
The Icon Analyst 43 / 1

August 1997
Number 43

In this issue …

New Services for Subscribers.... 1

Kaleidoscopic Visualization 1

Factors of Versum Numbers 9

Debugging: Library Support... 14

What’s Coming Up 16

In-Depth Coverage of the Icon Programming Language

New Services for Subscribers

Starting with this issue of the Analyst, we’re
placing images from Analyst articles on our Web
site. This will allow you to see the colors and, of
course, copy the images for your own use. To get
to the images, start with the Icon home page:

http://www.cs.arizona.edu/icon/

In the Documentation section of our home page,
follow the link to The Icon Analyst. On that page,
follow the link Supplementary material for sub-
scribers. On that page you’ll find links to issues of
the Analyst (right now, there is only Icon Analyst
43).

Since this is a service only for Analyst sub-
scribers, there won’t be any further explanation
except for figure captions.

As time permits, we’ll also add images from
recent past issues of the Analyst.

Kaleidoscopic Visualization

In previous articles [1-5], we explored vari-
ous ways of analyzing the behavior of Icon pro-
grams in nonvisual ways. In Icon Analyst 37 [6]
we started a series of articles on visual tools for
studying program behavior. In this second article

on the subject, we’ll show how the kaleidoscope
program [7,8] can be converted into a visualization
tool.

The kaleidoscope is just a visual amusement
that produces a display based on randomly se-
lected values. For visualization, we’ll change the
program to produce a display based on events that
occur during Icon program execution using MT
Icon [9]. We’ll start with visualizing storage alloca-
tion — allocation is a good subject for visualization
and there are many existing tools to which this new
one can be compared [10,11].

Visualizations that produce abstract designs
may seem silly if attractive. They have a serious
purpose, however, and there are good reasons for
using abstract displays and patterns. So-called
right-brain thinking [12,13] perceives relationships
in patterns that aren’t evident to the analytic, word-
and number-oriented left brain. This is an oversim-
plification, and we’ll discuss the subject in more
detail in a later article. For now, we’ll just show
how easy it is to convert a visual amusement into
a tool for viewing the behavior of Icon programs.

Forewarning: Before launching into the techni-
cal details, we need to warn you that the end result
will be seriously flawed. There are ways to reduce
the impact of the flaw, and the result is still useful.
We’ll explain later on.

The Interface

Figure 1 on the next page shows the interface
for the kaleidoscope as it appears in VIB. By way of
review, pause is a toggle to stop and start the
display, reset clears the display to start afresh,
speed controls how fast the display runs, and
density limits the number of simultaneously dis-
played circles. The radius sliders control the size of
the circles, and the radio buttons at the bottom
provide a choice between filled circles and out-
lines.

Most of these controls make sense for visual-
ization. The sizes of the circles, however, can be

2 / The Icon Analyst 43

used to show the amount of space
allocated. In place of the radius slid-
ers, we’ll add a slider to control scal-
ing of allocation amounts. The new
interface is shown in Figure 2.

Notice that we’ve added labels
to the density slider to allow the user
to set the density more accurately
than for the kaleidoscope applica-
tion.

Modifying the original inter-
face in VIB is easy. Deleting a radius
slider is just a matter of selecting it
and entering @X or selecting delete
from the edit menu.

The scale slider is a routine
addition — just copying a few
vidgets and adjusting them. Add-
ing the labels and tick marks for the
density slider is a bit tedious, but
VIB’s alignment features make pre-
cise positioning easy.

Specifying Monitoring

Several things need to be done
to adapt the program itself to moni-
toring and presenting allocation
events visually. One is to decide how
the user specifies the program to be
monitored, its input data, and pos-
sible command-line options.

It seems as if a program with a
visual interface should allow the user
to specify these by means of menus
and dialogs. In a command-line en-
vironment, however, it turns out to
be easier for the user to specify these
when the program is launched, much
like the nonvisual monitoring pro-
grams we’ve described [1-5]. For ex-
ample, if the kaleidoscopic visual-
izer for allocation is named alcscope,
it might be launched as follows:

alcscope concord <concord.dat

where concord is the program to be
monitored (the SP in earlier termi-
nology) and concord.dat provides its input.

We’ll use this approach here and leave open
the possibility of interactive specification of the
SP, its data, and so on for a later time.

Figure 1. The Kaleidoscope Interface

Figure 2. The Visualization Interface

Given the command-line interface described
above, existing support for monitors (MPs) can be
used.

The Icon Analyst 43 / 3

Translating Allocation Events to Images

In an earlier article [14], we discussed the
category-magnitude model of events. This model
nicely fits allocation, since there are relatively few
different kind of allocation, and the amount of
allocation is of obvious interest. As before, we’ll
use colors to identify the different kinds of alloca-
tion [10,11]. Thus, an allocation event produces a
symmetric drawing of a circle of a specified size
and color.

We’ve tried many color palettes for alloca-
tion. The current one we’re using emphasizes bright
colors for easy identification and related colors for
allocations for structures where there is more than
one internal type. For example, a list consists of list
header block and one or more list-element blocks.
This standard palette is shown in Figure 3.

Figure 3. Allocation Color Coding

The notation “tv” is shorthand for trapped vari-
able. For an explanation of the various types of
allocation, see References 15 and 16.

Of course, you can’t see the actual colors in

this printed copy of the Analyst, but check out the
image on our Web site.

The visualization program adds links and an
include file for monitoring, as well as an argument
to the main procedure:

link colormap # color information
link evinit # monitoring support

$include "evdefs.icn" # event and mask definitions

procedure main(args)
 …
 init(args)
 ...

The command line arguments are passed to
init(), which loads the SP and suppresses its output:

 procedure init(args)
 …
 EvInit(args) | ExitNotice("Cannot load the SP.")

 variable("write" , &eventsource) := –1
 variable("writes" , &eventsource) := –1
 …

There also are changes in the initialization
related to the changed interface tools. See the com-
plete listing at the end of this article.

SP Event Processing

There are no changes in the event loop that
handles user interaction. SP events are processed
in putcircle(), which does the drawing.

Instead of choosing random parameters for
circles, SP events are used instead:

procedure putcircle()

 EvGet(AllocMask) | ExitNotice("SP terminated.")

 fg := color[&eventcode]
 radius := sqrt(&eventvalue ∗ scale)
 …

The table color has keys for the event codes related
to allocation with color values corresponding to
the palette shown earlier. The global variable scale
contains the user-specified scale, which is set by
the callback procedure scale_cb():

procedure scale_cb(vidget, value)

 scale := value

 return

end

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

4 / The Icon Analyst 43

There are no other changes to the program.

Visualization Examples

An example of an alcscope display, taken
from rsg, a program that generates random sen-
tences, is shown in Figure 4:

Figure 4. An Example Visualization

Several types of allocation are shown here: prima-
rily list headers, list elements, hash headers, table
elements, and substring trapped variables. See our
Web site for the actual colors.

One observation in comparing displays from
kaleido and alcscope is that although alcscope
uses fewer different colors than kaleido, its dis-
plays are just as visually interesting.

“Phase changes”, in which a program goes
from allocating some kinds of data to allocating
other types, are particularly noticeable. Consider
this program for producing concordances:

global uses, lineno, width

procedure main(args)
 local word, line

 width := 15 # width of word field
 uses := table()
 lineno := 0

 every tabulate(words()) #get the citations

 output() # write the citations

end

procedure tabulate(word)

 /uses[word] := set()
 insert(uses[word],lineno)

 return

end

procedure words()
 local s, line

 while line := read() do {
 lineno +:= 1
 write(right(lineno,6)," ",line)
 map(line) ? while tab(upto(&letters)) do {
 s := tab(many(&letters))
 if ∗s < 3 then next # skip short words
 suspend s
 }
 }

end

procedure output()
 local word, line, numbers

 write()

 uses := sort(uses,3) # sort citations

 while word := get(uses) do {
 line := ""
 numbers := sort(get(uses))
 while line ||:= get(numbers) || ", "
 write(left(word,width),line[1:–2])
 }

end

There are two quite distinct phases in this

The Icon Analyst 43 / 5

program: collecting the words and tabulating the
words with their line numbers — in the procedures
words() and tabulate() — and formatting and out-
putting the results — in the procedure output()).

 Figure 5 shows allocation during the phase
when words are being collected and tabulated.

Figure 5. Allocation During Cataloging

This image shows several kinds of allocation:
primarily set headers, set elements, table elements,
ann substring trapped variables.

Figure 6 shows the output phase when words
are being written.

Figure 6. Outputting the Concordance

The larger circles in the center and the corners
represent list header and list element allocation.

The somewhat smaller circles around the edges
and the center represent substring trapped-vari-
able allocation. The tiny circles represent string
allocation.

A particularly striking image occurs at the
beginning of output() where the table uses is sorted
to produce a list. Figure 7 shows the result:

Figure 7. List Allocation from Sorting a Table

The reason the circles are so big is that when
a list is created by sorting, all the elements are put
in one list-element block. In this case, the block is
quite large. When watching visualizations of allo-
cation that show the size, such an effect usually
results from sorting, and it commands attention.

You’ll find all these images above on our Web
site, as well as some others for which there was not
space here.

Observations About the Program

The conversion from kaleido.icn to
alcscope.icn was easy. Not only were there few
changes to the program proper, but the conversion
was essentially routine, accomplished quickly, and
without any problems. The visualization program
actually is 22 lines shorter than the kaleidoscope
program on which it was based.

Although we chose storage allocation for this
example, the program easily can be adapted to
visualizing other kinds of program activity, such
as string creation. In fact, it is not difficult to extend
the program to allow the user to select interactively
the kind of activity to visualize, switching between
them while the program runs. All that is needed is
a dialog for the choices. For kinds of activity where

6 / The Icon Analyst 43

there is no natural magnitude component associ-
ated with events, a constant value or randomly
selected values can be used. The hardest part seems
to be finding suitable color palettes.

The Flaw

The drawing attribute drawop=reverse is used
so that previously drawn circles can be erased to
maintain a constant density.

Reversible drawing works like you’d expect
when the foreground and background colors don’t
change. When they change (in this case, the fore-
ground color), the results are unpredictable. In
particular, if a circle is drawn on top of previously
drawn circles, the previously drawn circles “show
through”. The colors that show through are unpre-
dictable, in the sense that they may not correspond
to any colors previously used in drawing and in
fact, may depend on colors used by other applica-
tions.

This is not a problem for the kaleidoscope,
where you have no idea what the colors are sup-
posed to be, but in visualizations in which colors
are used to code different kinds of allocation, the
artifact can be misleading. This problem is particu-
larly noticeable in Figure 7. When the large circles
for the list element block are drawn, the underly-
ing circles show through, but in altered colors (see
out Web site).

This property of reversible drawing is not a
bug. It is an undesirable feature that is a by-prod-
uct of being able, for example, to erase a drawing
that was created at arbitrary time in the past.

What actually is going on is not easy to ex-
plain, although we’ll try to muster the courage and
energy for a future article. For now, take it as given.

Does this flaw render the visualization tech-
nique unusable or worse, completely misleading?
Not entirely. The artifacts of reversible drawing
can be reduced in two ways:

• reduce the density of the display so that
there are fewer overlaps in drawing

• use rings instead of discs

Using rings instead of discs greatly reduces
the amount of overlapping drawing, and the con-
tinuity of the lines reduces the visible effect of
incorrect colors where there is overlapping. This is
shown in Figure 8, which is a ring-visualization
corresponding to the disc visualization of Figure 8.

Figure 8. List Allocation from Sorting a Table

An alternative is to dispense with reversible
drawing altogether and let the drawing pile up, as
was done in the splatter visualization [11]. The
visual effect is quite different and not nearly as
comprehensible as maintaining a constant density
of circles.

Yet another alternative is to clear the non-
erasing version frequently to prevent excessive
buildup. This, however, produces annoying
discontinuities in the display.

If alcscope is used as-is, even restricted to
rings, it’s important to clearly identify the problem
to users — several students have used the program
without knowing of the problem and never notic-
ing that anything was wrong. Too right-brained,
perhaps? Not our students.

Program Listing

A complete listing of alcscope.icn follows.
Comments have been removed to reduce the bulk;
they are mostly the same as in the kaleidoscope
program. You may notice some differences from
the listing of kaleido.icn given in Reference 8 that
are not related to the conversion to visualization.
The reason for this is that kaleido.icn is our main
example of a graphics program with a visual inter-

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 43 / 7

face. We try to improve on it when we can, and
alcscope.icn is based on the latest version of
kaleido.icn.

link colormap
link evinit
link interact
link vsetup

global vidgets
global root
global size
global half
global pane
global delayval
global density
global draw_proc
global scale
global color
global draw_list
global reset
global state

$include "evdefs.icn"

procedure main(args)

 init(args)

 kaleidoscope()

end

procedure init(args)

 vidgets := ui()

 root := vidgets["root"]
 size := vidgets["region"].uw
 if vidgets["region"].uh ~= size then
 stop("∗∗∗ improper interface layout")

 draw_proc := FillCircle

 state := &null

 density := VGetState(vidgets["density"])
 delayval := VGetState(vidgets["speed"])
 scale := VGetState(vidgets["scale"])
 VSetState(vidgets["shape"], "discs")

 half := size / 2

 pane := Clone("bg=black", "dx=" || (vidgets["region"].ux + half),
 "dy=" || (vidgets["region"].uy + half), drawop=reverse")
 Clip(pane, –half, –half, size, size)

 EvInit(args) | ExitNotice("Cannot load SP.")

 variable("write", &eventsource) := –1
 variable("writes", &eventsource) := –1

 color := colormap()

 return

end

procedure kaleidoscope()

 repeat {
 EraseArea(pane, –half, –half, size, size)
 draw_list := []

 reset := &null
 repeat {
 while (∗Pending() > 0) | \state do {
 ProcessEvent(root, , shortcuts)
 if \reset then break break next
 }
 putcircle()
 WDelay(delayval)
 if ∗draw_list > (4 ∗ density) then clrcircle()
 }
 }

end

procedure putcircle()
 local off1, off2, radius, fg

 EvGet(AllocMask) | ExitNotice("SP terminated.")

 fg := color[&eventcode]
 radius := sqrt(&eventvalue ∗ scale)

 off1 := ?size % half
 off2 := ?size % half

 put(draw_list, off1, off2, radius, fg)

 outcircle(off1, off2, radius, fg)

 return

end

procedure clrcircle()

 outcircle(
 get(draw_list),
 get(draw_list),
 get(draw_list),
 get(draw_list)
)

 return

end

procedure outcircle(off1, off2, radius, color)

 Fg(pane, color)

 draw_proc(pane, off1, off2, radius)
 draw_proc(pane, off1, –off2, radius)
 draw_proc(pane, –off1, off2, radius)
 draw_proc(pane, –off1,–off2, radius)
 draw_proc(pane, off2, off1, radius)
 draw_proc(pane, off2, –off1, radius)
 draw_proc(pane, –off2, off1, radius)
 draw_proc(pane, –off2,–off1, radius)

 return

end

procedure density_cb(vidget, value)

 density := value

 reset := 1

end

procedure speed_cb(vidget, value)

 delayval := value

8 / The Icon Analyst 43

 return

end

procedure file_cb(vidget, value)

 case value[1] of {
 "snapshot @S": snapshot(pane, –half, –half, size, size)
 "quit @Q": exit()
 }

 return

end

procedure scale_cb(vidget, value)

 scale := value

 return

end

procedure pause_cb(vidget, value)

 state := value

 return

end

procedure reset_cb(vidget, value)

 reset := 1

 return

end

procedure shape_cb(vidget, value)

 draw_proc := case value of {
 "discs": FillCircle
 "rings": DrawCircle
 }

 reset := 1

 return

end

procedure shortcuts(e)

 if &meta then
 case map(e) of {
 "q":exit()
 "s": snapshot(pane, –half, –half, size, size)
 }

 return

end

#===<<vib:begin>>=== modify using vib
procedure ui_atts()
 return ["size=600,455", "bg=gray–white", "label=kaleido"]
end

procedure ui(win, cbk)
return vsetup(win, cbk,
 [":Sizer:::0,0,600,455:kaleido",],
 ["density:Slider:h:1:41,171,100,15:10,100,50",density_cb],
 ["file:Menu:pull::12,3,36,21:File",file_cb,
 ["snapshot @S","quit @Q"]],
 ["label07:Label:::7,120,28,13:slow",],

 ["label08:Label:::151,120,28,13:fast",],
 ["label10:Label:::64,270,7,13:1",],
 ["label11:Label:::124,270,7,13:5",],
 ["label12:Label:::47,200,14,13:10",],
 ["label13:Label:::116,200,21,13:100",],
 ["label14:Label:::78,200,14,13:50",],
 ["label9:Label:::43,270,14,13:.2",],
 ["lbl_density:Label:::67,151,49,13:density",],
 ["lbl_scale:Label:::74,220,35,13:scale",],
 ["lbl_speed:Label:::74,100,35,13:speed",],
 ["line:Line:::0,30,600,30:",],
 ["line1:Line:::68,256,68,266:",],
 ["line2:Line:::128,256,128,266:",],

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1997 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

The Icon Analyst 43 / 9

Factors of Versum Numbers

This is the eleventh article on versum num-
bers [1-10]. Since the last article was in February, it
may help you get back on track to recall that a
versum number results from the addition of a
number and its digit reversal. For example, for 196,
196 + 691 = 887. A versum sequence results from
starting with a seed and continuing the reverse-
addition process. Thus, the seed 196 produces the
sequence 887, 1675, 7436, 13783, 52514, … . A
predecessor of a versum number is a number whose
reverse sum is the versum number. For example,
887 is a predecessor of 1675.

For this article, you’ll also need to recall that
all palindromic numbers are versum numbers un-
less they have an odd number of digits and an odd
middle digit.

In the last article, we started to explore factors
of versum numbers, concentrating on factors of 11,
since the reverse sum of a number with an even
number of digits is divisible by 11, and all subse-
quent reverse sums also are divisible by 11.

Powers

The logical place to start when looking for
interesting things about factors of versum num-
bers is among numbers that have a well-defined
factor structure, such as powers. In the last article
we showed that 11n is a versum number for 1 ≤ n ≤
5, but beyond 5 we didn’t find any.

In this article, we’ll look at versum numbers
that are of the form i n, (n > 1). There aren’t many of
them. For all integers through 12 digits, there are
only 180:

n versum powers

2 160

3 14

4 4

5 2

6 and up 0

 ["line3:Line:::54,256,54,266:",],
 ["line4:Line:::128,186,128,196:",],
 ["line5:Line:::55,186,55,196:",],
 ["line6:Line:::86,186,86,196:",],
 ["pause:Button:regular:1:33,55,45,20:pause",pause_cb],
 ["reset:Button:regular::111,55,45,20:reset",reset_cb],
 ["scale:Slider:h:1:42,240,100,15:0.1,5,1",scale_cb],
 ["shape:Choice::2:64,330,64,42:",shape_cb, ["discs","rings"]],
 ["speed:Slider:h:1:41,121,100,15:100,0,0",speed_cb],
 ["region:Rect:raised::187,42,400,400:",],
)
end
#===<<vib:end>>=== end of section maintained by vib

References

1. “Dynamic Analysis of Icon Programs”, Icon
Analyst 28, pp. 9-11.

2. “Dynamic Analysis of Icon Programs”, Icon
Analyst 29, pp. 10-12.

3. “Dynamic Analysis”, Icon Analyst 30, pp. 9-
11.

4. “Dynamic Analysis”, Icon Analyst 33, pp. 3-6.

5. “Dynamic Analysis”, Icon Analyst 37, pp. 3-9.

6. “Visualizing Concatenation”, Icon Analyst 39,
pp. 6-8.

7. “The Kaleidoscope”, Icon Analyst 38, pp. 8-13.

8. “The Kaleidoscope”, Icon Analyst 39, pp. 5-10.

9. “Monitoring Icon Programs”, Icon Analyst 15,
pp. 6-10.

10. “Memory Monitoring”, Icon Analyst 2, pp. 5-
9.

11. “Program Visualization”, Icon Analyst 16,
pp. 1-8.

12. Left Brain, Right Brain, Sally P. Springer and
Georg Deutsch, W. H. Freeman and Co., New
York, 1985.

13. Drawing on the Right Side of the Brain, Betty
Edwards, Jeremy P. Tarcher, Inc., Los Angles, 1989.

14. “A Framework for Monitoring”, Icon Ana-
lyst 39, pp. 1-5.

15. The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986.

16. Supplementary Information for the Implementation
of Version 8 of Icon, Ralph E. Griswold, Icon Project
Document 112, Department of Computer Science,
The University of Arizona, 1990.

10 / The Icon Analyst 43

441504144 = 24×32 ×172 ×1032 = 210122 ν ⇔
449948944 = 24×53032 = 212122 ν ⇔
484968484 = 22 ×72 ×114×132 = 220222 ν ⇔

⇔ 522808225 = 52 ×172 ×2692 = 228652

562069264 = 24×59272 = 237082

582160384 = 212×132 ×292 = 241282

⇔ 617323716 = 22 ×32 ×412 ×1012 = 248462

631768225 = 52 ×112 ×4572 = 251352

677352676 = 22 ×72 ×112 ×134 = 260262

715776516 = 22 ×32 ×76×132 = 267542

900180009 = 32 ×732 ×1372 = 300032 ν ⇔
⇔ 942060249 = 32 ×132 ×7872 = 306932

1046069649 = 32×107812 = 323432

1101576100 = 22×52×33192 = 331902

1133736241 = 112×30612 = 336712

1183979281 = 192×18112 = 344092

1254505561 = 354192 π
1271564281 = 134×2112 = 356592

1273847481 = 32×118972 = 356912

1439291844 = 22×32×63232 = 379382

1522404324 = 22×32×72×9292 = 390182

1615718416 = 24×132×7732 = 401962

2548129441 = 112×132×3532 = 504792

4045214404 = 22×74×1122×592 = 636022

5581882944 = 26×32×112×2832 = 747122

9504885049 = 112×88632 = 974932

⇔ 10000200001 = 112×90912 = 1000012 ν ⇔
⇔ 10221412201 = 72×112×132×1012 = 1011012 ν ⇔

10445044401 = 32×112×192×1632 = 1022012 ν ⇔
10774647601 = 1038012 π
10989328900 = 22×52×112×9532 = 1048302

11081772900 = 22×32×52×114×292 = 1052702

12078229801 = 112×972×1032 = 1099012 ν ⇔
⇔ 12102420121 = 112×732×1372 = 1100112 ν ⇔
⇔ 12345654321 = 32×72×112×132×372 = 1111112 ν ⇔

12370110841 = 112×101112 = 1112212 ν
12591308521 = 112×1014 = 1122112 ν ⇔
14405040441 = 32×112×36372 = 1200212 ν ⇔
14670296641 = 72×116×132 = 1211212 ν ⇔
14937972841 = 112×412×2712 = 1222212 ν ⇔
15648008464 = 24×112×28432 = 1250922

15657266641 = 1572×7972 = 1251292

17803831761 = 32×792×5632 = 1334312

19115551081 = 112×125692 = 1382592

22048983121 = 112×134992 = 1484892

26120701161 = 32×172×31692 = 1616192

27313842361 = 132×127132 = 1652692

29569897681 = 612×28192 = 1719592

⇔ 40000800004 = 22×112×90912 = 2000022 ν ⇔
40279687204 = 22×232×43632 = 2006982

40442014404 = 22×32×114×2772 = 2011022 ν ⇔
40885648804 = 22×72×112×132×1012 = 2022022 ν ⇔
44105040144 = 24×32×112×372×432 = 2100122 ν ⇔
44568276544 = 26×112×23992 = 2111122 ν ⇔
45033932944 = 24×72×112×132×532 = 2122122 ν ⇔
46551514564 = 22×2332×4632 = 2157582

48409680484 = 22×112×732×1372 = 2200222 ν ⇔
48894938884 = 22×112×192×234 = 2211222 ν ⇔
49496460484 = 22×1732×6432 = 2224782

49582819584 = 28×32×46392 = 2226722

50715940804 = 22×1126012 = 2252022

51280508304 = 24×32×1132×1672 = 2264522

53261716225 = 52×1012×4572 = 2307852

The count of squares does not include the 4th
powers.

All of the versum powers in this range are
listed below. The symbols in the left margin refer to
the power and those at the right to its root. The
symbol ν identifies versum numbers (we’ve left
these out of the left column, since all the powers are
versum). The symbol ⇔ identifies a palindrome.
The symbol π identifies a prime root. We’ll deal
with primes in a subsequent article.

⇔ 4 = 22 ν ⇔ π
16 = 24 = 42 ν ⇔

⇔ 121 = 112 ν ⇔ π
⇔ 484 = 22 ×112 = 222 ν ⇔
⇔ 625 = 54 = 252

1089 = 32 ×112 = 332 ν ⇔
⇔ 10201 = 1012 = 1012 ν ⇔
⇔ 14641 = 114 = 1212 ν ⇔

19881 = 32 ×472 = 1412 ν ⇔
⇔ 40804 = 22 ×1012 = 2022 ν ⇔

49284 = 22 ×32 ×372 = 2222 ν ⇔
⇔ 69696 = 26×32 ×112 = 2642

91809 = 32 ×1012 = 3032 ν ⇔
⇔ 94249 = 3072 π

203401 = 112 ×412 = 4512

⇔ 698896 = 24×112 ×192 = 8362

⇔ 1002001 = 72 ×112 ×132 = 10012 ν ⇔
⇔ 1234321 = 112 ×1012 = 11112 ν ⇔

1490841 = 32 ×112 ×372 = 12212 ν ⇔
1517824 = 28×72 ×112 = 12322 ν

⇔ 4008004 = 22 ×72 ×112 ×132 = 20022 ν ⇔
4276624 = 24×112 ×472 = 20682

4460544 = 212×32 ×112 = 21122 ν ⇔
4937284 = 22 ×112 ×1012 = 22222 ν ⇔
5313025 = 52 ×4612 = 23052

6325225 = 52 ×5032 = 25152

6895876 = 22 ×132 ×1012 = 26262

⇔ 6948496 = 24×6592 = 26362

7706176 = 26×3472 = 27762

9018009 = 32 ×72 ×112 ×132 = 30032 ν ⇔
15665764 = 22 ×19792 = 39582

15776784 = 24×32 ×3312 = 39722

16120225 = 52 ×112 ×732 = 40152

16654561 = 72 ×112 ×532 = 40812

63600625 = 54×112 ×292 = 79752

66977856 = 26×32 ×112 ×312 = 81842

95199049 = 112 ×8872 = 97572

⇔ 100020001 = 732 ×1372 = 100012 ν ⇔
⇔ 104060401 = 1014 = 102012 ν ⇔

108180801 = 32 ×34672 = 104012 ν ⇔
⇔ 121242121 = 72 ×114×132 = 110112 ν ⇔

123676641 = 32 ×112 ×3372 = 111212 ν
⇔ 125686521 = 32 ×372 ×1012 = 112112 ν ⇔

144288144 = 24×32 ×72 ×112 ×132 = 120122 ν
144504441 = 32 ×40072 = 120212 ν ⇔
149352841 = 114×1012 = 122212 ν ⇔
170198116 = 22 ×112 ×5932 = 130462

274929561 = 32 ×55272 = 165812

⇔ 400080004 = 22 ×732 ×1372 = 200022 ν ⇔
408120804 = 22 ×32 72 ×132 ×372 = 202022 ν ⇔

The Icon Analyst 43 / 11

12503322161 = 113×2113 = 23213 ν
117001919971 = 673×733 = 48913

344030029343 = 493×113133 = 70073 ν ⇔

⇔ 16 = 24 ν ⇔ π
625 = 54 ⇔ π

⇔ 14641 = 114 ν ⇔ π
⇔ 104060401 = 1014 ν ⇔ π

161051 = 115 ν ⇔ π
⇔ 10510100501 = 1015 ν ⇔ π

It is surprising to us that so many of the
versum roots also are palindromes — only four are
not.

It’s well known that palindromic powers of-
ten have palindromic roots. In fact, the only known
palindromic cube that does not have a palindromic
cube root is 10662526601 = 22013 [11]. Neither the
power or its root are versum numbers. Further-
more, there is no known palindrome that is an nth
power, n > 3, whose nth root is not a palindrome.

From the list given at the beginning of this
article, it’s clear that many non-palindromic versum
powers have palindromic versum roots as well. Is
there something deeper underlying these relation-
ships?

Here’s a listing of just the versum powers that
have palindromic versum roots with the palindro-
mic powers identified for the range we’ve covered.
Of the 60, 25 are palindromic and 35 not:

⇔ 4 = 22

16 = 24 = 42

⇔ 121 = 112

⇔ 484 = 22 ×112 = 222

1089 = 32 ×112 = 332

⇔ 10201 = 1012 = 1012

⇔ 14641 = 114 = 1212

19881 = 32 ×472 = 1412

⇔ 40804 = 22 ×1012 = 2022

49284 = 22 ×32 ×372 = 2222

91809 = 32 ×1012 = 3032

⇔ 1002001 = 72 ×112 ×132 = 10012

⇔ 1234321 = 112 ×1012 = 11112

1490841 = 32 ×112 ×372 = 12212

⇔ 4008004 = 22 ×72 ×112 ×132 = 20022

4460544 = 212×32 ×112 = 21122

4937284 = 22 ×112 ×1012 = 22222

9018009 = 32 ×72 ×112 ×132 = 30032

⇔ 100020001 = 732 ×1372 = 100012

⇔ 104060401 = 1014 = 102012

108180801 = 32 ×34672 = 104012

⇔ 121242121 = 72 ×114×132 = 110112

⇔ 125686521 = 32 ×372 ×1012 = 112112

144504441 = 32 ×40072 = 120212

149352841 = 114×1012 = 122212

⇔ 400080004 = 22 ×732 ×1372 = 200022

408120804 = 22 ×32 72 ×132 ×372 = 202022

53785958724 = 22×32×386532 = 2319182

57916272964 = 22×112×109392 = 2406582

59913331984 = 24×112×55632 = 2447722

62562515625 = 32×56×232×292 = 2501252

62998490025 = 32×52×292×5772 = 2509952

63259795225 = 52×112×172×2692 = 2515152

63541805625 = 32×54×33612 = 2520752

63592230625 = 54×72×112×1312 = 2521752

67561525476 = 22×32×433212 = 2599262

67613520676 = 22×132×732×1372 = 2600262

68631424576 = 26×112×132×2292 = 2619762

70630503696 = 24×32×221472 = 2657642

74696169636 = 22×32×112×412×1012 = 2733062

90001800009 = 32×112×90912 = 3000032 ν ⇔
91447574409 = 32×1008012 = 3024032

101507871609 = 32×612×17412 = 3186032

109845844900 = 22×52×112×232×1312 = 3314302

110908980900 = 22×32×52×172×6532 = 3330302

116506851561 = 32×1137772 = 3413312

117243923281 = 432×79632 = 3424092

120861217801 = 3476512 π
122963136921 = 32×1792×6532 = 3506612

126216062361 = 32×1184232 = 3552692

148164946084 = 22×1924612 = 3849222

149166660841 = 112×351112 = 3862212

152244334225 = 52×732×10692 = 3901852

152306770225 = 52×892×8772 = 3902652

153712611844 = 22×112×712×2512 = 3920622

155281707364 = 22×72×40212 = 3940582

156255765264 = 24×32×329412 = 3952922

158421512484 = 22×32×663372 = 3980222

161174146225 = 52×232×34912 = 4014652

170985558016 = 212×72×132×712 = 4135042

172469106436 = 22×112×432×4392 = 4152942

173810612836 = 22×72×972×3072 = 4169062

176968296976 = 24×2512×4192 = 4206762

226872168721 = 112×192×2×532 = 4763112

251172371241 = 32×112×151872 = 5011712

257585685841 = 112×292×372×432 = 5075292

269328822961 = 114×42892 = 5189692

282057650281 = 112×482812 = 5310912

526676775625 = 54×72×112×132×292 = 7257252

595477675584 = 26×32×112×372×792 = 7716722

596258863684 = 22×112×350992 = 7721782

⇔ 637832238736 = 24×72×112×25932 = 7986442

653778976356 = 22×32×112×122512 = 8085662

709529936896 = 210×112×23932 = 8423362

718079980816 = 24×112×192592 = 8473962

728370074916 = 22×32×112×672×1932 = 8534462

968525634769 = 72×112×127812 = 9841372

987803417689 = 112×903532 = 9938832

⇔ 8 = 23 ν ⇔ π
⇔ 343 = 73 ⇔ π
⇔ 1331 = 113 ν ⇔ π

166375 = 53×113 = 553 ν ⇔
⇔ 1030301 = 1013 ν ⇔ π

217081801 = 6013

353393243 = 73×1013 = 7073 ν ⇔
938313739 = 113×893 = 9793 ⇔

⇔ 1003003001 = 73×113×133 = 10013 ν ⇔
1058089859 = 10193 π
1371330631 = 113×1013 = 11113 ν ⇔

12 / The Icon Analyst 43

The following table shows what we’ve found
for n from 1 through 32. The notations m⇔ and mν
stand for the highest powers for which the result is
a palindrome and a versum number, respectively.
The question marks indicate incomplete informa-
tion. For example, 2? means that the square meets
the criterion but it is not known if the cube does.
The range of results is limited by our inability to
determine if very large numbers are versum. Palin-
dromes present no problems.

n m⇔ mν

1 4 5

2 2 3

3 2 2

4 2 2

5 1 2

6 1 2

7 1 2?

8 1 2?

9-32 1 ?

Largest Palindromic and Versum Powers of 1
2n

Of course, it’s possible that palindromes and
versum numbers occur for higher powers. It just
seems unlikely.

Numbers of the Form 1 0n 1

If you look closely at the palindromic versum
roots in the listings above, you’ll see that many are
of the form (1 0

n
1)m, m ≥ 0. Thus for n starting at 0,

these numbers have the form 11m, 101m, 1001m,
10001m, and so on.

For m ≥ 0, we can give formulas for some of the
mth powers:

m formula range

0 1 n ≥ 0
1 1 0n 1 n ≥ 0
2 1 0n 2 0n 1 n ≥ 0
3 1 0n 3 0n 3 0n 1 n ≥ 0

441504144 = 24×32 ×172 ×1032 = 210122

449948944 = 24×53032 = 212122

484968484 = 22 ×72 ×114×132 = 220222

900180009 = 32 ×732 ×1372 = 300032

⇔ 10000200001 = 112×90912 = 1000012

⇔ 10221412201 = 72×112×132×1012 = 1011012

10445044401 = 32×112×192×1632 = 1022012

12078229801 = 112×972×1032 = 1099012

⇔ 12102420121 = 112×732×1372 = 1100112

⇔ 12345654321 = 32×72×112×132×372 = 1111112

12591308521 = 112×1014 = 1122112

14405040441 = 32×112×36372 = 1200212

14670296641 = 72×116×132 = 1211212

14937972841 = 112×412×2712 = 1222212

⇔ 40000800004 = 22×112×90912 = 2000022

40442014404 = 22×32×114×2772 = 2011022

40885648804 = 22×72×112×132×1012 = 2022022

44105040144 = 24×32×112×372×432 = 2100122

44568276544 = 26×112×23992 = 2111122

45033932944 = 24×72×112×132×532 = 2122122

48409680484 = 22×112×732×1372 = 2200222

48894938884 = 22×112×192×234 = 2211222

90001800009 = 32×112×90912 = 3000032

⇔ 8 = 23

⇔ 1331 = 113

⇔ 1030301 = 1013

353393243 = 73×1013 = 7073

⇔ 1003003001 = 73×113×133 = 10013

1371330631 = 113×1013 = 11113

344030029343 = 493×113133 = 70073

⇔ 16 = 24

⇔ 14641 = 114

⇔ 104060401 = 1014

161051 = 115

10510100501 = 1015

Numbers of the Form 1n

Numbers of the form 1, 11, 111, 1111, … are
called repunit numbers (for repeated units) and
have special properties. In the notation we’ve used
before, they are given by 1n.

Since these numbers are palindomes com-
posed entirely of odd digits, numbers of the form
12n, n > 0 are versum numbers, while numbers of
the form 12n+ 1, n ≥ 0 are not. Note that in the roots
of versum powers in the range we’ve examined, all
numbers of the form 12n, n > 0 are included but
none of the numbers of the form 12n+ 1, n ≥ 0 are.

As numbers of the form 12n are raised to
successively higher powers, the power at which
the result ceases to be a palindrome or a versum
number drops off. As far as we have been able to
determine, if (12n)m is not a palindrome, (12n)k is not
a palindrome for k > m, and similarly for versum
numbers. As the power increases, carries disrupt
patterns. The mathematically correct term for this
is that “things get messed up”.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

The Icon Analyst 43 / 13

versum. Tests of all numbers in the range 6 ≤ m ≤ 20
with 0 ≤ n ≤ 50 support this conjecture.

So what do we have? Numbers of the form
(10

n
1)m, 1 ≤ m ≤ 5, n ≥ 0 are versum; all others most

likely are not.

Testing for Versumness

You may recall that our test for versumness
consists of searching for predecessors. This is fast
and easy for palindromes and many numbers also
can be rejected outright because of their first and
last digits. For other numbers, however, the com-
putational complexity of the method limits testing
for versumness to numbers with 25 digits or less.

When working on numbers of the form (10
n
1)m,

we can take advantage of their special structure:
Their heads and tails are reversals:

x y x

where x here denotes the reverse of x.

It’s trivial to produce a predecessor for the
heads and tails of such numbers:

x y' 0
n

where n is the length of x and y' is a predecessor of
y.

It only remains to determine y', which is
significantly shorter than the original number: for
numbers of the form (10

n
1)m the shortening is on

the order of 4n.

Here’s the procedure we used:

link vpred

procedure isversum(s)
 local bound, strip1, strip2, p, middle
 local pred, midpred, head

 if s[1] ~== s[–1] then return vpred(s) # can't handle
 bound := ∗s / 2 + 1

 if s == reverse(s) then { # handle palindromes
 if ∗s % 2 = 0 then
 return s[1:bound] || repl("0", bound – 1)
 else if s[bound] % 2 = 0 then
 return s[1:bound] || s[i] / 2 || repl("0", bound – 1)
 else fail
 }

 strip1 := s[1:bound]
 strip2 := reverse(s)[1:bound]

 strip1 ? { # look for common substrings

4 1 0n 4 0n 6 0n 4 0n 1 n ≥ 0
5 1 0n–1 5 0n–1 1 0n 1 0n+1 5 0n 1 n > 0
6 1 0n–1 6 0n 15 0n–1 20n 15 0n 6 0n 1 n > 0
7 1 0n 7 0n–1 21 0n–1 0n 35 0n–1 35 0n–1 21 0n 7 0n 1 n > 0

Do the patterns suggest anything? Does it
help if we change the form for m = 5 to give

m

0 1

1 1 0n 1
2 1 0n 2 0n 1
3 1 0n 3 0n 3 0n 1
4 1 0n 4 0n 6 0n 4 0n 1
5 1 0n–1 5 0n–1 10 0n–1 10 0n 5 0n 1
6 1 0n–1 6 0n 15 0n–1 20n 15 0n 6 0n 1
7 1 0n 7 0n–1 21 0n–1 0n 35 0n–1 35 0n–1 21 0n 7 0n 1

How about removing the 0 repeats and putting
what remains in columns?

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

Ah! Pascal’s Triangle; binomial coefficients.
Of course! The coefficients of the terms in (a + b)m.

We’ll come back to digit patterns in a later
article. For now, we’ll conclude with some obser-
vations about versum number in (1 0

n
1)m, m ≥ 0, n

≥ 0.

We included m = 0 to fill out the triangle. Since
(10

n
1)0 = 1, this case is uninteresting.

Numbers of the form (10
n
1)2 are versum palin-

dromes with middle digit 2.

Numbers of the form (10
n
1)3 are versum palin-

dromes with middle digit 0.

Numbers of the form (10
n
1)4 are versum palin-

dromes with middle digit 6.

Numbers of the form (10
n
1)5 are non-palin-

dromic versum numbers. The fact that they are
versum numbers can be shown by constructing
explicit predecessors for numbers of this form.

Numbers of (10
n
1)6 are non-palindromic and

non-versum. The fact that they are non-versum can
be shown by determining that numbers of this
form have no predecessors.

Numbers of the form (10
n
1)m, m > 6 most

probably also are non-palindromic and non-

14 / The Icon Analyst 43

 every head := =strip2[1:(∗strip2 + 1) to 1 by –1] do {
 p := ∗head + 1
 middle := s[p:–p + 1]
 if ∗middle = 0 then return head || repl("0", *head)
 if middle[1] == "0" then
 midpred := vpred_(middle) | next
 else midpred :=
 right(vpred(middle), ∗middle, "0") | next
 pred := strip1[1:p] || midpred || repl("0", p – 1)
 if s == pred + reverse(pred) then
 return pred else next
 }
 }

 return vpred(s) # if all else fails

end

Palindromes are handled separately for efficiency.

The strings strip1 and strip2 contain the first
half and reversal of the last half of s, respectively.
If the length of s is odd, there is a middle character
that does not figure in the computation of the
longest initial substring, head, of strip1 and strip2.

The computation of the longest common ini-
tial substring is one of the few in which every-do
can be used to advantage in string scanning. The
idea is to look in strip1 for successively shorter
portions of strip2 until a match is found, which
then is assigned to head.

Unfortunately, the longest common initial
string does not always produce a middle portion
that has a predecessor. This situation is identified
when no value for midpred emerges and next takes
the computation back to the beginning of the ev-
ery-do loop.

The computation of the predecessor for the
middle is muddled by the fact that vpred() does not
handle strings with an initial 0; vpred_() is needed
for this. To make matters even messier, vpred_()
may produce “false positives” for predecessors,
which requires the proposed predecessor to be
tested. If it passes the test, it is returned (isversum()
makes no attempt to produce a possible second
predecessor). If the test fails, control is returned to
the beginning of the every-do loop to try a shorter
common initial substring. If no common substring
works, vpred() is called as a last resort.

Working on this procedure and dealing with
the problems encountered with vpred() reminded
us that vpred() needs to be reworked. And perhaps
the code in isversum() should be integrated into
vpred().

Debugging: Library Support

As mentioned in earlier articles on debug-
ging [1-3], one of the main problems with Icon’s
built-in debugging facilities is voluminous output
— to the point where it is difficult or impractical to
find relevant information.

Incidentally there are many ways of deter-
mining the longest common initial substring of
two strings. Steve Wampler recently posed this
problem to the Icon users’s group. We plan to have
an article on different approaches in the next Ana-
lyst.

References

1. “The Versum Problem”, Icon Analyst 30, pp.
1-4.

2. “The Versum Problem”, Icon Analyst 31, pp.
5-12.

3. “Equivalent Versum Sequences”, Icon Ana-
lyst 32, p. 1-6.

4. “Versum Sequence Mergers”, Icon Analyst
33, pp. 6-12.

5. “Versum Base Seeds”, Icon Analyst 34, p. 6.

6. “Versum Palindromes”, Icon Analyst 34, p.
6-9.

7. “Versum Numbers”, Icon Analyst 35, p. 5-11.

8. “Versum Predecessors”, Icon Analyst 37, p.
11-15.

9. “Versum Bimorphs”, Icon Analyst 39, p. 10-
13.

10. “Versum Factors”, Icon Analyst 40, p. 9-14.

11. The New Ambidextrous Universe, Martin Gardner,
W. H. Freeman and Co., New York, 1990.

Next Time

We haven’t finished with versum factors. In
the next article on versum numbers, we’ll look at
the versum factors of other classes of numbers that
have well-defined factor structures. To end the
investigation of factors, we’ll look at versum fac-
tors of all numbers. Beyond that, it’s primes.

The Icon Analyst 43 / 15

This problem can be reduced by programs in
the Icon program library that filter debugging
output and extract specified information. This ar-
ticles describes these programs. Before getting to
the programs, however, we need to say something
about getting diagnostic output in a form it can be
processed.

Capturing Diagnostic Output

Diagnostic output produced by Icon is writ-
ten to standard error output. In many environ-
ments, standard output (such as normal program
output) and standard error output both are writ-
ten to the console by default, causing them to be
intermixed.

Even if the output streams are not intermixed,
debugging output that appears on a console is of
limited use. Instead, it needs to be saved in a file
where it can be examined or piped into another
program.

Ways to deal with this depend on the plat-
form and its environment. In MS-DOS, the com-
mand-line option –e allows the specification of a
file to which standard error output is written. For
example,

iconx –e prog.err prog

runs progs and saves standard error output in
prog.err. Unfortunately, this only works when iconx
is used to run a .icx file produced by the –I option
to icont, as in

icont –I prog

which produces prog.icx as opposed to

icont prog

which produces an executable file prog.exe. For
debugging, though, switching to .icx files usually
is worth the effort.

In UNIX, separating standard output and
standard error output depends on the shell you
use. It’s easy using the Bourne shell, since file
descriptor 2, for standard error output, can be
redirected explicitly, as in

prog 2>prog.err

Filtering Trace Output

The program itrcfltr filters program output,
discarding lines that are not the result of tracing
and only showing trace messages for specified
procedures.

The procedures whose trace messages are to
be shown are specified on the command line. For
example,

itrcfltr vpred_ < vpred.out

writes only the lines of vpred.out that contain trace
messages related to the procedure vpred_(). For
example, if vpred.out consists of

vtest.icn : 7 | isversum("1234321")
isversum.icn : 41 | isversum returned "1232000"
vtest.icn : 7 | isversum("1234322")
isversum.icn : 35 | | vpred("1234322")
vpred.icn : 51 | | | vpred_("1234322")
vpred.icn : 75 | | | | vpred_i1("1234322")
vpred.icn : 157 | | | | | vpred_noinc("3431")
vpred.icn : 192 | | | | | | vpred_("3431")
vpred.icn : 76 | | | | | | | vpred_in("3431")
vpred.icn : 178 | | | | | | | vpred_in failed
vpred.icn : 80 | | | | | | vpred_ failed
vpred.icn : 194 | | | | | vpred_noinc failed
vpred.icn : 158 | | | | | vpred_noinc(13431)
vpred.icn : 192 | | | | | | vpred_(13431)

...

then the output of the example above is:

vpred.icn : 51 | | | vpred_("1234322")
vpred.icn : 192 | | | | | | vpred_("3431")
vpred.icn : 80 | | | | | | vpred_ failed
vpred.icn : 192 | | | | | | vpred_(13431)

...

The program itrcfltr uses options() [4], which
supports “response files” that can contain argu-
ments that otherwise might appear on the com-
mand line. This can be useful if the trace messages
from many different procedures are wanted. For
example,

itrcfltr @vprocs.rsp <vtest.out

produces trace messages for the procedures listed
in the file vprocs.rsp.

If no procedures are specified for itrcfltr, all
trace messages are produced.

Note: It is, of course, possible to fool itrcfltr by
deliberately producing output that looks like error
messages

Summarizing Trace Output

Sometimes it is useful to know how many
times different procedures are called, fail, and so
on. The program itrcsum does this. It summarizes
procedure activity based trace messages. For ex-
ample,

16 / The Icon Analyst 43

What’s Coming Up?

We have more articles on debugging in the
works. And, of course, another article on versum
numbers is an ever-present threat.

We plan to change direction temporarily in
the series of articles on visualizing program behav-
ior. We’re exploring three-dimensional visualiza-
tion, and we expect to have something to say about
that in the next issue of the Analyst.

itrcsum <vpred.out

produces output like this:

maximum recursion depth = 11
average recursion depth = 7.490

File references:

isversum.icn 3
vpred.icn 145
vtest.icn 2

procedure activity:

name call return suspend fail resume

isversum 2 1 0 1 0
main 1 0 0 0 0
vpred 1 0 0 1 0
vpred_ 17 0 8 17 8
vpred_1 2 2 0 0 0
vpred_2 3 0 0 3 0
vpred_3 9 0 3 9 3
vpred_i1 4 0 5 4 5
vpred_in 1 0 0 1 0
vpred_inc 6 0 2 6 2
vpred_noinc 10 0 3 10 3

Piping the output of itrcfltr into itrcsum can be
used to obtain summary information for selected
procedures. For example,

itrcfltr vpred_ <vpred.out | itrcsum

produces

maximum recursion depth = 9
average recursion depth = 7.440

File references:

vpred.icn 48

procedure activity:

name call return suspend fail resume

vpred_ 17 0 8 17 8

Note that the information about recursion reflects
the incomplete information itrcsum gets in this
case.

Abbreviating Traceback Output

The program itrbksum filters out all input
except traceback and also replaces all procedure
calls in the traceback except for the first and last
ones by ellipses. This program primarily is useful
for handling traceback output that results from
excessive recursion or from programs with visual

interfaces in which the traceback output is volumi-
nous.

Typical output from itrbksum is:

Run-time error 301
File parse.icn; Line 9
evaluation stack overflow

 main()
.
.
.

 parse(“time”) from line 9 in parse.icn

at level 622

Next Time

Other facilities in the Icon program library
that are useful for debugging will be described in
the next article in this series.

References

1. “Debugging: Error Messages” Icon Analyst
40, pp. 5-9.

2. “Debugging”, Icon Analyst 41, pp. 4-7.

3. “Debugging: Tracing”, Icon Analyst 42, pp. 4-
6.

4. “From the Library”, Icon Analyst 32, 9-10.

