
The Icon Analyst 55 / 1

August 1999
Number 55

In this issue …

Correction .. 1
Digit Patterns in Primes 1
From the Library — Generators 6
Solutions to Exercises 7
Animation — Image Replacement 8
Operations on Sequences 10
Weave Structure .. 14
Answers to Quiz on Sequences 15
Quiz — Programmer-Defined
 Control Operations 16
Dobby Looms and Liftplans 17
What’s Coming Up 20

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Correction

When we were completing the last issue of the
Analyst, we made some last-minute changes to
the article on shadow weaves [1] to make it fit. In
our haste, we introduced some errors relating to
the figures.

The corrections are:
Page 6, column 1, lines 12 and 13: “The 10

weaves in Figure 4 represent the visual extremes”
should read “The eight weaves in Figure 5 repre-
sent the visual extremes”.

Page 6: The figure at the bottom of the page
should be numbered 5, not 9.

Page 7: The last sentence of column 1 that
starts “For example, …” and continues to the refer-
ences in column 2 should be deleted.

Reference

1. “A Weaving Case Study”, Icon Analyst 54, pp.
4-7.

Digit Patterns in Primes

We’ve had the material for this article since
we first started the series of articles on character
patterns [1]. Since the topic is largely frivolous, we
didn’t get around to writing it up at the time. It
could well have languished forever in one of the
many folders we have that contain partially devel-
oped Analyst articles.

We presently have 42 such folders as well as
three 3-ring notebooks full of older material. There
are several reasons why we have such a large
backlog and so much unfinished work. Sometimes
an article doesn’t seem to pan out but still has
potential. Sometimes our interests change and we
concentrate on new topics, such as weaving. Some-
times an article never seems to fit into the issue of
the Analyst we’re currently developing. Another
factor is the large amount of time and effort it takes
to bring an article to finished form. And, of course,
there are the ever-present demons Disorganiza-
tion, Forgetfulness, and Procrastination.

We’ll work on removing one folder with this
article (while probably adding several more before
we complete it).

Before getting to digit patterns in primes, we
need to set the stage — to establish the prime
mood.

Prime numbers hold endless fascination. Part
of the fascination is intrinsic. Part is the quest for
ever larger examples. And part of it is the unusual
structure of some primes. Mersenne primes [2],
which are of the form 2p – 1 where p is a prime, are
best known.

Many persons interested in primes work in
recreational areas. Prime numbers of a certain type
are collected and new examples sought.

Classification of Primes

Primes are classified in a number of ways:

size
mathematical form

2 / The Icon Analyst 55

mathematical properties
mathematical relationships
digit patterns
typographical properties

Size

 The focus on size reflects the continuing search
for ever-larger primes. The “official” classifica-
tions are <1>:

gigantic: 10,000 (decimal) digits or more
titanic: 1,000 digits to 9,999 digits

These classifications are, of course, quite arbi-
trary. At present there are 10 known primes with
more that 100,000 digits. The next largest prime to
be found most likely will have over 1,000,000 dig-
its. The presently established size categories stand
to make less and less sense as larger primes are
found. Useless factoids: As of this writing, there are
more than 3,500 known gigantic primes. There are
so many known titanic primes that only “interest-
ing” ones are being recorded.

It seems to us that it would make more sense
to rank a prime by the number of digits required to
express the number of digits it has. For example, 89
(2 digits) and 10067 (5 digits) both have rank 1,
while the Mersenne prime 2216091 – 1, which has
65,050 digits, has rank 5.

Mathematically, the rank is given by

 [log10(log10(p))]

where [r] denotes the integer part of r.
This can be easily cast in Icon without the

problems associated floating-point arithmetic:

rank := ∗∗p

The presently largest known primes have rank
6. There are no known rank 7 primes. There are, of
course, primes of all ranks; it’s just that primes of
higher ranks remain to be discovered. In the ab-
sence of a formula for primes, even with the ever-
increasing computational power available, the
search will go slowly.

Mathematical Form

Many known primes have distinctive math-
ematical forms, of which the Mersenne primes
mentioned earlier are the best known.

The Fermat primes have the form 22
n

+ 1. It
was once conjectured that all numbers of this form
are prime, but that is false. Only five Fermat primes
are known: 3, 5, 17, 256, 65537, resulting from n = 0,

1, 2, 3, and 4. There also are generalized Fermat
primes of the from d2

n
+ 1. The Cullen primes have

the form n × 2n ± 1. There are factorial primes,
which are of the form n! ± 1, the largest known
being 3610! – 1.

The repeated digit (“repdigit”) primes have
the form d × (10n – 1) / 9. There are five known
“repunit” primes for d = 1, which in base-10 nota-
tion consist entirely of 1s. The largest known is for
n = 1031. It is known that any larger repunit primes
would require n > 30,000.

There are many other mathematical forms for
primes. See Reference 3 and Links 2 and 3.

Mathematical Properties

A regular prime p is one that does not divide
the class number h(p) of the cyclotomic field ob-
tained by adjoining a primitive root of unity to the
rational field (Got that?). Irregular primes are, as
you’d expect, those that are not regular. There are
an infinite number of irregular primes, but it is not
known if there are an infinite number of regular
primes.

Other primes with particular mathematical
properties are the Wieferich primes, for which

2p-1 = 1 mod p2

and the Wilson primes, for which

(p – 1)! = –1 mod p2

Only three Wilson primes are known: 5, 13, and
563.

Certain kinds of numbers might be included
in this category, such as Fibonacci numbers that are
primes. 25 Fibonacci primes are known, of which
the largest is term 93311 in the Fibonacci sequence.

Mathematical Relationships

Some primes are related in special ways, such
as the Sophie Germain primes, p, 2p + 1 and the
twin primes, p, p + 2. There also are k-tuplet primes
<4>. For example, 11, 13, 17, and 19 comprise a
prime quadruplet.

Digit Patterns

We’ve already mentioned repdigit primes.
Other much-studied primes with distinct digit
patterns are palindromic primes of various types.

Since main subject of this article is digit pat-
terns, we’ll defer the bulk of the discussion until
later.

The Icon Analyst 55 / 3

Typographical Properties

Typographical properties have to do with the
shapes of digits. Among these are the
strobogrammatic primes, which are unchanged if
turned upside down. An example is 619. A tetradic
(or 4-way) prime is a palindromic strobogrammatic
prime that is the same in four ways — from right to
left, left to right, top to bottom, or upside down. An
example is 18181. There even are “holey” primes
that have a preponderance of digits with “holes” in
them: 0, 4, 6, 8, and 9.

It seems to us that classifying primes by their
typographical properties goes beyond the realm of
recreational mathematics and into plain silliness.
Note also that some typographical properties de-
pend on the way digits are written. Notably, 4 is
sometimes written as 4 without a “hole”.

Miscellaneous

In classifications of things, there almost al-
ways is a category for things that don’t fit any-
where else but don’t deserve a category of their
own.

For primes, an example is the “prime digit
primes”, all of whose digits are prime — composed
only of the digits 2, 3, 5, and 7. The largest known
prime digit prime is

 (72323252323272325252) × (103120 – 1) / (1020 – 1) + 1

This number can be represented more compactly
using pattern forms [4], which we’ll explore later.

Another example is the “absolute primes” for
which all rearrangements of digits result in primes.
18 of these are known, the largest of which is the
current largest known repdigit prime. The largest
known absolute prime that is not a repdigit prime
is 991.

A Comment on Classifications

In digit patterns, typographical properties,
and most miscellaneous primes, most specific types
are well-defined for representation in various bases,
although only base 10 is usually considered.

Of course, almost all such properties are de-
pendent on the base. For example, a prime that is
palindromic in one base usually is not palindromic
in another.

Unlike mathematical properties, properties
dependent on the base are not intrinsic or funda-
mental. The prominent mathematician G. H. Hardy

How Many Primes Are There?

In order to put primes with special prop-
erties in perspective, it’s useful to realize
how many primes there are.

Surprisingly, it’s possible to compute
exactly the number of primes ≤ k without
having to find them all.

The prime counting function, π(k), gives
this number <1,2>. The computation is cum-
bersome and complicated, but it is tractable.
As far as we know, the largest value of k for
which π(k) has been computed is k = 1020,
although we can only find the values to 1019.
From π(k), it’s easy to produce a list of the
number of n-digit primes, which we find
more interesting than the number for a spe-
cific value. We’ll designate the number of n-
digit primes by π'(n):

n π'(n)

1 4
2 21
3 143
4 1061
5 8363
6 68906
7 586081
8 5096876
9 45086079

10 404204977
11 3663002302
12 33489857205
13 308457624821
14 2858876213963
15 26639628671757
16 249393770611366
17 2344318816620308
18 22116397130086627
19 209317712988603747

There are formulas that approximate
π(k). The simplest originated with Gauss and
Legendre:

π(k) ≈ k / log(k)

It has been proved that this relationship is
asymptotic and is called the prime number
theorem.

This approximation is somewhat low,

continued on next page

4 / The Icon Analyst 55

but it’s close enough to give a feeling for the
magnitudes involved. This formula is trivial to
implement:

procedure pi(k)

 return integer(k / log(k))

end

This procedure allows us to compute the ap-
proximate number of n-digit primes for large
n. For example,

π'(10100) ≈ 3.9 × 1097

How close the approximation is to the
exact value can be seen in the ratios of the exact
to the approximate values, which we’ll desig-
nate by π'(n):

n π'(n)/π'(n)

1 2.00
2 1.24
3 1.16
4 1.13
5 1.10
6 1.08
7 1.07
8 1.06
9 1.05

10 1.05
11 1.04
12 1.04
13 1.04
14 1.03
15 1.03
16 1.03
17 1.03
18 1.03
19 1.02

The point of all this is that there are an
enormous number of prime numbers and, ex-
cept for small values of n, only a few are
known. The reason that a large percentage of
known large primes have “special” character-
istics is that persons working in the field look
for them.

Links

1. http://www.treasure-troves.com/math/

 PrimeCountingFunction.html

2. http://www.utm.edu/research/primes/howmany.shtml

was particularly critical of work that depended on
the base, considering it not to be “serious math-
ematics” or useful in any way [5]. For us, that does
not matter: We make no pretense of doing serious
mathematics.

Getting the Digits of Primes

In order to investigate digit patterns in primes,
it is, of course, necessary to get the digits. We dealt
with this subject to some extent in an article on
versum primes [2]. We’ll include that material here
to provide a self-contained discussion.

Except for the smallest primes, primes are
recorded by formulas. This is possible if for no
other reason than because if p is a prime, q1 = p + 1
and q2 = p – 1 are composite. Since q1 and q2 are
composite, they have at least two prime factors, so
that, in general, p can be written as p1 × p2 × … ± 1,
and the process continued for the prime factors. In
most cases, the expressions for large primes are
much shorter than the primes themselves.

Often the number of prime factors is large, the
most being the Mersenne primes, 2p – 1. Many
known large primes have the form p × 10n ± 1 or p
× 2n ± 1 (which includes the Mersenne primes). No
doubt the reason for this is the comparative ease of
finding primes of these mathematical forms. That
definitely is the case for Mersenne primes.

In the listing of the largest known primes <5>,
the longest expressions have only 48 characters.
There are 19 of these, which have the same form up
to constant values. An example is:

 34344713643960928∗(2^(3∗1189)–2^1189)–6∗2^1189–1

Incidentally, the large integer in this expression
cannot be written in fewer symbols using only
standard arithmetic operators.

Trivia quiz: What’s the smallest positive integer
whose representation as an expression using only
digits and standard arithmetic operators is shorter
than the integer itself? An example of a small
integer that has a shorter representation is 16384
for which an expression is 2^14. This is not the
smallest one, however.

Fortunately for what we want to do, most of
the formulas given in the on-line list of large primes
are syntactically correct Icon expressions as they
stand and have the expected interpretations.

Exceptions to this are suffix and bracketing
operators. The suffix operators are n!, for factorial,

The Icon Analyst 55 / 5

n!!...!, the “multi-factorial” (which is not the re-
peated application of the factorial but something
different that we’ll explain later), and n#, the
“primorial”, which stands for the product of primes
≤ n.

The only bracketing operator is [r], the “floor”
of r, which in the case of prime formulas is just
integer(r).

Here’s a procedure to convert bracketing and
suffix operators to legal Icon syntax:

link strings

procedure fixup(exp)
 local result, term, op, i

 exp := replacem(exp, "[", "integer(", "]", ")")

 exp ? {
 result := ""
 while result ||:= tab(upto(&digits)) do {
 term := tab(many(&digits))
 if pos(0) then {
 result ||:= term
 return result
 }
 case op := move(1) of {
 "#": result ||:= "primorial(" || term || ")"
 "!": {
 i := 1
 i +:= ∗tab(many('!'))
 result ||:= "mfactorial(" || term || "," || i || ")"
 }
 default: result ||:= term || op
 }
 }
 return result || tab(0)
 }

end

The procedure replacem() is from the strings
module in the Icon program library. It operates on
its first argument. For subsequent pairs of argu-
ments, all instances of the first string in the pair are
replaced by the second.

Procedures are used to implement the
primorial and “multi-factorial”. Here’s primorial():

procedure primorial(n)
 local k, m

 m := 1

 every k := primeseq() do {
 if k <= n then m ∗:= k

 else return m
 }

end

The “multi factorial” is defined as follows:

 n! = n × (n – 1) × (n – 2) … 1
 n!! = n × (n – 2) × (n – 4) …
 n!!! = n × (n – 3) × (n – 6) …

and so on. Here’s a procedure:

procedure mfactorial(n, i)
 local j

 if n < 0 then fail
 if i < 1 then fail

 j := n

 while n > i do {
 n –:= i
 j ∗:= n
 }

 return j

end

Most of the functions that appear in the ex-
pressions for primes also are implemented by Icon
procedures. A few functions are too complicated
for it to be worthwhile to create corresponding
Icon procedures. An example is the cyclotomic
polynomial of order n in x, which is given by

Cn(x) = Πk(x – e2πik/n)

where k runs over all positive integers less than n
that are relatively prime to n

For the few prime expressions that can’t be
evaluated in Icon, we use Mathematica [6]. There
are only 28 expressions among the 5,200 in the
current list of largest known primes that require
going to Mathematica.

Next Time

We’re out of room, and we’ve only touched
on the subject of character patterns in primes. The
topic may be frivolous, but it’s nonetheless bulky.
There’s more to come.

References

1. “Character Patterns”, Icon Analyst 49, pp. 1-6.

2. “Versum Primes”, Icon Analyst 46, pp. 12-16.

6 / The Icon Analyst 55

From the Library — Generators

The Icon program library contains many gen-
erative procedures — procedures that can gener-
ate sequences of values. Most of them generate
numbers (primarily integers). The other large group
generates strings. A few generate lists, and in the

graphics portion of the library, there are many
procedures that generate records containing the
coordinates of points for various kinds of paths
and geometrical figures.

Unfortunately, the generative procedures are
scattered among many modules — 103 in all. Most
of the generative procedures for numbers and
strings, however, are in four modules: genrfncs,
numbers, strings, and pdco. Except for generators
related to graphics, most of the generative proce-
dures that you might want are linked in the mod-
ule seqfncs. If you include

link seqfncs

in programs that need generative procedures, you’ll
most likely get what your need, and a lot more.
(The Icon linker removes code that is not refer-
enced, so any extra baggage does not show up in
the resulting executable file.)

Here’s a sampling of generative procedures
that are not tied to any particular application. See
the documentation for the modules for details.

Integer Generators

genrfncs

chasosseq() Hofstadter’s chaotic sequence [1]

factseq() the factorials

fibseq() the Fibonacci numbers, including
generalizations (Lucas numbers)

figureseq() the figurate numbers

geomseq() the geometric numbers

ngonalseq() the polygonal numbers

partitseq() integer partitions

powerseq() the exponential numbers

primeseq() the prime numbers

versumseq() the versum numbers [2]

This module also contains procedures for many
other less well-known sequences.

random

randseq() successive values of &random

String Generators

strings

comb() the combinations of characters of

3. The New Book of Prime Number Records, Paulo
Ribenboim, Springer-Verlag, 1995.

4. “Pattern Forms Revisited”, Icon Analyst 52,
pp. 4-6.

5. A Mathematician’s Apology, G. H. Hardy, Cam-
bridge University Press, 1992.

6. The Mathematica Book, Stephen Wolfram, 3rd ed.,
Wolfram Media and Cambridge University Press,
1996.

Links

1. http://www.utm.edu/research/primes/index.html

2. http://www.utm.edu/research/primes/lists/top_ten/

3. http://www.utm.edu/research/primes/types.html

4. http://www.ltkz.demon.co.uk/ktuples.htm

5. http://www.utm.edu/research/primes/largest.html

The Icon Analyst 55 / 7

a string of a specified length

palins() palindromes

permute() permutations

substrings() substrings

Point Generators

Points are represented by records with three
fields, x, y, and z, declared in the module gobjects.
Most procedures that generate points use only the
x and y fields.

curves

ellipse() ellipses (including circles)

lissajous() Lissajous figures

parabola() parabolas

This module contains 21 other plane curves, in-
cluding some with esoteric names, like the Lemnis-
cate of Gerono and the Trisectrix of MacLaurin.

fstars

fstar() fractal stars [3]

rpolys

rpoly() regular polygons

rstars

rstar() regular stars

More to Come

In coming articles, we’ll mention some addi-
tional sequences that are useful in puzzles, quizzes,
and specific topics, such as weaving and versum
numbers.

In the next article on the Icon program library,
we’ll continue with generative procedures, cover-
ing programmer-defined control operations, most
of which are generators.

References

1. Gödel, Escher, Bach: An Eternal Golden Braid, Dou-
glas R. Hofstadter, Basic Books, New York, 1979,
pp. 137-138.

2. “Versum Numbers”, Icon Analyst 35, pp. 5-11.

3. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, 91-92, 116.

Solutions to Exercises

See Icon Analyst 54, page 8, for statements
of the exercises.

1. The code

patterns := [seq_old]

 repeat {
 seq_new := []
 every put(seq_new, seq_old[!seq_old])
 if lequiv(seq_new, !patterns) then
 break
 put(patterns, seq_new)
 seq_old := seq_new
 }

“self organizes” the list of integers given in seq_old.
It creates a new list of integers, seq_new from the
positive integers in seq_old, possibly reordering
them. The method is to go through the elements of
seq_old from beginning to end, appending to
seq_new the element of seq_old in position i of
seq_old. For example, if the first element of seq_old
is 3, the 3rd element of seq_old is appended to
seq_new. If an element of seq_old is greater than
the size of seq_old, it is discarded. An example
may help:

[3, 1, 2, 4] ➛ [2, 3, 1, 4]

The process goes like this:

1. The 1st element of seq_old is 3; the 3rd
element of seq_old is 2, so it becomes the 1st
element of seq_new.

2. The 2nd element of seq_old is 1, so its 1st
element, 3, is appended to seq_new.

3. The 3rd element of seq_old is 2, so its 2nd
element, 1, is appended to seq_new.

4. The 4th element of seq_old is 4, so it is
appended to seq_new.

Successive results are placed in patterns. The
loop terminates when there is a repetition of a
previous sequence. The loop always terminates
because there are only a finite number of possibili-
ties.

For many sequences, the process terminates
after only one or two passes. For example,

[3, 1, 2, 4] ➛ [2, 3, 1, 4] ➛ [3, 1, 2, 4]

2. Creating images for modular circles is a problem
with many parameters that a user might want to

8 / The Icon Analyst 55

specify. We’ve cast the solution as a procedure, so
that it can be called from a program that takes
parameters as command line options or as a pro-
gram with a visual interface that takes user specifica-
tions interactively.

We’ve added optional spokes, which some-
times help make the relationships clearer, and an
optional offset, which is useful in situations such as
counting starting at 1, as for the shafts and treadles
of a floor loom.

The procedure uses rpoly() from the Icon pro-
gram library to obtain a list of points for the appro-
priate polygon.

The procedure returns a hidden window con-
taining the image, which the caller can display by
setting "canvas=normal", write an image file, and so
on. It’s the responsibility of the caller to close the
window when it no longer is needed.

The procedure itself creates a PostScript file for
the image; the caller must know what its name will
be to use it.

link graphics
link psrecord
link rpolys

procedure wheel(mod, spokes, width, radius,
 revs, offset, name, font, gap, Pradius)
 local half, i, win, p

 # defaults for omitted arguments

 /mod := 8 # modulus
 /width := 400 # window width
 /radius := 60 # radius of inner circle
 /revs := 2 # revolutions around circle
 /offset := 0 # offset of first value
 /name := "wheel" # file name
 /font := "times,12" # font
 /gap := width / 20 # gap between circles
 /pradius := 3 # radius of points

 half := width / 2

 win := WOpen("size=" || width || "," || width,
 "font=" || font, "canvas=hidden") |
 stop("∗∗∗ cannot open window")

 PSEnable(win, name || ".eps")

 DrawCircle(win, half, half, radius)

 every p :=
 rpoly(half, half, radius, mod, –&pi / 2) do {
 FillCircle(win, p.x, p.y, pradius)
 if \spokes then DrawLine(win, half, half, p.x, p.y)
 }

 i := offset

Animation — Image Replacement

There is a dual aspect to the animation form:
part is right-brained, relying heavily on the
talent and inspiration of the artist, and part is
left-brained, involving the discipline and orga-
nization needed to deal with the myriad details
associated with production.

— Gary Chapman [1]

In the case of simple animations, like the
kaleidoscope [2, 3], a program may be able to
produce acceptable results by just drawing. Re-
versible drawing and the use of mutable colors for
the purpose of animation are tricks that can be
useful for some kinds of special effects.

For complex animations, such as realistic ac-
tion scenes, the only feasible way of producing an
animation is by image replacement — replacing
the canvas (or a portion of it) by a succession of
previously prepared images.

The main problems with using previously
prepared images are the speed with which they
can be displayed and the space required for the
images.

To produce acceptable animations, a “frame
rate” of at least 15 frames per second (fps) is neces-
sary, except for some kinds of cartoon animations,
for which 10 fps will do. 24 fps is desirable. 15 fps
translates into ~67 msec. per image. On the other
hand, if the frame rate is too fast, apparent motion
will be distorted or there will be visual artifacts.

The achievable frame rate depends heavily on
the computer used — its basic processing speed
and any special graphics hardware.

Frame rate generally is proportional to the

 every 1 to revs do
 every p := rpoly(half, half, radius +:= gap,
 mod, –&pi / 2) do {
 CenterString(win, p.x, p.y, i)
 i +:= 1
 }

 PSDone()

 return win

end

Note that CenterString() is used to position
the labels.

The Icon Analyst 55 / 9

number of pixels in a frame. For example, doubling
image dimensions reduces the achievable frame
rate by a factor of four.

Similarly, the amount of space required for an
image increases with its size roughly in the same
way. Space isn’t just a problem of storage; it’s often
the bottleneck in network communication. For these
reasons, animations tend to be small and short.

In Icon, there are three ways of doing image
replacement: DrawImage(), ReadImage(), and
CopyArea(). Each method has advantages and dis-
advantages.

DrawImage() allows the manipulation of im-
age strings during animation. It also supports trans-
parency, which, among other things, allows the
animation of non-rectangular areas. DrawImage()
is, however, too slow for anything but small ani-
mations. Image strings also are large in compari-
son with GIF image files.

ReadImage() supports transparency also, and
allows the use of compact file formats, but it is too
slow for anything but small animations.

CopyArea() is very fast but images must be
loaded into windows prior to animation to take
advantage of its speed. Preloading images delays
the start of animation, and available memory lim-
its the length of animations.

We used 200x200 pixel image shown in Fig-
ure 1 for timing by repeatedly displaying it.

Figure 1. An Image for Animation Tests

The GIF file for this image is about 25,000
bytes, while the corresponding image string is
about 40,000 bytes.

 Here are the times in milliseconds required
to display a frame on a 233 Mhz DEC-Alpha.
Asterisks indicate animations with images
preloaded.

DrawImage() 44.7
DrawImage() 28.9∗

ReadImage() 110.1
CopyArea() 1.4∗

Here’s how an animation might done using a
CopyArea() and preloading images:

link graphics

$define Pause 300

procedure main(args)
 local windows, image, win

 windows := []

 every image := !args do
 put(windows, WOpen("image=" || image,
 "canvas=hidden")) |
 stop("∗∗∗ cannot open ", image)

 if ∗windows = 0 then stop("∗∗∗ no images")

 win := WOpen("width=" ||
 WAttrib(windows[1], "width") || "," ||
 WAttrib(windows[1], "height")) |
 stop("∗∗∗ cannot open animation window")

 every CopyArea(!windows, win) do
 WDelay(Pause)

 WDone()

end

The names of the image files are given on the
command line. The program assumes the frames
are all of the same size.

For “long” animations, it’s not feasible to
preload images — for an animation only one minute
long, 900 frames are needed at 15 fps, which re-
quires more memory for windows than most com-

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia55/

10 / The Icon Analyst 55

Operations on Sequences

There are many ways of creating sequences
by performing operations on other sequences. In
the last article on sequences [1], we used several of
these operations, including filtering and applying
operations to successive values.

Some operations, such as interleaving the val-
ues of two or more sequences, cannot be done in
Icon without using co-expressions. An expression
to interleave the values produced by two expres-
sions, expr1 and expr2, is

(e1 := create expr1, e2 := create expr2, |@(e1 | e2))

(C usually is used to designate co-expressions;
we’ll use e here to avoid uppercase.) Since activa-
tion of a co-expression produces at most one value,
results from e1 and e2 are produced in alternation.
Repeated alternation keeps the process going. In
this formulation, if one of the expressions runs out
of values before the other, the remaining values of
the other are produced from this point on.

This expression can, like all such expressions,
be cast as a procedure:

procedure interleave(e1, e2)

 suspend |@(e1 | e2)

end

The caller must supply the co-expressions, as in

 interleave(create seq() create, –seq())

Programmer-defined control operations
(PDCOs) make co-expressions easier to use for
such purposes [2,3]. When a procedure is invoked
with surrounding braces instead of parentheses, a
list of co-expressions for the arguments is supplied
to the calling procedure. The procedure above then
could be cast as

procedure interleave(L)

 suspend |@(L[1] | L[2])

end

and called as

interleave{seq(), –seq()}

which is equivalent to

interleave([create seq(), create –seq()])

A latent naming problem was flushed by the
introduction of weaving and pattern-form proce-
dures [4], in which initial uppercase is used to
distinguish such procedures from procedures that
operate on strings, as in Reverse() and reverse().
The same convention had been used for PDCOs,
and Reverse() already existed as a PDCO. We
wound up with two (and in one case, three) proce-
dures in the Icon library with the same name. This
is “okay” as long as you don’t link modules con-
taining more than one, but it is confusing and
untenable in the long run (or the short run, as it
turned out for us).

To solve this problem, we decided to append
PDCO to the names of all PDCOs in the library. The
resulting names are ugly and cumbersome, but at
least they make it clear when PDCOs are used. You
might argue that the pattern-form procedures, a
late arrival in the library, should have borne the
embarrassment of name defacement. We chose to
do it for PDCOs because it serves as a visual
reminder of the need for braces for invocation.
Consequently, a PDCO for interleaving the values
of two sequences now is InterleavePDCO{}.

This PDCO, also known as ParallelPDCO{},
can be generalized to interleave values from an
arbitrary number of sequences:

procedure InterleavePDCO(L)

 suspend |@!L

end

puters have. Even if enough memory were avail-
able, the time to preload 900 200×200 pixel images
would be about 100 seconds on the platform for
which the timing figures were measured.

Note also that for a 1-minute animation, the
GIF files amount to approximately 23 MB.

Next Time

We’ll conclude the series of articles on anima-
tion with one on how to make “movies” — pack-
aged animations.

Reference

1. Macromedia Animation Studio, Gary Chapman,
Random House/New Media, 1995.

2. “The Kaleidoscope”, Icon Analyst 38, pp. 9-13.

3. “The Kaleidoscope”, Icon Analyst 39, p. 5-10.

The Icon Analyst 55 / 11

For example,

InterleavePDCO{seq(), seq() ^ 2, seq() ^ 3}

produces a sequence that interleaves the integers,
their squares, and their cubes: 1, 1, 1, 2, 4, 8, 3, 9, 27,
… .

Writing PDCOs

Many PDCOs are straightforward once you
understand how co-expressions work. Some of the
ones in the Icon program library appear arcane as
a result of compact or clever coding. For example

suspend |@!L

can be cast more clearly, at the expense of brevity,
as

sw := 1 # start assuming at least 1
while sw > 0 do {
 sw := 0 # none yet
 every e := !L[1] do
 if x := @e then {
 sw +:= 1 # note result
 suspend e
 }
 }
 }

What we typically do is write a long, clear
form that works and then recast it in a more concise
form.

The important points to remember about co-
expressions are that

• @e produces one value from the generator
for e except when there are no more values,
in which case it fails.

• ^e produces a “refreshed” copy of e. In the
absence of side effects, this copy starts with
the first value for the generator. Since it pro-
duces a copy of e and does not change e, the
usual usage is e := ^e.

• |@e produces all the values from the genera-
tor for e, stopping only when there are no
more.

Precautions

When dealing with “infinite” generators, like
seq(), whose sequences are endless, there are haz-
ards. Some of the hazards are obvious, others
subtle. The hazards are particularly serious when
using PDCOs, which are designed to operate on
generators provided by the caller.

An obvious example is ReversePDCO{},
which reverses the order of a sequence:

procedure ReversePDCO(L)
 local result

 result := []

 while push(result, @L[1])

 suspend !result

end

It’s clear that if expr is an infinite generator,
ReversePDCO{expr } never produces a result and
eventually terminates with an error for lack of
storage. A more subtle point is that if expr is a finite
generator but produces a large number of values,
the same thing may happen. Even when
ReversePDCO{} successfully produces the rever-
sal of a sequence, there may be a considerable time
lag before the first value is produced. This may be
disconcerting to the user and mistakenly inter-
preted as an endless loop — there’s no way to tell.

Nevertheless, PDCOs with this kind of prob-
lem are useful in many situations. One problem is
that the concept of reversing an infinite sequence is
little more troublesome than the concept of infinity
as a number. It’s this kind of problem that has led
mathematics into ongoing problems with infinite
quantities, especially in set theory [5].

There are other pitfalls in operations on se-
quences that are less obvious. For example,

seq() < 5

generates 1, 2, 3, 4 and then continues running
without ever terminating. The problem here is not
that the concept of “values less than 5” is question-
able; it’s the consequence of its application to an
infinite generator for which only a few values
satisfy the condition. Note that there is no run-time
error in such a case; just endless computation with
no value produced.

Of course, there are many other forms of this
problem. An example is IncreasingPDCO{}, which
filters out values of an integer sequence that are
less than or equal to preceding values:

procedure IncreasingPDCO(L)
 local last, current

 last := @L[1] | fail

 suspend last

 while current := @L[1] do {
 if current <= last then next

12 / The Icon Analyst 55

 else {
 suspend current
 last := current
 }
 }

end

This PDCO works fine for many integer se-
quences, like the Fibonacci numbers, but is a “black
hole” for, say, –seq().

Another example is RotatePDCO{} which ro-
tates a sequence a specified number of values:

link lists

procedure RotatePDCO(L)
 local result, i

 i := @L[2]) | fail

 result := []

 while put(result, @L[1])

 suspend !lrotate(result, i)

end

As written, this procedure has the same prob-
lem that ReversePDCO{} has. However, for left
rotation, indicated by a negative rotation value, it
can be written so that it works for infinite se-
quences, since, in that case the rotated values are
never reached:

link lists

procedure RotatePDCO(L)
 local result, i

 i := @L[2] | fail

 result := []

 if i <= 0 then {
 every 1 to i do # save first values
 put(result, @L[1])
 suspend |@L[1] # generate the rest
 suspend !result # ones rotated out
 }
 else {
 while put(result, @L[1])
 suspend !lrotate(result, i) # rotate whole list
 }

end

Of course, for right rotation, the procedure
never produces a value. The subtlety here is that if
the rotation is computed, a user may not sense the
hazard.

The usual way to prevent problems that can
arise with infinite generators is to use limitation, as

in

(expr \ 1000) < 5

Note that

(expr < 5) \ 1000

does not solve the problem. Note that it is not
appropriate to put a limit in the code for PDCOs
that have potential termination problems: That
would modify the sequence being operated on and
potentially produce invalid results.

Generality

Some PDCOs have arguments that seem most
naturally cast as constants, not generators.
UnopPDCO{}, which applies a unary operator to a
to a sequence, is an example:

procedure UnopPDCO(L)
 local op, x

 op := proc(@L[1], 1) # unary interpretation

 while x := @L[2] do
 suspend op(x)

end

For example,

UnopPDCO{"∗", seq() ^ 3}

generates the sizes of the cubes: 1, 1, 2, 2, 3, 3, 3, 3,
… .

The expression

while x := @L[2] do
 suspend op(x)

is used instead of

suspend op(|@L[2])

to distinguish between the end of a sequence and
an operation that fails. This procedure does not
check for possible failure of

proc(@L[1], 1)

What would be appropriate in such a case?
As we’ve said in previous Analyst articles,

when programming in Icon, think generators. This
suggests that the operator argument could itself be
a sequence. If this were done, things like this would
be possible:

UnopPDCO{|("+" | "–"), seq()}

which produces the integers with alternating signs:

The Icon Analyst 55 / 13

1, –2, 3, –4, 5, –6, … .
In order to accomplish this, the generated

values for the first argument need to be used:

procedure UnopPDCO(L)
 local op, x

 repeat {
 op := @L[1] # may fail, not changing op
 op := proc(op, 1)
 x := @L[2] | fail
 suspend op(x)
 }

end

The way this procedure is written, if the first
argument runs out of values before the second, the
last value for the first argument is used for the
remainder of the operation. This approach has the
nice property that the first argument need not be a
generator at all, and UnopPDCO{"∗", expr } works
as before.

Examples

One frequently used operation on integer se-
quences is taking the differences of successive
terms. That’s easy enough to do. Here’s a PDCO:

procedure DeltaPDCO(L)
 local i

 repeat {
 i := @L[1] – @L[1] | fail
 suspend i
 }

end

In some kinds of weaving, the shaft and trea-
dling numbers must alternate between odd and
even. When such drafts are derived from other
drafts, it may be necessary to insert “incidentals”
to get the necessary even-odd alternation [6].

Here’s a PDCO that does that. The inserted
number is one greater than the first member of a
pair that must be separated:

procedure OddEvenPDCO(L)
 local val, val_old

 while val := @L[1] do {
 if (val % 2) = (\val_old % 2) then
 suspend val_old + 1
 suspend val
 val_old := val
 }

The nonnull test bypasses the first number.
We earlier showed a PDCO to apply unary

operations to sequences. Here’s the equivalent for
binary operations:

procedure BinopPDCO(L)
 local op, x, y

 repeat {
 op := @L[1]
 op := proc(op, 2)
 (x := @L[2] & y := @L[3]) | fail
 suspend op(x, y)
 }

end

Here’s a PDCO that replicates each value
from the first sequence by the values produced by
the second sequence:

procedure ReplPDCO(L)
 local x, i

 while x := @L[1] do {
 i := @L[2] | | fail
 suspend (1 to i) & x
 }

end

The expression

(1 to i) & x

is an Icon idiom for generating x i times [7].

References

1. “Generating Sequences”, Icon Analyst 54, pp.
13-15.

2. “Programmer-Defined Control Operations”,
Icon Analyst 22, pp. 8-12.

3. “Programmer-Defined Control Operations”,
Icon Analyst 23, pp. 1-4.

4. “A Weaving Language”, Icon Analyst 52, pp.
1-3.

5. Mathematics: The Loss of Certainty, Morris Kline,
Oxford University Press, 1980.

6. “Commemorate with a Name Draft”, Norma
Smayda, Shuttle, Spindle and Dyepot, Vol. 91, Sum-
mer 1992, pp. 42-45.

7. “Idiomatic Programming”, Icon Analyst 25,
pp. 1-5.

14 / The Icon Analyst 55

Weave Structure

Everything in weaving is so simple after you
understand it, but before you do, it seems so
hard. — unknown weaving teacher

Technically a loom is any mechanism that
creates a shed in which some warp threads are
raised above others to allow a weft thread to pass
through [1].

A loom facilitates the process of weaving.
There are many kinds of looms, some dating from
antiquity, and there are seemingly endless varia-
tions on each. In our first article on weaving [1], we
used a typical floor loom as a model.

It is easy to focus on a particular kind of loom,
the way it works, how weaves for it are designed
and specified, but lose track of the larger picture.

Weave structure is defined as the particular
interlacement of warp and weft threads. This con-
cept is independent of any loom.

The structure of a weave is expressed in a
drawdown [1], which shows the interlacing as a
grid. In the interlacing, a black square indicates the
warp thread is on top of the weft thread at that
point, while a white square indicates the weft
thread is on top. See Figure 1.

Figure 1. A Drawdown

How this structure might be woven depends
on the loom used. In fact, it may or may not be
possible, depending on the capabilities of the loom.

Looms both enable and constrain. For ex-
ample, a floor loom allows a weave structure to be
set up in a systematic manner using shafts and
treadles. The weave structures a floor loom can

weave are limited by the number of shafts and
treadles the loom has.

Any structure can be woven on a floor loom
that has enough shafts and treadles. The problem
is that a particular structure may require more
shafts and treadles than the loom has. There are
(large and expensive) looms with many shafts and
treadles, but there is a practical limit. In the worst
case, a weave structure may require as many shafts
as there are warp threads and as many treadles as
there are weft threads. So a weave structure with
100 warp and 100 weft threads in the worst case
would require a floor loom with 100 shafts and 100
treadles. No such animal exists, as far as we know.

 There are other kinds of looms, such as
drawlooms [2] and Jacquard looms [3] <1>, that do
not have these limitations. The illustration on the
last page of the last issue of the Analyst is of an old
Chinese drawloom. The image on the last page of
this issue is of an industrial Jacquard loom. We will
have more to say about such looms in a subsequent
article.

The article Dobby Looms and Liftplans that
starts on page 17 describes a method of extending
the capabilities of floor looms.

Next Time

In a subsequent article on weaving, we will
show how to produce floor-loom drafts from draw-
downs in a way that minimizes the number of
shafts and treadles needed. At this point, we will
be able to show algorithms and programs.

Also on the agenda is the more difficult issue
of color: Creating drafts from color interlacement
diagrams and determining if it is even possible to
find an interlacement for a particular colored pat-
tern.

References

1. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

2. The Book of Looms, Eric Broudy, Brown Univer-
sity Press, 1979, pp. 124-134.

3. The Book of Looms, pp. 134-137.

Link

1. http://www.cs.arizona.edu/patterns/weaving/
 weavedocs.html

The Icon Analyst 55 / 15

Answers to Quiz on
Sequences

See Icon Analyst 54 (page
16) for the quiz.

In the answers for problems
1 though 7, we’ve put some of
complicated expressions on sepa-
rate lines to improve readability.

Note that they all are mutual evaluation expres-
sions.

1. (i := seq(), if i == reverse(i) then i)

2. (

 k:= &null, m := 0, i := seq(),
 if /k then k := i else 1,

 if k ~= i then
 (

 m +:= 1,
 if m % 2 = 1 then i else 1(.k, k := i)

)
)

Comment: This solution seems unnecessarily invo-
luted and complicated, but we couldn’t find a
better one. See the quiz on the next page, where we
pose this problem again for solution using a PDCO.

3. (i := seq(), 1 to i)

4. (i := seq(), (1 to i) | (i – 1 to 1 by –1))

5. (i := seq(), j := 0, (every j +:= !i) | j)

6. (
 i := seq(),

 repeat {
 j := 0

 every j +:= !i
 if ∗j = 1 then break j

 i := j
 }

)

7.

 (a) 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5,
6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6 …

 (b) 1, 1, 4, 1, 4, 9, 1, 4, 9, 16, 1, 4, 9, 16, 25, 1, 4, 9, 16,
25, 36, 1, 4, 9, 16, 25, 36, 49, 1, 4, …

 (c) 1, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, …

 (d) 1, 1, 4, 9, 16, 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, 4, 9,
16, 25, 36, 49, 64, 81, 100, 121, 144, 169, …

 (e) 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2,
3, 1, 1, 2, 1, 2, 3, 1, 1, 1, 2, 1, 2, 3, …

 (f) 1,
2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, …

 (g) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …

 (h) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, …

Note: The second generator in the alternation
posed is a red herring; it never gets evaluated
because the first generator produces an endless
sequence.

 (i) –1, 1, –1, 1, –1, 1, –1, 1, –1, 1, –1, 1, –1, 1, …

 (j) There was an extra parenthesis in the expres-
sion given. It should have been (5 ∗ seq()) % 9, for
which the sequence is

5, 1, 6, 2, 7, 3, 8, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 0, 5, 1,
6, 2, 7, 3, 8, 4, 0, 5, 1, 6, 2, 7, 3, 8, 4, 0, …

8.
 (a) !seq()

 (b) !seq() % 7

 (c) seq() \ seq(1,2)

 (d) (i := seq(), i ^ i)

 (e) We accidentally deleted a digit in the fourth
term for the sequence given. The sequence should
have been

3, 81, 19683, 43046721, 847288609443,
150094635296999121, …

for which a solution is 3 ^ (seq() ^ 2).

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

16 / The Icon Analyst 55

Quiz — Programmer-
Defined Control
Operations

1. Write PDCOs as follows:

(a) ExchangePDCO{}, which exchanges the or-
der of successive terms in a sequence. For ex-
ample, ExhangePDCO{seq()} should produce

 2, 1, 4, 3, 6, 5, …

(b) CumulativePDCO{}, which produces the
cumulative sum of a sequence of integers. For
example, CumulativePDCO{seq()} should pro-
duce

 1, 3, 6, 10, 15, …

(c) NonintegerPDCO{}, which filters out non-
integer values in a sequence.

(d) ModnPDCO{}, which produces the remain-
der of each term in an integer sequence divided
by its position. For example,

ModnPDCO{
 InterleavePDCO{seq(), seq() ^ 2, seq() ^ 3}
 }

should produce

 0, 1, 1, 2, 4, 2, 3, 1, 0, …

(See page 11.)

Which of the PDCOs above have potential prob-
lems with infinite sequences?

2. Show the sequences these expressions produce
and describe them in words (see pages 6 and 10-13
for a description of the procedures used).

(a) BinopPDCO{"+", seq(), fibseq()}

(b) BinopPDCO{|!"+–", primeseq(), fibseq()}

(c) ReplPDCO{seq(), seq()}

(d) DeltaPDCO{primeseq()}

(e) OddEvenPDCO{fibseq()}

(f) InterleavePDCO{fibseq(), primeseq()} % 8

(g) InterleavePDCO{fibseq(), primeseq() % 8}

(h) UnopPDCO{"∗", fibseq()}

(i) UnopPDCO{"!", seq()}

3. Figure out these sequences, describe them in
words, and write expressions that produce them.
All can be produced by the procedures described
on pages 6 and 10-13.

(a) 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, …

(b) 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8,
8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, …

(c) 2, 5, 3, 6, 5, 8, 7, 10, 11, 14, 13, 16, 17, 20, 19,
22, 23, 26, 29, 32, 31, 34, 37, 40, 41, 44, …

(d) 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20,
23, 24, 29, 30, 31, 32, 37, 38, 41, 42, 43, 44, …

4. Describe in words what these PDCOs do.

(a)

procedure Puzzle1PDCO(L)
 local x

 while x := @?L do suspend x

end

(b)

procedure Puzzle2PDCO(L)
 local i

 suspend @L[1]

 repeat {
 i := @L[2] | fail
 every 1 to i do
 @L[1] | fail
 suspend @L[1]
 }

end

(b)

procedure Puzzle3PDCO(L)
 local i, j

 j := @L[1] | fail

 while i := @L[1] do {
 if i > j then suspend j to i – 1
 else if i < j then suspend j to i + 1 by –1
 else suspend j
 j := i
 }

 suspend j

end

The Icon Analyst 55 / 17

Dobby Looms and Liftplans

Keep in mind that a loom like a large dog is more
afraid of you than you are of it. — Allen Fannin

The kind of loom we’ve used as a model in
previous articles on weaving [1, 2] has foot pow-
ered treadles that raise shafts to make sheds through
which successive weft threads pass (picks). A treadle
can be tied up to several shafts, but only one treadle
is pressed for each pick. Some looms prevent more
than one treadle from being pressed, but even for
looms that do not, since human beings only have
two feet, it’s not practical to press more than two
treadles at a time. As far as we know, it’s not done.

The reason that multiple treadling is useful is
that it allows more complex weaves to be pro-
duced by providing a greater variety of sheds with
a given number of shafts and treadles.

Dobbies

The solution to the multiple-treadling prob-
lem is a dobby, which allows any combination of
shafts to be raised using only a single treadle.
Dobbies are mounted atop conventional floor
looms. They are controlled by a mechanism that
originally rotated a belt containing rows of pegs
that determined which shafts were lifted. The “peg
plan” was set up in advance for a particular weave.
One loop around the belt produced one weft re-
peat.

Modern dobbies have electrical controllers to
determine what shafts to raise (although the weaver
provides the foot power to raise the shafts). Most
dobby devices now are driven by weaving pro-
grams running on personal computers.

Figure 1 shows a loom equipped with a simple
dobby but without the related paraphernalia. The
wires from the dobby are connected to the shafts,
and different patterns of wires are raised to pro-
duce different sheds.

Figures 2 and 3 show a loom with a more
sophisticated dobby and its controlling devices.

Figure 1. Schact Floor Loom with Dobby

Figure 2. AVL Compu-Dobby Loom

Figure 3. Close-Up of Compu-Dobby

Liftplans

The term liftplan now is more commonly used

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each, which includes shipping in
the United States, Canada, and Mexico. Add
$2 per order, regardless of the number of
issues ordered, for airmail shipping to other
countries.

18 / The Icon Analyst 55

N E E D

than peg plan, although both terms still are used in
current weaving literature. The term liftplan has
the advantage of abstracting the concept from its
original mechanical implementation.

In weaving drafts, a liftplan replaces the trea-
dling, the difference being that a row of a liftplan
(which corresponds to a pick) may specify several
treadles as opposed to treadling plan, in which
only one treadle can be specified for a row.

The tie-up still exists as a remanent of the
single-treadle loom, but it always is a direct tie-up in
which treadle 1 is tied to shaft 1, treadle 2 to shaft
2, and so on. Figure 4 shows a draft with a liftplan.

Representing Liftplans in Programs

Treadling plans can be represented by a se-
quence of numbers that label the treadles. Liftplans

require a more capable representation.
In the widely used WIF format [2] for ex-

changing drafts among weavers with different
weaving programs, a liftplan section consists of a
line for each pick. Each line begins with an integer
that identifies the corresponding weft thread. Fol-
lowing the number and an equal sign, there is a
comma-separated list of the shafts that are to be
raised for the pick. Although the WIF format al-
lows weft threads to be given in any order, all the
ones we’ve seen give them in the order the picks are
actually made, and we can see no good reason for
them to be given in any other order. Here is a
typical WIF liftplan section.

[LIFTPLAN]
1=1,3,5,7
2=1,2,5

Figure 4. Liftplan Draft and Drawdown

The Icon Analyst 55 / 19

3=2,4,6,8
4=3,4,7
5=1,3,5,7
6=3,4,7
7=2,4,6,8
8=1,5,6
9=1,3,5,7
10=1,5,6
 …

291=2,4,6,8
292=3,4,7
293=1,3,5,7
294=3,4,7
295=2,4,6,8
296=3,4,7
297=1,3,5,7
298=3,4,7
299=2,4,6,8
300=3,4,7

This notation is egregiously cumbersome and
verbose. (The source of this notation is the Win-
dows INI file format. Many have lamented the fact
that file formats often are created by persons who
have no experience with the art and seem to know
none of the principles for creating good formats.)

 A liftplan is, in effect, a binary matrix, as is the
tie-up for single treadling. Since tie-ups are com-
paratively small, we settled for representing them
in pattern-form drafts [2] as bit strings obtained by
concatenating the bit patterns for successive rows.
This representation is impractical for liftplans,
which may be quite long.

The number of possible row patterns in a
liftplan is 2n, where n is the number of treadles. In
practice many row patterns cannot be used be-
cause they would produce structurally unsound
fabrics. More significant is that, in practice, the
number of different row patterns in a liftplan for a
specific weave usually is quite small — the se-
quence of the row patterns is fundamental to pat-
terns in the resulting weave.

One possibility is to assign a label to each
different row and represent the liftplan as a charac-
ter pattern composed of these labels [3]. Another
possibility is to think of the liftplan as a black-and-
white image and represent it by a bi-level image
pattern [4].

We’ll explore these possibilities in a subse-
quent article, but before ending this article, we
want to mention a (theoretical) possibility in the
spirit of liftplans.

Shaftplans

If multiple treadles can be used in the trea-
dling, why not allow warp threads to be passed
through more than one shaft, so that the same warp
thread can be raised by more than one shaft — a
“shaftplan”?

As far as we can determine, no loom provides
for this. Warping, which is done as a preparatory
step before actually weaving, is accomplished by
raising, for each warp thread, a single shaft through
which the thread passes. It’s not mechanically
possible, as far as we know, to raise more than one
shaft during warping. Weavers also say that warp-
ing a loom before the actual weaving is the hardest
and most onerous part of producing woven fabric.
Making warping any more complicated probably
would not find a receptive audience, whatever its
advantages might be.

For a computer program, however, handling
a shaftplan is no more difficult than handling a
liftplan. In fact, SwiftWeave <1> provides such a
facility, commenting that although no loom known
to them supports such a feature, the ability to have
multiple warp threadings may help in design.

We expect to come back to this idea in a future
article.

Acknowledgments

Figure 1 is from a catalog issued by the Schacht
Spindle Company <2> and is used by permission.
Figures 3 and 4 are from the AVL Looms Web site

20 / The Icon Analyst 55

What’s Coming Up

In the long run every program becomes
rococo — then rubble.

— Alan Perlis

We don’t have a particularly good record at
predicting what will appear in the next issue of the
Analyst, so please take comments made in this
section as expectations, not promises.

We had planned an article on shadow-weave
wallpaper for this issue, but we had to postpone it
because we’ve changed the form of pattern form
drafts. Articles on both of these topics should ap-
pear in the next issue.

We didn’t have enough space in this issue to
describe the implementation of tile exploration.
Even the most essential parts of the program run
many pages. You can find the complete program
on the Web site for the last issue of the Analyst.

In the series on weaving, in addition to the
articles mentioned above, we expect to have ar-
ticles on creating drafts from drawdowns and how
to create woven images from drafts.

We’ll continue the series on sequences with
an application with a visual interface that creates
sequences from Icon expressions. And we’ll re-
view available PDCO resources in From the Li-
brary, and continue with the quizzes.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1999 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

®

<3> and are used by permission.

References

1. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

2. “Weaving Drafts”, Icon Analyst 53, pp. 1-4.

3. “Character Patterns”, Icon Analyst 48, pp. 5-7.

4. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, pp. 157-160.

Links

1. http://www.swiftweave.com/

2. http://www.schachtspindle.com

3. http://www.avlusa.com/Looms/AVLLooms.html

