
The Icon Analyst 51 / 1

December 1998
Number 51

In this issue …

Pattern-Form Metrics1
A Weaving Language.............................5
Animation — Reversible Drawing12
Graphics Corner14
Generating Versum Numbers16
What’s Coming Up20

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Pattern-Form Metrics

Patterns possess utility as well as beauty. Once we have
learned to recognize a background pattern, exceptions
suddenly stand out.

— Ian Stewart [1]

Character patterns, pattern forms, and pat-
tern grammars provide ways of analyzing and
expressing structure in sequences of values [2-4].

When a string of interest is identified, it can be
represented by a pattern form, and added to the
grammar as a new definition. All instances of the
string then are replaced by the variable for the new
definition. In most cases, this results in a decrease
in the size of the grammar, while revealing struc-
ture in the character pattern.

In using grammars to compress image strings
[5], the goal is to find a small grammar (possibly
consistent with keeping the grammar depth small).
In some situations, identifying significant elements
in a character pattern may be more important than
reducing the size of the grammar. In other situa-
tions, short definitions may be important even if
creating them increases the size of the grammar. In
general, however, the motivations for using char-
acter grammars are consistent with small size.

There are several ways the size of a grammar
might be measured. For the purposes of this article,
we’ll define the size of a grammar to be the number
of characters the grammar takes when saved as a

file, not counting L-System directives like the axiom.

Changes in Grammar Size

Although charpatt [4] computes the savings
for pattern forms, it is useful to understand how
savings result from using different pattern forms.

When n occurrences of a string of length i are
replaced by a pattern form, each occurrence is
replaced by a single character for the new variable,
resulting in a reduction in the size of the grammar
of n × (i – 1). The new definition, on the other hand,
adds to the size of the grammar: one character for
the variable, two characters for –>, m characters for
the pattern form, and one or two characters for the
line terminator, depending on the platform [6]. For
simplicity, we’ll assume one-character line termi-
nators, so the increase in the size of the grammar
because of the new definition is i + 4. The net
change in the size of the grammar is n × (i – 1) – m
– 4, where m depends on the pattern form.

For a constant, the pattern form is just the
string, and m = i. So the change in the size of the
grammar is

∆c = n × (i – 1) – i – 4 constant

For a repetition [s, k], where s is of length j and
k is a d-digit number, m = j + d + 3, (the 3 is for the
pattern-form meta-characters). Note that i = j × k.
The change in the size of the grammar is

∆r = n × (i – 1) – j – d – 7 repetition

Since d usually is 1 or 2 and rarely much larger, its
effect is minor. The change in the grammar size
also can be written as

∆r = n × (i – 1) – i/k – d – 7

where, of course, k divides i evenly.
Note: The lengths of the strings can, of course,

be obtained from the strings themselves. If we let
λ(s) be the length of s, then

∆c = n × (λ(s) – 1) – λ(s) – 4

2 / The Icon Analyst 51

∆r = n × (λ(s) – 1) – j – λ(k) – 7

We prefer implicitly derived values i and d, espe-
cially for the purposes of plotting.

The reversal pattern form, <s>, simply adds 2
to the change in size for a constant, so

∆v = ∆c – 2 = n × (i – 1) – i – 6 reversal

The decollation pattern form {s1, s2, … sk}
requires i + k + 2 characters, since the sum of the
lengths of s1, s2, … sk is i and there are k commas and
2 braces. Therefore,

∆d = n × (i – 1) – i – k – 6 decollation

Notice that

∆d = ∆c – k – 2

The “worst” case for constants occurs for n =
1 (we disallow n = 0), so

∆c ≥ – 5

In other words, defining a constant that only oc-
curs once results in an increase of 5 in the size of the
grammar. Of course

∆v ≥ – 7

For repetitions, the worst case occurs for n = 1
and i = 1, so

∆r ≥ – 7

The situation is different for decollations, for
which the worst case occurs for n = 1 and k = i (in
other words splitting an i-character string into i
one-character parts). The result is

∆d ≥ i – 7

That is, there is no limit to how much a decollation
can add to the size of a grammar.

Plots

Over the years, we’ve been confronted with
many complicated plots and graphs that were
baffling if not incomprehensible. Now it’s our turn
to produce some.

Figure 1 shows the metrics for constants as
pattern forms. Figure 2 on the next page shows the
metrics for repetitions with different symbols for
different values of k. Finally, Figure 3 on page 4
shows the metrics for decollation.

We were tempted to overlay the three plots as
a joke, but that would take too much space and it’s
not really all that amusing anyway.

We also could show the crossover points where
one pattern form saves more than another, but that
information isn’t particularly useful.

0

10

5

-5

5 10 15sa
vi

ng
s

i = j ∗ k

legend

n = 1

n = 2

n = 3

n = 4

n = 5

Figure 1. Constant Metrics

The Icon Analyst 51 / 3

Choosing Pattern Forms

In most situations, there isn’t a choice among
pattern forms for a given string. When there is,
however, the choice may be significant not only in
reducing the size of the grammar but also in subse-
quent development of the grammar.

Consider, for example, this grammar with
only a portion of interest shown:
 ∗–>…1234123412341234123412341234123412341234…

There are three different pattern forms that
can be used to encode the string of interest: con-
stant, repetition, and collation. If we assume no
other occurrences of this string or its primary com-
ponents elsewhere in the definition, then we have
three plausible possibilities:

 ∗ –> …AAAAAAAAAA…
 A –> 1234

 ∗ –> …B…
 B –> [1234,10]

 ∗ –> …C…
 C –> {1111111111,222222222,3333333333,4444444444}

The net savings are 22, 26, and –10, respectively,
and all increase the grammar depth by 1.

For the constant, we can continue:
 ∗ –> …D…
 A –> 1234
 D –> [A,10]

which increases both the size of the grammar and
the depth by 1.

In the case of the decollation, we also can
continue:
 ∗–>…{E,F,G,H}…
 E–> [1,10]

0

10

5

-5

-10

5 10 15

i = j ∗ k

sa
vi

ng
s

k = 1

k = 2

k = 3

k = 4

n = 1

n = 2

n = 3

n = 4

legend

Figure 2. Repetition Metrics

4 / The Icon Analyst 51

 F–> [2,10]
 G–> [3,10]
 H–> [4,10]

which increases the grammar size by 4 and the
depth by 1.

You may wonder why decollation would be
picked over repetition in a case like this. It might be
because decollation was such an important struc-
tural consideration that the increase in grammar
size was worth it. It might be just seeing the pattern
as a decollation and not also seeing it as a repeti-
tion.

The point is that once such a direction has
been taken, the mistake, if it is one, is likely to be

lost in the maze of subsequent grammar develop-
ment. Things of this kind happen often in develop-
ing grammars — that’s what makes the process so
challenging and interesting.

References

1. Nature’s Numbers: The Unreal Reality of Mathemat-
ics, Ian Stewart, Basic Books, 1995.

2.“Character Patterns”, Icon Analyst 48, pp. 1-7.

3.“Character Patterns”, Icon Analyst 49, pp. 1-6.

4.“Analyzing Character Patterns”, Icon Analyst
50, pp. 1-7.

5.“Tricky Business — Image Grammars”, Icon
Analyst 50, pp. 14-18.

6.“Line Termination”, Icon Analyst 48, pp. 1-3.

0

10

5

-5

-10

5 10 15

i = j ∗ k

sa
vi

ng
s

k = 1

k = 2

k = 3

k = 4

n = 1

n = 2

n = 3

n = 4

legend

Figure 3. Decollation Metrics

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 51 / 5

A Weaving Language

Weaving is such an astonishingly complex field; a
lifetime is not long enough to learn all one needs to know,
let alone enough to weave all one wants to weave.

— Madelyn van der Hoogt [1]

In previous articles [2-4], we used pattern
forms that proved useful in a variety of contexts:
constants, repetitions, reversals (and hence
palindroids), and decollations. In this article, we’ll
describe pattern forms that are used in weaving.
Some of these are ones we’ve already used. Some
are idiosyncratic to weaving. Others have broader
applicability.

About Weaving

Editors’ Note: We are not weavers; ours is “book learn-
ing”. We have attempted to describe matters related to
weaving in an accurate manner. If we have made mis-
takes, please let us know.

Before going on, we need to say something
about the concepts, techniques, and terminology
used in weaving. If you are a weaver, you may
wish to skip this section.

The description that follows leaves out many
aspects of weaving that are not relevant to pattern
forms. Details are omitted also, and some simplifi-
cations have been made. If you are new to weaving
and are interested in learning more, we recom-
mend Reference 5 as a place to start.

There are many ways to make fabric. Weav-
ing arguably is the oldest, possibly dating back
10,000 years. Ancient artifacts in widely separated
places suggest that weaving developed indepen-
dently in many cultures.

The distinguishing characteristic of woven
fabric is the intertwining of crossed threads. Figure
1 shows an example of a crudely woven fabric.

Figure 1. Burlap

The intertwining of threads gives woven fab-
ric its strength and texture — the tactile and visual
nature of its surface. Elaborate patterns can be
produced by using colored threads.

Present industrial methods for producing
woven fabric are very efficient and involve compli-
cated, sophisticated machinery with computer con-
trol. It is easier to understand weaving as it is
practiced as a hand craft on manually operated
looms.

There are many kinds of looms and seemingly
endless variations on each. We’ll use a typical floor
loom, such as the one shown in Figure 2, which has
all the capabilities we need for our purposes. The
terms used in this figure are explained in what
follows.

shafts
woven fabric

treadles

tie-up

warp

lamms

Figure 2. A Floor Loom

On a floor loom, one set of threads, called the
warp, passes from the back of the loom to the font.
Weft threads (also called filler and woof) are passed
successively through the warp as it advances to-
ward the front. The intertwining is accomplished
by raising some of the warp threads to form a shed
through which a weft thread passes. When these
warp threads are lowered, they are above the weft
thread and the remaining warp threads are below
it — thus the warp and weft threads are interlaced.

For a plain weave, the simplest of all, odd-
numbered warp threads are raised for one shed
and even-numbered for the next, repeating. Figure
3 on the next page shows the shed schematically.
The interlacing is shown in the simulated weave in
Figure 4 and also in the real weaving pictured in
Figure 1.

6 / The Icon Analyst 51

Figure 4. A Plain Weave

If the sets of warp threads used to form sheds
are chosen differently, different interlacings occur.
See Figure 5.

Figure 5. A More Complicated Weave

The question of how different sheds
are created gets us into the mechanics of
looms.

As mentioned earlier, warp threads
are strung from front to back. In their paths
are horizontal shafts (also called harnesses
and heddle frames) that extend the width
of the loom. On these shafts are heddles
through which warp threads can be strung.
Each warp thread is threaded through a
heddle on exactly one shaft. See Figure 6.

When a shaft is raised, the warp
threads strung through it are raised above

the others to make a shed.
Shafts are connected (tied up) to treadles via

lamms. More than one shaft can be connected to a
treadle. When a treadle is pressed, the shafts con-
nected to it are raised to form the shed.

Note that in general there is not a symmetric
relationship between the warp and the weft. The
warp is threaded and the tie-ups made before the
actual process of weaving begins.

There is a pattern to the threading of warp
threads through the shafts, a pattern in the order
treadles are pressed during weaving, and, if differ-
ent colors threads are used, there are patterns in
their orders. There even are pattern in the tie-ups.
Have we mentioned the ubiquity of patterns re-
cently?

Weaving Drafts

Weaves are described by drafts, which typi-
cally consist of a representation of the threading,
treadling, and tie-up, along with a drawdown that
shows which threads will be in front on the woven

odd-numbered, then even-numbered warp threads

shed
even-numbered, then odd-numbered warp threads

weft thread

Figure 3. Shed for a Plain Weave

shaft

heddles

warp threaded through heddles on shaft

Figure 6. A Shaft

The Icon Analyst 51 / 7

fabric.
Drafts are written using many different nota-

tional systems and often contain comments and
notations specific to the author. A typical draft
shows one full repeat, after which the weaver
continues from the beginning depending on the
width and length of the weave. In this sense, re-
peats are fundamental to most weaves.

Weaving drafts traditionally have been done
by hand. Even though there are now computer
programs that help with this task, most weavers
still use the old method. Here’s a quote from a book
published in 1961 [6], which still is apt for most
weavers:

Drafts and development diagrams are made
on cross-section paper. The best type is engi-
neering paper with ten squares per inch and
with each full inch indicated by a heavy line.
Equipment for draft-writing and developing
includes India ink, a ruling pen and a crow-
quill or a fine-line India ink fountain pen, a
straight lettering pen with a width of one-
tenth of an inch (the Estabrook #13, for in-
stance), and a transparent 45-degree triangle.

This reminds us of the golden days of slide rules …
We couldn’t find a copyright-free hand-done

draft, so we used one from a computer program, as
shown in Figure 7. In the drawdown, black squares
indicate warp threads that are in front, while white
squares show weft threads that are in front.

Color in hand-drawn drafts is indicated in a
variety of ways, sometimes apart from the draft
itself. Most computer weaving programs work in
color and can provide color drawdowns, but that
obscures the warp/weft pattern. Such programs
can, of course, produce images of weaves. These

may simply consists of pixels of the appropriate
colors, or they may simulate the three-dimensional
appearance of the weave.

Weaving Programs

Weaving programs vary from freeware <1>
and commercial programs for personal computers
<2-9> to packages for industrial weaving that cost
more than $100,000. Most commercial weaving
applications can control dobby devices that can be
attached to hand looms. Dobby devices can raise
shafts in any combination and allow the creation of
sheds that are not possible with fixed tie-ups. Ex-
cept for high-end applications that control sophis-
ticated powered looms, the weaving itself is done
by hand.

Most weaving programs mimic manual tech-
niques. An exception is the weaving engine in
Painter <10>, the most popular personal computer
application for producing artistic effects.

The Painter Weaving Language

Among its many facilities, Painter has the
ability to produce images of weaves. Most Painter
users probably don’t get beyond the built-in weaves
and modifications that can be made to them. Hid-
den away, and only documented in a PDF file on
the distribution CD-ROM, is a weaving language
[7] that allows threadings and treadlings, as well as
warp and weft color sequences, to be described in
terms of expressions. The expressions can charac-
terize most of the patterns commonly found in
weaving drafts.

The Painter weaving language is not a pro-
gramming language. It only has expressions that

describe patterns of characters,
much in the way pattern forms do.
The weaving language consists of
labeling characters, integers, and
operators.

There are two kinds of label-
ing characters: (1) digits that label
shafts and treadles and (2) letters
that stand for colors.

The Painter loom has eight
shafts and eight treadles (most real
looms have more treadles than
shafts). The digits 1 through 8 are
used to label both the shafts and the
treadles.

Sequences of digits correspond
Figure 7. Weaving Draft

threading
tieup

treadling

drawdown treadles

shafts

8 / The Icon Analyst 51

to sequences of shafts or treadles, depending on
context. For example, in threading the shafts, 1346
means the first warp thread goes through shaft 1,
the second through shaft 3, the third through shaft
4 and the fourth through shaft 6. In treadling, 1346
means treadle 1 is pressed for the first weft thread,
treadle 3 for the second weft thread, 4 for the third,
and 6 for the fourth. Full sequences are, of course,
much longer than this. The length of the threading
sequence determines the width of the fabric (in
threads), and the length of the treadling sequence,
the length of the fabric.

Figure 8 shows a dialog in which the weaving
specifications can be entered and edited.

In case you’re interested, Figure 9 shows a
portion of the resulting weaving. The three-di-
mensional effect comes from the pattern of the
warp and weft threads, not from any simulated
thickness in threads — the threads are one pixel
wide and packed solidly.

Figure 9. Result from a Weaving Specification

In the dialog, the two text-entry fields at the
left contain weaving expressions for the threading
(warp) and treadling (weft). The two text-entry
fields in the center contain expressions for the
colors of the warp and weft. The array in the
upper-right corner is the tie-up, with black squares

indicating which shafts (horizontal) and tied to
which treadles (vertical). Incidentally, “tromp as
writ” is weaving jargon for using the same se-
quence for the weft as for the warp. Pressing a
tromp as writ button merely copies the expression
above it to the field below.

You may see why the users of Painter are not
encouraged to get into the weaving language. Even
without an explanation of the operators (which is
coming up), it’s clearly not the kind of thing most
artists would find attractive.

Take deep breath. We’re about to plunge into
the weaving language itself. The operators essen-
tially are the same for colors as for the threading

and treadling, but some operators do
not apply to colors.

 In our examples, we’ll concen-
trate on the threading and treadling
expressions.

There are 15 operators in all, which
range from simple to complex and ar-
cane. We will make the description
concrete by showing Icon procedures
to implement the operators. This pro-
vides a good example of the value of
high-level string-manipulation facili-
ties in a programming language.

Basic Operators

A typical operator is replication, indicated by
∗. For example, 1346∗7 “expands” to

1346134613461346134613461346

Icon’ built-in repl() implements this directly.
Another operation that is implemented by an

Icon function is reversal (`). In addition, rotation
(#) is implemented by the procedure rotate() in the
strings module of the Icon program library. Be-
yond these, we need new procedures.

The concept of extension permeates the weav-
ing language, as it does weaving itself. Extension,
indicated by the operator –>, replicates its left
operand to produce a result whose length is given
by its right operand. For example, 1345–>16 ex-
pands to

1346134613461346

Note that the right operand is an integer, not a
sequence of labels.

If the replication does not come out even, it is
truncated on the right. For example, 1346–>15

Figure 8. A Painter Weaving Specification

The Icon Analyst 51 / 9

expands to

134613461346134

Here’s a procedure that implements exten-
sion:

procedure Extend(p, i)

 i := integer(i)

 return case i of {
 ∗p > i : left(p, i)
 ∗p < i : left(repl(p, (i / ∗p) + 1), i)
 default : p
 }

end

Note that left() truncates its argument at the
right if it is longer than the specified width. The
first two case clause expressions are comparisons.
If one succeeds, its value is the value of its right
operand, namely the value of i, which compares
successfully with the value of i in the case expres-
sion. A handy trick — uhh … idiom. Note that it is
necessary to convert i to an integer, since it might
be passed as a numeral string, in which case the
values would fail to match, since arithmetic com-
parison operations convert their results to num-
bers. Why is i converted to an integer before the
case expression instead of using case integer(i)?
What happens if i is not convertible to an integer?

Incidentally, the code for ∗p < i works for all
cases, at the expense of extra computation. For this,
the procedure is simplicity itself:

procedure Extend(p, i)

 return left(repl(p, (i / ∗p) + 1), i)

end

Extension can be specified explicitly, but it
also is implicit in operations on sequences that may
be of different length. If that’s the case, the shorter
sequence is extended to the length of the longer,
except as noted in the descriptions that follow.

The interleaving operation, ~, which is colla-
tion but only for two strings, provides an example:

procedure Interleave(p1, p2)
 local i, p3

 if ∗p1 < ∗p2 then p1 := Extend(p1, ∗p2)
 else if ∗p2 < ∗p1 then p2 := Extend(p2, ∗p1)

 p3 := ""

 every i := 1 to ∗p1 do

 p3 ||:= p1[i] || p2[i]

 return p3

end

It is necessary to check the sizes of the argu-
ments before attempting to extend them — for
example, if ∗p1 > ∗p2, Extend(p1, ∗p2) without
testing would incorrectly shorten p2.

Palindromes are common in weaving and
also in other designs. In the weaving language the
palindrome operator is | in suffix position, as in
1346|. This does not produce what you might
expect. In fact, the result is not a real palindrome,
so we’ll call it a pattern palindrome to avoid confu-
sion with the real thing.

The reason pattern palindromes are not true
palindromes, which read the same way forward
and backward, has to do with their use in repeats.
Consider, for example, the (true) palindrome
1346431, derived from 1346. If this is repeated, the
result is

1346431134643113464311346431 …

Note the duplication of 1s at the boundaries of the
repeats. This produces an unavoidable artifact. So,
for weaving palindromes, 1346 produces 134643,
the first character not being included in the rever-
sal. When it is repeated, the result is

1346431346431346431346431 …

You might wonder why we made the true
palindrome 1346431 instead of 13466431. For the
same reason, this time with the “artifact” in the
middle.

In any event, producing a pattern palindrome
is easy.

procedure PatternPalindrome(p)

 p ||:= reverse(p[2:–1])

 return p

end

If the length of p is less than two, p[2:–1] fails and
p is returned unmodified. Painter does this for
strings of length 1, but in general a zero-length
argument is syntactically erroneous in Painter. We
decided to punt on this, although it would be easy
enough to have the procedure fail in this case.

We’re not entirely out of the woods on palin-
dromes. We’ll come back to the subject in a later
article.

10 / The Icon Analyst 51

Concatenation is not explicit in the weaving
language, but instead is indicated by the comma
operator, as illustrated by

1346,1346|

which expands to

1346134643

Now we’ll go on to some of more esoteric
operators in the weaving language.

The Domain

In the weaving language, the domain is the
ordered sequence of labels for the shafts/treadles:
12345678. (If the Painter loom had more shafts/
treadles, this could be extended using letters, as in
hexadecimal notation. For real looms, this is fine,
but some weaving programs allow as many as 256
shaft/treadles.)

How the domain figures into weaving ex-
pressions is illustrated by the ”upto” operator <,
which concatenates its left and right operands but
inserts between them the portion of the domain
between the last character of the left operand the
first character of the right operand. For example,

1346<8

expands to

134678

If, however, the last character in the left operand is
greater than the first character in the right operand,
the intervening portion “cycles” through the do-
main, so that

1346<3

expands to

134678123

And, as if that was not enough, “tick marks”,
indicated by a single quotes, can be placed in front
of the right operand. When this is done, the num-
ber of tick marks specifies the number of complete
domain runs to be added in. To illustrate,

1346<''8

adds two domain runs and expands to

1346781234567812345678

Can you grok the mind of a weaver?
To implement this as a procedure, we treated

the tick marks as part of the right argument, not as

operator symbols. Here’s the result:

procedure Upto(p1, p2)
 local cycles

 cycles := 0

 p2 ?:= {
 cycles +:= ∗tab(many('\''))
 tab(0)
 }

 return p1 || UpRun(p1, cycles) ||
 UpBetween(p1, p2) || p2

end

UpRun() and UpBetween() are helper procedures,
which also are needed elsewhere. They extract
their results from a duplicated domain:

$define Domain "12345678"
$define DomainUp "1234567812345678"

procedure UpBetween(p1, p2)

 DomainUp ? {
 tab(upto(p1[–1]) + 1)
 return tab(upto(p2[1]))
 }

end

procedure UpRun(p, cycles)

 DomainUp ? {
 tab(upto(p[–1]) + 1)
 return repl(move(∗Domain), cycles)
 }

end

The Icon Analyst 51 / 11

As you might expect, there is a corresponding
“downto” operator, >, for which there are similar
procedures. And, as an abbreviation, the operator
– can be used in place of both < and >, provided the
last character of the left operand is strictly less than
or greater than the first character of the right oper-
and, respectively. For example, 21–82 can be used
in place of 21>82, and 28–12 can be used for
28<12.

The following procedure, which implements
–, selects the appropriate “direction”:

procedure UpDownto(p1, p2)
 local c

 p2 ? {
 tab(many('\''))
 c := move(1) # first non–tick character
 }

 if p1[–1] << c then return Upto(p1, p2)
 else return Downto(p1, p2)

end

Strictly speaking, identical end characters should
be an error. We didn’t bother with that, but just let
Downto() handle that case, which should never
arise.

We have run out of room. (Thank heavens,
you say.) We’ll finish up our description of the
Painter weaving language in the next issue of the
Analyst.

What’s in Store

One more article will take care of Painter’s
weaving language, but as usual, this investigation
has led to other things.

To begin with, our pattern-form language
needs revisiting in light of weaving expressions
that have broad applicability.

We also plan to explore weaving grammars
and produce an application for creating weaving
specifications from numerical sequences.

Acknowledgment

The loom shown in Figure 2 is an 8-shaft
“Mighty Wolf” manufactured by Schacht Spindle
Company <11> and is used by permission.

We scanned the image from their catalog and
added the labels.

A color version is on the Web site for this issue
of the Analyst.

References

1. The Complete Book of Drafting for Handweavers,
Madelyn van der Hoogt, Shuttle Craft Books, 1993.

2.“Character Patterns”, Icon Analyst 48, pp. 1-7.

3.“Character Patterns”, Icon Analyst 49, pp. 1-6.

4.“Analyzing Character Patterns”, Icon Analyst
50, pp. 1-7.

5. Learning to Weave, Deborah Chandler, Interweave
Press, 1995.

6. The Weaver’s Book: Fundamentals of Handweaving,
Harriet Tidball, Macmillan, 1961.

7. Advanced Weaving, PDF on Painter 5 CD-ROM,
1998.

Links

1.WinWeave (for Windows):
http://www.contrib.andrew.cmu.edu/~keister/

winweave.html

2.WeaveIt (for Windows):
http://www.weaveit.com/support.htm

3. FiberWorks PCW (for Windows and Macintosh):
http://www3.sympatico.ca/fiberworks.pcw/

4.Patternland Weave Simulator (for Windows):
http://www.mhsoft.com/

5. ProWeave (for Windows and Macintosh):
http://www.proweave.com/

6.WEAVE for Windows:
http://www.ghgcorp.com/stilgar/shuttleworks/
WFW.html

7.WeavePoint (for Windows):
http://www.avlusa.com/TDS/SOFTWARE/

WeavePoint.html

8. SwiftWeave (for Macintosh):
http://www.swiftweave.com/

9.WeaveMaker One (for Windows and Macintosh):
http://www.weavemaker.com/

10. Painter (for Windows and Macintosh):
http://www.metacreations.com

11.Schacht Spindle Company:
http://www.schachtspindle.com

12 / The Icon Analyst 51

 WOpen("size=" || (2 ∗ X) || "," || (2 ∗ Y))

 # Trace the orbit.

 every point := ellipse(X, Y, A, B) do
 DrawPoint(point.x, point.y)

 # Draw the orbited body.

 focus_x := X + sqrt(A ^ 2 – B ^ 2)

 FillCircle(focus_x, Y, Srad)

 WAttrib("drawop=reverse")

 # Animate the orbit.

 until WQuit() do { # new frame
 every new_point := ellipse(X, Y, A, B) do {
 FillCircle((\old_point).x, old_point.y, Orad)
 FillCircle(new_point.x, new_point.y, Orad)
 distance := sqrt((focus_x – new_point.x) ^ 2 +
 (Y – new_point.y) ^ 2)
 WDelay(Delay)
 old_point := new_point
 }
 }

end

procedure ellipse(x, y, a, b)
 local incr, theta

 every theta := 1 to 360 do
 suspend Point(
 x + a ∗ cos(dtor(theta)),
 y + b ∗ sin(dtor(theta))
)

end

Figure 1 shows one frame from the animation
and Figure 2 shows some reduced snapshots taken
every 10 frames.

Figure 1. Orbital Animation Frame

Animation — Reversible Drawing

Motion is the first seduction of the eye.

— R. Shamms Mortier [1]

To animate literally means to bring alive. In
terms of computer-generated images, the word
has come to refer to any image that changes over
time — whether it be fluid motion in a scene or just
stationary stars that twinkle.

In this article and ones to follow, we’ll concen-
trate on apparent motion. The word apparent is
important — perceived motion in an image is an
illusion created by the human visual system.

There are basically three mechanisms for pro-
ducing animated images using Icon: reversible
drawing, mutable colors, and image replacement.
There are, of course, hybrids and various ad hoc
ways of creating animations. We’ll concentrate on
the basic methods, starting with reversible draw-
ing in this article and then going on to the others in
subsequent articles.

Reversible Drawing

With the graphics context attribute drawop
set to "reverse", as in

WAttrib("drawop=reverse")

a drawing operation that is done a second time
“erases” the first drawing, restoring the canvas to
its state before the first drawing. By performing the
drawing operation again, but at a slightly different
place, the drawing appears to move there. Con-
tinuing this process produces the illusion of mo-
tion. The steps in the animation are called frames.

This is illustrated by the following program,
which produces an animation of a small body
orbiting a larger one in an elliptical orbit.

link graphics

record Point(x, y)

$define A 150 # major semi-axis
$define B 100 # minor semi-axis
$define X 200 # center
$define Y 200
$define Orad 5 # radius of orbiting body
$define Srad 13 # radius of orbited body
$define Delay 10 # delay between frames

procedure main()
 local focus_x, distance, point, new_point, old_point

The Icon Analyst 51 / 13

 # Animate the display.

 count := 0

 until WQuit() do {
 every new_point := circle(X, Y, Orad) do {
 CenterString((\old_point).x,
 old_point.y, Message)
 CenterString(new_point.x, new_point.y,
 Message)
 count +:= 1
 if count % Modulus = 0 then
 FillCircle(X, Y, Radius)
 WDelay(Delay)
 old_point := new_point
 }
 }

end

procedure circle(x, y, r)
 local theta

 every theta := 1 to 360 do
 suspend Point(
 x + r ∗ cos(dtor(theta)),
 y + r ∗ sin(dtor(theta))
)

end

Figure 3. Wake Up Animation Snapshots

Many other animation effects can be accom-
plished using reversible drawing. See Reference 2
for a “bouncing ball” example. Here are some
things you might want to try yourself:

• a spinning propeller

• a walking stick figure

• an erratically moving target for which points
are scored when the user manages to click on
it.

Figure 2. Orbital Animation Snapshots

To see the actual animation, visit the Web page for
this issue of the Analyst.

The delay between the frames of the anima-
tion is necessary to avoid a meaningless blur with
artifacts that result because the graphics system
can’t keep up with the computation.

The constant delay produces an animation
that does not obey the laws of physics for orbiting
bodies. You might try your hand at fixing this.
Hint: To a first approximation, the velocity v of a
body orbiting another is proportional to sqrt(1 / r),
where r is the distance between the centers of the
two bodies.

Reversible drawing works for DrawString()
(but not for WWrite()). DrawString() therefore can
be used to animate text. Here’s a program in the
same vein as the previous one, but with text cir-
cling a blinking ”light”. Snapshots are shown in
Figure 3.

link graphics

record Point(x, y)

$define X 200 # center
$define Y 200
$define Delay 30 # frame delay
$define Message "Awake!"
$define Radius 40 # radius of blinker
$define Ring 44 # radius of ring
$define Modulus 12 # blinker delta
$define Orad 120 # orbit radius

procedure main()
 local new_point, old_point, count

 WOpen("size=" || (2 ∗ X) || "," || (2 ∗ Y),
 "bg=light gray", "drawop=reverse",
 "font=Helvetica,42") |
 stop("∗∗∗ cannot open window")

 # Create background for blinker.

 FillCircle(X, Y, Ring)

14 / The Icon Analyst 51

Graphics Corner — More Fun with
Image Strings

In the last article on image strings [1], we
showed how the pixels in an image could be rear-
ranged to produce transformations such as rota-
tions and flips. The other main category of opera-
tions on image strings does not rearrange pixels
but rather changes their colors by mapping.

A simple example of this is creating a ”nega-
tive” of a grayscale image. Because grayscale pal-
ettes have uniformly spaced colors from black to
white, a negative can be produced by a mapping
the palette characters to their reverse:

procedure negative(imr)
 local chars

Figure 4. Color Artifact in Reversible Drawing

References

1. The Bryce 3D Handbook, R. Shamms Mortier,
Charles River Media, 1998.

2. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend , Peer-
to-Peer Communications, Inc., 1998, pp. 96-97.

3.“The Kaleidoscope”, Icon Analyst 38, pp. 8-13.

Problems with Reversible Drawing

Unfortunately, reversible drawing is not sup-
ported (or does not work properly) on all plat-
forms. It works on most UNIX platforms running
the X Window System, but it does not work cor-
rectly on Microsoft Windows platforms.

There is a subtle, underlying problem on plat-
forms on which reversible drawing does work.
While it does what you’d expect with fixed fore-
ground and background colors, reversible draw-
ing produces unpredictable colors when drawn
over colors that are neither the current foreground
or background ones. The colors that result may
depend on the history of program execution or
even on other applications that share the screen.
The good news is that drawing a second time
restores the canvas to whatever it was before the
first one. In other words, it erases the drawing, but
the colors between the two drawings can’t be pre-
dicted.

We used reversible drawing in the kaleido-
scope application [3], and, in fact, the colors that
this application produces are unpredictable. That
doesn’t matter, since the application is just a visual
amusement and the specific colors aren’t impor-
tant.

For the examples given in this article, bizarre
effects may occur if other colors are present. For
example, if the background color is changed after
drawing the first body, as in

…
 FillCircle(focus_x, Y, Srad)

 Bg("red")

 WAttrib("drawop=reverse")
…

the color of the orbiting body may change to some-
thing unrelated, such as white as shown in Figure
4. Notice that the orbit shows through the orbiting
body. Although you can’t see it here, the portion of
the orbit “behind” the orbiting body is red.

Supplementary Material

Supplementary material for this issue of
the Analyst, including color images and Web
links, is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia51/

The Icon Analyst 51 / 15

 while ∗chars > 2 do {

 drawimr(0, 0, imr)

 WriteImage("fade" || right(count, 3, "0") || ".gif")

 chars ? {

 first := move(1)

 second := move(1)

 middle := tab(–2)

 nextolast := move(1)

 last := move(1)

 chars := second || middle || nextolast

 imap := first || last

 omap := second || nextolast

 imr.pixels := map(imr.pixels, imap, omap)

 drawimr(0, 0, imr)

 }

 imr.pixels := map(imr.pixels, chars[1], chars[2])

 }

 WriteImage("fade" || right(count, 3, "0") || ".gif")

 WDone()

end

Figure 3 shows an original image, two inter-
mediate stages, and the final result.

Figure 3. Fade Out

Color palettes do not lend themselves to the
kinds of manipulations that grayscale ones do.
Mappings that produce negatives and fadeouts are
possible, but they’re not easy to compute. If, for
example, you map color palette characters into
their reversal, you may get something interesting,
but most likely it just will be bizarre.

Mapping, however, can be used to convert
from one palette to another. Here’s how it’s done:

procedure imrpcvt(imr, new_palette)
 local ochars, nchars

 ochars := string(cset(imr.pixels)) # those used
 nchars := ""

 every nchars ||:= PaletteKey(new_palette,
 PaletteColor(imr.palette, !ochars))

 chars := PaletteChars(imr.palette)

 imr.pixels := map(imr.pixels, chars, reverse(chars))

 return imr

end

Figures 1 and 2 show examples for the g7 and
g256 palettes, respectively.

Figure 1. Black and White Queens

Figure 2.View, Positive and Negative

Another thing that the structure of grayscale
palettes makes easy is transformations such as the
following, which gradually replaces grayscale ex-
tremes by mid-range grays so that an image fades
out over time:

link imrutils

procedure main(args)

 local imr, first, second, middle, nextolast

 local last, chars, imap, omap

 imr := imstoimr(

 $include "view.ims"

)

 openimr(imr)

 chars := PaletteChars(imr.palette)

16 / The Icon Analyst 51

Generating Versum Numbers
To be a good mathematician, or a good gambler,
or good at anything, you must be a good guesser.

— George Pólya [1]

Almost from the time we started working on
versum numbers, we needed n-digit versum num-
bers to test hypotheses. For a while, we were able
to get along with small values of n, typically up to
n = 6 (it’s necessary to get to 5 or 6 to get past
anomalies that occur for smaller values). As things
went along, we found we needed versum numbers
for increasingly larger values of n.

For the most part we’ve put aside 1:… versums

— versum numbers whose initial digit is 1 —
because they are more complex and difficult to
deal with than 2:… versums. That’s still the case;
this article is about 2:… versums.

We tried various ways of generating n:2…
versums, including to trying to derive them di-
rectly from (n–1)- and (n–2)-versums. It seemed
like this should work, but it didn’t.

The brute-force method, which relies on test-
ing candidates [2], helped us along, but it is im-
practicably slow for n > 10. The primary reason for
this is the number of n:… versums. The number is
given by this recurrence, which we showed earlier
[3]:

V2(1) = 1
V

2(2) = 1
V2(3) = 10
V

2(n) = 19 × V2(n–2) n > 3

This recurrence can be cast as a procedure:

procedure v2count(n)

 return case n of {
 1 | 2 : 1
 3 : 10
 default : 19 ∗ v(n – 2)
 }

end

The actual numbers make the problem clearer:

1 1
2 1
3 10
4 19
5 190
6 361
7 3610
8 6859
9 68590

10 130321
11 1303210
12 2476099
13 24760990
14 47045881
15 470458810
16 893871739

As noted earlier [2], the brute force method
requires that every candidate be tested using
vpred(), which is slow. No matter how cleverly the
candidates are chosen, vpred() is called more times
than there are n-digit versums. Even for n = 11, the

 imr.pixels := map(imr.pixels, ochars, nchars)
 imr.palette := new_palette

 return imr

end

PaletteColor() produces color specifications
for the characters in the pixel data. PaletteKey(),
working with the new palette, gives characters for
the colors that are close to the given ones. Then it’s
just a matter of mapping.

Of course, you cannot improve the color qual-
ity of an image by changing palettes, and you may
lose a lot. For example, converting from a color
palette to g2 gives you a black-and-white image
according to whether a given color is closer to black
or white. On the other hand, converting from a
color palette to g256 gives a credible grayscale
version of the image. And, in many cases, it’s
possible to reduce the number of colors in an image
without degrading its quality noticeably.

Next Time

We’re not through with image strings. We’ve
kept their most powerful capability, transparency,
for last. Although we’ve discussed transparency
before [2], there’s much more that can be done with
it.

References

1.“Graphics Corner — Fun with Image Strings”,
Icon Analyst 50, pp. 10-13.

2. “Graphics Corner — Drawing Images”, Icon
Analyst 49, pp. 11-13.

The Icon Analyst 51 / 17

It might seem easy to get rid of duplicates: Just
store the versums in a set and output the results at
the end of the program:

…
 results := set()

…
 every m := right(0 to limit, n – 3, "0") do {
 every i := ("1" || m || "90") | ("10" || m || "1") do {
 j := i + reverse(i)
 if lo < j < hi then insert(results, j)
 }
 }

 every write(!sort(results))
…

That’s fine for small n, but for values of inter-
est, it requires far too much memory. Refer to the
figures given earlier.

An alternative is just to generate all the results
and use a sorting utility to remove the duplicates.
On a UNIX platform,

sort –u

does this.
This sounds good until you try to do it — or

better, think about it. Not only does the number of
n:2… versums become large as n increases, but the
amount of duplication increases much faster: The
total number of values produced is 19×10 n–4.

The increase in the numbers of n:2… versums
as n increases is 10.0 for no and 1.9 for ne, with an
average of 5.26. So, on average, the number of n:2…
versums is 5.26 n. The ratio of 19×10 n–4 and 5.26 n

becomes very large. For n = 10, it is 145.79 and for
n = 20, it is 5.89 × 10 5. Put the other way around, not
only does the number of values produced become
impossibly large, but the yield of versums becomes
vanishingly small.

At this point we envisioned several possible
ways of dealing with the problem, as shown in
Figure 1.

candidate generator

manage duplicates eliminate duplicates

eliminate some eliminate all

Figure 1. The Problem Graph

number of calls is well in excess of 1,303,210. In
fact, with the best candidate generator we have,
it’s many times that.

It was our hope when we studied versum
deltas [2,4] that they would give us an algorithmic
way of generating n:2… versums. For ne , we were
able to generate the set of deltas algorithmically
and hence reduce the number of candidates, but
we were not able to generate the sequence of deltas
algorithmically, leaving us with the vpred() prob-
lem.

It took us a while (a.k.a. way too long) to
realize that the way to avoid vpred() is to generate
n:2… versums from predecessor candidates.

Again, in the absence of finding a direct
method of generating predecessors, we resorted
to the brute-force candidate approach. Here, how-
ever, the test is much simpler. The reverse sum of
any positive number is versum by definition. The
only question is whether the first digit of the
reverse sum is 2.

Every n:2… versum has a predecessor that
begins with a 1 (some n-digit numbers that begin
with a 2 and end with a 0 have reverse sums that
are n:2…, but these numbers all have equivalents
that begin with a 1). Not only that, but all the
predecessors have one of two forms: 10…1 or
1…09. So to generate the predecessors of the n:2…
versums, it is necessary to test only 2×10 n–3 candi-
dates.

A program to generate the n:2… versums
using the predecessor method is:

procedure main(args)
 local i, j, n, m, lo, hi, limit

 n := args[1] | 6 # 6 is testing default

 lo := 2 ∗ (10 ^ (n – 1)) – 1 # 1999...
 hi := 3 ∗ (10 ^ (n – 1)) # 3000...

 limit := 10 ^ (n – 3)) – 1

 every m := right(0 to limit, n – 3, "0") do {
 every i := ("1" || m || "90") | ("10" || m || "1") do {
 j := i + reverse(i)
 if lo < j < hi then write(j)
 }
 }

end

There is a problem, however. This method
produces duplicates — lots of them, as we’ll show
later.

18 / The Icon Analyst 51

281182 018 108
291192 019 109
202202 020 110 200
212212 021 111 201
222222 022 112 202
232232 023 113 203
242242 024 114 204
252252 025 115 205
262262 026 116 206
272272 027 117 207
282282 028 118 208
292292 029 119 209
203302 030 120 210 300
213312 031 121 211 301

Here’s a portion for the 1…09 part:

201091 019 028 037 046 055 064 073 082 091
202191 029 038 047 056 065 074 083 092
203291 039 048 057 066 075 084 093
204391 049 058 067 076 085 094
205491 059 068 077 086 095
206591 069 078 087 096
207691 079 088 097
208791 089 098
209891 099
200101 100
201201 101 110
202301 102 111 120
203401 103 112 121 130
204501 104 113 122 131 140
205601 105 114 123 132 141 150
206701 106 115 124 133 142 151 160
207801 107 116 125 134 143 152 161 170
208901 108 117 126 135 144 153 162 171 180
210001 109 118 127 136 145 154 163 172 181 190
211101 119 128 137 146 155 164 173 182 191
212201 129 138 147 156 165 174 183 192
213301 139 148 157 166 175 184 193
214401 149 158 167 176 185 194
215501 159 168 177 186 195
216601 169 178 187 196
217701 179 188 197
218801 189 198
219901 199
210111 200
211211 201 210
212311 202 211 220
213411 203 212 221 230

If you look at these closely, you’ll see that the
differences (∆s) for equivalent ms all are 90 for the
10…1 part and 9 for the 1…09 part. If this were to
hold true for other values of n, we could do the
following:

If an m produces a 2… versum, see if m + ∆
does. If it does, don’t produce the versum but wait
for m + ∆ (or its “successor”) to come around. If not,
produce the versum.

Unfortunately, there is more than one ∆ for
equivalent ms as n increases. Here are the first few:

form ∆s number

6:10...1 9 774

6:1…09 90 765

7:10…1 990 7695

It might seem as if managing the duplicates is
a simple if tedious process — just break up the
generation into pieces, remove the duplicates in
the pieces, merge the results, and repeat until it’s
all done. In fact, you either run out of disk space for
the intermediate results and sorting or you plunge
into bookkeeping hell. So, what about eliminating
duplicates?

One way to characterize duplicates is by the
“middles”, m, that produce the same result. If we
divide the problem into two parts — 10…1 and
1…09 predecessors — then each m produces at
most one 2… versum. For each case, this puts the
values of m in equivalence classes. The sizes of
these equivalence classes plotted against the sorted
versums they produce have interesting patterns,
which are distinctly different for the two cases. See
Figures 2 and 3.

Figure 2. The Number of ms for 10…1

Figure 3. The Number of ms for 1…09

Even more interesting are the actual values of
the ms. Here is a typical portion for the 10…1 part
of the 6:2…versum generation, with the versum in
the left column followed by the ms that produce it:

200002 000
210012 001
220022 002
230032 003
240042 004
250052 005
260062 006
270072 007
280082 008
290092 009
201102 010 100
211112 011 101
221122 012 102
231132 013 103
241142 014 104
251152 015 105
261162 016 106
271172 017 107

The Icon Analyst 51 / 19

cates and we might have stopped there but for an
interesting property of equivalent ms: They all
have the same digit sums. Of course, it’s not that
simple: Some inequivalent ms also have the same
digit sums.

Equivalent digit sums reminded us of equiva-
lent versum numbers, which have equivalent digit
sums [5]. The ms are not, of course, necessarily
versums, but early in the study of versum num-
bers, we developed a procedure, vprimary(), for
finding the smallest of a set of equivalent versum
numbers:

procedure vprimary(s)

 return vprimary_(s, 1)

end

procedure vprimary_(s, low)
 local h, mpart, lpart, rpart

 if (∗s < 2) | (s = 0) then return s
 else {
 s ? {
 lpart := tab(2)
 mpart := tab(–1)
 rpart := tab(0)
 until (lpart = low) | (rpart = 9) do {
 lpart –:= 1
 rpart +:= 1
 }
 return lpart || vprimary_(mpart, 0) || rpart
 }
 }

end

This procedure works for equivalent ms! So
now we can eliminate all duplicates. Here’s the
program for the 10…1 form; there is a similar one
for the 1…09 form:

link vprimary

procedure main(args)
 local i, j, n, m, lo, hi, limit

 n := args[1] | 6

 lo := 2 ∗ (10 ^ (n – 1)) – 1 # 1999...
 hi := 3 ∗ (10 ^ (n – 1)) # 3000...
 limit := 10 ^ (n – 3)) – 1

 every m :=
 right(0 to limit, n – 3, “0”) do {
 every i := ("10" || m || "1") do {
 if i ~= vprimary(i) then next
 j := i + reverse(i)

7:1…09 99 7695

8:10…1 990 76995
1890 774
2790 1539
3690 1539
4590 1539
5490 1539
6390 1539
7290 1539
8190 1539
9090 1539
9990 1539

8:1…09 90 76905
189 765
279 1539
369 1539
459 1539
549 1539
639 1539
729 1539
819 1539
909 1539
999 1539

If you count, you’ll see there is one ∆ for 6 and
7, and 11 for 8. Can you guess the number for 9?
Right, it’s 11. What about 10 and 11? It’s 111; there
are patterns everywhere.

There are patterns in the values of the ∆s, and
their numbers, and the ∆s of successive ∆s, but they
become more complex as n increases. In terms of
eliminating most of the duplicates, the smallest ∆
does nicely, occurring much more often than the
others. And we have formulas for the smallest ∆s:

10…1, ne: 9×10 (n / 2) – 2

10…1, no: 99×10 ((n – 1) / 2) – 2

1…09, ne: 9×10 (n / 2) – 3

1…09, no: 99×10 ((n – 1) / 2) – 3

(We guessed these.)
Here’s how the ∆s are used:

…
every m := right(0 to limit, n – 3, "0") do {
 every i := ("1" || m || "90") | ("10" || m || "1") do {
 j := i + reverse(i)
 k := "10" || (m + delta) || "1"
 if k + reverse(k) = j then next # wait
 if lo < j < hi then write(j)
 }

…

This drastically reduces the number of dupli-

20 / The Icon Analyst 51

What’s Coming Up

In the next issue of the Analyst, we plan to
have another article on weaving and an article on
using mutable colors to produce animations.

The weaving language we’re describing has
led to some second thoughts on pattern forms.
They are scheduled for the next issue also.

The plots on pages 2-4 of this issue were done
in PostScript using a package from the Icon pro-
gram library that provides PostScript emulation
for Icon’s drawing functions. That will be the sub-
ject of a From the Library article.

We also feel a quiz coming on.

 if hi > j > lo then write(j)
 }
 }

end

This approach to generating n:2… versums is
a vast improvement over previous ones. Granted,
the calls of vprimary() take some time, but vprimary()
is much faster than vpred().

There may be a more efficient way of generat-

ing n:2… versums — in fact, we think there is an
algorithmic method we’ve just not had the wit to
see. If we discover such a method, we probably will
kick ourselves, hard, for all the work we put into
other methods. That work, however, will not have
been a total loss. We learned a lot about guessing
and methods of approaching such problems, as
well as about programming techniques.

References

1. Mathematics and Plausible Reasoning, George Pólya,
Princeton University Press, 1954.

2.“Versum Deltas”, Icon Analyst 49, pp. 6-11.

3. “Versum Numbers”, Icon Analyst 35, pp. 5-11.

4.“Versum Deltas”, Icon Analyst 50, pp. 7-10.

5“Equivalent Versum Sequences”, Icon Analyst
32, pp. 1-6.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1998 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

