
The Icon Analyst 45 / 1

December 1997
Number 45

In this issue …

Anatomy of a Program 1
Graphics Corner 10
Versum Numbers as Factors ... 12
What’s Coming Up 16

In-Depth Coverage of the Icon Programming Language

The Icon AnalystThe Icon Analyst

Anatomy of a Program —
Numerical Carpets

It has long been known that modular arith-
metic often produces interesting numerical pat-
terns. These patterns can be made easier to com-
prehend and more interesting by rendering them
as images with colors associated with numerical
values.

The example most often cited is Pascal’s Tri-
angle, which exhibits the binomial coefficients. If
you take the coefficients modulo m for various m,
you get different but interesting patterns. Figures
1 through 3 show a portion of Pascal’s Triangle for
m = 2, 3, and 5, using m uniformly spaced shades of
gray from black (for 0) to white (for m–1).

Figure 1. Pascal’s Triangle Modulo 2

Figure 2. Pascal’s Triangle Modulo 3

Figure 3. Pascal’s Triangle Modulo 5

See References 1 and 2 for extensive treat-
ments of this subject.

Our interest in the subject came from a paper
entitled “Carpets and Rugs: An Exercise in Num-
bers” [3]. This brief and informal paper describes
the results of generating integers on a square array
according to a “neighborhood” rule. The results
are reduced modulo m and colored according to
the resulting values.

Computing the values of the elements of an
array according to the values of their neighbors is
the basis for cellular automata [4,5]. Cellular au-
tomata may be one dimensional, two dimensional,
or of higher dimension. The two-dimensional Game
of Life is the best known [6].

2 / The Icon Analyst 45

Cellular automata are characterized by three
properties:

• Parallelism: The values of all cells are up-
dated at the same time at discrete intervals
t1, t2, t3,… .

• Locality: The value of a cell at time tn+1
depends only on the value of the cell and its
neighbors at time tn.

• Homogeneity: The same update rules apply
to all cells.

Various neighborhoods can be used. For two-
dimensional cellular automata, the neighborhood
of a cell typically consists of cell and its eight
physically adjacent neighbors, as shown in Figure
4:

nw

w

sw

c

n

s

ne

e

se

Figure 4. The Neighborhood of a Cell

Here we have labeled the cells according to com-
pass points with the center cell labeled c. Which of
the cells in the neighborhood contribute to the
value of the center cell varies with the automaton.

The “Carpets and Rugs” article we mentioned
above differs from cellular automata in that the
values of the array elements are not computed in
parallel, but rather one after another in a regular
way in which previously computed values poten-
tially affect newly computed values. Once a value
is computed, it is not changed.

An n × n array is initialized along the top row
and down the left column with all other values
being zero initially. The rule used to compute new
values is very simple:

ai , j = (a
j, i–1

 + a
i–1, j–1

 +

a

i–1, j
) mod m 2 ≤ i, j ≤ n

Note that the initialized cells are not changed.
The neighborhood used is shown in Figure 5,

where the value of the center cell is the sum of the
values in the gray cells.

nw

w

sw

c

n

s

ne

e

se

Figure 5. The Carpet Neighborhood

Thus, in terms of the labeling, c = n + nw + w. Note
that the new value of c does not depend on its prior
value.

The paper does not mention the order in
which the array is traversed (“woven” seems apt
for carpets), but with this neighborhood, the same
results can be obtained either by a row-primary
traversal, left to right, top to bottom, or by a col-
umn-primary traversal.

Having filled in the array, a color is assigned
to each integer based on its value and the values of
neighboring cells. The result then is displayed as a
computer-generated image. The paper does not
say how the colors are assigned, but simply assign-
ing a different color to each integer 0 ≤ i ≤ m–1
produces images similar to the ones shown in the
paper.

Only two initialization schemes are described
in the paper: (1) all ones across the top row and
down the left column, and (2) alternating zeros and
ones across the top and down the left side.

The Icon Analyst 45 / 3

Even with these simple initialization schemes
and the simple rule for computing values, the
results for different moduli are fascinating. Fig-
ures 6 and 7 show “carpets” similar to the ones in
the paper.

Figure 6. Carpet from All-Ones Initialization

.

Figure 7. Carpet from One-Zero Initialization

Other moduli produce similar images.
The paper raises more questions than it an-

swers. Some of the more obvious ones are:

•What is the effect of different initialization
values?

•What is the effect of initializing different
portions of the array?

•What happens if the array is not square?

•What happens if the neighborhood compu-
tation is different?

•How do different color schemes affect the
visual result?

•What happens if different traversal paths
are used?

•What if …

The first issue to resolve is whether any such
changes yield results that are both significantly
different from those using only the method given
in the paper and also are interesting. A few simple
experiments answered this question, at least for us.
See Figures 8 and 9. (Such images cannot be pro-
duced using only the methods described in the
paper.)

Figure 8. “Pascal” Carpet

Figure 9. “Open Weave” Carpet

With so many independent variables, some of
which offer not only endless but very different
possibilities, two things are obvious: (1) an experi-

4 / The Icon Analyst 45

mental approach is appropriate, and (2) a general,
flexible, and easily used tool is needed.

This leads us to “programmable numerical
carpets” in which a user can use programming
techniques to experiment and explore. A visual
interface in which various possibilities can be tried
and evaluated interactively adds to power and
ease of use.

There are, of course, too many independent
variables posed by the preceding questions. We
decided to stay within the confines of the method
described in the paper with only a few extensions
that do not affect the underlying ideas:

• separate specifications for carpet width and
height (length)

•specification of different neighborhood com-
putations (but using only the n, nw, and w
cells)

•separate specifications for row and column
initialization

•specification of various initialization values

The width, height, and modulus are just con-
stants that the user can specify. The challenging
issue is initialization. Providing the user with a
choice among a list of predefined initializations is
easy, but it obviously is very limiting. Instead, the
user should be able to specify the sequences of
numbers for initialization.

We used the word “sequence” in the last
sentence for a purpose. We could have used other
words, such as “list”, to convey the idea of order.
But in Icon, the concept of sequence runs so deeply
and is such a powerful programming technique
that thinking sequences is something that should
come naturally.

For example, the initializations used in the
paper can be represented as sequences generated
by the expressions |1 and |(0 | 1). Now think of all
the other possibilities! Possibilities such as seq(),
which generates 1, 2, 3, … and fibseq() from the
Icon program library, which generates the Fibonacci
sequence 1, 1, 2, 3, 5, 8, … , and many more.

But this idea takes us into deep water. It
implies the ability to evaluate an arbitrary Icon
expression during program execution. It is, of
course, possible to write a program in which the
initialization expressions are edited before the pro-
gram is compiled and run. But this is too laborious
and time-consuming for exploring the vast space
of numerical carpets.

How can you evaluate an arbitrary Icon ex-
pression within a running program? You can’t. But
you can accomplish the equivalent.

One method is to write out a file consisting of
the expression wrapped in a declaration for a main
procedure. For example, to “evaluate” seq(), the
file might look like this:

procedure main()
 every write(seq())
end

If the file is to be named expr.icn, a procedure
to produce the file is just:

procedure expr_file(expr)
 local output

 output := open("expr.icn", "w") |
 stop("∗∗∗ cannot open file for expression")

 write(output, "procedure main()")
 write(otuput, " every write(", expr, ")")
 write(output, "end")

 close(output)

 system("icont –s expr –x")

 return

end

The –s option suppresses informative output from
icont, while the option –x causes the program to be
executed after compilation.

There is one thing very wrong with expr.icn:
an expression like seq() is an infinite generator;
output continues until something intervenes. That’s
easily fixed by limiting the generator. For the ini-
tialization of the top row, this might be used:

every write(seq()) \ width

where width is the width of the array.
Before doing this, however, there is the ques-

tion of how to get the output of expr back into the
program that created it. One way would be to write
it to a known file and read from the file when expr
completes execution.

An alternative is to open the command line as
a pipe instead of using system():

input := open("icont –s expr –x", "pw")

This has the same effect as the use of system()
above, except it creates a pipe, input, from which
the values produced by expr can be read one at a
time as needed. Using this method, it’s not neces-

The Icon Analyst 45 / 5

sary to add limitation to expr.icn. Depending on
the operating system, expr may produce a few
more values than are ever used, but in most situa-
tions, this is not a problem. Of course, the operating
system must support pipes.

Note that pipes have to be created for every
expression that needs to be evaluated to produce a
carpet. There are at least three, one for each
initializer and one for the neighborhood computa-
tion. We also found it helpful for the user to be able
to specify the modulus as an expression, such as
&phi ^ 2, and it just might be useful to allow the
dimensions to be specified by expressions.

We have used this monolithic approach suc-
cessfully, using exprfile.icn from the Icon program
library to manage the details. We prefer a different
approach, however; one that is simpler and more
flexible. In this approach, a carpet-configuration
program writes a file that contains preprocessor
definitions for the various carpet parameters and
expressions. It then uses system() to compile and
execute a carpet-generation program that includes
the definition file and constructs the carpet.

The advantage of this approach is that it’s
easy to write the preprocessor definitions and they
are “magically” there when
the carpet-generation pro-
gram is compiled.

Separating the construc-
tion into two applications has
the additional advantage of
separating two quite different
functionalities into two pro-
grams as opposed to packing
them all into one program.

There are downsides to
the separation. Since carpet
generation is done by a separate application, the
user needs to shift attention to this application to
view the image it produces. Another problem is
that the carpet-configuration program must know
the location of the source code for the
carpet-generation program.

Less obvious, perhaps, is error
checking. In the monolithic approach,
a user syntax error in an initialization
expression can be detected before car-
pet construction begins. With the
“duolithic” approach, that can’t be
done without “evaluating” expressions
in the carpet-configuration application,
which would defeat the purpose of the

separation. Instead, the syntax error does not occur
until the carpet-generation program is compiled.

But this is, after all, an application for Icon
programmers; they don’t make mistakes. Or, if
they do, they know intuitively what is wrong and
how to fix it ….

In case you are wondering about speed, the
“duolithic” approach is faster.

The interface for the carpet-specification pro-
gram is simple: It consists of menus for file opera-
tions and setting specifications, a single button to
create a carpet, and a “logo” for decoration. See
Figure 10.

Figure 10. Carpet-Specification Interface

Figure 11 shows the dialog for entering and
editing initializers.

The text-entry fields are long to allow complicated
expressions to be entered

Figure 12 shows the dialog for entering and
editing the neighborhood expression.

Figure 11. The Initializer Dialog

Figure 12. The Neighborhood Dialog

6 / The Icon Analyst 45

Note that the variables n, nw, and w are used
to refer to the cells relative to the current one when
the carpet is generated. The values of these vari-
ables are supplied in the carpet-generation pro-
gram. The Default button restores the expression to
n + nw + w.

Here is an example of a definition file pro-
duced by the carpet-specification program.

$define Comments "October 14, 1997"
$define Name "untitled"
$define Width (128)
$define Height (128)
$define Modulus (5)
$define Hexpr (seq())
$define Vexpr (fibseq())
$define Nexpr (n + nw + 2 ∗ w)
$define Colors "c2"

The definition for Colors is the name of a color
palette.

Carpet Specifications

Dimensions

The size of a carpet usually affects its “com-
pleteness” as shown in Figure 13.

Figure 13. One Effect of Carpet Size

In some cases, the dimensions may affect the
scale of the pattern. The patterns for carpets that
are not square usually resemble the patterns for
square ones.

In most cases, modest dimensions, such as 64
× 64 give an indication of the nature of the carpet.
Considerable time can be saved by starting with
small sizes to find promising candidates for larger
carpets.

It is, of course, possible to contrive specifica-
tions that produce very different patterns depend-
ing on the dimensions of the carpet. Consider, for
example,

(|0 \ 100) | 1

for both initializers. Since the first 100 cells are
zero, carpet with dimensions less than 101 × 101
will be a solid color, while a 200 × 200 carpet is as
shown in Figure 14.

Figure 14. Another Effect of Carpet Size

Moduli

The patterns produced vary considerably in
appearance depending on the modulus. Even the
simplest initializer, a lone one on the upper-left
corner, produces interesting patterns for different
moduli. The results for a 128 × 128 array with
moduli from 2 through 17 are shown in Figure 15.

Figure 15. Effects of the Modulus

The patterns that result from different moduli
often show significant differences between prime
and composite moduli. There is, of course, a strong
interaction between the modulus and the
initializers.

The Icon Analyst 45 / 7

Initializers

Initializers provide the most fertile ground
for designing interesting carpets. There are endless
possibilities, which is a problem in itself.

Even the simplest initializers often produce
interesting results, as shown in Figure 15. If the
initializers for the top row and left column are the
same and the default neighborhood computation
is used, the resulting carpet is symmetrical around
the diagonal from the upper-left corner to the
lower-right one. The result often is more attractive
than if different initializers are used for the top and
left edges, but there are endless exceptions.

Icon’s generators offer an easy way to experi-
ment. Even simple generators like |(1 to 5) produce
interesting carpets.

Some numerical sequences, when used as
initializers, produce interesting patterns. Rather
surprisingly, the prime numbers produce interest-
ing carpets for moduli 4 and 8. Figure 16 shows the
carpet for modulus 4. The carpet for modulus 16 is
similar.

Figure 16. The Primes with Modulus 4

On the other hand, for other moduli at least
through 100, the carpets for primes are chaotic and
show little structure. The carpet for modulus 3,
shown in Figure 17, is typical.

Figure 17. The Primes with Modulus 3

It’s worth noting that the Icon program li-
brary contains a large number of procedure that
generate various numerical sequences. See
genrfncs.icn. The module pdco.icn contains pro-
grammer-defined control operations [7,8] that al-
low sequences to be composed in various ways,
such as interleaving results from several sequences.

Neighborhoods

Neighborhoods are tricky. Most expressions
other than the default one produce degenerate or
chaotic carpets. Scaling values sometimes produce
interesting results. For example, 3 ∗ n + nw + 2 ∗ w,
with modulus 5 and lone-one initializers, pro-
duces the carpet shown in Figure 18.

Figure 18. A Non-Standard Neighborhood

If you look closely, you’ll see that this carpet is not
symmetric around the diagonal.

Colors

Lists of colors are used in displaying carpets.
They may come from Icon’s built-in palettes, or
from color lists provided by the carpet-specifica-
tion program, or they can be supplied by the user.

Different color lists, of course, may make
marked differences in the visual appearances of
the same carpet. Contrasting colors may make
patterns easier to discern, but they may not pro-
duce the most attractive results.

There is a strong correlation between the
modulus and the colors used. The number of colors
need not be the same as the modulus, but if the
number of colors exceeds the modulus, some col-
ors will not be used. A more interesting situation
occurs when the number of colors is less than the
modulus. In this case the carpet-generation pro-
gram “wraps around”, taking values greater than
the number of color modulo the number of colors.

An interesting possibility exists for using color
lists in which colors are duplicated, thus mapping

8 / The Icon Analyst 45

different values into the same color. We have not
explored this yet.

The Programs

The carpet-specification program, named car-
port, is a simple VIB application. Most of the code is
routine and we’ll only show three procedures.

The procedure init() initializes the interface
and sets up the default carpet specifications:

procedure init()

 vidgets := ui() # initialize interface

 # Set up carpet defaults.

 comments := ""
 name := "untitled"
 width := 128
 height := 128
 modulus := 5
 hexpr := "|1"
 vexpr := "|1"
 nexpr := "n + nw + w"
 colors := "c2"

 return

end

The procedure that is called to edit the
initializers shows how simple the process is: There
is no error checking; whatever the user enters is
passed along to the carpet-generation program:

procedure initers()

 if TextDialog("Initializers:", ["horizontal", "vertical"],
 [hexpr, vexpr], 80) == "Cancel" then fail
 hexpr := dialog_value[1]
 vexpr := dialog_value[2]

 return

end

The procedure create_cb() writes the defini-
tion file for the carpet-generation program and then
compiles and executes the program, which is named
carplay:

procedure create_cb()
 local out

 output := open("carpincl.icn", "w") | fail

 write(out, "$define Comments ", image(comments))
 write(out, "$define Name ", image(name))
 write(out, "$define Width (", width, ")")
 write(out, "$define Height (", height, ")")

 write(out, "$define Modulus (", modulus, ")")
 write(out, "$define Hexpr (", hexpr, ")")
 write(out, "$define Vexpr (", vexpr, ")")
 write(out, "$define Nexpr (", nexpr, ")")
 write(out, "$define Colors ", image(colors))

 close(output)

 # compile and run

 system("icont –s carplay –x")

 return

end

Note that image() is used to place quotation marks
around strings and that expressions are sur-
rounded by parentheses to prevent misinterpreta-
tion when they are substituted for their names in
the carpet-generation program.

The carpet-generation program, shown on
the next page, is a bit more interesting.

The file containing the preprocessor defini-
tions, carpincl.icn, is included before the actual
code. The main procedure simply calls carpet() to
produce the carpet and then waits for the user to
save the image if desired before quitting. The
interface is primitive to avoid linking lots of code
that would be necessary for a more sophisticated
interface, since the user of carport must wait for
carplay to compile and link, the time saved is
worth the inconvenience.

The procedure carpet() uses the symbols de-
fined in carpincl.icn (distinguished by initial up-
percase letters). There are some subtleties here.
Modulus, Width, and Height might be expressions,
not just numbers. Their assignment to variables,
which are used subsequently, assures that expres-
sions are not evaluated repeatedly. Note that the
number of colors, assigned to cmod, may be differ-
ent from the modulus.

First the left and top edges are initialized,
using the expressions from carpincl.icn. The edges
are colored before going on. Next, the carpet is
created by traversing the matrix. Note that nega-
tive values and real numbers are allowed in speci-
fications. Real numbers are converted to integers
and the absolute value is used in determining the
color to assign to a cell.

The procedure neighbor() is called with the
three neighbors of interest. It simply returns what-
ever Nexpr specifies. Notice that the computation
in neighbor() does not have access to the matrix or
the other local variables in carpet(); this effectively

The Icon Analyst 45 / 9

confines the neighborhood computation to the val-
ues of the three neighboring cells — it can’t “reach
out” and access other cells.

That’s all there is to it. Of course, other fea-
tures could be added to carplay to, for example, tile
the carpet image so the user can see how it looks
used in that way.

Carpets on Our Web Site

The Web page for this issue of the Analyst
contains numerous examples of the fruits of our
(carpet) labors and well as some interesting results
of programming errors. We also hope to put up the
programs described in this article, but that may
take a while.

The color images there are much more inter-
esting than the grayscale versions here. If you are
interested in numerical carpets, you should visit
this page.

Next Time

The programs given here allow easy experi-
mentation. If, however, you find an interesting
specification and want to explore variations on it,
it’s tedious. For example, in looking for interesting
carpets with prime initializers, we covered a range
of moduli in hopes there might be interesting
results for moduli other than 4 or 8. Doing this one
at a time using the programs described in this
article just wasn’t feasible.

In another article on numerical carpets we’ll
describe applications that allow generating car-
pets in the background for a range of specifica-
tions.

There are many more things that can be done
to increase the capability of the carpet programs.
These include:

•specification of different ways to initialize
the carpet, instead of just along the top and
right edges

•specification of different paths for travers-
ing the carpet, instead of just row primary
or column primary

•specification of neighborhoods using cells
other than n, nw, and w

•“reweaving” a carpet to use its final values
as initialization for another traversal

Doing this, especially the specification of ar-
bitrary paths on an array, involves solving both

link carpcolr # color handler
link matrix
link genrfncs # procedures for initializers
link wopen

$include "carpincl.icn"

procedure main()

 carpet()

 repeat case Event() of {
 "q": exit()
 "s": WriteImage(Name || ".gif")
 }

end

procedure carpet()
 local m, n, colors, v, modulus, cmod, array, height, width

 colors := carpcolr(Colors)

 cmod := ∗colors

 modulus := Modulus
 width := Width
 height := Height

 array := create_matrix(height, width, 0)

 WOpen("size=" || width || "," || height) |
 stop("∗∗∗ cannot open window")

 m := 0
 every v := (Vexpr \ height) do
 array[m +:= 1, 1] := v % modulus
 n := 0
 every v := (Hexpr \ width) do
 array[1, n +:= 1] := v % modulus

 every m := 1 to height do { # color left edge
 Fg(colors[(abs(integer(array[m, 1])) % cmod) + 1])
 DrawPoint(m – 1, 0)
 }
 every n := 1 to width do { # color top edge
 Fg(colors[(abs(integer(array[1, n])) % cmod) + 1])
 DrawPoint(0, n – 1)
 }

 every m := 2 to height do { # compute and color
 every n := 2 to width do {
 array[m, n] := neighbor(array[m, n – 1],
 array[m – 1, n – 1], array[m – 1, n]) % modulus
 Fg(colors[(abs(integer(array[m, n])) % cmod) + 1])
 DrawPoint(n – 1, m – 1)
 }
 }

 return

end

procedure neighbor(n, nw, w)

 return Nexpr

end

The Carpet-Generation Program

10 / The Icon Analyst 45

conceptual and programming problems.
We’ll probably have an article on specifying

paths before we apply them to carpets.

References

1.“On Computer Graphics and the Aesthetics of
Sierpinksi Gaskets Formed from Large Pascal’s
Triangles”, Clifford A. Pickover, in The Visual Mind:
Art and Mathematics, Michele Emmer, ed., pp. 125-
133.

2. Chaos and Fractals; New Frontiers of Science, Heinz-
Otto Peitgen, Hartmut Jürgens, and Dietmar Saupe,
Springer-Verlag, 1992.

3.“Carpets and Rugs: An Exercise in Numbers”,
Dann E. Passoja and Akhlesh Lakhtakia, in The
Visual Mind: Art and Mathematics, Michele Emmer,
ed., pp. 121-123.

4. Cellular Automata and Complexity; Collected Pa-
pers, Stephen Wolfram, Addison-Wesley, 1994.

5. Cellular Automata Machines, Tommaso Toffoli
and Norman Margolus, The MIT Press, 1991.

6. The Recursive Universe; Cosmic Complexity and the
Limits of Scientific Knowledge, William Poundstone,
Contemporary Books, 1985.

7.“Programmer-Defined Control Operations”,
Icon Analyst 22, pp. 8-12.

8.“Programmer-Defined Control Operations”,
Icon Analyst 23, pp. 1-4.

Graphics Corner

Seamless Tiling

Seamless tiling, in which the borders between
adjacent generating tiles (GTs) are not visually
evident, is important in many applications. Seam-

less tiling is used extensively in decoration, fash-
ion, and architecture — in fact, if you look around,
you’ll see seamless tiles almost everywhere in man-
made objects.

Computer graphics have greatly expanded
the use and demand for seamless tilings — for
computer “wallpaper”, Web page backgrounds,
multimedia backgrounds, and textures for the sur-
faces of three-dimensional models.

Seamless tiles of bewildering variety are avail-
able for the taking from many Web sites, but see the
Copyright Issues sidebar on the next page. Many
commercial collections are available on CD-ROM.
Some image-manipulation programs can create
seamless tilings, and several applications are dedi-
cated to just this task.

Motifs, of course, may contain elements that
give the appearance of seams when they are tiled.
We won’t consider that here. The question is
whether the process of tiling creates visual
discontinuities at the boundaries of adjacent tiles.

There are several techniques for creating
motifs that tile seamlessly. Some of these are artis-
tic in nature and some of them have mathematical
bases.

One frequently used technique that is to mir-
ror a motif use the p2mm symmetry (“prickly pear”
in quilting terminology). This is illustrated in Fig-
ures 1 and 2.

Figure 1. A Motif

Figure 2. The Mirrored Motif

The Icon Analyst 45 / 11

Copyright Issues

Under the current copyright law, new
works, including images, are “born copy-
righted”. They are copyrighted when they
come into existence, and there is no require-
ment to register them or even put a copyright
mark on them. There are some limitations on
what can be copyrighted — it must be original
and have substance — but almost any original
writing, program, image, and performance is
automatically copyrighted when it is created.

What this means is that to be safe, you
should presume any document, image, sound
clip, movie, VRML world — whatever — that
you encounter on the Web is copyrighted.
Furthermore, even if someone tells you it’s all
right to use, say, one of their images on your
home page, you have no way of knowing if
they have the authority to grant your use. To
assume otherwise is paranoid, perhaps, but
you can be sure that large companies with
substantial exposure go to great lengths to be
sure they are not infringing on a copyright.

Modifying a copyrighted work does not
get you off the hook. You’ve simply created a
“derivative work”, for which permission is
required.

This does not mean you can’t use copy-
righted material. The law provides a concept
of “fair use”, which generally allows copying
for scholarly or even personal use. The ulti-
mate test for liability is the damages that may
be claimed for infringement. They generally
are based on the loss of value to the copyright
owner because of the infringement. (Damage
awards for copyright infringement can be
very substantial.)

In any event, you can’t copy and distrib-
ute a copyrighted work without permission
of the copyright owner without infringing on
the copyright. Putting material on the Web
constitutes distribution.

We have to be careful about the images
we use in our publications. Usually, they ei-
ther are original or from purchased clip art.

Disclaimer: We are not lawyers and the
remarks above merely reflect our understand-
ing of the situation concerning copyright.

As shown in Figure 2, the p2mm symmetry
results from reflecting the motif horizontally and
vertically. As a result, the opposite outside edges
are identical and hence tile seamlessly. Inciden-
tally, the p2mm symmetry is the only one of the 17
plane symmetries that is rectangular and also tiles
seamlessly.

Some three-dimensional modeling programs
mirror images to be tiled over surface by default to
reduce visual artifacts. And many otherwise unin-
teresting motifs can be mirrored to produce inter-
esting seamless tiles. For example, numerical car-
pets, described in the article beginning on page 1,
often are much more attractive if they are mir-
rored. The carpet shown in Figure 3 is interesting,
but increasing its size only produces larger rect-
angles to the right and down. Mirroring it, how-
ever, as shown in Figure 4, produces a more inter-
esting “optical-art” image.

Figure 3. A Checkered Carpet

Figure 4. The Checkered Carpet Mirrored

The mirroring can be done entirely using
CopyArea(), which is very fast. Here’s a procedure
to mirror a window:

12 / The Icon Analyst 45

link wopen

procedure mirror(win, x, y, w, h)
 local width, height, sym, x1, y1

 /win := &window
 /x := 0
 /y := 0
 /w := WAttrib(win, "width")
 /h := WAttrib(win, "height")

 if w < 0 then { # handle negative dimensions
 w := –w
 x –:= w
 }
 if h < 0 then {
 h := –h
 y –:= h
 }

 width := 2 ∗ w
 height := 2 ∗ h

 sym := WOpen("size=" || width || "," || height) | fail

 CopyArea(win, sym, x, y, w, h)

 every x := 0 to w – 1 do
 CopyArea(sym, sym, x, 0, 1, h, width – x – 1, 0)

 every y := 0 to h – 1 do
 CopyArea(sym, sym, 0, y, width, 1, 0,
 height – y – 1)

 return sym

end

The image to be mirrored first is copied to the
upper-left corner of a target window whose di-
mensions are twice those of the original image.
One-pixel-wide columns from this copy are then
copied to their opposite positions at the right side.
Once the top half is complete, one-pixel-wide rows
are copied to their opposite positions at the bot-
tom.

Links

Here are some links to seamless tiles on the
Web. This is only a sample; there are hundreds of
URLs at which you’ll find seamless tiles.

Note: These links and others are on the Web
page for this issue of the Analyst. Please realize
that Web sites come and go and also move around.
The links given here have been stable for some
time.

Julianne’s Background Textures:
 http://www.sfsu.edu/~jtolson/textures/textures.htm

The Backgrounds Archive:
 http://the-tech.mit.edu/KPT/bgs.html

The Background Sampler:
 http://home.netscape.com/assist/net_sites/bg/
 backgrounds.html

Netcreations:
 http://www.netcreations.com/patternland/

The Wallpaper Machine:
 http://www.cacr.caltech.edu/cgi-bin/wallpaper.pl

Josh's Tilable Image Gallery:
 http://jcomm.uoregon.edu/~josh/tile_gallery/

Background Images Archive:
 http://www.ist.net/clipart/uwa/bkgs/bkg_menu.html

Axem Textures:
 http://axem2.simplenet.com/heading.htm

Realm Graphics:
 http://www.ender-design.com/rg/backidx.html

Truman Brown’s Texture Woild:
 http://www.websharx.com/~ttbrown/txtwoild.html

Texture Station:
 http://www.aimnet.com/~bosman/Frame_setup.htm

Versum Numbers as Factors

You’ll recall that a versum number is the
result of adding the digit reversal of a number to
itself. A versum sequence results from repeating
the process.

In two previous articles [1,2] we presented
some results about the factors of versum numbers.
In this article, we’ll explore versum factors as fac-
tors. We warn you at the outset that there are no
spectacular results, but some of the programming
problems may be of interest.

Factoring

We need to say something about factoring
before going on. Looking for specific factors, like
11, is easy. But factoring an arbitrary large integer
may not be. Stephen Wolfram puts it this way in
the reference volume for Mathematica, a system for
doing mathematics on computers [3]:

The Icon Analyst 45 / 13

Additional Material

Additional material related to this issue of the Analyst, including color images and Web links,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia45/ia45sub.htm

“You should realize that according to cur-
rent mathematical thinking, integer factor-
ing is a fundamentally difficult computa-
tional problem. As a result, you can easily
type in an integer that Mathematica will not
be able to factor in anything short of an
astronomical length of time.”

This, of course, its not a problem with
Mathematica; it’s a fundamental problem. By the
way, although you will see claims that factoring is
fundamentally hard, that has not been proven.
There is an albeit very remote possibility that an
entirely new, fast method will be discovered. Such
a development would, of course, have a major
impact on public-key encryption systems, which
are based on the assumption that factoring is a
hard problem.

Note that some very large numbers are easily
factored. 1000! is an example.

For this article, we had to factor a lot of num-
bers. Many methods of factoring have been devel-
oped, especially for numbers with special proper-
ties. The simplest method, called “baby division”,
is just to try division by successive primes. In Icon,
it looks like this:

procedure factorseq(i)
 local j, p

 j := sqrt(i) # as far as needed

 every p := prime() do {
 if p > j then return i
 while i % p = 0 do {
 suspend p
 i /:= p
 }
 if i = 1 then fail
 }

end

This procedure generates prime factors in increas-
ing order with repeated factors given multiple
times.

Baby division works very nicely for small
numbers and even for huge numbers, such as
1000!, that have only small factors. It’s hopeless,
however, for numbers that have really large fac-
tors. And, of course, if you want to do much
factoring, you want to use the fastest language, the
fastest algorithm, and the best implementation.

We used three programs for factoring. One
was a UNIX program, factor, that is very fast. Its
output shows multiple factors with exponents.
The format is illustrated by the output for 24:

24 = 2^3 3

Unfortunately, this program can’t handle num-
bers larger that 216–1 and gives erroneous results
for such numbers.

Another program was Mathematica. It is ex-
tremely fast and can handle numbers of any size,
subject to the limitations mentioned earlier. We
only used Mathematica when we had to; most of
our work for this article was done on a UNIX
platform, while our copy of Mathematica is on a
Macintosh. Getting data back and forth was awk-
ward.

We used baby division written in Icon for
some numbers that factor couldn’t handle but
weren’t large enough to require Mathematica.

We converted output from Mathematica and
Icon’s baby division to factor format, so that all
data was in the same form for use in other pro-
grams.

Prime Factors and Divisors

There are two subjects of potential interest:
prime factors and divisors. Divisors include all the
numbers that divide a number evenly, including 1
and the number itself. For example, the prime
factors of 24 are 2, 2, 2, and 3, while the divisors of
24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The divisors of i can be obtained simply by
trying every number from 1 to i; although 1 and i
divide i, it’s hardly worth making special cases for
them:

14 / The Icon Analyst 45

procedure divisors(i)

 every j := 1 to i do
 if i % j = 0 then suspend j

end

This method is hopelessly slow except for
small numbers. A more reasonable alternative is to
generate the divisors of a number from its prime
factors. If a number has a prime factorization of the
form

a i × b j × c k × …
then its divisors are generated by

suspend (a ^ (0 to i)) ∗ (b ^ (0 to j)) ∗ (c ^ (0 to k)) ∗ …

It’s relatively easy to convert the output from
factor to an Icon program that produces the divi-
sors:

procedure main()
 local line, expr, number, factors, factor, term, exp

 write("procedure main()")

 while line := read() do {
 expr := ""
 line ? {
 write("writes(", image(tab(find(" = ") + 2)), ")")
 move(1)
 factors := tab(0)
 }
 factors ? {
 while term := tab(upto(' ') | 0) do {
 term ? {
 if factor := tab(upto('^')) then {
 move(1)
 exp := tab(0)
 }
 else {
 factor := tab(0)
 exp := "1"
 }
 }
 expr ||:= " ∗ (" || factor || " ^ (0 to " || exp || "))"
 move(1) | break

 }
 }
 write("every writes(\" \", ", expr[3:0], ")")
 write("write()")
 }

 write("end")

end

Typical output from this program is:

procedure main()
writes("100 =")
every writes(" ", (2 ^ (0 to 2)) ∗ (5 ^ (0 to 2)))
write()
writes("101 =")
every writes(" ", (101 ^ (0 to 1)))
write()
writes("102 =")
every writes(" ", (2 ^ (0 to 1)) ∗ (3 ^ (0 to 1)) ∗ (17 ^ (0 to 1)))
write()
writes("103 =")
every writes(" ", (103 ^ (0 to 1)))
write()

…

Divisors produced this way are not necessarily in
numerical order. That can be taken care of easily,
but it wasn’t necessary for what we were doing.

Unfortunately, this approach is not workable
for getting the divisors of a large number of num-
bers. There are, for example, 9,000,000 7-digit num-
bers. A program for generating their divisors would
be more than 27,000,000 lines long. Granted, the
output could be broken up into pieces, but that
leads to considerable clerical complexity.

Fortunately, it’s not necessary to generate
Icon code and compile and execute it. Input in
factors format can be used to produce the divisors
directly. The obvious problem is that the number
of terms is not known and is, in fact, not bounded.

In a situation where there is a computation
involving an unknown number of components,
recursion should come to mind. Here’s a program
to convert prime factors to divisors:

procedure divisors(factors)
 local term, factor, exp

 factors ? {
 term := tab(upto(' ') | 0)
 term ? {
 if factor := tab(upto('^')) then {
 move(1)
 exp := tab(0)
 }

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 45 / 15

 else {
 factor := tab(0)
 exp := 1
 }
 }
 if pos(0) then suspend alts(factor, exp)
 else suspend {
 move(1)
 alts(factor, exp) ∗ divisors(tab(0))
 }
 }

end

procedure alts(factor, exp)

 suspend factor ^ (0 to exp)

end

Armed with the factoring programs and this
one for finding divisors, we can investigate versum
numbers as factors.

A few observations are in order before show-
ing the results:

•All numbers have at least two divisors, 1
and the number itself.

•Since 1 is not a versum number, some num-
bers have no versum divisors. (A prime
versum number, of course, has one divisor.)

•Since 2 is a versum number, half of all
numbers have a least one versum divisor.

Here are the prime factor results for n-digit
numbers, 1 ≤ n ≤ 7; vf stands for versum prime
factors and nvf stands for non-versum prime fac-
tors:

n vf nvf ratio

1 7 7 1.000
2 97 125 0.776
3 1017 1619 0.628
4 10318 18788 0.594
5 103582 208045 0.498
6 1036923 2246080 0.462
7 10374384 28360244 0.435

Prime Factors of n-Digit Numbers

The fact that the percentage of versum prime
factors drops off as n increases should not be
surprising. Large numbers have larger factors and
the percentage of versum numbers among all num-
bers drops off sharply as n increases [4].

We find it interesting that the form of the
number of versum factors as n increases — the ratio
of the number of versum factors for n and n+1

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

16 / The Icon Analyst 45

becomes very close to 10. (Of course, we’re dealing
with small values of n.)

Since for every increase in n, the number of
numbers increases by 10, this means that the in-
crease in the number of versum factors is approach-
ing 0. In fact, the same is true of all factors, although
it’s not as marked or obvious. Here are the ratios:

n vf all

2 13.857 15.857
3 10.484 11.873
4 10.145 11.873
5 10.038 10.706
6 10.010 10.535
7 10.004 10.427

Increase in Number of Prime Factors

We would think that larger numbers would
have more factors on average. These figures sug-
gest that, if anything, the increase is very small.
We’ve not been able to find anything on this sub-
ject. If you can provide a pointer to the literature,
please let us know.

Now on to divisors:

n vd nvd ratio

1 8 16 0.500
2 151 299 0.505
3 1716 4864 0.352
4 18239 68351 0.266
5 186702 886369 0.210
6 1887058 10916213 0.173
7 18953594 129801721 0.146

Divisors of n-Digit Numbers

The increase in the number of versum dividers
again is approaching 10, but it’s not clear that’s true
for all divisors, although the amount of increase
decreases:

n vd all

2 18.875 19.750
3 11.364 14.622
4 10.628 13.159
5 10.236 12.392
6 10.107 11.931
7 10.043 11.618

Increase in Number of Divisors

What’s Coming Up

We have lots in the works: an article on an
Icon debugger that we had hoped to complete for
this issue, as well as articles on sorting, paths,
versum primes, and using Icon’s preprocessor.

We also have material for the Graphics Cor-
ner, Tricky Business, and Programming Tips.

Next Time

We could go on with factors and divisors,
looking at numbers with special properties, such
as polygonal numbers, Fibonacci numbers, … .
There would be no end to this. This is not, however,
The Journal of Versum Numbers.

In the next article on versum numbers, we’ll
move on to versum primes. Note that we have
already touched on that subject in this article by
looking a versum prime factors. There’s much
more to tell, however.

References

1.“Factors of Versum Numbers”, Icon Analyst

40, pp. 9-14.

2.“Factors of Versum Numbers”, Icon Analyst

43, pp. 9-14.

3. The Mathematica Book, Stephen Wolfram, 3rd ed.,
Wolfram Media and Cambridge University Press,
1996.

4.“Versum Numbers”, Icon Analyst 35, pp. 5-11.

