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Character Patterns (continued)

My life is made of patterns that can scarcely be
controlled. — Paul Simon [1]

In the last issue of the Analyst, we introduced
the concept of character patterns [2], which are
sequences of characters in which each different
character serves as a label for some value. The
values so represented might be numbers, words,
colors, nucleotides, musical notes — anything that
can be represented in one fashion or another in
Icon. A sequence of values might be a chant, a
textile design, a DNA sequence,  a tune … .

Character patterns allow Icon’s string-pro-
cessing repertoire to be used to manipulate a se-
quence of possibly complex values by manipulat-
ing their labels.

The assumption is that the such sequences
have interesting properties, which we’ll call pat-
terns without trying to define the concept pre-
cisely.

In the previous article we introduced two
concepts related to character patterns:

• pattern forms, such as repetitions and rever-
sals.

• pattern grammars, which allow the structure of
a character pattern to be represented hierar-
chically.

Limitations

Characters

One obvious limitation of character patterns
is the small number of characters available to serve
as labels. Of the 256 possible characters, some are
reserved for pattern characters — that is, charac-
ters used in pattern forms. In addition to the labels
for values, characters also are needed for grammar
symbols. Others are “u“ characters: unsuitable,
undesirable, or unavailable. Some of these have no
associated glyphs (graphics) and hence cannot be
distinguished on-screen. Even some characters with
glyphs may be impossible to keyboard directly.
The “u“ characters vary from platform to platform,
of course.

The number of different values that can be
successfully handled in terms of character patterns
depends to some extent on the nature of the prob-
lem domain, but in most cases, a practical limit is
about 50.

This, more than anything, determines what
kinds of sequences of values can be manipulated as
character patterns.

Length

Character patterns, which are just strings with
special interpretations, can be very long. The limit
on the length of an Icon string, which requires one
8-bit byte per character,  is 227–1 ≈ 1.3×108  for 32-bit
hardware and 231–1 ≈ 2.1×109 for 64-bit hardware.
In other words, you’ll run out of memory before
you exceed Icon’s limit on string length.

Manipulating long strings, however, can be
time-consuming, especially for operations that in-
volve pattern matching with bad combinatorial
properties.

We have successfully worked with character
patterns with tens of millions of characters, but it
sometimes was painful and care had to be taken to
limit pattern matching.



2 / The Icon Analyst 49

Pattern Forms

In the first article on character patterns, we
introduced only three pattern forms:

s a specific string

[s,i] i repetitions of s

<s> the reversal of s

Note that we changed from parentheses to brack-
ets for repetitions. We’ll need parentheses for other,
more conventional purposes later.

Reversals can be used to represent palin-
dromes, as in s<s> and sc<s> where c is a single
character. They also can be used to represent “near
palindromes”, such as st<s>, where ∗t > 1 and t is
not a palindrome. We call such patterns palindroids
(sorry; we couldn’t resist).

We started with these forms because they had
proved useful in practice. There are many other
possibilities, which we’ll introduce from time to
time.

For this article, we added one more pattern
form for decollation. In its simplest form, the decol-
lation of a string consists of separating it into two
parts: the odd-numbered characters and the even-
numbered ones. For example, the decollation of
"ababacbacb" produces "aaabc" and "bbcab". If
the string is of odd length, the first part is one
character longer than the second. As a pattern
form, the parts appear enclosed in braces and the
parts separated by a comma, as in

{aaabc,bbcab}

The collation of the two parts produces the original
string.

Decollation may seem like a strange form to
add to the repertoire: it adds three characters for
pattern forms, and it increases, not decreases, the
number of characters needed to represent the string
(or does it?). It also adds two pattern characters
and hence reduces the number of available token
symbols by two.

But the real question is why add decollation
as a pattern form? As for the other pattern forms
now in the repertoire, the reason was practical —
in some instances it allows the structure of a char-
acter string to be made clear. And, it can reduce the
number of characters needed.

To see how this can come about, consider the
character pattern

babcbabcbabcbabcbabcbabc

the corresponding decollation is

{bbbbbbbbbbbb,acacacacacac}

which in turn yields

{[b,12],[ac,6]}

In this case we get both structure and compactness.
It is easy to extend this idea to allow decolla-

tion into more than two parts. Here’s a procedure
in which s is the string to be decollated and i is the
number of parts:

procedure decol(s, i)
   local parts, j, form

   parts := list(i, ",")

   s ? {
      repeat {
         every j := 1 to i do {
            (parts[j] ||:= move(1)) | break break
            }
         }
      }

   form := ""

   every form ||:= !parts

   return "{" || form[2:0] || "}"

end

We were tempted to further generalize and
extend the decollation pattern form to allow for
the number of successive characters taken from the
for each part to be specified. This can be repre-
sented schematically by

j1 , j2 , j3 , …, jn

where j1 characters go to the first part, j2 to the
second, and so on, cyclically. (This is one of those
things that’s harder to describe than it is to under-
stand. In other words, “you know what I mean”.)

For example, the 1, 3, 2 decollation of

abcdefghijklmnopqr

is

agm,bcdhijnop,efklqr

There is, of course, the question of what to do
if “things don’t come out even”. We’ll take the easy
way out: whatever is easiest to code.

The programming is relatively easy. Here’s a
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procedure that takes a string and a list of decolla-
tion widths and returns the corresponding pattern
form:

procedure decol(s, widths)
   local parts, i, form

   parts := list(*widths, ",")

   s ? {
      repeat {
         every i := 1 to ∗widths do {
            if pos(0) then break break
            parts[i] ||:= move(widths[i]) | tab(0)
            }
         }
      }

   form := ""

   every form ||:= !parts

   return "{" || form[2:0] || "}"

end

We’ll leave it to you to figure out what happens if
“things don’t come out even”.

The problem with this is that it’s not possible
to collate the result to get the original string with-
out also knowing the values of j1, j2, j3 , …,  jn. In
other words, these values would have to be en-
coded in the pattern form. We decided to defer this
until there is evidence that the additional complex-
ity is justified by need.

Grammars

In the previous article on character patterns,
we illustrated how formal grammars can be used
to represent the structure of character patterns. We
used Lindenmayer Systems [3-4], but with the very
limited facilities needed to represent character pat-
terns, almost any kind of formal grammar would
do.

We’ll stick with Lindenmayer Systems (L-
Systems), since we have software to manipulate
them. We need a little more terminology, which is
somewhat specific to character patterns, in order to
talk about grammars.

A grammar consists  of rules that describe a
set of strings, which is called a language.  A gram-
mar consists of symbols. We can distinguish three
kinds of symbols:

• pattern characters, the bracketing characters,
comma, and the digits in repetition counts.

• tokens, which are the labels that represent
values.

• variables , whose values are strings of symbols
of any of these three types.

In the parlance of formal language theory,
pattern characters and tokens are terminal symbols,
which variables are nonterminal symbols. Inciden-
tally, L-systems themselves make no distinctions
between different kinds of symbols.

A grammar consists of a set of definitions that
associate variables with their values. Definitions
are called productions in formal language theory.

In L-Systems, definitions are written as

S –> S
1
S

2
S

3
 …

to indicate that the value of the variable S is the
string of symbols S1S2S3 … .

One variable is designated as the goal symbol,
which is called the axiom in L-System terminology.
It is the goal symbol that defines the language.
Other variables define subgrammars.

L-Systems have parameters, one of which
specifies the axiom. It has the form

axiom:A

which designates A to be the goal symbol.
Here is an example, which includes pattern

forms:

axiom:A
A –> [B<B>,3]
B –> [CD,12]
C –> [b,4]
D –> [a,4]
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In this grammar, A, B, C, and D are variables,
a and b are tokens, and the brackets, commas, and
digits are pattern characters.

Figure 1 shows this grammar graphically.

[B<B>,3]

A

[CD,12]

[b,4] [a,4]

Figure 1. A Grammar Tree

Notice this is a tree. In most applications,
grammar graphs have loops that allow the repre-
sentation of languages with an infinite number of
strings. Here there is a finite number of strings and
only one that consists entirely of nonterminal sym-
bols.

The Problem

The example above shows the end result of
analyzing a character pattern. Using lindsys from
the Icon program library, this grammar generates
the following string showing pattern forms:

[[[b,4][a,4],12]<[[b,4][a,4],12]>,3]

To get the original character string, it is neces-
sary to expand the pattern forms. Here’s a proce-
dure that does this:

procedure expand(pattern)
   local result, i, j, slist, s
   static ochars, cchars

   initial {
      ochars := '[<{'
      cchars := ']>}'
      }

   result := ""

   pattern ? {
      while result ||:= tab(bal(ochars)) do {
         case move(1) of {
            "["  :  {
               result ||:= repl(expand(tab(bal(',',
                  ochars, cchars))), (move(1),
                  expand(tab(bal(']', ochars, cchars)))))
               }

            "<"  :  result ||:= reverse(expand(tab(bal('>',
                  ochars, cchars))))
            "{"  :  {
               s := tab(bal('}', ochars, cchars))
               slist := [ ]
               s ? {
                  while put(slist, expand(tab(bal(',',
                     ochars, cchars) | 0))) do
                        move(1) | break
                  }
               every i := 1 to ∗slist[1] do {
                  every j := 1 to ∗slist do
                     result ||:= slist[j][i]
                  }
               }
            }
         move(1)
         }

      return result || tab(0)
      }

end

Using this procedure to expand the pattern
forms in example above produces the original
character string:

bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbb
baaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaa
aabbbbaaaaaaaabbbbaaaabbbbaaaabbbbaaaabbbba
aaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbbbbbaaaabbbbaaaabbbbaaa
abbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabb
bbaaaabbbbaaaabbbbaaaabbbbaaaaaaaabbbbaaaab
bbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbbbb
baaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaa
aabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaab
bbbaaaaaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbb
baaaabbbbaaaabbbb

The problem, however, is to go the other way
— to convert this 576-character string to a gram-
mar such as the one shown in Figure 1.

Two kinds of facilities are needed: pattern
matching procedures to find pattern forms and a
mechanism to build grammars from them.

Finding pattern forms cannot be done en-
tirely automatically. There often are many differ-
ent ways to represent a character pattern by pat-
tern forms, and finding a “good” one often is an
intellectual challenge.

On the other hand, building a grammar from
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pattern forms can be done automatically. The idea
is to start with a grammar that has a single variable,
the goal symbol, whose initial value is a character
pattern. Then, every time a pattern form is found,
it is assigned to a new variable and the correspond-
ing string is replaced by the new variable in all
other definitions.

For the example above, the steps are:
1. Initial grammar:

A –> bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaabbbbaaaaaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbbbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaaaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbbbbbaaaabbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbb
aaaaaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbbaaaabbbbaaaabbbbaaaa
bbbbaaaabbbbaaaabbbb

2. Finding bbbbaaa repeated 12 times in A (reversals
follow automatically):

A –> B<B>B<B>B<B>
B –> [bbbbaaaa,12]

3. Finding B<B> repeated 3 times in A:

A –> [B<B>,3]
B –> [bbbbaaaa,12]

4. Finding b repeated 4 times in B:

A –> [B<B>,3]
B –> [Caaaa,12]
C –> [b,4]

5. Finding a repeated 4 times in B:

A –> [B<B>,3]
B –> [CD,12]
C –> [b,4]
D –> [a,4]

Incidentally, this character string is not  con-
trived. It represents a 6×6 checkerboard pattern in
which each square is 4×4. The tokens a and b
represent  two colors. Figure 2 shows this checker-
board for two shades of gray.

Figure 2. An Image from a Character Pattern
The grammar is not surprising when you look

at the character string. There obviously are many
occurrences of a and b repeated four times. How-
ever, there are 8-character repetitions, 16-character
repetitions, and maybe 32-character ones.

You get different grammars depending on
what you pick for the initial repetition. Here are a
few examples.

A –> [DBCCDB,3]
B –> [b,4]
C –> [a,4]
D –> [BC,11]

A –> [B<B>,3]
B –> [C,6]
C –> [DE,2]
D –> [b,4]
E –> [a,4]

A –> [DCECB,3]
B –> ED
C –> [B,11]
D –> [b,4]
E –> [a,4]

Character patterns with more tokens and more
complex structure often have a bewildering num-
ber of quite different grammatical representations.
It can be an absorbing puzzle to try to find ones that
are the smallest, show structure most clearly, and
so on.

Next Time

Since the determination of pattern forms re-
quires both pattern-matching procedures and in-
telligent guidance, a capable application is needed.
In addition, in order to “see” patterns and evaluate
results, a good visual interface is necessary.

In the next article on character patterns, we’ll
describe such an application.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/
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We recently reviewed some notes made at the
time and started to investigate the subject more
seriously. By the time we got around to this, we’d
learned a lot about versum numbers and also had
developed useful tools.

The most important principle we’d learned
was that it’s particularly helpful to deal with versum
numbers according to the number of digits they
have. We’d also learned that versum numbers that
begin with a 1 are more complicated and difficult
to characterize than versum numbers that begin
with other digits  — and also that those that begin
with 3 through 9 differ from those that begin with
a 2 by only a constant [2].

If we’d known these things when we first
looked at versum deltas, we might have under-
stood more than we did — by looking at the first
few hundred deltas, we not only viewed versum
numbers with different numbers of digits, but we
also intermixed those that begin with a 1 with those
that begin with other digits. Look at Figure 1 again
in light of what we now know about versum num-
bers.

Some Notation

Before going on, we need to establish some
notation to avoid complicated and repetitive ver-
biage.

First we’ll call versum numbers versums. This
is a barbarism, but it’s easy to remember. And we’ll
use the Greek letter ∆ for “delta”.

In what follows, we’ll often refer to versums
with n digits, for which we’ll use n: versums. We’ll
also need to differentiate between even and odd n,
for which we’ll use ne and no, respectively. (A more
standard way to make this distinction would be to
refer to n = 2m and n = 2m+1, but we prefer to have
the distinction explicit.)

To identify versum numbers that start with
the digit i, we’ll use the notation i… versums. In
some cases the ending digit is significant, for which
the natural extension is i…j. When needed, we’ll
add additional digits in the initial and final posi-
tions, as in ne:2…22 versums, which stands for
versums with an even number of digits that start
with 2 and end with 22. Finally, we’ll make use of
regular expression notations, such as [i–j]… to
denote versums that begin with the digits i though
j.

Versum Deltas

Not being a mathematician, I am not obligated
to complicate my explanations by excessive
mathematical rigor. — Petr Beckmann [1]

When we first started working with versum
numbers, we computed the deltas (differences)
between the first few hundred. This is trivial to do:

procedure main()
   local i, j

   i := read() | exit() # starting value

   while j := read() do {
      write(j – i)
      i := j
      }

end

There are obvious patterns both in the actual
deltas and in the sequence in which they occur. See
Figure 1.

Figure 1.  The First 500 Versum ∆s

At the time we couldn’t see any obvious rule
underlying the patterns, and we put the subject
aside in order to deal with other aspects of versum
numbers.

References

1. Patterns, from Parsley, Sage, Rosemary and Thyme,
lyrics by Paul Simon,  1966.

2. Character Patterns, Icon Analyst 48, pp. 3-7.

3. “Anatomy of a Program — Lindenmayer Sys-
tems”,  Icon Analyst 25, pp. 5-9.

4 “Anatomy of a Program — Lindenmayer Sys-
tems”,  Icon Analyst 26, pp. 4-9.
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Dividing Up the Problem

As expected, 1… versum ∆s are more compli-
cated (and interesting) than 2… versum ∆s.
1…versum sequences also have many more differ-
ent ∆s than 2… versum sequences. See Figures 2
and 3, which are typical.

 .

Figure 2. 7:1… Versum ∆s

Figure 3. 7:2… Versum ∆s

 These observations led us to divide the study
of versum ∆s into 1…  versum ∆s and 2… versum
∆s. Since [3-9]… versum ∆s are the same as 2…
versum ∆s, we only need to consider the additional
deltas between each group.

We started with 2… versum ∆s, tackling the
simpler problem first — and it’s hard enough.
We’ll come back to 1… versum ∆s later.

There are surprisingly few different n:2… ∆s:

n no. of ∆s no. of different ∆s

1 0 0
2 0 0
3 9 2
4 18 2
5 189 4
6 360 4
7 3609 8
8 6858 7
9 68589 14

10 130320 11
11 1303209 22
12 2476098 16

There also are patterns in the values of versum
∆s and in their counts. The patterns for ne and no are
different, as shown in Figure 4 on the next page.

The information shown in Figure 4 was ob-
tained from ∆ sequences using the following short
program:

procedure main()
   local tabul

   tabul := table(0)

   while tabul[integer(read())] +:= 1

   tabul := sort(tabul, 3)

   while write(right(get(tabul), 8), right(get(tabul), 8))

end

This program expects valid data. What hap-
pens if a line of input is not numeric? See the
bottom of this column for the answer.

There are patterns everywhere. Where do we
start? Or better, what do we hope to accomplish?

This is a recreational problem with no evident
connection to “important” problems or the “real
world”. Consequently, trying to characterize the
patterns in a concise way is a reasonable goal. If the
experience here is like that for other studies of
versum numbers, achieving a deep understanding
is unlikely — but we can hope.

It is more motivating to have a concrete goal.
If we can find a simple rule for characterizing 2…
versum ∆ sequences, we could produce versum
sequences for larger  n than allowed by the present
brute-force method of testing many candidates.
This will be our focus.

The Brute Force Method

Before going on, it’s worth looking at the so-
called brute-force method of producing 2… versum
sequences.

If a line of input is not numeric, integer(read()) fails,
terminating the while loop. The program proceeds without
comment to produce a tabulation for the previously read lines.
In other words, it produces invalid results without any indi-
cation there was a problem. This is about the worst kind of a
bug there is. The program can be fixed by separating read()
and integer() to avoid unexpected failure of the latter:

while line := read() do {
   line := integer(line) | stop("∗∗∗ invalid data")
   tabul[line] +:= 1

…
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This method consists of generating succes-
sive candidates and testing each one to see if it’s
versum. Here’s a naive version:

link options
link vpred

procedure main(args)
   local n, i,  first, last, candidate, opts

   opts := options(args, "n+i+")

   n := \opts["n"] | 6
   i := \opts["i"] | 2

   if n < 4 then stop("∗∗∗ invalid digit specification")
   if not (1 <= i <= 9) then
      stop("∗∗∗ invalid initial digit specification")

   first := i ∗ 10 ^ (n – 1) + i

   last := (i + 1) ∗ 10 ^ (n – 1)

   if i = 1 then last –:= 2 # past, need to reduce
   else if n % 2 = 0 then last –:= 10 – i
   else last –:= 21 – i

   candidate := first

   repeat {
      if vpred(candidate) then write(candidate)
      candidate +:= 1
      if candidate > last then exit()
      }

end

The command-line option –n specifies the
number of digits and the option –i specifies the
initial digit. The initial digit may be 2 through 9.
Just 2 would suffice, but the additional generaliza-
tion does not complicate the computation.

The first and last versum numbers in the
sequence, which are easy to determine but differ-
ent in form ie and io, provide the starting and ending
points.

Having initialized the data, the computation
consists of generating candidates and testing.

The naive part is incrementing by 1. We know
that the last digit is i or i – 1 [2]. If the last digit of the
last number produced is i, it’s silly to add 1 —
instead add 9. More specifically, if the last digit of
the last number produced is i, add 1, otherwise 9.
Furthermore, since adding 1 takes the last digit to
i, and adding 9 takes it to i – 1, we can just alternate.

We can do much better than this for  ie  because
all ie  versums are divisible by 11. Consequently all
ie versums ∆s are divisible by 11. The leads to

Figure 4. Tabulations of n:2… Versum ∆s

∆ no.

n=4 11 9
99 9

n=6 11 99
99 171

891 72
990 18

n=8 11 999
99 3249

891 1368
990 342

8811 720
9801 162
9900 18

n=10 11 9999
99 61731

891 25992
990 6498

8811 13680
9801 3078
9900 342

88011 7200
97911 1620
98901 162
99000 18

n=12 11 99999
99 1172889

891 493848
990 123462

8811 259920
9801 58482
9900 6498

88011 136800
97911 30780
98901 3078
99000 342

880011 72000
979011 16200
988911 1620
989901 162
990000 18

∆ no.

n=3 1 5
19 4

n=5 10 90
89 50
91 32

101 17

n=7 1 810
99 1710

100 90
121 9

791 400
811 320
890 100
911 170

n=9 10 14580
89 8100
99 17910

121 9
891 13680
901 2430
990 1800

1000 90
1111 90
7811 4000
8011 3200
8801 900
8900 100
9011 1700

n=11 1 131220
99 617310

100 14580
121 9
791 64800
890 16200
891 143280
990 35820

1111 90
8811 136800
8911 24300
9801 16200
9900 1800
9901 810

10000 90
11011 900
78011 40000
80011 32000
87911 9000
88901 900
89000 100
90011 17000
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alternate increments of 11 and 99. The code looks
like this:

…
   delta := 9
   delta_alt := 1
   if n % 2 = 0 then {
      delta := 11 ∗ delta
      delta_alt := 11 ∗ delta_alt
      }

…
   repeat {
      if vpred(candidate) then write(candidate)
      candidate +:= delta
      if candidate > last then exit()
      delta :=: delta_alt
      }

…

We have, therefore, reduced the number of
candidates by a factor of 4.5 for  io and 45 for  ie. The
method still deserves to be labeled brute-force, if
somewhat more subtle.

It might seem that this improvement would
be adequate for producing 2… versum sequences
for moderately large n. For just n = 14, however, the
number of 2… versums is 470,458,449. In order to
get these, vpred() must be called this number of
times and succeed, even if every candidate pro-
duced a versum number. Of course, most don’t.
Clearly, we need a method that does not involve
calling vpred() an astronomical number of times.

By the way, do not ask why one would want
to compute versum sequences in the first place.
The problem is a puzzle and an end in itself. Its
existence is enough reason — the “because it’s
there” response.

Versum ∆ Grammars

One of the problems in studying versum ∆
sequences is that they are very long — too long to
get overall insight by using images like those shown
in Figures 2 and 3.

For 2… versum ∆s, the number of different ∆s
is small enough to allow each one to be represented
by a character and hence deal with versum ∆
sequences as strings. This leads us to analyze char-
acter patterns in terms of pattern forms and gram-
mars, as described in the last issue of the Analyst
[2]. That article used the 6:2… versum ∆ sequence
as an example.

That sequence has a near-palindromic form.
This is not an accident. All ne:2… versum ∆ se-

quences have the same form. Moreover, all no:2…
versum ∆ sequences have a true palindromic form.
Here are the top-level productions. The symbol A
is just a label; its structure is different for ne and no,
and of course for different values of n.

ne:2… Ab<A>a ne ≥ 6
no:2… Ad<A> no ≥ 5

For smaller n, the patterns are degenerate —
there’s not enough “room” for them to be fully
articulated.

Furthermore, a, b, and d always represent the
same ∆s:

a ➛ 11 ne ≥ 6
b ➛ 99 ne ≥ 6
d ➛ 121 no  ≥ 7

The significance of these observations is that
it’s only necessary to compute about half of a 2…
versum ∆ sequence: the sequence corresponding
to A in the grammar. The rest can be constructed
from the grammatical forms. A factor of two may
not seem like much, given the previous discussion,
but it’s welcome nonetheless.

Here are some specific examples. Starting
with ne, for n = 6, a grammar is:

axiom:∗
∗ –> Ab<A>a
A –> BD
B –> [bda,9]
C –> [babc,9]
D –> [Cba,4]

The tree for A in this grammar is shown in
Figure 5.

BD

A

[bda,9] [Cba,4]

[babc,9]

Figure 5. An A Tree for the 6:2… ∆ Sequence

 For n = 8, a grammar is:

axiom:∗
∗ –> Ab<A>a
A –> BDEbdaG
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B –> [bdga,9]
C –> [bdabde,9]
D –> [Cbda,8]
E –> [bdabf,9]
F –> [abcbfb,9]
G–> [bFabcbaI<F>,4]
H –> [bcbebcba,9]
I –> [Hbcba,8]

The tree for A in this grammar is shown in
Figure 6.

A

BDEbdaG

[bdga,9] [Cbda,8]

[bdabde,9]

[bdabf,9] [bFabcbaI<F>,4]

[abcbfb,9] [Hbcba,8]

[bcbebcba,9]

Figure 6. An A Tree for the 8:2… ∆ Sequence

Notice the similarities between the defini-
tions for B, C, and D in Figures 5 and 6. There is, in
fact, a pattern to the first few productions for all ne
≥ 6 and probably for later ones. Notice also the
similarity between the subtrees below D and I in
Figure 6.

As n gets larger, other new productions
emerge, but always at the end (at least the way
we’ve chosen to create them). That is, A –> BD for
n=6, A –> BDEbdJa for n =  8.  For n = 10, there is
a similar extension.

One of the difficulties in getting a more pre-
cise characterization of such grammars is that there
are many possible grammars for a given n; when
constructing them, it’s easy to wander away from
what might be the desired ones.

no grammars are noticeably different from  ne
ones (as Figure 4 shows, there also are more no  ∆s
than ne  ∆s for comparable n as n gets larger). Here’s

a grammar for n = 5:

axiom:∗
∗ –> Ad<A>
A –> BDE
B –> [bad,5]
C –> abacabaca
D –> [Ed,3]
E –> Cb<C>

For n = 7, a grammar is:

axiom:∗
∗ –> Ad<A>
A –> BDEFJHIb
B –> [bgch,5]
C –> [babgcf,4]
D –> [Cbabgch,8]
E –> [babgh,4]
F –> babgdb<I>ebabhbabe
G–> [babfbabe,4]
H –> [Gbabhbabe,8]
I –> [bhbabe,4]
J –> [HIbdb<I>ebabhbabe,3]

As  noted earlier, there are grammars for no ≥
5 that have the same top-level form, but similarities
at lower levels are more elusive than for ne.

Note: Many versum grammars can be made
smaller by creating productions for frequently oc-
curring strings of tokens. For example, in the n = 8
example above, bab occurs 13 times and could be
replaced by a production such as

K –> bab

This has the effect of making the location and
nature of such token strings stand out, as well as
reducing the size of the grammar. Doing this,
however, often obscures the overall structure of a
grammar.

Despite the difficulty of finding similarities in
the overall structure of versum grammars, we
believe they exist. If we could produce a grammar
and the ∆s for a given n automatically, we could
generate the corresponding versum sequence very
efficiently. One intriguing idea is to use meta-
grammars to generate versum ∆ grammars. For

Supplementary Material

Supplementary material for this issue of the Analyst, including color images and code, is
available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia49/ia49sub.htm
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Graphics Corner — Drawing Images

Icon’s drawing primitives allow you to pro-
duce a variety of geometric shapes. If you want to
produce an irregular image, you can, of course, use
DrawPoint(). If the image is large, complicated, or
involves many colors, it’s painful if not impractical
to draw it point by point.

If you have an image file for what you want  in
a format supported by Icon, you can read it into a
window. If you need the image, or perhaps many
of them, in an application, this requires separate
files at known places.

The function DrawImage() provides an alter-
native. DrawImage(x, y, s) fills a rectangular area
with upper-left corner x,y using the image string s.

An image string consists of three comma-
separated parts: the width of the rectangle, the
name of a palette, and pixel data:

example, one meta-grammar on each successive
generation might produce the ne:2 … versum se-
quence grammars: the 2:, 4:, 6:, … 2… versum
grammars. This cannot be done entirely within the
grammatical framework we’ve been using. If noth-
ing else, some mechanism is needed to produce
the increasing number of tokens for the ∆s.

More important, we’re a long way from know-
ing enough about versum ∆ sequences to even
approach the problem. Nonetheless, the idea re-
mains in the back of our mind. Some day … .

Next Time

In the next article on versum ∆s, we’ll start
with the problem of finding the ∆s for a given n.

References

1. A History of Pi, Petr Beckmann, Barnes & Noble
Books, 1993.

2.Versum Numbers, Icon Analyst 35, pp. 5-11.

"width,palette,pixels"

A palette associates characters with colors.
There are many different palettes to accommodate
a variety of requirements. The pixel data consists of
one character from the palette for each pixel in the
image. The height of the image is implied by the
number of pixel characters, which must be a mul-
tiple of the width. The pixel characters are drawn
a row at a time, from left to right, top to bottom.
That is, the first width pixels describe the top line of
the image, and so on.

There are two kinds of palettes: grayscale
ones whose names start with a g and color palettes
whose names start with a c. There are 255 grayscale
palettes, g2 though g256, with the number of en-
tries indicated. The first and last characters in these
palettes stand for black and white, respectively
(black and white are considered to be shades of
grays in this context).

Here is an image string for one of the queens
used in the program vqueens in the Icon program
library:
bqueen := "41,g7,_
66666666666666666666666666666666666666666_
66666666666666666666666666666666666666666_
66666666666666666666666666666666666666666_
66666666666664003666666663004666666666666_
66666666666650000466666640000566666666666_
66666666666640000366666630000466666666666_
66666666666660000566666650000666666666666_
66666666666665224666666664225666666666666_
66663346666666644666666664466666666433666_
66620004666666631666666661366666664000266_
66600002666666640666666660466666662000066_
66600003666666650466666640566666663000066_
66640026666666660166666610666666666200466_
66666651666666660046666400666666661566666_
66666662266666660026666200666666622666666_
66666666036666660004663000666666306666666_
66666666403666640000220000466663046666666_
66666666620266620000000000266620266666666_
66666666650002100000000000012000566666666_
66666666663000000000000000000003666666666_
66666666666000000000000000000006666666666_
66666666666300000000000000000036666666666_
66666666666500000000000000000056666666666_
66666666666610000000000000000166666666666_
66666666666630000000000000000366666666666_
66666666666652222222222222222566666666666_
66666666666664444444444444444666666666666_
66666666666640000000000000000466666666666_
66666666666651000000000000001566666666666_
66666666666664000000000000004666666666666_
66666666666651000000000000001566666666666_
66666666666640000000000000000466666666666_
66666666666664444444444444444666666666666_
66666666653222222222222222222223566666666_
66666666600000000000000000000000066666666_
66666666400000000000000000000000046666666_
66666666300000000000000000000000036666666_
66666666300000000000000000000000036666666_
66666666300000000000000000000000036666666_
66666666300000000000000000000000036666666_
66666666666666666666666666666666666666666"

We’ve split the literal so that each line of the image
string corresponds to a line of the image, and we’ve
squeezed the lines together so that you can better
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see the pattern. The g7 palette has 7 characters
from 0 (black) through 6 (white). The correspond-
ing image, which is square, is shown in Figure 1.

Figure 1. The Black Queen

There are six color palettes. The c1 palette,
which has 90 colors, is based on Icon’s color nam-
ing system [1]. The remaining cn palettes have n
levels of each of the RGB primary colors with
additional grays added. See Reference 2 for a com-
plete description of palettes. You can view a palette
with its colors and the corresponding characters
using the program palette in the Icon program
library. Images of the color palettes also are on the
Web page for this issue of the Analyst.

While it’s possible to construct image strings
by hand, unless the image and the number of colors
are small, the process ranges from tedious to im-
practical. The Icon program library has help. For
example, the program giftoims converts GIF im-
ages to image strings. It uses Capture(palette) from
the module gpxop.icn, which converts a rectangu-
lar portion of a window to an image string accord-
ing to palette.

There are several functions related to palettes,
including:

PaletteKey(palette, color), which returns a char-
acter from palette that is close to color.

PaletteColor(palette, s), which returns the color
in palette that represents s.

PaletteChars(palette), which returns the string
of the characters in palette.

Except in the large palettes in which they are
used for colors, the characters "~" and "\377" desig-
nate “transparent” pixels in an image string. Trans-
parent pixels are not drawn and hence do not
overwrite what’s already on the canvas.

This allows overlays, such as the one shown
in Figure 2.

    

Figure 2. “No Unicorns Allowed”

 The program that produced the final result is:

link graphics

procedure main()
   local prohibit, unicorn, width, height
   local white, mask, palette

   prohibit :=
      $include "prohibit.ims"

   unicorn :=
      $include "unicorn.ims"

   prohibit ?:= {
      width := tab(upto(','))
      move(1)
      palette := tab(upto(','))
      move(1)
      white := PaletteKey(palette, "white")
      width || "," || palette || "," || map(tab(0), white, "~")
      }

   unicorn ? {
      width := tab(upto(',')) # width for window
      move(1)
      tab(upto(',') + 1) # skip palette
      height := *tab(0) / width
      }

   WOpen("size=" || width || "," || height) |
      stop("∗∗∗ cannot open window")

   DrawImage(0, 0, unicorn)

   DrawImage(0, 0, prohibit)

   WDone()

end

We used $includes, since the image strings are too
long to show here.

The effect shown in this example could, of
course, be achieved in other ways. The interdiction
symbol is simple enough that it could be drawn
using DrawCircle() and DrawLine(), although you
might find it a bit tricky to get it just right. The
overlay could have been achieved by reading a
transparent GIF.

Nonetheless, there are many things that can
be done using image strings that would be awk-
ward or impractical using other methods. We’ll
show some of these in another article.

References

1. Graphics Programming in Icon, Ralph E. Griswold,
Clinton L. Jeffery, and Gregg M. Townsend, Peer-
to-Peer Communications, 1998, pp. 139-141.
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Sorting

Sorting is an essential part of many programs,
but there never seem to be all the facilities that
you’d like to have. In this article we’ll start by
describing Icon’s built-in facilities and then go on
to additional facilities in the Icon program library
in a subsequent article.

Sorting in Icon is complicated by the fact that
Icon has many different data types, and a collec-
tion of values to be sorted may contain values of
different types.

Sorting Rules

Icon first sorts the values by type and then
among values of the same type by rules that de-
pend on the type. The type order is:

the null value
integers
real numbers
strings
csets
files and windows
co-expressions
functions and procedures
lists
sets
tables
records

It makes some sense that the null value comes
before any other value in sorting. Note that there is
only one null value. Numbers come next because
they are, in some sense, simple. There is no particu-
lar reason for integers to come before real numbers
except that integers are simpler than real numbers.

Strings, being central to Icon’s computational
repertoire, come next, followed by values of the
related type, csets.

The placement and order of windows, files,
procedures, and co-expressions is rather arbitrary.
In fact, they might better come at the end, but once
a decision like this has been made, you’re stuck
with it. In any event, having values of these types
in collections to be sorted is unlikely and you

probably can program in Icon without ever need-
ing to know where they fall in the type order.

The structure types are at the end, with records
last because records themselves have types and in
that sense are somewhat different from the other
structure types.

Now there is the question of sorting among
values of the same type. As you’d expect, sorting
among numeric values is by magnitude. Strings
are sorted lexically (sometimes called alphabeti-
cally, but remember that all 256 characters may
occur in strings).

In lexical sorting, the numerical codes for the
characters are compared. These days, almost all
computers except IBM mainframes use the ex-
tended 8-bit character set based on the 7-bit ASCII
standard. In ASCII, digits come before letters, up-
percase letters come before lowercase ones, and
“special” characters are scattered around. See Ref-
erence 1 for details about character sets. Anyway,
everyone knows what alphabetical sorting is and
it’s easy to extend that knowledge to strings that
contain characters other than letters.

Csets also are sorted lexically. Although csets
themselves are unordered collections of charac-
ters, those characters have numerical values. One
way to think of cset sorting is that they are sorted
lexically as they would be if converted to strings.

Files and windows are sorted together by
their file names and window labels, respectively.
Co-expressions are sorted by serial number [2].

Functions and procedures are sorted together
by their names.

Among values of the same structure type,
values are sorted by serial number, which also is
the order in which they are created. That is, the
“oldest” structures of a given type come first.
Finally records are subsorted by type name (lexi-
cally) and then by serial number.

Note: The third edition of the Icon language
book failed to record the changes in sorting that
had taken place since the second edition. The infor-
mation given on page 162 is erroneous.

Sorting Values in Structures

Icon’s primary sorting function is sort(X),
where X is a structure:  a list, set, table, or record.
The result produced by sort() always is a list.

For a list, sort(L) produces a new list of the
same length but with the elements in sorted order.

2. Graphics Programming in Icon, Color Plate 8.1 and
pp. 441-444.
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For example, if

potpourri := ["two", '2', 1, &null, 1.0, &null, 2, "one"]

then sort(potpourri) produces

[&null, &null, 1, 2, 1.0 , "one", "two", '2']

Records and sets can be sorted just like lists.
For a set, sort(S) also produces a new list  with

as many elements in the list as there are members
in the set.

The sticky case is tables, and tables are the
most frequently sorted  structures. The problem is
that table elements are pairs of values: keys and
associated values. The keys are unique, like the
members of sets, but the values need not be and
often aren’t.

The original solution to this was to produce a
list of two-element lists, in which each two-ele-
ment list  corresponds to a table element, with the
key being first and the value second. This approach
has the virtue of being logical, preserving the struc-
ture of the table, and producing a list of the same
size as the table (as it is for other structure types).
For tables, sort() has an optional second argument:
sort(T, 1) orders the two-element lists according to
the keys, while sort(T, 2) orders them according to
the associated values.

Consider this example:

   One := table()

   One["string"] := "one"
   One["integer"] := 1
   One["real"] := 1.0
   One["cset"] := '1'

The result of sort(One, 1) is

L1 := [["cset", '1'], ["integer", 1], ["real", 1.0],
   ["string", "one"]]

while the result of sort(One,2) is

L2 := [["integer", 1], ["real", 1.0], ["string", one"],
   ["cset", '1']]

There are two problems with “two-level” sort-
ing. First, since the result is a list of lists, it’s
necessary to use double subscripting to get to the
keys and their associated values.  For example, to
generate the values of sort(T, 1), something like
this is needed:

(!L1)[2]

This can be somewhat confusing, and it is error

prone.
The other problem is storage overhead. The

result of sorting a table with n elements is n+1 lists.
Every list carries with it some storage overhead [3].
Tables that are to be sorted often are very large, so
the memory requirements can be significant. To
make matters worse, sorting a table often is the
final output phase of a program that may have
taken a long time to produce the table. A run-time
error because of  insufficient  storage to produce
the sorted list and get the final results has mad-
dened more than one Icon programmer. (You may
take “madden” in either of its meanings.)

This pragmatic concern led to sorting options
for which the result is a “one-level” list of alternat-
ing keys and their associated values — and hence
whose size is twice the size of the table. sort(T,  3)
orders by key, while sort(T, 4) orders by value. For
example, the result of sort(One, 3) is

L3 := ["cset", '1', "integer", 1, "real", 1.0,
   "string", "one"]

while the result of sort(One, 4) is

L4 := ["integer", 1,"real", 1.0, "string", "one",
   "cset", '1']

This type of sorting replaces the double-
subscripting problem by one of keeping track of
positions in the list. For example, to generate the
values in L3, something like this is needed:

L3[2 to ∗L3 by 2]

 Nevertheless, most programmers prefer one-
level sorting for tables.

Sorting Structures by Field

The function sortf(X, i) sorts by “field” values.
Lists and records are ordered by the values of their
ith elements/fields. Other values are sorted as they
are by sort().

The value of i, which defaults to 1, can be
negative but not zero. Lists and records having
equal i fields are ordered as they would be by sort(),
but lists and records that do not have an ith element
appear before those that do.

sortf() only applies to lists, sets, and records; it
cannot be used for tables.

Here’s an example of a way sortf() can be
used. The data consists of a list of marbles:

record marble(type, diameter, condition, price, image)
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…
   spc001 := ("swirl", 1.5, "mint", 85.00, "i001.gif")
   spc002 := ("swirl", 0.5, "good", 10.00, "i002.gif")

…
   spc099 := ("agate", 1.25, "mint", 15.00, "i099.gif")
   spc100 := ("agate", 2.5, "good", 12.50, "i100.gif")

…
   marbles := [spc001, spc002, …, spc099, spc100, …]

…

Then

marbles_by_value := sortf(marbles, 4)

and so on.

Stability

A sorting method is said to be stable if equal
values always retain their positions when sorted,
but unstable otherwise.

For sorting, Icon uses the C library routine
qsort(), which typically implements quicksort [4].
The quicksort algorithm is unstable, so Icon’s sort()
and sortf() functions are unstable.

Is this a problem? If a structure to be sorted
contains two equivalent values, how can you tell if
their order is retained in sorting? For example,
suppose L1, L2, and L3 were created one after the
other,

lists := [L1, L2, L3, L4, L4, L3, L2, L1]

then sort(lists) produces

sorts := [L1, L1, L2, L2, L3, L3, L4, L4]

Since sort() is unstable, the first L1 in lists may be the
second element of sorts. But, since Icon uses pointer
semantics, the first and last elements of lists are not
only equal for the purposes of sorting — they are
identical. There is no way to tell one from the other.
The same is true of multiple instances of other types
of values. For example, as a result of

s1 := "one"
s2 := "o" || "n" || "e"

both s1 and s2 have the value "one". The fact that
their values were created separately and in differ-
ent ways does not matter. The way Icon is imple-
mented, there actually are two copies of "one" [5],
but semantically they are the same, and there’s no
way to tell them apart. One way to think about this
is to consider the analogous case for integers:

i1 := 1
i2 := 2 – 1

Both i1 and i2 have the value 1, but there aren’t two
different 1s.

But is this true for all Icon values? Are there
values that are different but equal for the purposes
of sorting? Review the rules for sorting and see if
you can find examples. See the last section of this
article for a discussion of this.

The fact that Icon’s sorting is unstable is lim-
iting for sortf(). If sorting were stable, multiple calls
of  sortf() could be used to sort according to mul-
tiple fields.

Limitations of Sorting

Icon’s built-in sorting facilities provide no
options; there is no way in Icon’s built-in repertoire
to, for example, discard duplicate values, reverse
the order, or other such useful things. The result
always is a list with values in order from the
smallest to the largest according to fixed rules.
And there is no way to specify the comparison
method used for sorting. Such things have to be
programmed in Icon.

As you’d expect, the Icon program library has
procedures for sorting in more sophisticated ways.
We’ll describe them in a subsequent article.

The Consequences of Unstable Sorting

The situations in which distinct values may
be equal for the purposes of sorting occur when
values are sorted according to names. For example,
if two windows have the same label or if a window
has a label that is the same as the name of a file, they
are equal for the purposes of sorting. Other ex-
amples are more obscure. For example,

op1 := proc("–", 1)
op2 := proc("–", 2)

assigns the unary negation operator and the binary
difference operator to op1 and op2, respectively.
Operators are really functions with special syntax,
so op1 and op2 sort as functions. Both have the
name "–", so sorting may change their relative
positions. (How can you tell their names are "–"?)
Since functions and procedures sort together, it’s
possible to have a similar situation. Suppose a
program has a procedure abs():

procedure abs(i)
…

end
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What’s Coming Up

Then as a result of

prc := abs
fnc := proc("abs", 0)

the value of prc is the procedure value and the
value of fnc is the built-in function [6]. They have
the same name, but they are different. The same is
true of a record constructor, as in

record seek()

which produces a record constructor with the same
name as the built-in function seek().

These examples are, of course, esoteric. The
most serious limitation imposed by unstable sort-
ing is that you can’t do a multi-key sort using
multiple calls of sortf().
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We have additional articles on character pat-
terns and versum deltas planned for the next issue
of the Analyst. We also plan to follow up the
article on sorting in this issue with a From the
Library article about sorting facilities in the Icon
program library.

In new areas, we are working on articles on
animated graphics and making “movies”.

And there’s the ever-present threat of another
Tricky Business article.
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