
The width and height fields are included so that the
dimensions of the weave can be specified indepen-
dently of the lengths of the threading and treadling
lists. The sequences can be truncated or extended
as needed [6].

The tieup and liftplan fields contain binary
matrices. The other fields contain lists. The color
list is a list of color values, which can be in any form
that Icon supports (except mutable colors). The
remaining lists are composed of numbers (not
character codes representing numbers).

Given an ISD, it can be saved to a file by

xencode(draft, file)

and restored from a file by

xdecode(file)

The big disadvantage of ISDs is that they have
no way of representing patterns (but we’re work-
ing on that …). A minor disadvantage compared to
PFDs is that they are larger — typically by a factor
of 3 or 4, but ISDs are smaller than corresponding
WIFs. In return for the increased size, ISDs provide
ready-made internal structures, the capability for
representing any number of shafts and treadles,
and the capability for handling any color value that
Icon can handle.

References

1. “Weaving Drafts”, Icon Analyst 53, pp. 1-4.

2. “Dobby Looms and Liftplans”, Icon Analyst
55, pp. 17-20.

3. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, pp. 299-326.

4. “Arrays”, Icon Analyst 14, pp. 2-4.

5. “From the Library”, Icon Analyst 34, pp. 9-12.

6. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

From the Library — Programmer-
Defined Control Operations

A book ought to be like a man or a woman, with
some individual character in it, though eccen-
tric, yet its own; with some blood in its veins
and speculation in its eyes and a way and a will
of its own. – John Mitchel

The collection of programmer-defined con-
trol operations in the Icon program library has
grown quite large. Since the on-line version of the
library is updated only infrequently, we’ve put the
current version of this module, pdco.icn, on the
Web site for this issue of the Analyst.

Some of the PDCOs in this module illustrate
how various control structures can be modeled.
Examples are:

AltPDCO{e1, e2} e1 | e2

EveryPDCO{e1, e2} every e1 do e2

GaltPDCO{e1, e2, … } e1 | e2 | ...

GconjPDCO{e1, e2, … } e1 & e2 & …

LimitPDCO{e1, e2 } e1 \ e2

RepaltPDCO{e } |e

ResumePDCO{e1, e2, e3 } every e2 \ e2 do e3

The main value of these PDCOs is pedagogical. By
studying them, you can learn the details of Icon’s
control structures.

Other PDCOs of main interest in the library
follow. The code for some is given in Reference 1.

BinopPDCO{e1, e2, e3 } applies the binary
operations from e1 to values from e2 and e3.

4 / The Icon Analyst 56

ComparePDCO{e1, e2 } compares the se-
quences e1 and e2. It succeeds if the sequences are
the same but fails otherwise.

ComplintPDCO{e} produces the integers start-
ing at 0 that are not in e. The sequence produced by
e must be non-decreasing.

DeltaPDCO{e } produces the differences of
successive integer values from e.

IncreasingPDCO{e } removes values from e
as necessary to produce an increasing sequence.

IndexPDCO{e1, e2 } selects values of e1 in the
positions produced by e2. The sequence produced
by e2 must be non-decreasing.

InterPDCO{e1, e2, …} interleaves values from
e1, e1, … . Note: This procedure was named
InterleavePDCO{} in Reference 1.

LengthPDCO{e} produces the length of (num-
ber of terms) in e.

OddEvenPDCO{e } inserts values into e to
make odd-even sequence.

PalinPDCO{e } produces a palindrome se-
quence.

PatternPalinPDCO{e } produces a pattern pal-
indrome sequence [2].

RandomPDCO{e1, e2, …} produces values
from e1, e2, … selected at random.

ReducePDCO{e1, e2 } “reduces” e2 by ap-
plying the binary operation given by e1 to the
values from e2.

ReplPDCO{e1, e2 } replicates each value from
e1 e2 times.

ReversePDCO{e } produces the reversal of e.

RotatePDCO{e, i } rotates e by i terms. Posi-
tive i rotates to the left, negative i to the right.

SeqlistPDCO{e, i } returns the first i values of
e in a list.

SkipPDCO{e1, e2 } produces e1, skipping the
number of terms given by e2.

TrinopPDCO{e1, e2, e3, e4} applies the trinary
operations from e1 to the values produced by e2,
e3, and e4.

UniquePDCO{e } filters out duplicate values
from e.

UnopPDCO{e1, e2} applies the unary opera-
tions from e1 to e2.

See also the answers to the quiz on PDCOs on
page 11.

References

1. “Operations on Sequences”, Icon Analyst 55,
pp. 10-13.

2. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

Graphics Corner—Bi-Level Patterns

We have discussed image strings in previous
articles [1,2]. Such image strings are based on pal-
ettes and have a palette character (key) for every
pixel in the image.

For bi-level (two-color) images, Icon supports
a more compact representation. A bi-level image
string is drawn in the current foreground and back-
ground colors. By default, these are black and white,
respectively, but they can be any colors. Hence bi-
level image strings are not equivalent to palette-
based image strings with the g2 palette.

Data Format

A bi-level image string, also called a pattern,
has the form width,#data. Note that the # distin-
guishes bi-level image strings from palette-based
image strings. The data portion contains a sequence
of hexadecimal digits that specify rows from top to
bottom. Each row is specified by width / 4 digits
with fractional values rounded up.

The digits of each row are interpreted as hexa-

The Icon Analyst 56 / 5

decimal numbers. Each bit of a hexadecimal digit
corresponds to a pixel: 0 for background, 1 for
foreground. The bits that form a hexadecimal
digit are read from right to left. Figure 1 shows an
example:

8,#ff80bfa1a5bd81ff

Figure 1. A Bi-Level Pattern

 This ordering is confusing, but it’s rarely
necessary to construct or interpret a bi-level image
string by hand: There are library programs for this
[3].

Built-In Patterns

A few patterns of a general nature are built
into the Icon repertoire. These are shown in Figure
2.

Figure 2. Built-In Patterns

Using Patterns

A pattern is specified by the pattern attribute.
This attribute can be set in several ways. For
example, both

Pattern("8,#ff80bfa1a5bd81ff")

1111 1111 f f
0000 0001 8 0
1111 1101 b f
1000 0101 a 1
1010 0101 a 5
1011 1101 b d
1000 0001 8 1
1111 1111 f f

and

WAttrib("pattern=8,#ff80bfa1a5bd81ff")

set the pattern to the example given earlier. The
pattern attribute also can be given in WOpen(), as
in

WOpen("pattern=8,#ff80bfa1a5bd81ff", …)

The built-in patterns are specified by their
string names, as in

Pattern("checkers")

The pattern is used for all drawing opera-
tions, with the details depending on the fill style.
With "fillstyle=solid", the default, the pattern has no
effect on drawing. With "fillstyle=textured", draw-
ing is done with the foreground and background
as specified by the pattern. With "fillstyle=masked",
drawing is done with the foreground as specified
by the pattern, but background pixels are left un-
changed.

Patterns are aligned with the upper-left cor-
ner of the window and tile across it. You can
imagine drawing with a fill style of "textured" or
"masked" as exposing an underlying pattern.

The following program illustrates these fea-
tures of patterns:

link graphics

procedure main()

 WOpen("size=600,300", "pattern=trellis") |
 stop("∗∗∗ cannot open window")

 WAttrib("fillstyle=solid") # (the default)

 FillRectangle()

 WriteImage("figure_3.gif")

 Pattern("trellis")

 WAttrib("fillstyle=textured")

 FillCircle(210, 150, 100)
 FillCircle(390, 150, 100)

 WriteImage("figure_4.gif")

 WAttrib("fillstyle=masked")

 Pattern("vertical")

 FillCircle(210, 150, 100)
 FillCircle(390, 150, 100)

 WriteImage("figure_5.gif")

6 / The Icon Analyst 56

 WAttrib("fillstyle=textured")

 FillCircle(210, 150, 100)
 FillCircle(390, 150, 100)

 WriteImage("figure_5.gif")

end

Here are the images produced by this pro-
gram:

Figure 3. Filled Rectangle with Solid Fill Style

Figure 4. Filled Circles with Textured Fill Style

Figure 5. Filled Circles with Masked Fill Style

Figure 6. Filled Circles with Textured Fill Style

Figure 3 is solid black because the pattern has
no effect with the solid fill style. Figure 4 shows the
results of “punching out” two filled circles with the
trellis pattern and textured fill style. Notice that the
overlapping area tiles seamlessly.

In Figure 5, the filled circles are drawn again
with the vertical pattern and masked fill style.
Note that the background pixels left over from the
trellis pattern are unchanged.

Finally, in Figure 6 the circles are filled with
the vertical pattern again, but with the textured fill
style. This wipes out the remains of the trellis
pattern.

Conclusion

Patterns, like many aspects of computer graph-
ics invite unusual and creative uses. You’ll find
some examples in Reference 4.

References

1. “Graphics Corner — Fun with Image Strings”,
Icon Analyst 50, pp. 11-13.

2. “Graphics Corner — More Fun with Image
Strings”, Icon Analyst 51, pp. 14-16.

3. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, pp. 229-336.

4. Graphics Programming in Icon, pp. 158-160.

Supplementary Material

Supplementary material for this issue of the Analyst, including images and Web links, is
available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia56/

The Icon Analyst 56 / 7

Exploring Sequences Interactively

Using Icon’s built-in repertoire of generators
and the procedures in the Icon program library, it’s
possible to produce an endless number of sequences
of great variety.

These can be explored by writing individual
programs, but that is tedious and time consuming.

The article describes an application that al-
lows the user to enter and edit expressions that
produce sequences and see the result quickly (or at
least as quickly as the sequences can be computed).

The Application

The interface for this application is shown in
Figure 1.

Figure 1. The Application Interface

The current sequence is shown in a scrolling
text list that occupies most of the window.

Expressions are entered and edited in a dia-
log, which is shown in Figure 2.

 Figure 2. The Edit Dialog

The File menu provides the usual items for
saving the current expression and sequence, as
well as for quitting the application.

The Sequence menu provides items for call-
ing up the edit dialog and generating the sequence
for the current expression.

The Options menu has items for limiting the
number of terms produced and for specifying the
separator between them.

The Plot menu provides items for presenting
the current sequence visually. At present, only
grid plots and point plots are supported. A grid
plot is shown in Figure 3.

Figure 3. A Grid Plot

Since sequences may have very large values
and many terms, grid plots and point plots have

limited usefulness, and it’s often not
possible to show them visually in con-
ventional ways.

We’ll consider this problem and
explore possible ways of visualizing
sequences using unconventional tech-
niques in a subsequent article.

The Implementation

The implementation of this ap-
plication is largely straightforward
and uses techniques described in pre-
vious Analyst articles. We’ll only
describe a few procedures here.

The global variables used by
these procedures are:

global current_exp # current expression
global display # text–list vidget
global limit # limit on number of terms
global results # list of current results
global separator # separator for terms

The expression given in the edit
dialog is incorporated in a program,
which is written to a file and com-
piled using the system() function. The
program is then run as a pipe so that
the results can be read into a list. Note
that error output is redirected to a file
in the /tmp directory. This allows the

cause of a problem to be displayed in case there is
an error in compilation or execution.

procedure run()
 local input, output, k, signal, result

8 / The Icon Analyst 56

The Encyclopedia of Integer Sequences

The encyclopedia of integer sequences [1]
contains a vast collection of integer sequences
from a wide range of disciplines.

In it you can find all kinds of things, includ-
ing sequences related to primes, Mersenne num-
bers, versum sequences, “self-organizing” se-
quences, sequences related to chess problems,
continued fractions, and strange (to us) sequences
like “Remoteness Numbers for Tribulations”,
and specialized mathematical sequences like
“Unique Attractors for the Sliding Möbius Trans-
form”.

The book is well worth owning if you are
interested in recreational mathematics, but there’s
a more accessible and extensive source on the
Web <1>. With it you can look up sequences,
give the terms of a sequence and find out if it’s in
the database, and submit new sequences.

You also can download the entire database
<2>, which at this writing has 49 sections con-
taining nearly 50,000 sequences.

To get an idea of the developing database,
at the present time about 10,000 new sequences
are being added each year.

Reference

1. The Encyclopedia of Integer Sequences, N. J. A.
Sloane and Simon Plouffe, Academic Press, 1995.

Links

1. http://www.research.att.com/~njas/sequences/
 index.html

2. http://www.research.att.com/~njas/sequences/
 Seis.html

 static call

 initial
 call := "icont –s –u expr_.icn 2>/tmp/sequent.err"

 output := open("expr_.icn", "w") | {
 Notice("Cannot open file for expression.")
 fail
 }

 write(output, "link seqfncs")
 write(output)
 write(output, "procedure main()")
 write(output)
 write(output, "every write(", current_exp, ") \\", limit)
 write(output)
 write(output, "end")

 close(output)

 WAttrib("pointer=watch")

 if system(call) ~= 0 then { # didn’t compile
 remove("expr_.icn")
 WAttrib("pointer=arrow")
 show_error()
 fail
 }

 input := open("expr_ 2>/tmp/sequent.err", "p")

 results := []

 while result := read(input) do {
 result := numeric(result)
 put(results, result)
 }

 signal := close(input)

 remove("expr_.icn") # remove debris
 remove("expr_")

 WAttrib("pointer=arrow")

 if signal ~= 0 then { # run-time error
 show_error()
 fail
 }

 display_results() # display results

 return

end

Displaying the results takes a little work in
order to ensure that lines are broken so that they will
fit in the width of the text list.

procedure display_results()
 local result_list, term, disp_list, line
 static line_width

 initial line_width := (display.aw – Fudge) /
 WAttrib("fwidth") # save a little room

 result_list := []

 every put(result_list, image(!results) || separator)

 line := ""
 disp_list := []

 while term := get(result_list) do {
 if ∗line + ∗term > line_width then {
 if ∗line = 0 then {
 put(disp_list, term[1+:line_width])

The Icon Analyst 56 / 9

 line := term[line_width:0]
 }
 else {
 put(disp_list, line)
 line := term
 }
 }
 else line ||:= term
 }

 if ∗line > 0 then put(disp_list, line)

 VSetItems(display, disp_list) # display sequence

 return

end

The complete program is on the Web site for
this issue of the Analyst. Be aware, though, that
the program still is under development and prob-
ably will have more features than shown here.

Answers to Quiz
on Programmer-
Defined Control
Operations

See Icon Analyst 55,
page 16, for the questions.

1.

(a)
procedure ExchangePDCO(L)
 local i

 while i := @L[1] do
 suspend @L[1] | i

end

(b)
procedure CumulativePDCO(L)
 local i

 i := 0

 while i +:= @L[1] do
 suspend i

end

Note: This operation can be done by

ReducePDCO{"+", expr }

See page 4.

(c)
procedure IntegerPDCO(L)
 local x

 while x := @L[1] do
 if type(x) == "integer" then suspend x

end

Note: The problem was poorly phrased. A pro-
cedure that filters out non-integer values
should be named IntegerPDCO{} as above,
not NonintegerPDCO{}. Notice that the ver-
sion given above only passes through values
of type integer and does not attempt to con-
vert values of other types. The code for the
latter interpretation is

 while x := @L[1] do
 suspend integer(x)

(d)
procedure ModnPDCO(L)
 local i, j

 every i := seq() do {
 j := @L[1] | fail
 suspend j % i
 }

end

Note: This operation can be done by

BinopPDCO{"%", e, seq()}

See page 3.

None of these PDCOs has a problem with infinite
sequences, per se. However, IntegerPDCO{} stops
producing values but doesn’t terminate if an infi-
nite sequence stops producing integer values.

2.

(a) Term-wise sum of the integers and the Fi-
bonacci numbers: 2, 3, 5, 7, 10, 14, 20, 29, 43,
65, 100, 156, 246, 391, 625, 1003, …

(b) Alternating sums and differences of the
primes and Fibonacci numbers: 3, 2, 7, 4, 16,
5, 30, -2, 57, -26, 120, -107, 274, -334, 657, -934,
1656, -2523, 4248, -6694, 11019, -17632, …

(c) The integers i repeated i times: 1, 2, 2, 3, 3, 3,
4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7,
7, 7, …

(d) Differences of successive primes: 1, 2, 2, 4, 2,
4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4,

10 / The Icon Analyst 56

2, 4, 2, 4, 14, 4, 6, 2, 10, …

(e) The Fibonacci numbers with insertions,
where necessary, to make terms alternate
between odd and even. The inserted terms
(every fourth term in this case) are under-
scored: 1, 2, 1, 2, 3, 4, 5, 8, 13, 14, 21, 34, 55, 56,
89, 144, 233, 234, 377, 610, 987, 988, 1597, 2584,
4181, 4182, 6765, 10946, 17711, 17712, …

(f) The Fibonacci numbers and the primes inter-
leaved and then reduced modulo 8: 1, 2, 1, 3,
2, 5, 3, 7, 5, 3, 0, 5, 5, 1, 5, 3, 2, 7, 7, 5, 1, 7, 0, 5,
1, 1, 1, 3, 2, 7, …

(g) The Fibonacci numbers interleaved with the
primes taken mod 8: 1, 2, 1, 3, 2, 5, 3, 7, 5, 3, 8,
5, 13, 1, 21, 3, 34, 7, 55, 5, 89, 7, 144, 5, 233, 1,
377, 3, 610, 7, …

(h) The sizes (numbers of digits) of the Fibonacci
numbers: 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8,
8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, …

(i) The individual digits of the Fibonacci num-
bers (since ! is a generator, each application
runs through all the characters (digits) of the
term to which it is applied): 1, 1, 2, 3, 5, 8, 1,
3, 2, 1, 3, 4, 5, 5, 8, 9, 1, 4, 4, 2, 3, 3, 3, 7, 7, 6, 1,
0, 9, 8, 7, 1, 5, 9, 7, 2, 5, 8, 4, 4, 1, 8, 1, 6, 7, 6, 5,
1, 0, 9, 4, 6, 1, 7, 7, 1, 1, 2, 8, 6, 5, 7, 4, 6, 3, 6, …

3.

(a) The integers i repeated p times by the corre-
sponding primes p:

ReplPDCO{seq(), primeseq()}

(b) The integers i repeated by i repeated i times
(as in solution 2(c)):

ReplPDCO{seq(), ReplPDCO{seq(), seq()}}

(c) The primes interleaved with the primes plus
3:

InterPDCO{primeseq(), primeseq() + 3}

(d) The primes made into an odd-even sequence:

OddEven{primeseq()}

4.

(a) Puzzle1PDCO{e1, e2, …, en} produces

results from its argument expressions se-
lected at random.

(b) Puzzle2PDCO{e1, e2} skips the number of
terms in e1 given by e2. For example,

Puzzle2PDCO{seq(), primeseq()}

produces

 1, 4, 8, 14, 22, 34, 48, 66, 86, 110, 140, 172, 210,
252, 296, 344, 398, 458, 520, 588, 660, 734, 814,
898, 988, 1086, 1188, 1292, 1400, 1510, 1624,
1752, 1884, 2022, 2162, …

(c) Puzzle3PDCO{e} fills in e with runs of con-
secutive integers as necessary. For example,

Puzzle3PDCO{
 InterleavePDCO{primeseq(), seq()}
 }

produces

 2, 1, 2, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 7, 6, 5, 4, 5, 6, 7,
8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 12,
13, 12, 11, 10, 9, 8, 7, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, …

Woven Images

Producing images from weaving drafts is not
particularly difficult, but it’s well worth thinking
about how to do it efficiently.

The naive approach is to examine each point
of interlacing to determine whether the warp thread
or the weft thread is on top and drawing the
intersection in the appropriate color. We’ll just
draw a point, so that the threads are one-pixel in
width.

The Naive Approach

Using ISDs (see pages 2 and 3), the naive
approach is:

every x := 1 to ∗draft.threading do {
 every y := 1 to ∗draft.treadling do {
 if draft.tieup[x, y] = 1 then
 Fg(draft.color_list[draft.warp_colors[x]])
 else
 Fg(draft.color_list[draft.weft_colors[y]])
 DrawPoint(x – 1, y – 1)
 }
 }

The Icon Analyst 56 / 11

This method, requiring a separate computa-
tion for every pixel, is painfully slow because the
complexity is n × m for an n × m image. For example,
for a small image of 100 × 100 threads, there are 104

iterations of the inner loop.

Insight

One way to speed the process is to draw in all
the warp threads as vertical stripes and then over-
lay the weft threads in those places where they are
on top:

every x := 1 to ∗draft.threading do {
 Fg(draft.color_list[draft.warp_colors[x]])
 DrawLine(x – 1, 0, x – 1, ∗draft.treadling – 1)
 }

every x := 1 to ∗draft.threading do {
 every y := 1 to ∗draft.treadling do {
 if draft.tieup[x, y] = 0 then
 Fg(win, draft.color_list[draft.weft_colors[y]])
 DrawPoint(x – 1, y – 1)
 }
 }

Figure 1 shows what a typical woven image
looks like after the warp background is drawn.

Figure 1. Warp Background

Drawing the warp background first saves a
DrawPoint() for those intersections where the warp
thread is on top, but the number of loop iterations
is slightly larger — 104 + 100 for a 100 × 100 image.
There is a noticeable gain in speed, but the basic
problem remains.

Incidentally, we could draw a weft back-
ground of horizontal stripes and overlay the warp.
We chose to follow the order used in actual weav-
ing, where the warp is set up in advance and the
weft threads added during the weaving process. In
addition, the performance wouldn’t change much
for narrow weaves — the warp interlacements
would be longer in that case.

More Insight

A significant improvement can be made by
noting that there can be only as many different
weft overlay patterns as there are treadles. These
can be pre-computed and put in a list indexed by
the treadle number. By representing the patterns
as lists of points, all the weft pixels can be drawn in
a single call of DrawPoint(). Here’s code for the pre-
computation of the treadle lists:

treadle_list := list(draft.treadles)

every !treadle_list := []

every i := 1 to draft.treadles do {
 every j := 1 to draft.shafts do {
 if draft.tieup[i, j] = 0 then {
 every k := 1 to ∗draft.threading do {
 if draft.threading[k] = j then
 put(treadle_list[i], k – 1, 0)
 }
 }
 }
 }

Note that the y coordinates are all set to 0;
their actual values aren’t known until the weft
overlay is drawn. It’s not necessary, however, to
change them; the y coordinate can be set by using
translation:

every y := 1 to ∗draft.treadling do {
 treadle := draft.treadling[y]
 Fg(draft.color_list[draft.weft_colors[y]])
 WAttrib("dy=" || (y – 1))
 DrawPoint ! treadle_list[treadle]
 }

This greatly improves the speed of drawing.
Ignoring the pre-computation costs, which amount
to an insignificant percentage of the total cost even
for small images, the complexity drops from n × m
to m — from 104 to 100 for our example.

We can further improve the performance by
keeping track of the picks that use the same color.
For each color, we can then set the foreground
accordingly draw all the weft overlays for that
color. Again, this adds to the complexity of the
code:

…

treadle_colors := list(∗draft.color_list)
every !treadle_colors := []

every i := 1 to ∗draft.threading do {

12 / The Icon Analyst 56

 j := draft.weft_colors[i]
 put(treadle_colors[j], i)
 }

every i := 1 to ∗treadle_colors do {
 Fg(win, draft.color_list[i]) | stop("bogob")
 every y := !treadle_colors[i] do {
 WAttrib(win, "dy=" || (y – 1))
 DrawPoint ! treadle_list[draft.threading[y]]
 }
 }

Special Cases

It’s worth adding code for special cases that
arise frequently: when the warp and/or weft
threads are the same color. The notable example of
this is in drawdowns in which the warp threads are
all black and the weft threads are all white. If the
warp threads are all the same color, the back-
ground can be filled in with FillRectangle(). If the
weft threads are all the same color, the foreground
need be set only once. Here’s the code for handling
the case where all the warp threads are the same
color:

if ∗set(draft.warp_colors) = 1 then {
 Fg(draft.color_list[draft.warp_colors[1]])
 FillRectangle()
 }
else … # general case

Note how easy it is to check for this case.
Here’s what’s needed for the case the weft

threads are all the same color:

if ∗set(draft.weft_colors) = 1 then {
 Fg(draft.color_list[draft.weft_colors[1]])
 every y := 1 to ∗draft.treadling do {
 treadle := draft.treadling[y]
 WAttrib("dy=" || (y – 1))
 DrawPoint ! treadle_list[treadle]
 }
else … # general case

Perhaps Too Much Cleverness

We toyed with the idea of drawing line seg-
ments for weft overlays so that several weft threads
are that on top in succession could be done with
one drawing operation. We decided the potential
advantages were outweighed by the additional
complexity that would be involved. In addition,
most weaves have relatively few “floats” where a
weft thread is on top of several warp threads in a

row. We’ll have more to say about floats in a future
article.

There is another possibility for improving
performance: Keep track of where the first weft
overlay pattern is drawn in each weft color and
when that pattern occurs again in the same color,
use CopyArea() instead of DrawPoint() for that line.

Although CopyArea() is very fast, it’s not
clear that the gain would be enough to justify — or
even offset — the extra testing that would be
required (not to mention the more intricate code
needed).

Drawdowns

As mentioned earlier, a drawdown is ob-
tained by using black for all warp threads and
white for all weft threads. Consequently, the same
code can be used for drawdowns as for regular
woven images.

Drawdowns, however usually are shown on
grids with squares several pixels on a side for each
intersection rather than the single pixel we’ve used
here. This can be handled easily enough using the
methods given here. It’s probably best to use a
separate procedure for drawdowns rather than to
further complicate the code used for ordinary wo-
ven images.

Incidentally, magnified images are easily ob-
tained by using Zoom() from the graphics module
of the Icon program library.

The Icon Analyst 56 / 13

Shadow-Weave Wallpaper

In an article on shadow weaves [1], we ex-
plored one of Painter’s built-in drafts and showed
the fascinating structure of its threading sequence,
which is composed of a sequence of anchor points
and palindromes connected by runs.

From there, we explored variations on the
weave by making systematic modifications to the
way the sequence was put together. We did not
begin to explore all possible variations — the num-
ber of them is incomprehensibly vast. Yet some
variations of a more radical nature produce inter-
esting results. See Figure 1.

Figure 1. Variations on a Shadow Weave

One approach to further explorations would
be to try to deduce the kinds of variations that
might prove interesting. Another approach is to
produce random changes in hopes of stumbling on
interesting specimens.

We do not know enough to deduce interest-

ing variations in a controlled fashion. And random
variations are a lot easier to do.

Coincidental with our pondering this prob-
lem, a weaver who was interested in our work on
shadow weaves asked if we could put up some
shadow-weave “wallpaper” on the Web — a page
with a shadow-weave background that changes
periodically to show variations.

This was relatively easy to do. We created one
Web page with two images, one of the original
shadow weave and another with a variation that
changes periodically. The image that changes peri-
odically is linked to another page that is featureless
except the image is used as a background.

Miniature versions of these pages are shown
in Figures 2 and 3.

Figure 2. Shadow-Weave Page

Figure 3. Shadow-Weave Wallpaper Page

The HTML for the wallpaper page is simplic-
ity itself:

14 / The Icon Analyst 56

<HTML>
<HEAD>
<TITLE>Shadow Weave</TITLE>
</HEAD>
<BODY BACKGROUND="bandw.gif">
</BODY>
</HTML>

The program that produces the images uses
ISDs instead of PFDs (see pages 1 through 3) and
constructs the sequences explicitly rather than creat-
ing pattern forms that are expanded, as was done in
the earlier version.

link lists
link patutils
link random
link strings
link weavegif
link weavutil

global anchors
global palpat
global palindromes

procedure main(args)
 local tieup, palette, mutant, win1, win, colorways, i

 randomize()

 anchors := []
 every put(anchors, 1 to 7)

 palpat := []
 every put(palpat, integer(!"8214365"))

 palindromes := list(∗palpat)

 every i := 1 to ∗palpat do
 palindromes[i] := lreflect(palpat[1:i + 1], 2)

 mutant := isd()
 mutant.name := "shadowweave"
 mutant.shafts := 8
 mutant.treadles := 8
 mutant.color_list := ["black", "white"]
 mutant.tieup := pat2rows("8,#55aa956aa55aa956")

 repeat {
 palindromes := shuffle(copy(palindromes))
 anchors := shuffle(copy(anchors))
 mutant.threading := mutant.treadling :=
 sequence(anchors, palindromes)
 mutant.warp_colors :=
 lextend([1, 2], *mutant.threading)
 mutant.weft_colors :=
 lextend([2, 1], *mutant.treadling)
 win := weavegif(mutant)

 WriteImage(win, "bandw.gif")
 WDelay(win, 10000)
 WClose(win)
 }

end

procedure sequence(anchors, palindromes)
 local i, j, k, p, threading

 anchors := copy(anchors)
 palindromes := copy(palindromes)

 threading := []

 i := put(threading, get(anchors)) |
 stop("program malfunction")

 while p := copy(get(palindromes)) do {
 every put(threading, run(threading[–1], get(p)))
 every put(threading, !p)
 i := get(anchors) | break
 every put(threading, run(threading[–1], i))
 }

 threading := lreflect(threading, 2)

 return threading

end

procedure run(i, j)

 if i < j then suspend i + 1 to j
 else if i > j then suspend i – 1 to j by –1
 else fail

end

We ran into an unexpected problem. After
some number of images were created, the program
crashed for lack of memory, even though every
window was closed before a new one was created:
There was a memory leak. The leak probably is in
Icon’s storage management for window resources,
although it conceivably could be in X.

The solution was to terminate the program
after a safe number of images had been processed,
while launching another copy of it before terminat-
ing — a kind of suicidal self-cloning.

The changed code is:

 every 1 to 100 do {
 palindromes := shuffle(copy(palindromes))
 anchors := shuffle(copy(anchors))

…
 }

 system("wallpapr &")

 exit()

The Icon Analyst 56 / 15

If you investigate the shadow-weave Web
pages <1, 2>, you can see variations by reloading
the pages at intervals.

Of course, there’s the ever present danger that
the server on which the program runs will crash.
The server is quite stable and the program has been
known to run for weeks at a time. There is, how-
ever, nothing to be done about a power outage,
which happens on occasion, especially during our
“monsoon” season when there is a lot of electrical
activity. And then there was the raccoon who
passed on brilliantly, most literally, by chewing
through the insulation on a cable at a nearby power
substation.

What’s Left?

The program shown in this article makes only
minor variations on the original shadow weave.
There are all kinds of other, more radical varia-
tions.

In thinking about these, we’ve become inter-
ested in other kinds of sequences produced by
patterns connected by runs. We’re not quite ready
to write an article about this yet, but expect to see
something, perhaps in disguise, in an article a few
issues down the line.

Reference

1. “A Weaving Case Study”, Icon Analyst 54, pp.
4-7.

Links

1. http://www.cs.arizona.edu/patterns/weaving/
 shadow.html

2. http://www.cs.arizona.edu/patterns/weaving/
 bandw.html

Animation — Making Movies

In the context of computer presentation, a
“movie” is a packaged animation. Sound may be
included, but that is beyond the scope of this
article.

Movies are a very hot topic in computing at
the present time and there are several commercial
applications that provide a variety of facilities.

Several formats are in widespread use. The
main ones are MPEG, QuickTime, and AVI (Win-
dows only).

Animated GIFs

The simplest and most widely used format for
packaged animations, especially for the Web, is
GIF89a (“animated GIFs”). GIF89a allows a se-
quence of images to be stored in one file. Applica-
tion software then can produce an animation by
displaying successive images (frames).

Most programs that create animated GIFs do
so from a collection of previously prepared single–
image GIFs. These can be in GIF87a or GIF89a
format. The GIF89a file format allows control in-
formation to be included so that the application
that displays the images can determine how they
are to be presented.

The following options are supported for con-
trolling the display. They are specified in the appli-
cation that builds the animated GIF.

 interlaced
 interframe delay
 loop
 transparent background
 frame position
 disposal method

When interlacing is specified, each frame is
displayed progressively and gradually filled in to
the final detail. Interlaced images do not display
any faster than non–interlaced ones, but they give
the user something to look at while a large image is
being downloaded. Animated GIFs usually are not
interlaced, because this interferes with the visual
transition between successive frames.

The interframe delay is the amount of time
between drawing frames. It can be set to 0, but that
may cause the animation to run too fast on some
platforms.

If the looping value is greater than 0, the
animation repeats the specified number of times
and then stops. Not all programs support specific
values — if you want an animation to display more
than once, it’s safer to use the “forever” option,
which causes the animation to loop until it is
interrupted.

Transparent backgrounds serve the same pur-
pose that they do in GIFs that are not animated [1].

Frames can be shifted from the origin by
arbitrary amounts. This can be useful for special-
ized animations.

Frame disposal refers to what is done with the
currently displayed frame when the next frame is

16 / The Icon Analyst 56

drawn. “Do not dispose” is recommended for
opaque animations and “Revert to Background”
for transparent animations.

Some applications that create animated GIFs
allow the frame–related options to be set sepa-
rately for each frame. Others only apply the speci-
fied options to all frames.

Some also provide optional optimization,
which crops all frames but the first to the part that
is different from the preceding frame. In some kind
of animations, this can considerably reduce the file
size and increase the speed with which animations
can be downloaded and displayed.

Creating Individual GIFs

Many applications can create the individual
GIFs that go into an animation. For example, to
create an animation of the Icon kaleidoscope pro-
gram, a series of GIF images can be written as a
program executes and can be packaged later.

All this requires is placing calls to WriteImage()
at appropriate places — wherever the display is
changed.

For the kaleidoscope application [2, 3], there
is only one place that images need to be written:

procedure outcircle(off1, off2, radius, color)

 Fg(pane, color)

 draw_proc(pane, off1, off2, radius)
 draw_proc(pane, off1, –off2, radius)
 draw_proc(pane, –off1, off2, radius)
 draw_proc(pane, –off1,–off2, radius)
 draw_proc(pane, off2, off1, radius)
 draw_proc(pane, off2, –off1, radius)
 draw_proc(pane, –off2, off1, radius)
 draw_proc(pane, –off2,–off1, radius)

 WriteFrame() # write frame

 return

end

procedure WriteFrame()
 static count

 initial count := 1

 WriteImage(pane, "kaleido" ||
 right(count, 4, "0") || ".gif", –half, –half, size, size)

 write(&errout, count)

 count +:= 1

 return

end

The procedure WriteFrame() is used to isolate
the necessary code, and it is particularly useful if
images need to be written at several places in a
program.

The images are numbered serially. This makes
creating an animation from them easier, since many
applications for composing animated GIFs order
the individual images by the sorting order of their
names. Writing the count to standard error output
helps the person creating the frames keep track of
how many have been written.

For the kaleidoscope, it is not necessary or
desirable to write a frame for each of the eight
symmetric drawings. Unless the animation is very
fast, it would look peculiar, and it would increase
the size of the animation by a factor of about eight.

Another place a frame might be written in the
kaleidoscope program is when the diplay is cleared.
This would clearly show the transitions between
different parameter sets.

Creating Animated GIFs

There are freeware, shareware, and commer-
cial applications that can package existing GIF
images.

For UNIX, there is a freeware application,
gifmerge <1>, that runs from the command line.
For the Macintosh, there is a very capable freeware
program, GifBuilder <2>, that runs interactively
and supports “drag and drop”. GifBuilder also can
extract individual images from a packaged anima-
tion as well as convert between other movie for-
mats. For Windows, there is a shareware program,
GIF Construction Set <3>. As far as we know, there
is no freeware GIF animation builder for Windows
at the present time.

References

1. “Animation — Image Replacement”, Icon Ana-
lyst 55, pp. 8-10.

2. “The Kaleidoscope”, Icon Analyst 38, pp. 8-13.

3. “The Kaleidoscope”, Icon Analyst 39, pp. 5-10.

Links

1. http://www.tu-chemnitz.de/~sos/GIFMERGE/
 index.html

The Icon Analyst 56 / 17

2. http://iawww.epfl.ch/Staff/Yves.Piguet/
 clip2gif-home/GifBuilder.html

3. http://www.mindworkshop.com/alchemy/
 gifcon.html

Sending E-Mail About the Analyst

If you have questions, comments, corrections,
or any other concerns related to the Analyst, send
e-mail to

icon-analyst@cs.arizona.edu

Mail to this address goes only to the editors of
the Analyst.

Quiz — Pointer
Semantics

1. Write code segments
that produce the follow-
ing list structures. Each
box represents a list ele-
ment.

(a)

(b)

L

L1

L2

(c)

(d)

2. Diagram the list structures produced by the
following code segments.

(a)
L := []
push(L, L, L, L)

(b)
L1 := []
L2 := copy(L1)
put(L1, L2)

(c)
L1 := []
L2 := copy(L1)
push(L2, L1)

(d)
L1 := list(5, 1)
push(L1, [], L1)
L1[1] := 0
pull(L1)

L1

L2

L1

L2

18 / The Icon Analyst 56

Drawups

The language of weaving is not easy to understand
nor to write. Most of the weaving words we use are
part of our non-weaving vocabulary: pattern, unit,
block, simple, shadow, fancy, satin, plain, tie, pro-
file, halftone, turned. You may not recognize the
very specific ways these words are used in a sen-
tence about weaving. — Madelyn van der Hoogt
[1]

The Problem

A drawup is, in a sense, the opposite of a
drawdown — a draft created from a drawdown,
which is a representation of the interlacement of a
weave [2].

Early in our explorations of weaving we recall
encountering a well-known book that shows only
drawdowns with no corresponding drafts that
would show how to weave them [3]. Figure 1 is an
example scanned from the book and Figure 2 is a
drawdown obtained from this image by a program
we’ll describe in a later article.

Figure 1. A Scanned Drawdown

Figure 2. A Drawdown Grid

We were puzzled how a weaver could use
drawdowns as a basis for weaving. We later were
told by an experienced weaver “that’s left as an
exercise”.

It wasn’t at all obvious to us how to create a
draft from a drawdown (and most weavers don’t

know how), so we set out to (what else?) write a
program to do it. A primary objective was to pro-
duce a drawup with the fewest number of shafts
and treadles. (The problem is trivial if a different
treadle is used for every row and a different shaft
is used for every column — but that’s not helpful
for actual weaving.)

The key observations are that if a drawdown
contains duplicate rows, these rows can be pro-
duced by the same treadle, and if there are dupli-
cate columns, they can be produced by the same
shaft. Conversely, the draft must have at least as
many shafts as there are different columns, and
similarly for the treadles and rows. If there are no
duplicates, then the number of treadles required is
the number of rows in the drawup and the number
of shafts required is the number of columns in the
drawup.

It’s then just a matter of identifying the dupli-
cate rows and columns and creating a tie-up that
connects them in a way that produces the desired
result.

The Program

The following program works with a draw-
down represented by a bi-level pattern (see pages
4 through 6) and produces an ISD (see pages 2 and
3).

link options
link patutils # for pat2rows()
link patxform # for protate()
link weavutil # for isd declaration
link xcode

record analysis(rows, sequence, patterns)

procedure main(args)
 local threading, treadling, tie, pattern, i
 local symbols, symbol, drawdown, draft, opts

 opts := options(args, "n:")

 drawdown := pat2rows(read()) |
 stop("∗∗∗ invalid input")

 treadling := analyze(drawdown)
 drawdown := protate(drawdown, "cw")
 threading := analyze(drawdown)

 symbols := table("")

 every pattern := !treadling.patterns do {
 symbol := treadling.rows[pattern]
 symbols[symbol] := repl("0", *threading.rows)
 pattern ? {

The Icon Analyst 56 / 19

 every i := upto('1') do
 symbols[symbol][threading.sequence[i]] := "1"
 }
 }

 symbols := sort(symbols, 3)
 tie := ""

 while get(symbols) do
 tie ||:= get(symbols)

 draft := isd()

 draft.name := \opts["n"] | "drawup"
 draft.threading := threading.sequence
 draft.treadling := treadling.sequence
 draft.warp_colors := list(∗threading.sequence, 1)
 draft.weft_colors := list(∗treadling.sequence, 2)
 draft.color_list := ["black", "white"]
 draft.shafts := ∗threading.rows
 draft.treadles := ∗treadling.rows
 draft.tieup := tie2matrix(*threading.rows,
 ∗treadling.rows, tie)

 xencode(draft, &output)

end

procedure analyze(drawdown)
 local sequence, rows, row, count, patterns

 sequence := []
 patterns := []

 rows := table()

 count := 0

 every row := !drawdown do {
 if /rows[row] then {
 rows[row] := count +:= 1
 put(patterns, row)
 }
 put(sequence, rows[row])
 }

 return analysis(rows, sequence, patterns)

end

procedure tie2matrix(shafts, treadles, tieup)
 local matrix

 matrix := []

 tieup ? {
 every 1 to treadles do
 put(matrix, move(shafts))

 }

 return matrix

end

In order to manipulate the drawdown, it is
converted from a bi-level pattern to a binary ma-
trix: a list of strings composed of 0s and 1s.

The procedure analyze() goes through the
rows of that matrix, using the table rows to hold the
distinct rows, to which identifying numbers are
assigned. At the same time, the list patterns is built
to record the order in which the rows appear.

The procedure analyze() first is used on the
rows of the drawdown and then, by rotating the

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1999 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

20 / The Icon Analyst 56

matrix using protate(), the columns.
All that remains is to create the tie-up. For

every treadling pattern, its row is initialized with
0s, which indicate no tie. Then for every position in
the row that is 1, the corresponding value is set to
1, indicating a tie.

Finally an ISD is assembled and output using
xencode().

Figure 3 shows the drawup draft for the
drawdown shown in Figure 2. Notice that it only
requires six shafts and six treadles.

Figure 3. A Drawup Draft

Observation

The method described above can be used to
create a draft for any two-color image. Although
drawdowns usually are shown as grid diagrams
with the squares large enough to see the interlacing
easily, an image in which the interlacement is
represented by single pixels contains the same
information.

Be aware, though, that unless there are many
duplicate rows and columns — or the image is
tiny — the resulting draft will require more shafts
and treadles than are available on treadle looms.
There also is the important question of whether the
fabric would hold together, a topic we’ll cover in a
subsequent article.

To Come

The next step beyond creating drafts from
drawdowns and two-color images is to create them
for multicolored “drawdowns” or, what is equiva-
lent, multicolored images.

What’s Coming Up

Everything should be built top-down, except
the first time. — Alan Perlis

In the next issue of the Analyst, we plan to
have an article on determining whether a color
pattern can be drafted and woven, and, if so, how
to create a draft. Continuing with weaving, we’ll
have an article on a weave design technique known
as name drafting as well as an article on modular
arithmetic as it applies to the numbering of shafts
and treadles.

Versum sequences will reappear in a general-
ized form, and we may show a few versum weaves.

Our series on sequences will continue with an
article on periodic sequences in which the same
pattern of values repeats endlessly.

In From the Library, we plan to cover mod-
ules that support rational and complex arithmetic.

This is a much more difficult problem and, in
general, there may be no solution. Figure 5 shows
a three-color pattern for which there is no draft.

Figure 5. An Undraftable Color Pattern

Try to assign colors to the rows and columns of this
pattern and you’ll see the problem.

References

1. The Complete Book of Drafting for Handweavers,
Madelyn van der Hoogt, Shuttle Craft Books, 1993.

2. “Weave Structure”, Icon Analyst 55, p. 14.

3. A Handbook of Weaves, G. H. Oelsner, 1915,
Macmillan, reprinted by Dover.

Downloading Icon Material
Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

