In-Depth Coverage of the Icon Programming Language

October 1997

Number 44

In this issue ...

New Analyst Features......................... 1
Program Visualization in 3D............... 1
Graphics COrner........cocoovvvvicncneennn 8
From the Wizardsccccoovvienennn. 9
Function Tracing.........c.cceevvvvvrveniennn, 11
A String-Manipulation Problem....... 12
Tricky BUSINESSccccovveiieiiiiiiciecie 15
What's Coming Upcccoeevvenviiennne 16

New Analyst Features

If you’ve been reading the Analyst for a
while, you know it has several features or “col-
umns” that appear irregularly. At present these
are:

Programming Tips
From the Library
From the Wizards

Starting with this issue, we’re adding two
more:

Graphics Corner
Tricky Business

As with the others, we’ll let the contents of these
speak for themselves.

We’re also adding a Links section to some
articles to list URLs for Web pages that contain
additional relevant material. These are indicated
by notation of the form {1}, which refers to the first
numbered item in the Links section at the end of
the article.

we’ll also put hot links for these on the Ana-
lyst Web pages that contain additional material for
subscribers.

Program Visualization in 3D

Recently we started to explore the possibili-
ties of visualizing program behavior in three di-
mensions.

Our goals are modest — static three-dimen-
sional models that depict the history or state of
some aspect of program execution. We don’t mean
an image that portrays a three-dimensional scene
but rather an actual three-dimensional model that
can be explored.

Although animation, in which the model
changes with time, is possible, the resources it
requires in terms of hardware, software, experi-
ence, and production time are far beyond our
means.

Going from two-dimensional animated visu-
alizations to three-dimensional static ones is like
entering another world. The concepts, techniques,
and results are very different. Little carries over
from one to the other. Instead of a rapidly changing
“projection” of program activity, three-dimensional
visualization allows the user to explore a “scene”
composed of shapes corresponding to program
events arranged in various ways. Such scenes can
be examined from different viewpoints. With a
“browser”, the user can fly through the world,
examine individual objects at close range, back off
to get an overall view from a distance, and so on.

Creating 3D Models

There are many programs for producing 3D
models. They range from freeware products with
modest capabilities to very expensive commercial
applications that are in the domain of profession-
als. Most of these programs are designed to pro-
duce images of a scene, not models in which a user
can navigate easily.

For program visualization, we need a lan-
guage into which program activity can be ren-
dered. There are only a few such scene description
languages. Most are designed for special purposes,

TIl-- W ... A __L .1 AA | A

are complex, and are implemented only for a spe-
cific platform. For our objectives, we need a scene
description language that is easy to program and
generally available on commonly used platforms.

The place to look for cross-platform capabili-
ties these days is the Web. For three-dimensional
scenes, this leads to VRML, the “Virtual Reality
Modeling Language”. See the side-bar About
VRML at the right.

Forget the “virtual reality” part — although
VRML is intended ultimately to bring interactive,
realistic, and animated “worlds” to the Web, it's a
long way from that. Fortunately, that’s not our
interest in visualization. The important thing is
that VRML has all (or almost all) the capabilities we
need for an initial exploration of three-dimen-
sional program visualizations that can be viewed
on many platforms.

Our goal, then is to produce programs that
monitor program behavior and output VRML
scenes.

We’ve explored several possibilities. In this
article, we’ll describe our first results in three-
dimensional visualization of storage allocation.

Visualizing Storage Allocation

Storage allocation is, as before, a good place to
start: It is familiar, it is varied enough to be inter-
esting, and it is important. Allocation events are
rendered as shapes in the scene, with the types of
allocation coded by color (there are few enough
types that it is easy to distinguish them in this way)
and to translate the amount of allocation to the size
of a shape.

Since we’re working in three dimensions,
objects need to be positioned in meaningful ways
that take advantage of the available space. This
leads us to the concept of a path in space that in
some way corresponds to the passage of time.
Time, however, is linear and we need to map it into
locations in three-dimensional space. Figures 1
and 2 on the next page, which are from programs
in the suite used for dynamic analysis [1], are
examples of one approach we’ve taken.

The pole in the center serves as a “trailhead”
that indicates the start of the path. The paths wind
outward in a six-sided “spiral”. Each allocation is
represented by a cylinder whose height is propor-
tional to the amount of allocation (all base radii are
the same). There is a fixed distance between each
successive allocation. (We don’t have a clock of

A | rl.. ® .- A .__L._1 AA

sufficiently high resolution to translate the time
between successive allocations into distance.) Paths
are drawn on ground plane to make it easier to
follow the “time line”.

About VRML

VRML was motivated by the desire to
bring 3D scenes and “the virtual reality experi-
ence” to the Web. VRML stands for Virtual
Reality Modeling Language. It was originally
dubbed Virtual Reality Markup language, in
analogy to HTML, but since VRML is not a
markup language, the name was quickly
changed. VRML is pronouncedvermel orvermul
by those in the know.

VRML is a 3D scene description language.
VRML files are called “worlds” and bear the
suffix .wrl (sometimes pronounceddot world or
maybe dot wurld). VRML files are text files.

One important aspect of VRML for the
purpose of program visualization is that it is a
language. See the side-bar VRML as a Lan-
guage on page 9. This means that visualiza-
tions for different programs can be created by
an application.

Another important aspect of VRML is its
portability across all popular platforms. See
the side-bar VRML Browsers on page 6.

Because VRML is designed for use on the
Web, it is relatively unsophisticated: Few plat-
forms are fast enough and have connections
with sufficiently high bandwidth for down-
loading and navigating sophisticated 3D scenes
in real time. VRML’s capabilities nicely match
the needs of program visualization: VRML
provides various shapes, colors, layout capa-
bilities, and so on.

The success of VRML for its intended
purpose is a matter of some debate. Not sur-
prisingly, persons with a vested interest in
VRML sing its praises. Others are less san-
guine. VRML is, however, in widespread use
in the scientific community for publishing 3D
information. There are thousands of VRML
models of molecules, mathematical shapes,
and so on on the Web.

See also the side-bar onVersions of HTML
on page 5.

Navigation allows inspec-
tion from different viewpoints.
Figure 3 on the next page shows
a view from overhead. Figure 4
shows a view looking across the
top of a world in which there are
many list allocations of the same
size, and Figure 5 shows a ground-
level view from among the ob-
jects.

Observations

We were somewhat sur-
prised to discover that static three-
dimensional visualizations of stor-
age allocation provided insight
that we didn’t get from two-di-
mensional animations.

Part of the reason for this

Figure 1. Allocation in rsg

seems to lie in the ability to ex-
plore a static world. The three-
dimensional representation of al-
location also gives a clearer un-
derstanding of the sizes of alloca-
tions and their relationships to
each other.

For example, although we’ve
seen many two-dimensional ani-
mations of storage allocation in
iiencode, we did not appreciate
its true nature until we saw a three-
dimensional scene (see Figure 2).
All allocations are for small strings
and substring trapped variables
— allocation “debris” that results
from string subscripting [2].

Of course, looking at
grayscale images as shown in this article conveys
little of the colored three-dimensional scene. For
this, visit the Web page for this issue of the Ana-
lyst (see the box at the bottom of page 14).

Shapes

Using the same footprint for all objects and
scaling the heights to account for sizes gives a
correct impression of magnitudes and allows place-
ment of objects along a path without *“collisions”.

We’'ve generally found that cylinders and
boxes work best. See Figure 6 on the next page for
an example of a world that uses boxes instead of
cylinders.

Figure 2. Allocation in iiencode

The other primitive VRML shapes are spheres
and cones. Scaling them in only one dimension
does not produce visually attractive results. It’s
possible to create almost any shape in VRML — for
example, chess pieces — but the use of primitive
shapes greatly reduces the complexity of VRML
worlds and the load they place on browsers. It is
tempting, though

Paths

The question of paths is an interesting one.
Just a straight line is not particularly useful, since
it does not take advantage of the other dimensions

Tl-- W .- A __Ll .1 AAIAN

and typically produces a world with a “bounding
box” whose aspect ratio is not handled gracefully
by VRML browsers.

Figure 3. A View from Above

W

Figure 4. A “Tree-Top” View

Figure 5. “Among the Stalks”

Al Tl W _._._ A .__L._1 AA

Figure 6. A World with Box Shapes

In theory, a path needs to have an essentially
unlimited length, since a point on a path is needed
for every allocation and some programs perform
many thousands of allocations. In practice, there is
a limit to the number of objects in a world before
browsers bog down — or crash. We’ve not had
success with more than 500 objects (which is con-
siderably more than the ones shown in this article).

If a path is to be useful as a navigational tool

= |t should have hundreds of points.

= It should not cross itself or even closely
approach itself.

= It should use at least two dimensions in a
space-efficient manner.

= |t should be easy to follow visually.

= Successive points should be approximately
equidistant.

= It should be visually pleasing.

= If the path is not confined to two dimen-
sions, its projection on the base plane usually should
satisfy the preceeding requirements.

We’ve tried many approaches to constructing
paths, including Turtle Graphics [3] and points on
mathematical curves and surfaces. This is an inter-
esting subject in and of itself, and we plan to have
an article on constructing paths in an upcoming
issue of the Analyst.

We’ve generally found that two-dimensional
paths confined to a base plane are most satisfac-
tory. Some three-dimensional paths are, however,
quite interesting. See Figure 7, which shows stor-
age allocation as “beads” on a helical path.

Figure 7. A Strandof Beads

In this world, the sizes of allocations are not
represented; all beads are the same size. It’s rather
complicated to lay out spheres of different sizes in
a meaningful and attractive manner on such a
path, and we’ve focused our efforts on other things.

We’ve also experimented with multiple paths
in the same world. Figure 8 shows a world in which
different kinds of allocation are in separate “en-
claves”.

Creating Allocation Worlds

It is conceptually simple to convert allocation
events into objects on a path. There are two inputs
in parallel: allocation events and points on a path.

Here’s a sketch of the process:

Versions of VRML

There are two official versions of VRML:
1.0 and 2.0. Unfortunately, both VRML 1.0 and
2.0 carry the .wrl suffix. It’s easy to tell them
apart, however; the first line of a VRML file is a
mandatory comment that clearly identifies the
version. Although VRML 1.0 is officially desig-
nated as outdated, it’s in widespread use and is
likely to continue to be.

The versions differ considerably in capa-
bilities. Version 1.0 provides only static, silent
worlds. Version 2.0 improves some basic as-
pects of 1.0 and adds sound and movies as well
as limited animation and user interaction. At
present, the support software for VRML 1.0 is
better than for 2.0, although that is changing
with time.

Since VRML 1.0 is simpler and the related
software is more robust, it is the preferred ver-
sion for publishing static scientific models.

We’ve used VRML 1.0 for the worlds shown
in this article.

while get allocation event do {
get path point
place shape at point

}

We found it useful for experimentation and
program development to put the allocation events

Figure 8. Multiple Paths

.- W .- A __Ll .1+ AAIT

and path points in lists prior to constructing a
VRML file. This also allows reuse of previously
constructed lists.

We represented events and points by records:

record Event(size, type)
record Point(x, y, z)

and put the events and points in lists events and

VRML Browsers

Programs for viewing and navigating
VRML worlds are called browsers. They come
in two forms: stand-alone applications and
plug-ins for Web Browsers.

Plug-ins, which allow loading and navi-
gating in VRML worlds directly from a Web
browser, are better developed and more readily
available than stand-alone browsers — at least
on most platforms. Both Netscape and Internet
Explorer bundle VRML plug-ins with their
latest releases for the most popular platforms.

Silicon Graphics was instrumental in the
design and development of VRML (their Open
Inventor format was the basis for VRML 1.0),
so it’s not surprising that the most impressive
VRML software exists for SGI platforms. VRML
software for Windows, again for obvious rea-
sons, is the most extensive and widely avail-
able.

Except on powerful platforms, navigat-
ing a static VRML 1.0 world of even modest
complexity may be slow and tedious. It also
takes some experience to become comfortable
with navigation in three dimensions.

It’s easy to get lost and disoriented when
navigating. Most browsers provide a way to
reset the original view, which is determined by
a “camera” in the world, or in some cases, the
whim of the browser.

Regrettably but predictably, different
VRML browsers use different models of navi-
gation. To complicate matters, few if any of the
browsers currently available implement all the
features of VRML completely and correctly,
and many browsers are seriously buggy. In
additional, the same world may look very dif-
ferent when viewed with different browsers.

Unless you're in the trade, it’s probably
best to pick one browser and stick with it.

Al B ... N .__L .1 AR

path. Then the translation of events into objects on
the path is

while event := get(events) do {
point := get(path)
put(world, object(event, point))

}

where object() is a procedure that constructs an
appropriate object and world is a list of the objects
from which a VRML file eventually is produced.

Here’s a sketch of object():

procedure object(event, point)
return Separator([
Material(color(event.type)),
Translate(location(point)),
Transform(scale(event.size),
Cylinder()
)

Separator() is a record that represents a VRML
separator node that isolates its subnodes so that
they do not affect the rest of the world. Material()
establishes the color for subsequent nodes. Trans-
late moves the origin to the location specified by
point and Transform() scales the following cylin-
der, which is what actually appears in the world.

We won't get further into the details of VRML
here. What needs to be done to construct the worlds
we’ve shown is relatively straightforward, but there
are a lot of details and producing optimal VRML
code adds complexity.

You’ll find more information about writing
programs to construct VRML worlds in the From
the Wizards article that starts on page 9.

Exploring VRML

If you're interested in learning more about
VRML, there are two principal resources: books
and the Web.

At present there are more than 30 books on
VRML and more are in the works. (To put this in
perspective, there are more that 240 books on
HTML.) The VRML books range from surveys of
worlds on the Web for novices to books on how to
program in VRML. There is even a “For Dummies”
book [4], which is better than most books on VRML
we’ve seen and probably a good place to start. The
book situation is complicated by the two versions
of VRML. See the side-bar on page 5. Some books
cover one version, some cover both, and some
don’t make the distinction clear. The quality of

some books is adversely affected by the rush to get
into print in a highly hyped area.

While we haven’t found a book on VRML that
we can recommend without reservations, we found
the books listed in References 5 - 7 to be useful.

Book superstores typically have only a few of
the available books on VRML on their shelves
where you can browse before buying. On the Web,
the best sources for technical books in our opinion
are Amazon {1} and CLBooks {2}, which recently
acquired Computer Literacy Bookstores.

The amount of VRML material on the Web is
overwhelming. If you use one of the popular search
engines and just ask for “VRML”, you’re likely to
get anywhere from hundreds of thousands to mil-
lions of hits, depending on the search engine. The
place to start is the VRML Repository {3}, from
which you can get to almost any VRML resource if
you try hard enough. If you have a special interest,
a refined search may get you there faster.

If you want to explore VRML worlds, there
are many sites on the Web. We particularly like the
worlds at Links 4 through 8.

Conclusions

We’ve barely scratched the surface of what'’s
possible in three-dimensional program visualiza-
tion using only VRML. We have a few experiments
underway, including detailed views of the con-
tents of structures and three-dimensional visual-
ization of control flow.

On Our Web Site

We’ve put a lot of material related to this
article on the Web page for this issue of the Ana-
lyst. In addition to color images for the figures,
we’ve included VRML worlds that you can down-
load or browse on-line. We’ve also included some
images and worlds for which there wasn’t space in
this article, as well as some of our more interesting
mistakes. Have fun!

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

References

1. “Dynamic Analysis of Icon Programs”, 1con
Analyst 29, pp. 10-12.

2. The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986, pp. 71-73.

3. “Turtle Graphics”, The 1con Analyst 24, pp. 6-
10.

4.VRML and 3D on the Web for Dummies, David Kay
and Douglas Muder, IDG books Worldwide, 1996.

5. Special Edition; Using VRML, Stephen Matusuba
and Bernie Roehl, Que, 1996.

6. The VRML Sourcebook, Andea L. Ames, David R.
Nadeau, and John H. Moreland, John Wiley &
Sons, Inc., 1996.

7. VRML 2.0 Sourcebook, Andea L. Ames, David R.
Nadeau, and John H. Moreland, John Wiley &
Sons, Inc., 1997.

Links

Note: These links and others are on the Web page
for this issue of the Analyst. Please realize that
Web sites come and go and also move. We believe,
however, that the URLs listed below are reason-
ably stable.

1. Amazon Books: http://www.amazon.com/
2. Computer Literacy: hitp://www.clbooks.com/

3. The VRML Repository: http://www.sdsc.edu/vrml/
repository.html

4. Molecular Models: http://mww.nyu.edu/pages
/mathmol/library/

5. Mathematical Knots: http://www.cs.ubc.ca/nest/
imager/contributions/scharein/KnotPlot.html

6. Mathematical Obijects: http://iwww.geom.umn.edu/
software/weboogl/zoo/

7. Crystal Structures: http://193.49.43.3/dif/
3D_gallery.html

8. Polyhedra: http://www.li.net/~georgelvirtual-polyhedra/
vp.html

.. W .- A __L .1 AA I

Graphics Corner

Repeat patterns, also called allover patterns,
result from replicating a motif to cover the plane
(or at least part of it).

Repeat patterns date from antiquity. They
add visual interest to otherwise monotonous sur-
faces and generally are less expensive to produce
than other types of decoration. Repeat patterns are
prevalent in manufactured goods, especially fab-
rics and wallpaper. Repeat patterns now are popu-
lar as backgrounds for Web pages. They also are
used as “textures” that are wrapped around shapes
in three-dimensional modeling.

Producing attractive motifs for repeat pat-
terns is an art. Here we’re just concerned with
replicating a motif (image) to create a repeat pat-
tern.

If replication is done so that there are no gaps
or overlaps, the result is referred to as tiling the
plane. The image used for tiling is called the gener-
ating tile, or GT.

There are only three regular convex polygons
that can be arranged to tile the plane: the equilat-
eral triangle, the square, and the regular hexagon,
which is shown in Figure 1.

F 5
1‘-. _r'r ""\. ,"'r \"'-.‘ -"'r
"u: i , i 1 {

/ b S ! /
F Y & N F)
F F a—

A i Y P , o
Y , i 4 kN !
by Fi "l'-. i b

4 "". {
/ ! \
x ’ X Ky Y 7
— { —
7 -l""-. s -I“'-. s ,

Figure 1. Hexagonal Tiling

If the regularity constraint is removed, any
triangle or quadrilateral can be arranged to tile the

N [=Tr~l-. W ... AN __Ll.._1L AR

plane. Any convex pentagon having a pair of par-
allel sides can tile the plane. There are three distinct
kinds of irregular hexagons that can tile the plan.
Finally, no convex polygon with more than six
sides can tile the plane. See References 1 and 2 for
more information about tiling.

From a programming standpoint, rectangu-
lar tilings are by far the easiest and fastest to
produce. Furthermore, many other tilings can be
converted to rectangular tilings. For example, a
rectangular GT (RGT) for a hexagonal tiling is
shown by the marquee in Figure 2.

35 —,
b I.-"'- k"
.-: 1!. -:'_
i "'.M ._.l'.

0 —h
Y I
.'r "\-_ 1 ’

T

Figure 2. A Rectangular Tile for Hexagons

Although the aspect ratio for the RGT for
regular hexagons is irrational (C8:1), images are
composed of discrete pixels and it’s easy to drag a
selection rectangle (called a marquee) in an image
manipulation application such as PhotoShop to
select an appropriate rectangular region that pro-
duces an acceptable tiling.

In Icon, the function CopyArea() provides an
easy way to replicate an RGT over a larger area.
CopyArea() also has the virtue of being fast be-
cause it is a memory-to-memory operation.

Here’s a procedure that tiles a window with a
rectangular area from another window:

procedure tile(winl, win2, x1, y1, wl, hl)
local w, h, wmax, hmax

/winl := &window

/win2 := &window

/x1:=0

lyl:=0

/w1l ;= WAttrib(winl, “width”)
/h1 := WAttrib(winl, “height”)
wmax := WAttrib(win2, “width”)
hmax := WAttrib(win2, “height”)

if (wl | hl) = 0 then fall
CopyArea(winl, win2, x1, y1, wi, hl)

w = abs(wl)
h := abs(h1)

while w < wmax do { # copy and double
CopyArea(win2, win2, 0, 0, w, h, w, 0)
w*=2

}

while h < hmax do { # copy and double
CopyArea(win2, win2, 0, 0, w, h, 0, h)
h*=2
}

return

end

This procedure first copies the specified rect-
angle to the target window and then copies the
already tiled portion of the target window onto
itself, doubling the dimensions each time.

This may seem like overkill since CopyArea()
is fast, but consider tiling with a very small rect-
angle, say 2 * 2 pixels, onto a large target window,
say 1000 ~ 1000 pixels. Without the optimization,
5002 = 250,000 copies are required. With the opti-
mization, only 19 copies are required: a reduction
factor of more than 13,100. Even if CopyArea()
took no time at all, the loop to compute its param-
eters and call it does take time. Granted, the ex-
ample above is extreme, but even for more typical
situations, the difference in speed is quite notice-
able.

Library Resources

In addition to the procedure tile(), the Icon
program library includes two programs to assist
in tiling: tiler, which tiles image strings [3], and
imgpaper, which displays tiled versions of a se-
quence of images.

More to Come

We’ll have more to say about repeat patterns
in future Graphics Corners, including symme-
tries for tiling and methods for creating repeat
patterns.

References

1. Tilings and Patterns, Branko Griinbaum and G.
C. Shephard, W. H. Freeman and Company, 1987.

2. Mathematics; The Science of Patterns, Keith Devlin,
Scientific American Library, 1997.

3. Graphics Facilities for the Icon Programming Lan-
guage; Version 9.3, Gregg M. Townsend, Ralph E.
Griswold, and Clinton L. Jeffery, IPD281, 1996.

From the Wizards

Record Fields

The article Program Visualization in 3D that
starts on page 1 describes the use of VRML for
program visualization. To do this, it is necessary to
write programs that produce VRML files. See the
side-bar VRML as a Language on the next page.

We wanted to be able to cast programs to
construct VRML files in a way that captured the
concepts of VRML and corresponded as closely as
possible to VRML syntax. VRML worlds consists
of objects called nodes. The natural program rep-
resentation is to use record declarations for each
node type. The fields follow naturally. For ex-
ample,

record Cylinder(height, radius)
is a declaration for cylinders, so that
pillar := Cylinder(20.5, 2)

creates a cylinder 20.5 units in height and 2 units in
radius.

Since some VRML field names are long (an
example istextureCoordIindex), it was tempting to
abbreviate the field names in the record declara-
tions. Programs, however, might contain explicit
field name references, as in

pillar.height := 30

so it seemed wise to use the same names VRML
does; at least one can go to the VRML documenta-
tion to recall a field name.

When it comes time to output the VRML code
for a cylinder, the code might be:

write("Cylinder {

write(" height ", Cylinder.height)
write(" radius”, Cylinder.radius)
write(" }")

.. W .- A __Ll .1 AA AN

VRML as a Language

VRML is a language, but it is not a pro-
gramming language in the ordinary sense.
VRML does not have any computational com-
ponent or any control structures. As a lan-
guage, it consists only of a repertoire of state-
ments.

A VRML file is composed of nodes that
represent shapes, geometric transformations,
colors, textures, lights, cameras, and so forth.
Nodes have fields that describe their proper-
ties. The names of nodes always begin with an
uppercase letter and the names of fields always
begin with a lowercase letter.

Here, for example, is a node for a cylindri-
cal shape:

Cylinder {
height 20.5
radius 2.0

}

VRML worlds are dimensionless. Sizes
are simply “units” — a unit could represent a
micron or a light-year. By convention, how-
ever, a VRML unit usually is taken to be a meter.
This facilitates the combination of worlds. (A
VRML file can contain references (URLS) to
other VRML files.) The cylinder above there-
fore would be interpreted as being 20.5 meters
high and 2.0 meters in radius.

Some kinds of nodes have fields that con-
tain (point to) other nodes. There is a single root
node that contains all subsequent nodes; a
VRML world is a tree structure.

Since there are many node types, the code to
write out the VRML file might look something like
this:

case type(node) of {

"Cylinder"; {
write("Cylinder {
write(" height ", Cylinder.height)
write(" radius", Cylinder.radius)
write(" }")
}

"Sphere": {

write("Sphere {
write(" radius", Spherer.radius)

AN | TI-. W _._._ N .__L ._1L AA

write(" }")
}

and so on for each node type.

Writing this code quickly becomes tiresome
— there are 36 node types in VRML 1.0 and many
more in VRML 2.0.

Fortunately, there’s a much shorter way to
cast the code to write a VRML file. Recall from the
article on records in a recent Analyst [1] that it is
possible to get the names of the fields of a record
from the record itself. A somewhat different ver-
sion of the procedure given there is what’s needed
to handle the many VRML node types in a generic
way:

procedure field(R, i)

name(R[i]) ? {
tab(upto(’.") + 1)
return tab(0)
}

end

Thus, the code for writing VRML files can be
written this simply:

write(type(node), " {")

every i:=1to *node do
write(" ", field(x, i), " ", X[i])

write(" }")

Since the record names are chosen to coincide with
the VRML node names, type(node) takes care of all
of them.

Of course, it’s not really this simple. Since a
node may contain pointers to other nodes, recur-
sion is needed. To get a readable file, care needs to
be given to layout and the indentation of levels.
There also are a few node types that require special
handling. But all-in-all, the method above saves an
enormous amount of coding.

Reference

1. “Records”, Icon Analyst 41, pp. 7-10.

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

Function Tracing

Icon itself does not provide a mechanism for
tracing built-in functions, although Prolcon for the
Macintosh does [1].

It is possible, however, to get the effect of
function tracing by overloading functions with
procedures of the same name and then tracing
procedures.

At first glance, it may seem as if overloading
a function with a procedure of the same name
would make the function inaccessible. As described
in an earlier Analyst article [2], however, there is
a way:.proc(s, 0) returns the built-in function named
s, even if that function has been overloaded.

Suppose, for example, that the function pop()
is overloaded by a procedure to perform the same
computation as the function. The procedure might
look like this:

procedure pop(L)
f ;= proc("pop", 0)
return f(L)

end

The procedure fails if f() fails, since return expr fails
if expr fails.

It’s not necessary to get the function for every
call of such a procedure; that can be done once with
a static variable and an initial clause:

procedure pop(L)
static f

initial f := proc("pop", 0)
return f(L)

end

Two things are needed for a procedure struc-
ture that is applicable to all functions: handling
multiple arguments and generators.

Multiple arguments can be handled by list
invocation and a declaration for a variable number
of arguments. An example is this procedure to
overload write():

procedure write(argsl])
static f

initial f := proc("write", 0)
return f I args

end

Suspension is easy. Here’'s a procedure to
overload seq():

procedure seq(args[])
static f

initial f := proc("seq", 0)
suspend f ! args

end

Furthermore, it’s not necessary to make spe-
cial cases for functions that aren’t generators; sus-
pend works just as well as return for functions that
are not generators. There is a subtlety, however:

suspend expr

the suspend expression itself fails if expr fails, but
this does not cause the procedure call to fail. It’s
flowing off the end of the procedure following the
failure of suspend that causes failure in this case.

So a general model for overloading a function
fnc() with a procedure is

procedure fnc(argsl])
static f

initial f := proc("fnc", 0)
suspend f ! args

end

Providing overloading procedures for all func-
tions is a daunting task — Version 9.3 of Icon has
140 functions. There is help, however, in the Icon
program library.

The program gftrace produces a file of proce-
dure declarations of the form shown above for all
functions. Run it and save the output in a file
named, say, ftrace.icn. You then can create a library
module for it with

icont —c ftrace

and link it in a program for which you want proce-
dure tracing using

link ftrace

You’'ll need to enable tracing, of course.

Since an overloading procedure has a single
list argument, this is reflected in the format of trace
messages. An example of function tracing is shown
in Figure 1 on the next page.

The file gftrace produces does a few extra
things, including providing a way to trace proc()
itself.

T l-. W .- A __L .1 AA I AA

Figure 1. Function Tracing Output

Ist.icn 7 | listlist_1 = [])

ftrace.icn :125 | list suspended list_3 = []

Ist.icn 9 | read(list. 4 = 1))

ftrace.icn :142 | read suspended "This file illust..."

Ist.icn : 9 | put(list_5 = [list_3 = [],"This file illust..."])
ftrace.icn :141 | put suspended list_3 = ["This file illust..."]
Ist.icn 9 | read(list_6 = [])

ftrace.icn :142 | read suspended "better"

Ist.icn 9 | put(list_7 = [list_3(1),"better"])

ftrace.icn :141 | put suspended list_3 = ['This file illust...","better"]
Ist.icn 9 | read(list_8 = 1))

ftrace.icn :142 | read suspended "possible."

Ist.icn 9 | put(list_9 = [list_3(2),"possible."])
ftrace.icn :141 | put suspended list_3 = ["This file illust...","better","possible."]
Ist.icn 9 | read(list_10 = [])

ftrace.icn :142 | read failed

Ist.icn :11 | pull(list_11 = [list_3(3)])

ftrace.icn :139 | pull suspended "possible."

Ist.icn 211 | write(list_12 = ["possible."])

ftrace.icn :171 | write suspended "possible."

Ist.icn 211 | pull(list_13 = [list_3(2)])

ftrace.icn :139 | pull suspended "better"

Ist.icn 211 | write(list_14 = ['to give a better..."])
ftrace.icn :171 | write suspended "better"

Ist.icn 211 | pull(list_15 = [list_3(1)])

ftrace.icn :139 | pull suspended "This file illust..."

Ist.icn 211 | write(list_16 = ["This file illust..."])
ftrace.icn :171 | write suspended "This file illust..."

Ist.icn 211 | pull(list_17 = [list_3 = []])

ftrace.icn :139 | pull failed

Ist.icn : 13 main failed

If you don’t want to trace all functions, the
Icon program library provides an alternative
method: the procedure moduleiftrace allows trac-
ing of specified functions. iftrace in turn depends
on a file similar to the one produced by gftrace.

This sounds confusing, but if you look at the
files involved, it should be easy to figure out how
to use them. The programming techniques used in
iftrace are worth studying in their own right.

References

1. The Prolcon Programming Language for the Apple
Macintosh Computers; Version 2.0, The Bright Forest
Company, Tucson, Arizona, 1990.

2. “Records”, Bcon Analyst 41, pp. 7-10.

AN | =r~Il-. W ... N __L .1 AA

A String Manipulation
Problem

About the time we were
completing the last issue of the
Analyst, Steve Wampler posed
a problem to the lIcon users
group: Write a procedure that
returns the longest common ini-
tial substring of two strings. The
idea, of course, was to produce
the fastest solution.

By coincidence, we’d just
formulated a solution for a spe-
cial case of this problem as part
of a procedure for testing num-
bers for versumness [1]. If we’d
had more time, we would have
waited for other solutions and
adapted the best for our needs.
But we didn’t, and we went with
the one we’d already done.

Steve received several so-
lutions to the problem and
crafted some of his own. There
is considerable diversity among
the solutions, but they split into
two categories according to
method: those that use string
scanning and those that don’t.
Some solutions are “optimistic”
in the sense they start looking

for the longest possible match, while others take

the opposite approach.

We converted the procedures to expressions
to eliminate the overhead of procedure calls and
used empg from the Icon program library[2-3] for

timings.

The first 11 solutions that follow come from
Steve’s collection. We added the last four, which

we’ll explain later.

Solution 1:

every i := seq() do
if not (s1[i] == s2[i]) then break s1[1:i]}

Solution 2:
every i :=seq() do
if not match(s1[i],s2,i) then break s1[1:i]

Solution 3:
s1[1+:(p :=*slto 0 by —1)] == s2[1+:p]

Solution 4:

s1[1+:(p := (many(sl ** s2, s1)|0) to 0 by —1)] ==

s2[1+:p]
Solution 5:
i=1
while s1[i] == s2Ji] do
i+=1
s1[1+:i-1]
Solution 6:
i=1
j=0
while match(s1[j+1 +:i], s2, j+1) do {
j +=
i*:=2
}
while j +:= 1 & sl1[j] == s2[j]
s1[1+:j-1]
Solution 7:
s1[1+:lcph(sl, s2, 0)]

where Icph() is

procedure Icph(sl, s2 k)
local i, j
i=1
j==0

while match(s1[(k +j + 1)+:i], s2, k +j + 1) do {

j+=i
i*=2
}

if j = 0 then return O

else return j + Icph(sl, s2, k +)

end

Solution 8:

s1?{
every ch :=1s2 do {

}

=ch | break
tab(1)
}

Solution 9:

s1?{
tab(match(s2[1:*s2+1 to 1 by —1]))

}

Solution 10:
s2?{
=s1[1+:*s1 to O by —1]

}

Solution 11:

s2 ?{
=s1[1+:*(if *s1 > *s2 then s2 else s1) to 0 by —1]

}

Solution 12:

s1?{
=s2[1:(*s2 + 1) to 1 by —1]

}

Solution 13:

if *s2 > *s1 then s1 :=: s2
sl ?=s2[1:(*s2 + 1) to 1 by —1]

Solution 14:

s1?{
=s2[1:(((*s1 > *s2) | *s1) + 1) to 1 by —1]

}

Solution 15:

i:=((*sl>*s2)]|*sl
sl ?=s2[1:(i+ 1) to 1 by —-1]

Not surprisingly, the timings varied consid-

erably and depended, of course, on the two strings

T l-- W _._ .- A __L .1 ANl AN

used. There is no “typical” data for this problem.
The strings might be relatively short and used for
“command completion” or very long as in the case
of versum numbers. Here are the strings we used
for testing:

sl s2
1w
2 "aaaa" "aaaa"
3 "aaaaaaaaaaaaaaaaaaaaa”’ "aaaaaaaaaaaaaaaaaaaa
4 "aaaaaaaaaaaaaaaaaaaad’ "aaaaaaaaaaaaaaaaaaab"
5 "aaaaaaaaaabaaaaaaaaaa" "baaaaaaaaaaaaaaaaaaa"
6 "aaaaaaaaaaaaaaaaaaaaa" "baaaaaaaaaaaaaaaaaaa"
7 "a" "aaaaaaaaaaaaaaaaaaaa”
8 "aaaaaaaaaaaaaaaaaaaa' "a"

The results are shown in Figure 1, ranked
from best to worst total time for all eight tests. The
best times for each test are marked with asterisks,
but note that in some cases the times are very close
together. For what it’s worth, the figures are in
milliseconds on a 233 Mhz DEC Alpha.

When we started this article, we wondered
how the method used in the last issue of the Ana-
lyst would stack up (and noted that one of the
solutions submitted to Steve, Solution 11, is very
similar to it). Our method was designed for the
case where the two strings are the same length, and
it behaves poorly when s2 is significantly longer
than s1. We crafted another solution to swap sl

and s2 when this is the case, and we then added
two more solutions, hoping to improve perfor-
mance slightly.

We haven'’t identified the authors of the solu-
tions, but the one from the last Analyst is Solution
12. Solutions 13, 14, and 15 resulted from changes to
it.

Several things about the timings deserve note:
= All the solutions that use string scanning
are faster than the solutions that do not.

« Solution 7, which uses recursion to effect
doubling of the substrings examined, suffers from
the procedure overhead and initialization involved.

= None of the four solutions with the best
total timings is the fastest in any single test.

If you come up with a method that is signifi-
cantly different from the ones listed, send it to us
and we’ll include it in a future issue of the Analyst.

References

1. “Factors of Versum Numbers”, Icon Analyst
41, pp. 9-14.

2. “The Anatomy of a Program — Timing lcon
Expressions”, 1con Analyst 18, pp. 8-11.

3. “The Anatomy of a Program — Timing Icon
Expressions”, 1con Analyst 19, pp. 6-9.

solution testl test2 test3 test4
14 0.0334 0.0351 0.0351 0.0425
13 0.0351 0.0325 0.0351 0.0449
15 0.0367 0.0341 0.0358 0.0467
11 0.0334 0.0325 0.0351 0.0458
12 0.0284* 0.0284 0.0301* 0.0375*
10 0.0284* 0.0283* 0.0401 0.0525
8 0.0417 0.0625 0.2434 0.2417
9 0.0383 0.0375 0.0401 0.0534
4 0.0601 0.0584 0.0834 0.1041
3 0.0308 0.0317 0.0501 0.0751
6 0.0917 0.1251 0.2684 0.2551
2 0.0601 0.0967 0.3817 0.3634
1 0.0601 0.0951 0.3801 0.3675
5 0.0601 0.0975 0.4017 0.3901
7 0.1901 0.2301 0.5284 0.4525

test5 test6 test7 test8 total

0.1201 0.1951 0.0334 0.0334 0.4947
0.1234 0.1967 0.0341 0.0351 0.5018
0.1234 0.1967 0.0367 0.0366 0.5101
0.1551 0.2617 0.0334 0.0334 0.5970
0.1166 0.1875 0.1749 0.0283* 0.6034
0.1601 0.2684 0.0284* 0.2517 0.6062
0.1408 0.0291* 0.0401 0.0308 0.7993
0.1608 0.2701 0.2517 0.0383 0.8519
0.0784* 0.5317 0.0575 0.3883 0.9736
0.2817 0.4958 0.0317 0.3549 0.9969
0.2151 0.0617 0.0717 0.0884 1.0888
0.2101 0.0325 0.0417 0.0551 1.1862
0.2101 0.0325 0.0417 0.0467 1.1871
0.2184 0.0301 0.0399 0.0451 1.2378
0.3534 0.0533 0.1151 0.1417 1.9229

Figure 1. Timing Results

A A I-TI-_. W _._._ N .__L .1 AA

Tricky Business

Preprocessor Definitions

Icon’s preprocessor allows defined names to
be associated with strings so that when the name
appears subsequently, the
corresponding string is
substituted in its place.

A typical use of de-
fined names is to provide
symbolic constants as in

$define Height 500

The use of defined
names is not limited to
constants. Any string can
be given a name with the
exception that quoted lit-
erals must be complete.
In addition, whitespace
before and after the string,
including trailing comments, is discarded.

A potentially valuable use of preprocessor
definitions is to associate names with frequently
used expressions. Furthermore, well-chosen names
can convey meaning in a more direct way than the
expressions themselves.

We frequently are annoyed when writing scan-
ning expressions by the number of characters it
takes to express a simple operation (and are re-
minded that SNOBOLA4 [1] handles at least this
aspect of string analysis in a more parsimonious
way).

An example is the following scanning expres-
sion, which breaks out comma-terminated fields of
a record:

item ? {
name := tab(upto(',))
move(1)
ssn = tab(upto(',"))
move(1)

position := tab(upto(',"))

move(1)

salary := tab(upto(',"))
move(1)

hire_date := tab(upto(',")
}

Two expressions, representing simple con-
cepts, are used repeatedly. The number of repeti-
tions might be more or less, depending on the data.

Although it’s possible to write this as a loop
without repeating the expressions, assigning the
values to the variables then is a problem.

The expressions above contain two scanning
concepts:

tab(upto(',"))
move(l)

get the string up to the separator
skip the separator

We can associate hames with these expres-
sions as follows:

$define Field
$define Separator

tab(upto(',"))
move(1)

Here we’ve used names that describe the structure
of the string to be matched, not how the match is
accomplished.

Now we can rewrite the scanning expression
as

item ? {
name := Field
Separator
ssn := Field
Separator
position := Field
Separator
salary := Field
Separator
hire_date := Field
}

This is not only requires less writing than the

previous formulation, but in our opinion, it also is
easier to understand.

is available on the Web. The URL is

Additional Material

Additional material related to this issue of the Analyst, including color images and Web links,

http://lwww.cs.arizona.edu/icon/www/analyst/iasub/ia44/iad4sub.html

T l--. W .- A __L .0 AN AAr

A similar programming technique can be used
in many other situations. As with most other pro-
gramming techniques, there’s a certain “art” in
doing it well.

We used Tricky Business for this program-
ming technique because it is all too easy to abuse,
leading to error-prone and incomprehensible pro-
grams. As a truly awful example, consider these
definitions:

$define i if
$define t then

The Bcon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend
Editors

The Bcon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project

Department of Computer Science
The University of Arizona

P.O. Box 210077
Tucson, Arizona
US.A.

85721-0077

voice: (520) 621-6613
fax: (520) 621-4246

Electronic mail may be sent to:

icon—project@cs.arizona.edu

=

THE UNIVERSITY OF

ARIZONA o

TUCSON ARIZONA

and

Bright Forest Publishers

Tucson Arizona

=

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

AL | =TI-. B _._._ N .__L .1 AA

$define e else
$define w while
$define d do
$define r return

and a program containing something like this:
ij>0trewread()dj+:=1

Using Icon’s preprocessor intelligently and
with restraint can, however, make programming
easier and produce more elegant results. We'll
have another article on uses of the preprocessor in
a future issue of the Analyst.

Reference

1. The SNOBOL4 Programming Language, second
edition, Ralph E. Griswold, James F. Poage, and
Ivan P. Polonsky, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1971.

What’s Coming Up

We have several articles in the works. For the
next issue of the Analyst, we expect to have a
program anatomy entitled “Numerical Carpets”.
We’ll also have more on tiling and possibly an-
other article on using lcon’s preprocessor.

The last article in the series on debugging will
describe itweak, an Icon debugger. We also expect
to have the second article on versum factors.

As always, what actually appears in an Ana-
lyst depends on how things go and what fits to-
gether to make the pages come out right.

