
The Icon Analyst 37 / 1

August 1996
Number 37

In this issue …

Expanded Analyst Format 1
Building a Visual Interface 1
Dynamic Analysis 3
Programming Tips 10
Versum Predecessors 11
Icon Glossary 15
What’s Coming Up 16

In-Depth Coverage of the Icon Programming Language

Expanded Analyst Format

For the first six years of the Analyst, we’ve
maintained a 12-page format. In recent issues, with
more images and diagrams, the 12-page format has
been cramped and difficult to manage. Some top-
ics, notably building visual interfaces, had to be
broken up into many articles and it’s taken a long

Protoyping the Kaleidoscope Application

time to cover the subject. And sometimes we’ve left
out material because there wasn’t room.

The printing method we use constrains us to
publishing in a multiple of four pages. So, unless
we send out blank paper, the next step beyond 12
is 16.

We’ve gone to 16 pages in this Analyst as an
experiment. We expect to have 16-page issues from
time to time in the future as the material we have
warrants it.

The subscription price for the Analyst will
remain the same.

Building a Visual Interface

Prototyping the Interface

In the last article on building visual interfaces,
we completed the interface with all the vidgets
configured and positioned as we wanted them —
at least provisionally.

We can see the interface “in action”
without leaving VIB. Typing @P starts up
a prototype of the application with func-
tional vidgets. See the image at the left.

The prototype comes up in a separate
window. We can click on buttons, pull
down the menu, move a slider thumb, and
so forth. A listing of the activated vidgets
and their callback values is written to stan-
dard output, where we can see if we’re
getting what we expected.

Here’s an example of the output from
the prototyping mode:

callback: id=reset, value=1
callback: id=pause, value=1
callback: id=pause, value=&null
callback: id=sld_speed, value=412
callback: id=sld_speed, value=128
callback: id=sld_density, value=82

2 / The Icon Analyst 37

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

callback: id=sld_min_radius, value=84
callback: id=sld_min_radius, value=35
callback: id=sld_max_radius, value=192
callback: id=sld_shape, value="discs"
callback: id=sld_shape, value="rings"
callback: id=sld_shape, value="discs"
callback: id=file, value=["quit @Q"]
callback: id=file, value=["snapshot @S"]

Pressing q when the mouse cursor
is not on any vidget dismisses the proto-
type and we can go back to VIB to make
adjustments or just admire our work.

The VIB Menus

VIB has three menus to assist in
building interfaces. We don’t use them
often, because most of their functional-
ity can be obtained using keyboard short-
cuts. The menus are useful for persons

The File Menu

who prefer them to memorizing key-
board shortcuts, and they contain re-
minders of what the shortcuts are. The
menus also provide facilities that are
not used frequently but nonetheless
are important.

The File menu, shown at the left,
provides for creating new interfaces,
opening previously saved ones, sav-
ing the current interface, and so on.

It’s wise to save an interface fre-
quently while working on it — and it’s
very fast. The refresh item in the File
menu redraws the application canvas
in case something is drawn incorrectly,
as sometimes happens.

The Edit menu, shown below, pro-
vides for copying vidgets, deleting
vidgets, “undeleting” the last deleted
vidget, and aligning vidgets.

The Select menu allows a vidget to be se-
lected by its ID as shown in the image at the top of
the next page.

Ordinarily a vidget is selected by clicking on
it. Sometimes, however, it is difficult to select a
line, since it’s only two pixels wide. A vidget also
may have no visible appearance and can get “lost”.
The Select menu solves these problems. It also

The Edit Menu

The Icon Analyst 37 / 3

The Select Menu

Dynamic Analysis — A Different
Approach

In past articles on dynamic analysis of Icon
programs [1-4], we’ve used MT Icon and the in-
strumentation built into Icon’s run-time system to
capture information about running programs.

In this article, we’ll look at a more conven-
tional method for getting information about pro-
gram execution — inserting instrumentation code
into the source program itself.

Source-Code Instrumentation

Adding instrumentation code to programs
has been used in many studies of program behav-
ior. The best known results are in algorithm ani-
mation [5-6].

In this article, we’ll study string concatena-
tion. One approach is to replace expressions of the

form s1 || s2 by calls to a library proce-
dure, say moncat__(s1, s2), where
moncat__() is a procedure that concat-
enates s1 and s2 but also performs
other actions, such as reporting the
length of the result. (Trailing under-
scores are used both as a convention to
identify instrumentation code and to
reduce the probability of a collision
between names used for instrumenta-
tion and names used in the program
being instrumented.)

Inserting instrumentation code by
hand is error-prone, time-consuming,
tedious, and may have to be redone if
the program is modified.

Icon meta-translators [7] solve
these problems by mechanizing the
translation of an Icon program to, say,
replace all concatenation expressions
by calls to a monitoring procedure.

Meta-translators provide code-generation
procedures for the various kinds of expressions
and declarations that can occur in Icon programs.
Default code-generation procedures are provided
to echo the program being translated, producing
an equivalent program that differs only in layout.
Alternative translations are accomplished by modi-
fying the default procedures. The code-generation
procedures are themselves written in Icon, so no
skill in another programming language is needed
to craft a meta-translator.

For example, the default code generator for
binary operations is:

procedure Binop(op, e1, e2) # e1 op e2

 return cat("(", e1, " ", op, " ", e2, ")")

end

where op is the string name of the operator and e1
and e2 are the operand expressions. The proce-
dure cat() from the Icon program library concat-
enates an arbitrary number of strings. For example,
s1 || s2 is translated into (s1 || s2) leaving the
expression unchanged except for the addition of
parentheses to assure proper grouping.

To change the translation of concatenation to
the form suggested earlier, it is only necessary to
test for the operator "||" and produce an alternative
translation for it:

illustrates why it is important to choose good mne-
monics for vidget IDs.

Next Time

That finishes up our description of using VIB.
In the next issue of the Analyst, we’ll show the
code that VIB produces and then go on to writing
the application itself.

4 / The Icon Analyst 37

procedure Binop(op, e1, e2) # e1 op e2

 if op == "||" then
 return cat("moncat__(", e1, ",", e2, ")")
 else
 return cat("(", e1, " ", op, " ", e2, ")")

end

Notice that only the translation for concatenation
has been changed.

Translation for augmented concatenation, ||:=,
also needs to be specified. The code-generation
procedure Asgnop() handles augmented assign-
ment. With the change for concatenation, it is:

procedure Asgnop(op, e1, e2) # e1 op e2

 if op == "||:=" then
 return cat(e1, " := moncat__(", e1, ",", e2, ")")
 else return cat("(", e1, " ", op, " ", e2, ")")

end

It only remains to write moncat__() to moni-
tor concatenation. There are many possibilities. A
simple one is to just write out lengths of the concat-
enation, as in

procedure moncat__(s1, s2)
 local s

 s := s1 || s2

 write(∗s)

 return s

end

Note that moncat__() must return the concatena-
tion of its arguments so that the program being
monitored will run properly.

Using the Results of Monitoring

In this simple example, the information writ-
ten by moncat__() might be used to produce a
summary report, as in previous articles on dy-
namic analysis. A more sophisticated approach
would be to produce an on-the-fly, animated dis-
play of concatenation. We’ll get to this very inter-
esting possibility in the next article on dynamic
analysis, but first we’ll show some of the things
that can be done with postmortem analysis.

In previous articles on dynamic analysis, we
used a suite of 11 programs from the Icon program
library. For reference, these are the programs:

program functionality

csgen.icn sentences from context-free grammars

deal.icn randomly dealt bridge hands

fileprnt.icn character display of files

genqueen.icn solutions to the n-queens problem

iiencode.icn text encoding for files

ipxref.icn cross references for Icon programs

kwic.icn keyword-in-context listings

press.icn file compression

queens.icn solutions to the n-queens problem

rsg.icn sentences from context-free grammars

turing.icn Turing machine simulation

One thing we easily can get from the data pro-
duced by moncat__() are counts of the number of
concatenations each program performs:

csgen: 10568
deal: 11207
fileprnt: 2492
genqueen: 3168
iiencode: 0
ipxref: 2598
kwic: 10619
press: 14086
queens: 2
rsg: 0
turing: 2860

total: 57600

It’s not surprising that there is a great deal of
difference in the number of concatenations these
programs perform. But the figures for iiencode
and rsg are surprising, since both of these pro-
grams produce large amounts of output.

The reason for these apparent anomalies is
that both programs use writes() to construct output
on the fly without doing an actual concatenation
[8]. (There are concatenation operators in rsg.icn,
but they are used for special situations that do not
arise in the way we test the program.)

Here are the figures for the total number of
characters produced by concatenation:

csgen: 114620
deal: 70307
fileprnt: 50353
genqueen: 60192
iiencode: 0
ipxref: 351758
kwic: 674633
press: 46173

The Icon Analyst 37 / 5

queens: 74
rsg: 0
turing: 22880

total: 1390990

The average number of characters per concat-
enation, omitting programs that do no concatena-
tion, also is interesting:

csgen: 10.85
deal: 6.27
fileprnt: 20.21
genqueen: 19.00
ipxref: 135.40
kwic: 63.53
press: 3.28
queens: 37.00
turing: 8.00

These numbers tell us quite a bit about the test
programs, but human beings have a hard time
understanding comparative magnitudes when
expressed as numbers. Lengths are easier to com-
pare. Histograms for these figures, omitting the
programs that do no concatenation, are shown
below. Notice that the scales are different.

A Practical Problem

The monitoring procedure shown earlier
writes the result lengths to standard output. Pro-
grams being monitored generally write to stan-
dard output also. Something needs to be done
about this.

The obvious approach is to write monitoring
output to a named file. This is somewhat cumber-
some, however. It’s simpler if the monitoring pro-
cedure writes to standard output as shown earlier
and the data is redirected to an appropriate file by
a script. This will work if the output of the program
being monitored is suppressed. One way is to
insert a line like

write := writes := –1

at the beginning of the program being monitored.
This replaces the initial function values of the
global variables write and writes by –1, so that a call
of the form

write(s1, s2, …)

becomes equivalent to

(–1)(s1, s2, …)

csgen
deal
filepnt
genqueen
ipxref
kwic
press
queens
turing

Total Number of Characters Produced by Concatenation
csgen
deal
filepnt
genqueen
ipxref
kwic
press
queens
turing

Average Number of Characters per Concatenation

Total Number of Concatenations

csgen
deal
filepnt
genqueen
ipxref
kwic
press
queens
turing

0 4K 8K 12K

0 200K 400K 600K

0 40 80 120

6 / The Icon Analyst 37

The –1 selects the last argument in the argument
list, which is what write and writes return after
writing — except this way, nothing is written.
Returning the last argument assures that expres-
sions like

result := write(s1, s2, …)

work properly. (There is a subtle problem with
this, which we’ll discuss in an article on crafting
robust monitors.)

This method is not foolproof. For example, it
doesn’t handle situations in which the program
itself changes write or writes, where the program
provides a procedure by one of these names that
does something other than write, or if the program
relies on writing to a file and reading back the
result.

You probably can think of other unusual situ-
ations that defeat this mechanism. Nonetheless,
this approach is efficient and works with almost all
programs. (There always will be programs that
can’t be monitored by any specific method. De-
signing monitor-proof programs that self-destruct
when monitored is a fun game, as is finding ways
of handling the various problems that can arise
even for programs not out to foil monitoring.)

Editing a program to add a line to suppress
output is not hard, but it’s unnecessary. The code
can be inserted by the meta-translator at the same
time it replaces concatenation operators by calls to
a monitoring procedure.

Here is the code-generation procedure that
handles calls:

procedure Invoke(e, es[]) # e(e1, e2, ...)
 local result

 if ∗es = 0 then return cat(e, "()")

 result := ""
 every result ||:= !es || ", "

 return cat(e, "(", result[1:–2], ")")

end

Here e is the procedure name, or more precisely,
the expression applied to the argument list es.

All that’s needed is to check for write and
writes and replace them by (–1):

procedure Invoke(e, es[]) # e(e1, e2, ...)
 local result

 if e == ("write" | "writes") then e := "(–1)"

 if ∗es = 0 then return cat(e, "()")
…

Presto! Output from the program is gone. Note that
the parentheses around –1 are needed, since

–1(s1, s2, …)

parses as

–(1(s1, s2, …))

which is almost certain to lead to disaster.
You may think of cases that this method

doesn’t handle that are handled by the manual
insertion of

write := writes := –1

but, again, they are unlikely to occur in practice.

Other Uses for Monitoring Concatenation

We can study many things related to concat-
enation. We can, for example, write out the strings
that result from concatenation instead of just their
lengths. This allows us to study the strings pro-
duced by concatenation. And, of course, the lengths
always can be determined from the strings. (A
problem with writing strings may be the amount of
data produced — our 11 test programs produce
well over a megabyte of strings from concatena-
tion. Writing the actual strings probably is not
something to do unless they actually are needed.)

Writing the Results of Concatenation

Some care is needed in writing out the results
of concatenation, since the strings may contain
linefeeds and other characters that cause prob-
lems. The easy solution to is to use image(), which
converts “nonprintable” characters to Icon escape
sequences. The procedure moncat__() might look
like this:

procedure moncat__(s1, s2)
 local s

 s := s1 || s2

 write(image(s))

 return s

end

Now we have the opposite problem: convert-
ing imaged strings back into the original strings.
Icon program library to the rescue! It contains a

The Icon Analyst 37 / 7

procedure ivalue() that does just what’s needed. So
a program to analyze imaged data might start like
this:

link ivalue

procedure main()
 while s := ivalue(read()) do …

Using monitoring data of this kind, we counted
the number of distinct strings each program pro-
duced by concatenation. Here are the results, with
the total number of strings produced shown for
comparison:

program total distinct

csgen: 10568 7625
deal: 11207 4962
fileprnt: 2492 1505
genqueen: 3168 1
iiencode: 0 0
ipxref: 2598 2281
kwic: 10619 523
press: 14086 2997
queens: 2 2
rsg: 0 0
turing: 2860 13

total: 57600 12909

Several things about these counts deserve
mention. The reason turing produces so few differ-
ent strings is that the test data consists of many
repetitions of the same of the same Turing machine
specification — not the best test. Note that this
tabulation suggests this and points to a flaw in
testing.

The two n-queens programs show a distinct
contrast. Why should genqueen do so many more
concatenations than queens? (Both produce essen-
tially the same output.) We thought it might be a
difference in the method of constructing the out-
put, which displays a board for every solution for
9 queens, of which there are 352. Instead, the
difference has a much simpler explanation.

Both programs construct a string represent-
ing a row with no queens and then insert Qs in
places corresponding to a solution. Inserting the
Qs is done by assignment to a subscripted position
in the row, not by concatenation. The difference
between the two programs is that genqueen builds
a blank row for each row in each solution, while
queens does it only once for the entire program
(the board size is fixed for one execution of the
program).

Here’s the offending procedure from
genqueen:

procedure writeboard ()
 local row, r, c

…
 write (repl ("– –", n), "–")

 every r := 1 to n do {
 c := rw [r]
 row := repl ("| ", n) || "|"
 row [2 ∗ c] := "Q"
 write (row)
 write (repl ("––", n), "–")
 }

 write ()

end

A simple change to use a static variable re-
duces the number of concatenations for the entire
program to one:

procedure writeboard ()
 local row, r, c
 static bar

 initial bar := repl ("| ", n) || "|"

 write (repl ("– –", n), "–")
…

 every r := 1 to n do {
 row := bar
 c := rw [r]
 row [2 ∗ c] := "Q"

…

This one change reduces the execution time for the
program by 7%.

A possible use for studying the number of
distinct strings produced — or rather the number
of duplicates produced — is in designing a strategy
for string allocation.

Icon appends every newly created string to
the end of the
space already allo-
cated for strings
without any at-
tempt to deter-
mine if the string
already exists
somewhere else
among the strings
previously allo-
cated [8]. (There
are a few heuris-

8 / The Icon Analyst 37

tics related to what’s already at the end of the
allocated space.)

The SNOBOL languages, ancestors of Icon,
took a much different approach. They checked
every newly created string to see if it already had
been allocated. (This was done by using a hash
table for storing strings.) As a result, they never
allocated space for a string that already had been
stored [9].

Hashing, of course, is a comparatively expen-
sive process and it would seem that its cost would
override the cost of duplicate allocation, which is
paid for mostly in garbage collection. But there is
little theoretical or empirical basis on which to
decide whether one allocation strategy is better
than another — or any other strategy. Having
information about duplicates would be a start,
although it would require knowing about all kinds
of string creation, not just concatenation, and test-
ing with a much larger suite of programs. Some-
thing to think about, perhaps.

The Operands of Concatenation

It’s easy enough for moncat__() to provide
information about operands, not just the results of
concatenation. The histograms below show com-
posite results for all 11 test programs.

As might be expected, there are more short
right operands than left ones. This typically results
from building up strings by appending successive
values, as in

 left operand right operand result

number of concatenations

st
ri

ng
 le

ng
th

result := ""
every result ||:= expr

We’ll show more evidence of this paradigm in
another article.

Other Possibilities

The procedure for monitoring concatenation
could do many things. It could look for specific
operands or results and, perhaps, alert a user to a
situation that suggests a problem.

The procedure also could turn monitoring on
or off under user control. Suppose you want to turn
off monitoring after, say, 10,000 concatenations.
One way is to simply bypass the output of monitor-
ing information beyond that point. For the first
version of moncat__() that we showed, this could
be done as follows:

procedure moncat__(s1, s2)
 local s
 static count

 initial count := 0

 count +:= 1

 s := s1 || s2

 if count <= 10000 then write(∗s)

 return s

end

There’s a better way, and one that does not
require calling moncat__() after the cutoff point:

The Icon Analyst 37 / 9

procedure moncat__(s1, s2)
 local s
 static count

 initial count := 0

 count +:= 1

 s := s1 || s2

 write(∗s)

 if count = 10000 then moncat__ := proc("||", 2)

 return s

end

In this version, the value of moncat__ is
changed to the operator for concatenation, so that
moncat__() itself never is called again.

Of course, you probably wouldn’t want to
build an arbitrary cutoff value into the procedure.
What ways can you think of to specify a value at the
time monitoring begins or interactively during
monitoring?

Another approach to producing monitoring
results is to have the monitoring procedure accu-
mulate data internally rather than using post-pro-
cessing as we’ve done for the results given in the
article.

Next Time

Summary results show nothing about the se-
quence of events that occur during program execu-
tion. Yet it’s often the sequence or a part of it that is
most interesting and important in understanding
program behavior. Furthermore, “seeing” concat-
enation as it occurs helps greatly in understanding
what’s going on.

We’ll address animated visualizations in the
next article.

References

1. “Dynamic Analysis of Icon Programs”, Icon
Analyst 28, pp. 9-11.

2 “Dynamic Analysis of Icon Programs”, Icon
Analyst 29, pp. 10-12.

3. “Dynamic Analysis”, Icon Analyst 30, pp. 9-
11.

4. “Dynamic Analysis”, Icon Analyst 33, pp. 3-6.

5. Algorithm Animation, Mark H. Brown, The MIT
Press, 1987.

6 “Perspectives on Algorithm Animation”, Mark
H. Brown, Proceedings of the 1988 Conference on
Human Factors in Computing Systems, 1988, pp. 33-
38.

7. “Meta-Variant Translators”, Icon Analyst 23,
pp. 8-10.

8 . “String Allocation”, Icon Analyst 9, pp. 4-7.

9. The Macro Implementation of SNOBOL4, Ralph E.
Griswold, W. H. Freeman and Company, 1972, pp.
96-100.

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

10 / The Icon Analyst 37

Values in Rotation

In some situations a series of values is needed
in rotation. Examples are cycling through colors
for a display and servicing a number of queues.

If there are only a few values, they can be
assigned to variables and rotated using Icon’s ex-
change operation:

value1 :=: value2 :=: … :=: valuen

Rather magically, it seems, every time this expres-
sion is evaluated, the values shift to the right and
the former value of the last variable moves to the
first variable.

To see how this works, suppose the value of
x1 is 1, the value of x2 is 2, and the value of x3 is 3.
All assignment operators associate to the right, so

x1 :=: x2 :=: x3

parses as

(x1 :=: (x2 :=: x3))

x2 :=: x3 therefore is evaluated first. As a result, the
value of x3 is 2 and the value of x2 is 3. Since an
assignment operation returns its left operand, the
leftmost exchange operation is now equivalent to
x1 :=: x2. After it is evaluated, x1 is 3, x2 is 1, and
x3 is 2 — a circular right shift.

The same method works for the elements of a
list:

value[1] :=: value[2] :=: … :=: value[n]

Such expressions are tedious to compose if
there are many values to be treated in this way.
And, of course, they only rotate to the right, so for
rotation to the left (the more common require-
ment), the values have to be arranged in reverse
order. If the number of values is unknown when
the program is written or changes during program
execution, this method doesn’t work at all.

The conventional way to rotate values to the
left is to put the values in a list and increment an
index into the list, using modular arithmetic to
wrap around at the end:

n := ∗value
i := 1
repeat {
 # use value[i] …
 i +:= 1
 i %:= n
 }

There is an easier (and niftier) way to do this
in Icon:

repeat {
 v := get(value)
 # use v …
 put(value, v)
 }

This method uses value as a queue, removing the
first value and putting it back on the end.

To rotate to the right, all that's needed is:

repeat {
 v := pull(value)
 # use v …
 push(value, v)
 }

Incidentally, you don’t have to worry about
these methods causing allocation and using up
time and space — they don’t. Icon lists are imple-
mented as circular queues, and an internal index
references the elements in a circular fashion. “Re-
moving” an element from, say, the beginning of a
list doesn’t actually remove it unless it’s the only
element; it just changes an index. See Reference 1
for details of how this is done.

Reference:

1. The Implementation of the Icon Programming Lan-
guage, Ralph E. Griswold and Madge T. Griswold,
Princeton University Press, Princeton, New Jersey,
1986, pp. 80-91.

programming tips

The Icon Analyst 37 / 11

Versum Predecessors

In the article on equivalent versum sequences
[1], we noted that the same versum number can
have two quite different predecessors. For example,
1111 has the predecessors 209 and 1010. Thus, both
209 and 1010 are seeds of the same versum se-
quence.

We, however, defined equivalence for seeds
so that it applies only to numbers with the same
number of digits. By this definition, 209 and 1010
are not equivalent seeds, although they produce
equivalent sequences. The justification for this defi-
nition was based on two observations: (1) such
“inequivalent” seeds are relatively rare and (2)
working with numbers having the same number of
digits produces more meaningful results. We can
“take care of” this awkwardness by introducing the
concept of weak equivalence to include all numbers
that have the same reverse sums. The procedure
vpred() given in the last article [2] generates the
weakly equivalent primary predecessors of a num-
ber.

Now we will look at this problem from a
different perspective. In the first place, we’ll define
equivalent versum numbers in the same way as we
defined equivalent seeds — after all, all versum
numbers are seeds, and whether or not a versum
number is considered as a seed or just as a number
in a versum sequence is immaterial.

To simplify the following discussion, we’ll
define the versum successor of a number to be the
result of its reverse addition. Thus, 1111 is the
successor of both 209 and 1010.

Since the versum equivalents of a predecessor
of a number are also predecessors of that number,
we’ll define the primary predecessors of a versum
number to be the primaries of its predecessors. For
example, 209 is the primary of the equivalence class
containing 209, 308, 407, 506, 605, 704, 803, and 902,
while 1010 is the primary of the equivalence class
containing 1010 and 1100. In other words, 1111 has
(at least) two different primary predecessors.

Now we can frame the questions given at the
end of the last article on versum numbers [2] in a
more precise way:

1. What is the maximum number of primary
predecessors a versum number can have?

2. How many versum numbers have more
than one primary predecessor?

Some versum numbers have only one pri-
mary predecessor (11 is an example) and others
have at least two, as shown above. It’s obvious that
the predecessor of an n-digit versum number can
only have n digits (with no carry from the lead digit
on reverse addition) or (n–1) digits (with a carry on
reverse addition to produce an n-digit successor).
But by definition, all the n-digit numbers that have
the same successor are in an equivalence class, and
similarly for (n–1)-digit numbers. So a versum
number can have at most two primary predeces-
sors and we can dispense with the first question
above. We can safely refer to versum numbers with
more than one primary predecessor as bimorphs.

All bimorphs must begin with a 1, since their
(n–1)-digit predecessors produce a carry on re-
verse addition. But their n-digit predecessors must
start with a 1 and end in a 0 to produce an initial 1
without a carry on reverse addition. Thus bimorphs
have the form 1x1, their n-digit predecessors have
the form 1x'1, and their primary (n–1)-digit prede-
cessors have the form 2x''9.

How do we produce bimorphs? A brute-force
approach can be used at the start, hoping that the
results will suggest a better way of constructing
more.

A naive approach is to generate all 1x1 versum
numbers from 1x'0 and 2x''9 primary versum num-
bers and look for duplicates:

Program 1

link pvseeds

procedure main(args)
 local n, candidate, k, all, bimorphs

 n := (0 < integer(args[1])) |
 stop("∗∗∗ invalid specification")

 all := set()
 bimorphs := set()

 every k := (n – 1 | n) do
 every candidate := pvseeds(k) do {
 candidate +:= reverse(candidate)
 if ∗candidate > n then break next # too far
 if ∗candidate = n & check(candidate) then {
 if member(all, candidate) then
 insert(bimorphs, candidate)
 else insert(all, candidate)
 }
 }

 every write(!sort(bimorphs))

end

12 / The Icon Analyst 37

procedure check(candidate)

 if candidate[1] == "1" == candidate[–1] then return
 else fail

end

The procedure check() determines if a candidate is
a bimorph. A procedure is used to make changes
easier in subsequent programs.

This approach works well for small values of
n, but the number of 1x1 versum numbers that
have to be kept in the set all becomes impossibly
large as n increases. Various methods can be used
to improve performance, but the approach is hope-
less.

We can trade memory for file space, which
generally is more plentiful than memory, by writ-
ing out the 1x1 versum numbers and looking for
duplicates later. This sounds good, but again the
number of 1x1 versum numbers becomes over-
whelming and finding duplicates in huge files is
not that easy.

An alternative approach is to generate all 1x1
numbers (we know no way to generate only 1x1
versum numbers [2]) and use vpred() to find
bimorphs:

link vpred

Program 2

procedure main(args)
 local n, candidate, bimorph

 n := digits(args, 2)

 bimorphs := set()

 every candidate := "1" ||
 right((0 to (10 ^ n) – 1), n, "0") || "1" do
 insert(bimorphs, check(candidate))

 every write(!sort(bimorphs))

end

procedure digits(args, m)
 local n

 if (n := integer(args[1]) – m) & (n >= 0) then
 return n
 else stop("∗∗∗ invalid specification")

end

procedure check(candidate)
 local count

 count := 0

 every vpred(candidate) do
 count +:= 1
 if count = 2 then return candidate else fail

end

The procedure digits() serves to reduce the number
of digits for which a “core” must be generated
exhaustively. Notice that the procedure check() is
different from the earlier one.

There are of course, a very large number of
candidates and this approach becomes hopelessly
time-consuming as n grows large.

By a closer examination of how bimorphs are
formed and a rather tedious argument about dif-
ferent cases, we can show that bimorphs must have
one of these forms:

10x01 10x11 10x21
11x01 11x11 11x21
12x01 12x11 12x21

Using this information, we can reduce the
search space considerably:

Program 3

procedure main(args)
 local n, core, candidate, bimorphs

 n := digits(args, 4)

 bimorphs := set()

 every core := right((0 to (10 ^ n) – 1), n, "0") do
 every candidate := (("10" | "11" | "12") || core ||
 ("01" | "11" | "21")) do
 insert(bimorphs, check(candidate))

 every write(!sort(bimorphs))

end

This is better, but the computation still is
hopelessly time-consuming for even moderate val-
ues of n.

An alternative approach is to use 2x’9 prede-
cessors to produce 1x1 candidates. This has the
advantage of reducing the number of digits for the
core by 1:

Program 4

procedure main(args)
 local n, pred, candidate, bimorphs

 n:= digits(args, 3)

 bimorphs := set()

 every pred := "2" || right((0 to (10 ^ n) – 1), n, "0") ||
 "9" do {

The Icon Analyst 37 / 13

 candidate := pred + reverse(pred)
 insert(bimorphs, check(candidate))
 }

 every write(!sort(bimorphs))

end

procedure check(candidate)

 if candidate[1:3] == ("10" | "11" | "12") &
 candidate[–2:0] == ("01" | "11" | "21") then return
 else fail

end

We can make further improvements by deter-
mining that the 2x'9 predecessors must have one of
the following forms:

20x09 20x99 21x99 22x99

Program 5

procedure main(args)
 local n, pred, core, candidate, bimorphs

 n := digits(args, 5)

 bimorphs := set()

 every core := right((0 to (10 ^ n) – 1), n, "0") do {
 every pred := ("20" || core || ("09" | "99")) |
 (("21" | "22") || core || "99") do {
 candidate := pred + reverse(pred)
 insert(bimorphs, check(candidate))
 }
 }

 every write(!sort(bimorphs))

end

We can do even better than this by noting that
the 1x''0 bimorph predecessors for even n are
divisible by 110 (11 × 10). The factor of 10 is obvi-
ous, since their last digit is 0. The factor of 11 may
seem mysterious, but we’ll show why it’s there in
a subsequent article on the factors of versum num-
bers.

Combining this information with the possible
patterns of numbers of the form (1x''0)/110 that
can have bimorph successors, yields this program:

Program 6

procedure main(args)
 local n, core, candidate, bimorphs

 n := digits(args, 7)

 bimorphs := set()

 every core := right((0 to (10 ^ n) – 1), n, "0") do {
 every candidate :=
 ("90" || core || ("01" | "02" | "91")) |
 ("91" || core || ("81" | "82" | "91" | "92")) |
 ("92" || core || "81") |
 ("99" || core || "90") ∗ 110 do {
 insert(bimorphs,
 check(candidate + reverse(candidate)))
 }
 }

 every write(!sort(bimorphs))

end

Comparative timings, in seconds on a DEC
Alpha 200 4/233 show how much is gained by
increasingly sophisticated approaches:

 program
n 1 2 3 4 5 6
4 0.05 0.09 0.02 0.02 – –
5 0.20 0.89 0.10 0.05 0.02 –
6 0.62 18.33 1.90 0.76 0.10 –
7 3.69 218.40 23.70 10.60 1.41 0.04
8 12.20 ? ? 222.76 26.39 –
9 74.57 ? ? ? 432.58 6.69

The dashes indicate values for which the program
does not apply. The question marks indicate val-
ues for which timings were not done — for the
obvious reason. Note that although Program 1
compares favorably with others on the issue of
speed, it is not usable because of the amount of
memory it requires.

There are several things we could do to im-
prove the performance of these programs: put the
procedure code in line, write a procedure to re-
place vpred() that would just test for two predeces-
sors, instead of generating them, and so on.

We could improve performance by further
refining the possible patterns, but we haven’t done
that (yet). There is, however, a heuristic we did try:
An examination of bimorphs and their predeces-
sors shows that none contain a 3, 4, 5, or 6. Using
this heuristic reduces the time for Program 6 and
n=9 to 2.66 seconds. We haven’t tried to prove that
these digits don’t appear, but using the heuristic
gives the correct results through n = 16.

All that having been said, here are counts of
bimorphs through n = 16. We’ve included counts
of versum numbers of the form 1x and 1x1 for
comparison:

14 / The Icon Analyst 37

versum numbers

 n all 1x 1x1 bimorphs

1 4 0 0 0
2 14 6 1 0
3 93 13 5 1
4 256 104 19 1
5 1793 273 112 2
6 4872 1984 369 2
7 34107 5227 2159 7
8 92590 37718 7033 7
9 648154 99434 41133 21

10 1759313 716745 133730 21
11 ~1.2×107 1889589 781861 65
12 ~3.3×107 ~1.4×107 ~2.5×106 65
13 ~2.3×108 ~3.6×107 ~1.5×107 200
14 ~6.3×108 ~2.6×108 ~4.8×107 200
15 ~4.4×109 ~6.8×108 ~2.8×108 616
16 ~1.2×1010 ~4.9×109 ~9.2×108 616

The approximate counts given in exponent form
were obtained by recurrences like the one given in
the last article [2]. Note that the number of bimorphs
for successive odd/even numbers of digits are the
same.

As you can see, the number of versum
bimorphs is indeed quite small even compared to
only those versum numbers that begin and end
with a 1.

As in other aspects of versum numbers we’ve
studied, there are evident digit patterns in
bimorphs. Here are bimorphs and their predeces-
sors though n = 9:

 bimorphs predecessors

n=3: 121 29 110

n=4: 1111 209 1010

n=5: 11011 2009 10010
12221 2299 10120

n=6: 110011 20009 100010
121121 22099 100120

n=7: 1100011 200009 1000010
1112111 202909 1001110
1197801 200799 1098900
1208911 210899 1009910
1210121 220099 1000120
1211111 211999 1020910
1222221 222999 1001220

n=8: 11000011 2000009 10000010
11111111 2020909 10001110
11988801 2009799 10989900
12098911 2109899 10099910
12100121 2200099 10000120

12101111 2110999 10200910
12211221 2220999 10001220

n=9: 110000011 20000009 100000010
110121011 20029009 100011010
111089011 20108909 100099010
111101111 20200909 100001110
111111011 20119909 100209010
111222111 20229909 100012110
119777801 20007799 109789900
119898801 20099799 109899900
120877911 21007899 100889910
120989011 21008999 101098910
120998911 21099899 100999910
121000121 22000099 100000120
121001111 21100999 102000910
121011011 21019999 101109910
121121121 22029099 100011120
121122111 21129999 102011910
121978021 22007999 100989020
122089121 22108999 100099120
122101221 22200999 100001220
122111121 22119999 100209120
122222221 22229999 100012220

Despite the patterns, we haven’t found a rule
for generating bimorphs. If you find one, please let
us know.

One thing that our knowledge about the na-
ture of bimorphs provides is improvements to
vpred(). Just knowing that there are at most two
primary predecessors of a versum number, which
can happen only for versum numbers of the form
1x1, can be used to make the procedure consider-
ably more efficient. The original procedure, with
minor typographical changes, is:

procedure vpred(i)
 local j, preds

 if i < 1 then fail

 preds := set()

 every j := integer(vpred_(i)) do {
 if (j + reverse(j)) = i then
 insert(preds, vprimary(j))
 }

 suspend !sort(preds)

end

Using the observations above, this procedure can
be rewritten as follows:

procedure vpred(i)
 local j, preds

 if i < 1 then fail

 if i[1] == "1" == i[–1] then { # may be two

The Icon Analyst 37 / 15

Icon Glossary

This is the last section of the glossary of Icon
terms that we’re compiling. We have a few things
to add and a number of things to clean up. When
we’ve completed that, we’ll put it all together and
publish it as an Icon Project document. We’ll in-
clude a copy of it with an upcoming issue of the
Analyst.
path: a specification for the location of a file. Paths

are used for locating library modules and in-
clude files.

polymorphous operation: an operation that ap-
plies to more than one data type. The size
operator, ∗X, is an example.

procedure: a computational unit whose definition
is cast in the form of an identifier, which names
the procedure, followed by a list of parameters
to be used in the computation. The term proce-
dure includes both built-in procedures (also
called functions) and declared procedures, but
sometimes it is used in the more restricted
sense of the latter.

procedure return: leaving the invocation of a pro-
cedure. When a procedure returns, it may pro-
duce a result or fail. A procedure also may
suspend with a result, in which case the proce-
dure can be resumed. Variables that are local
to the procedure remain intact when it sus-
pends and are available if the procedure is
resumed.

record constructor: a function that creates an in-
stance of a record. A record constructor is
provided automatically for every record dec-
laration.

record declaration: a declaration that defines a
record.

run-time error: an error that occurs during pro-
gram execution. Run-time errors cause pro-
gram termination unless error conversion is
enabled.

scope: the extent in time and location in which a
variable is accessible. There are three kinds of
scope: global, local, and static.

storage: see memory.

string image: A string that describes a value.
string: a sequence of characters. Strings are values

in their own right, not arrays of characters.
string invocation: the invocation of a function,

procedure, or operator by its string name.

 every j := integer(vpred_(i)) do {
 if (j + reverse(j)) = i then
 insert(preds, vprimary(j))
 if ∗preds = 2 then break
 }
 suspend !sort(preds)
 }
 else {
 every j := integer(vpred_(i)) do {
 if (j + reverse(j)) = i then
 return vprimary(j)
 }
 fail # none
 }

end

The set for numbers of the form 1x1 can be elimi-
nated by keeping track of the first primary prede-
cessor and comparing it with subsequent ones:

 local j, firstp
…

 if i[1] == "1" == i[–1] then { # may be two
 every j := integer(vpred_(i)) do {
 if (j + reverse(j)) = i then {
 j := vprimary(j)
 (/firstp := j) | {
 if j ~= firstp then {
 suspend firstp
 return j
 }
 }
 }
 }
 return \firstp # may be none

…

An open question is whether there is a direct
way to compute one predecessor of a bimorph
from the other. If there is, vpred() could be consid-
erably simplified and made to run much faster.

Next Time

Given past history, it should be no surprise
that there are more articles on versum numbers in
the works. We have more material on versum
bimorphs. After that, we’ll discuss the factors of
versum numbers and versum primes.

References

1. “Equivalent Versum Sequences”, Icon Ana-
lyst 32, pp. 1-6.

2. “Versum Numbers”, Icon Analyst 35, pp. 5-11.

16 / The Icon Analyst 37

What’s Coming Up

We have a lot on deck. We’ll continue the
series on building applications with visual inter-
faces with an article about the code VIB produces
for an interface and how to connect it to the code
that runs the application itself.

We’ll also continue with dynamic analysis,
showing how concatenation can be visualized.

We have more on versum bimorphs in the
wings and an interesting article on random num-
ber generation that came by way of a letter from a
subscriber.

It looks like the next Analyst will run 16
pages again.

type; this is called implicit type conversion or
coercion. Type conversion can be performed
explicitly by type-conversion functions. If im-
plicit type conversion cannot be done, a run-
time error occurs. If explicit type conversion
cannot be done, the type-conversion function
fails.

ucode: the result of translating Icon source code
into code for a virtual machine. Ucode files are
readable text.

unary operator: an operator with one operand. See
also prefix operator.

undefine directive: a preprocessor directive that
removes a preprocessor definition. See also
define directive.

variable: a reference to a value and to which as-
signment can be made. There are several kinds
of variables, including identifiers, some key-
words, the elements of records and lists, and
table subscripts. See also dereferencing.

string name: a string that identifies a function,
procedure, or operator. The string name for a
function or procedure is just the name by
which it is used. The string name for an opera-
tor resembles the symbols that designate the
operator.

string scanning: high-level string analysis using
the concepts of a subject string and movement
of a cursor position in it.

substring: a string within a string.
success: evaluation of an expression that produces

a result; the opposite of failure.
suspension: interruption of the evaluation of a

generator when a result is produced. See also
resumption.

syntax error: a grammatical error in a program.
Syntax errors are detected during translation.

table: a data structure composed of key/value
pairs, in which keys are distinct. Tables can be
subscripted by keys to assign or access corre-
sponding values. Table subscripting produces
variables.

table lookup: referencing a table by a key to
produce the corresponding value. If the table
does not contain the key, the default table
value is produced.

termination: the end of execution.
thrashing: a situation in which garbage collection

occurs frequently because the amount of avail-
able memory is small.

transmission: passing a value to a co-expression
when it is activated.

traceback: a listing of procedure calls leading to
the evaluation of the current expression. A
traceback is provided when a program termi-
nates with a run-time error, or in any event if
termination dumping is enabled.

translation: the process of converting Icon source
code to code for an imaginary machine (virtual
machine). The result of translation of a source
code file is a pair of ucode files. See also compi-
lation.

translator: the program that translates Icon source
code into ucode.

type: see data type.
type conversion: converting a value from one data

type to another. Type conversion occurs auto-
matically when a value is not of the expected

