
The Icon Analyst 35 / 1

Dialog for Configuring a Region

April 1996
Number 35

In this issue …

Building a Visual Interface 1
Corrections................................... 5
Versum Numbers 5
Icon Glossary 11
Subscription Renewal 12
What’s Coming Up 12

Building a Visual Interface

In the article on building visual
interfaces in the last issue of the Ana-
lyst, we started to show how to use
VIB. We got as far as sizing the canvas
for the kaleidoscope application and
adding a line for the menu bar. In this
article, we’ll continue to add vidgets.

The size and placement of the
display region are among the most
important features of the layout. The
image at the right shows a newly cre-
ated region vidget and a dialog for
configuring it.

We chose to use a dialog to con-
figure the region, since we wanted to
specify a precise size. For approximate
sizing, we could have dragged on the
corners of the selected region vidget.

The suggested ID is almost what we want, but
since there’s just one region, we’ll remove the
number.

 The dialog also suggests the name of a call-
back for the region. Since the region is used only for
the display, there’s no functionality associated with
user events in it, and we don’t need a callback. The
callback can be eliminated by deleting the text in
the field, leaving it empty. When there is no call-
back for a vidget, events that occur on it are ig-
nored.

We know what the width and height of the
region should be, and we can make a guess as to
where the upper-left corner should be. If we’re
wrong, we can move the region later.

The four radio buttons at the right of the
region dialog provide alternatives for the visual
appearance of the region’s border. We decided on
“raised”.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/

In-Depth Coverage of the Icon Programming Language

2 / The Icon Analyst 35

If we don’t like the effect of a
raised region, we can change it later. In
fact, we may not know if the effect is
what we want until we are able to run
the kaleidoscope application. As we’ll
explain a subsequent article, it’s al-
ways possible to go back to VIB to
modify an existing interface.

Once we’ve edited the dialog
and dismissed it, we have a region of
the correct size, but it’s not quite where
we want it. A selected vidget can be
moved one pixel at a time by using the
arrow keys on the keyboard. The im-
age at the right shows the final result of
this adjustment.

Now we’re ready to create the
other vidgets. We’ll start with the
menu, which is the only vidget on the
top part of the canvas.

The image at the bottom of the page shows
the result of creating a menu vidget and bringing
up a dialog for it.

The menu label needs to be changed to File,
since that’s what should appear on the menu but-
ton on the interface.

Since there’s only one menu in
the kaleidoscope application, we could
leave the ID as it is, but an ID that
corresponds to the name of the menu
makes it easier to identify.

The callback should be changed
to identify the functionality of the menu.
We use the suffix _cb to distinguish
callbacks from other procedures in the
application, but this is only a conven-
tion.

A newly created menu vidget
provides three items. If we needed more,
we could add them; clicking on an add
button between two items adds an item
there. There’s no specific limit to the
number of items a menu may have, but
if when pulled down the menu is too
long to fit in the application window,
not all the items will be available.

 The kaleidoscope application needs only
two items; one of the three items can be deleted by
clicking on the del button beside it

The File menu needs no submenus, so we
can ignore the create submenu buttons. If a menu

The Configured Region

A Menu Dialog

The Icon Analyst 35 / 3

The Edited Menu Dialog

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

item needs a submenu, clicking on the
button opposite the corresponding item
produces a dialog for the submenu.

The edited dialog is shown at
the left. The result after positioning the
menu vidget is shown below it.

When a menu is pulled down,
it may obscure other parts of the inter-
face. This can be tested in VIB by press-
ing the middle mouse button on the
menu vidget. Obscuring part of an in-
terface temporarily usually isn’t a prob-
lem, but sometimes the interface looks
better if the menu and other vidgets are
placed with this in mind.

Next we’ll start creating the
vidgets to the left of the display region,
working from top to bottom, starting
with a button for pausing the kaleido-
scope display.

The image at the top of the next
page shows the result of creating a but-
ton vidget and bringing up a dialog for
it.

Buttons have more attributes than
their apparent simplicity might sug-
gest. Most of the attributes are devoted

to how the button looks, not its functionality.

We need to change the label for the button
to pause and to choose an appropriate callback
name.

Since we’re configuring the button for tem-
porarily stopping the display, it’s a toggle button,
and we need to check that box.

The Menu in Place

4 / The Icon Analyst 35

A Button Dialog

Ordinarily, we’d pick a style that clearly
shows it’s a toggle when displayed on the inter-
face, but since we have only one other button, and
it’s not a toggle, we decided to use the same ap-
pearance for both of them. The default style is our
preference.

The dialog default option doesn’t concern
us here — we’ll cover that in a later article.

We don’t need to change the size
of the button, since the size adapts to
the length of the text for the label, but
we can make it larger if we want. This
usually is best done after seeing what
the automatically sized button looks
like.

The result of editing the button
dialog is shown at the right.

We also need a reset button,
but we won’t go through all the details
here. The process is similar to that for
creating the pause button, except that
the reset button is not a toggle. To
make the buttons look balanced, we set
the same width for both buttons, en-
larging the reset button to match the
automatic sizing of the pause button.

The image at the top of the next
page shows the canvas with the two

buttons after positioning them where
we thought they looked best.

Next Time

In this article, we’ve added three
vidgets and the interface is beginning
to take shape. In the next article on
building visual interfaces, we’ll add the
remaining vidgets: sliders, radio but-
tons, and labels. This will complete the
layout of the interface itself.

In subsequent articles, we’ll show
how to prototype an application within
VIB to see how it responds to events on
vidgets. We’ll also discuss other as-
pects of VIB, including its menus.

Then we’ll be in a position to con-
sider the other part of the kaleidoscope
application — the code itself. There are
essentially two distinct parts to the code.
One part is devoted to the basic func-
tionality of the application: the kaleido-

scope display. The other, and for our purposes,
more interesting, part is how the code relates to the
visual interface and handles user events on vidgets.

It’s going to take several more articles to get
through all this, but we plan to have an article in
every issue of the Analyst until the series is com-
plete.

The Edited Button Dialog

The Icon Analyst 35 / 5

Corrections

In the article on versum palindromes in the
last issue of the Analyst, the formula for the num-
ber of n-digit numeric palindromes was given
incorrectly. The correct formula is

9 × 10(n–1)/2 n odd
9 × 10(n/2)–1 n even

The number of versum palindromes with an odd
number of digits also was given incorrectly. The
correct formula is

4 n = 1
4.5 × 10(n–1)/2 n > 1

In addition, the procedures for generating
palindromes should have checks for a specifica-
tion of 0 digits; otherwise the procedures plunge
recursively. Failure is a reasonable choice in this
case, as it is for negative specifications.

Versum Numbers

In preceding articles [1-6], we’ve explored
many aspects of versum sequences resulting from
the addition of a positive integer and its reversal. In

this article, we turn to the question of
versum numbers, those numbers that
can be formed by reverse addition and
hence are found in versum sequences.

We’ll look at three topics:

• the number of n-digit versum
 numbers
• the nature of versum numbers
• how to determine if a number is
 a versum number

Tabulating Versum Numbers

It’s obvious that not all positive
integers are versum numbers: 1, 3, 5, 7, 9,
and 11 are examples. It’s easy to find all
n-digit versum numbers by accumulat-
ing the numbers in versum sequences.
But there’s an easier and much faster
way. All n-digit versum numbers must
come from the reverse sum of an (n–1)-
or n-digit primary seed. Here’s all that’s

needed:

link pvseeds

procedure main(args)

 i := (0 < integer(args[1])) |
 stop("∗∗∗ invalid argument")

 versums := set()

 every k := (i – 1 | i) do
 every j := pvseeds(k) do {
 j +:= reverse(j)
 if ∗j > i then break
 if ∗j = i then insert(versums, j)
 }

 every write(!sort(versums))

end
Using a set to accumulate versum numbers

and then sorting the set before writing them out
works well as long as there aren’t too many versum
numbers. The problem is that not only must all
versum numbers be kept in the set in memory, but
at the end, the set must be sorted into a list. Both
structures must be in memory at that point. (Icon
does not modify a structure that it sorts.)

A more practical approach is to write out
versum numbers as they are found, and then use a
sort utility on the result, keeping only unique
values. It’s simple to modify the last program to do

The Interface with Five Vidgets

6 / The Icon Analyst 35

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

this:
…

 every k := (i – 1 | i) do
 every j := pvseeds(k) do {
 j +:= reverse(j)
 if ∗j > i then break
 if ∗j = i then write(j)
 }

…

If this program is named vernums.icn, in UNIX the
following will do:

vernums n | sort –u > versums.n
where n is the number of digits.
Incidentally, there are very few duplicates using
this method — only 21 for n = 10.

Here are counts of versum numbers though n
= 10, for example:

n count % of all

1 4 44.44
2 14 15.56
3 93 10.33
4 256 2.84
5 1793 1.99
6 4872 0.54
7 34107 0.38
8 92590 0.10
9 648154 0.07

10 1759313 0.02

Counts of Versum Numbers

The last column shows the percentage of versum
numbers among all positive n-digit numbers. The
percentage clearly becomes vanishingly small for
large n.

Although the trend in the counts of versum
numbers is clear, the counts do not appear to fit a
simple formula. Here’s where carries enter the
picture.

A versum number whose initial digit is 2

through 9 cannot come from a carry on reverse
addition, while a versum number with an initial 1
may or may not come from a carry. For example,
the reverse sum of 100 is 101, while the reverse sum
of 55 is 110.

Here’s a breakdown of the tabulation into
these two cases:

n 1 2-9 total

1 0 4 4
2 6 8 14
3 13 80 93
4 104 152 256
5 273 1520 1793
6 1984 2888 4872
7 5227 28880 34107
8 37718 54872 92590
9 99434 548720 648154

10 716745 1042568 1759313

Breakdown of Versum Numbers

It’s easy to see that the counts for initial digits
2 through 9 can be described by a simple recur-
rence and — except for the initial terms — the same
one as for counting primary n-digit seeds [3]:

V
2–9(1) = 4

V2–9(2) = 8
V2–9(n) = 10 × V2–9(n–1) n > 2, odd
V2–9(n) = 19 × V2–9(n–2) n > 2, even

And as for the earlier recurrence, there is a simpler
if less revealing, form:

V
2–9(1) = 4

V2–9(2) = 8
V2–9(3) = 80
V2–9(n) = 19 × V2–9(n–2) n > 3

These recurrences are, of course, conjectures.
But it’s hard to imagine they don’t hold in general
— although there have been bigger surprises in
number theory.

The counts for versum numbers with an ini-
tial 1 do not appear to follow a simple rule. We
might suppose that these versum numbers are
composed of two classes: those that come from
reverse addition with a carry and those that come
from reverse addition without a carry. It’s appar-
ently not that simple. The counts of versum num-
bers with an initial 1 do appear to follow a recur-

The Icon Analyst 35 / 7

rence for approximating the number of versum num-
bers with an initial 1:

V
1(1) = 0

V1(2) = 6
V1(3) = 13
V1(n) = 19 × V1(n–2) n > 3

With more initial terms from the actual data,
the recurrence gives progressively better agree-
ment with the actual data:
 initial terms 3 4 5 6
n actual recurrence approximations
1 0 0 0 0 0
2 6 6 6 6 6
3 13 13 13 13 13
4 104 114 104 104 104
5 273 247 247 273 273
6 1984 2166 1976 1976 1984
7 5227 4693 4693 5187 5187
8 37718 41154 37544 37544 37696
9 99434 89167 89167 98553 98553

10 716745 781926 713336 713336 716224

Results of the Recurrence Approximation

Bold type shows actual values, while regular
type shows values predicted by the recurrence.
Even with only six initial terms taken from actual
data, the approximation for n = 10 is only off by 521
— about 0.07%.

Since the recurrence is the same for versum
numbers regardless of their initial digit, it serves as
an approximation for all versum numbers:

V(n) = 19 × V(n–2) n > i

with the quality of the approximation depending
on the number of initial terms, i, taken from actual
data.

The Nature of Versum Numbers

The recurrences shown in the last section,
especially the exact one for initial digits 2 through
9, suggest that a regularity or pattern may be found
in versum numbers. We’ll skip those that begin
with 1 for the moment, and look at the others for
which there is a (conjectured) exact recurrence.

Here are listings of the n-digit versum num-
bers for initial digits 2 through 9 for n = 1 through
4 (for larger n, there are too many to show):

n=1: 2

n=2: 22 33 44 55 66 77 88 99

n=3: 201 302 403 504 605 706 807 908

202 303 404 505 606 707 808 909

221 322 423 524 625 726 827 928

222 323 424 525 626 727 828 929

241 342 443 544 645 746 847 948

242 343 444 545 646 747 848 949

261 362 463 564 665 766 867 968

262 363 464 565 666 767 868 969

281 382 483 584 685 786 887 988

282 383 484 585 686 787 888 989

n=4: 2002 3003 4004 5005 6006 7007 8008 9009

2101 3102 4103 5104 6105 7106 8107 9108

2112 3113 4114 5115 6116 7117 8118 9119

2211 3212 4213 5214 6215 7216 8217 9218

2222 3223 4224 5225 6226 7227 8228 9229

2321 3322 4323 5324 6325 7326 8327 9328

2332 3333 4334 5335 6336 7337 8338 9339

2431 3432 4433 5434 6435 7436 8437 9438

2442 3443 4444 5445 6446 7447 8448 9449

2541 3542 4543 5544 6545 7546 8547 9548

2552 3553 4554 5555 6556 7557 8558 9559

2651 3652 4653 5654 6655 7656 8657 9658

2662 3663 4664 5665 6666 7667 8668 9669

2761 3762 4763 5764 6765 7766 8767 9768

2772 3773 4774 5775 6776 7777 8778 9779

2871 3872 4873 5874 6875 7876 8877 9878

2882 3883 4884 5885 6886 7887 8888 9889

2981 3982 4983 5984 6985 7986 8987 9988

2992 3993 4994 5995 6996 7997 8998 9999

Note that the last digit of all numbers is equal
to the first digit or one less than it. This must be the
case, as shown by the following argument.

We’ll call a number whose reverse addition
produces a versum number a predecessor of that
number. Note that a versum predecessor is not
necessarily a versum number.

Let x stand for a string of digits and x stand for
its reverse. Consider an n-digit versum number, n
> 1, of the form 2x2. This versum number can only
have predecessors of the form 1y1 (and 2y0, which
is equivalent), where y+y = x (with no carry on
addition to produce a longer string of digits). For
example 2992 has the predecessor 1091; y = 09 and
y+y = 99 (the initial zero is not suppressed because
y is internal to a longer string).

Similarly, a versum number of the form 2x1
can only have a predecessor of the form 1y0 where
y+y=1x (with a carry to produce a string one digit

8 / The Icon Analyst 35

longer than y). For example, 2981 has the predeces-
sor 1990; y = 99 and y+y = 198.

Any other combinations of initial and final
digits would produce an initial digit other than 2
(0 is precluded as an initial digit, since it is sup-
pressed and would produce a shorter number in
the reverse addition process).

The same argument applies to versum num-
bers with initial digits 3 through 9.

Now look at the versum numbers in the list
above. All the n-digit versum numbers with an
initial 3 can be obtained by adding 10n–2 1 to a
corresponding versum number with an initial 2,
where 0n–2 stands for (n–2) 0 digits. A similar
observation applies to versum numbers with ini-
tial digits 4 through 9.

To see why this is true, consider the possible
predecessors of a versum number of the form 2x2.
It has a predecessor of the form 1y1 as shown
above. Add 1 to this predecessor to get 1y2. Then
1y2+2y1 = 3x3. That is, if 2x2 is a versum number,
so is 3x3. (We call this process promoting a prede-
cessor.) A similar argument applies to versum
numbers of the form 2x1 and for those with initial
digits 3 through 8.

Furthermore, the versum numbers obtained
by successively promoting n-digit versum num-
bers with an initial 2 are the only n-digit versum
numbers with initial digits 3 through 9. Suppose,
for example, there is a versum number of the form
3x3 that does not come from promoting a versum
number of the form 2x2. This 3x3 versum number
must have a predecessor for the form 2y1 (and the
equivalents 1y2 and 3y0). Now demote the prede-
cessor 2y1, giving 2y0. But 2y0+0y2 = 2x2, a versum
number that contradicts the assumption. Similar
arguments apply to versum numbers of other forms.

 But this is getting tedious. The really inter-
esting problem is to find a way of generating all n-
digit numbers with an initial 2. The strong evi-
dence that the count of such numbers follows a
precise recurrence suggests that there should be a
(recursive) rule for generating such n-digit versum
numbers from (n–1)- and (n–2)-digit versum num-
bers. It seems like this or something similar must be
possible, but it’s eluded us. Perhaps we’re just
looking at the problem in the wrong way. If you
come up with a method, please let us know.

There still is the question of versum numbers
with an initial 1. We can apply the demotion pro-
cess to versum numbers of the form 2x2. For ex-

ample, 2992 has a predecessor 1091, which when
demoted becomes 1090, a predecessor of the versum
number 1991. As shown earlier, however, a versum
number of the form 2x1 has a predecessor of the
form 1y0. Subtracting 1 from this number changes
nature of the calculation. For example, 2981 has the
predecessor 1990, which would be demoted to
1989, the predecessor of 11880 — a versum number
with an additional digit. Promoting the predeces-
sor of an n-digit number with an initial 9 also
produces an (n+1)-digit versum number with an
initial 1. These two methods, however, only pro-
duce a small percentage of (n+1)-digit versum
numbers with an initial 1.

Here are the versum numbers with an initial
1 for n = 1 through 4. See if you can find a pattern:

n=1: 1

n=2: 10 11 12 14 16 18

n=3: 101 121 141 154 165 181 198

110 132 143 161 176 187

n=4: 1001 1130 1251 1372 1493 1615 1736 1857

1009 1131 1252 1373 1494 1616 1737 1858

1010 1150 1271 1392 1514 1635 1756 1877

1029 1151 1272 1393 1515 1636 1757 1878

1030 1170 1291 1413 1534 1655 1771 1881

1049 1171 1292 1414 1535 1656 1776 1897

1050 1190 1312 1433 1551 1661 1777 1898

1069 1191 1313 1434 1554 1675 1796 1918

1070 1211 1331 1441 1555 1676 1797 1938

1089 1212 1332 1453 1574 1695 1817 1958

1090 1221 1333 1454 1575 1696 1818 1978

1110 1231 1352 1473 1594 1716 1837 1991

1111 1232 1353 1474 1595 1717 1838 1998

Identifying Versum Numbers

Despite the discussion above, we don’t really
know much about what versum numbers are. We
know how they are formed, but it’s not possible, in
general, to tell if a number is a versum number just
by looking at it, especially if the number is large.

This leads to the problem of testing numbers
for “versumness”. We can, of course, do this ex-
haustively, but that approach is both unattractive
and impractical. So we started looking at the re-
verse addition process and the nature of versum
predecessors.

We thought it would be fairly easy to write a
procedure to find the predecessors of a versum
number (a number with no predecessors is, of
course, not a versum number). It’s not so hard to do

The Icon Analyst 35 / 9

this for numbers with an initial 2 through 9, but for
numbers with an initial 1, which may come from a
carry on reverse addition, special cases seem to
proliferate.

The package of procedures we developed is
far larger and uglier than we think it should be, but
we decided to show it anyway. Perhaps it will
inspire a better solution. Commentary follows the
code.

link eqvseeds
link vprimary

procedure vpred(i) # generate predecessors
 local s, preds

 if i < 1 then fail

 preds := set()

 every s := integer(vpred_(i)) do {
 if s + reverse(s) = i then
 insert(preds, vprimary(s))
 }

 suspend !sort(preds)

end

procedure vpred_(s) # break down into cases

 if (s == "") | (s = 0) then return s
 else suspend case ∗s of {
 1: vpred_1(s)
 2: vpred_2(s)
 3: vpred_3(s)
 default: case integer(s[1]) of {
 0: vpred_i0(s)
 1: vpred_i1(s)
 default: vpred_in(s)
 }
 }

end

procedure vpred_1(s) # one–digit number

 return (s % 2 = 0) & (s / 2)

end

procedure vpred_2(s) # two–digit number
 local first, last

 first := integer(s[1])
 last := integer(s[2])

 return ((first = last) & (first || 0)) |
 ((first = 1) & (last % 2 = 0) & (s / 2))

end

procedure vpred_3(s) # three–digit number
 local first, middle, last

 first := integer(s[1])
 middle := integer(s[2])
 last := integer(s[3])

 suspend case first of {
 0: vpred_i0(s)
 1: {
 ((middle = last + 1) & (middle || 9)) |
 ((last = 1) & (1 || vpred_1(middle) || 0)) |
 ((last = 0) & right(s / 2, ∗s, 0))
 }
 default: {
 1 || case first of {
 last: vpred_1(middle)
 (last + 1): (middle % 2 = 0) & (middle / 2) + 5
 } || (last – 1)
 }
 }

end

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1996 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

10 / The Icon Analyst 35

procedure vpred_i0(s) # initial 0
 local lzeros, middle

 suspend (s[–1] = 0) & (0 || vpred_noinc(s[2:–1]) || 0)

end

procedure vpred_i1(s) # initial 1
 local last, middle, first, mtail, zmid

 last := integer(s[–1])
 middle := s[2:–1]
 first := integer(s[2])

 mtail := middle[2:0]

 if mtail > 0 then zmid := right(mtail – 1, ∗mtail, 0)

 if last = 1 then suspend {
 (1 || vpred_noinc(middle) || 0) |
 (2 || vpred_noinc(\zmid) || 9) |
 (2 || vpred_noinc((1 || mtail) – 1) || 9) |
 (2 || vpred_inc(1 || \zmid) || 9)
 }

 else if last = 0 then suspend {
 (1 || vpred_noinc(\zmid) || 9) |
 (1 || vpred_inc(1 || \zmid) || 9) |
 (1 || (middle > 0, vpred_noinc(middle – 1)) || 9) |
 (0 || vpred_inc(1 || middle) || last) |
 (right(s / 2, ∗s, 0))
 }

 else suspend { # last digit > 1
 ((last + 1) || vpred_noinc(\zmid) || 9) |
 ((last + 1) || vpred_noinc((1 || mtail) – 1) || 9) |
 ((last + 1) || vpred_inc(1 || \zmid) || 9) |
 (last || vpred_inc(1 || mtail) || 0)
 }

end

procedure vpred_in(s) # initial > 1
 local first, middle, last, t

 first := integer(s[1])
 middle := s[2:–1]
 last := integer(s[–1])

 if first = last then # no internal carry
 suspend 1 || vpred_noinc(middle) || (last – 1)

 else if first = (last + 1) then # internal carry
 suspend last || vpred_inc(1 || middle) || 0

 else fail

end

procedure vpred_inc(s) # predecessor carry
 local t

 suspend 1(t := vpred_(s), ∗s = (∗t + 1))

end

procedure vpred_noinc(s) # no predecessor carry
 local t

 suspend 1(t := vpred_(s), ∗t = ∗s)

end

The procedure vpred(i) generates the versum
predecessors, if any, of i. It’s written as a generator,
since some versum numbers have more than one
predecessor. It calls vpred_() to start the process.
Unfortunately, not all the numbers returned by
vpred_() are versum predecessors, so vpred() checks
this, adding the primary of a number to a set if it
qualifies. Using the primary assures that the same
predecessor is not represented in more than one
form (as, for example, 33 and 42). All the equiva-
lents of a primary can be generated if needed [3].
Finally the set is sorted and the predecessors are
generated. Of course, if there are no predecessors,
nothing is generated, and the call of vpred() fails.

The procedure vpred_() separates numbers
by size first and then by initial digit. Although
vpred_() is not called by vpred() with a 0 argument,
it may be by internal calls. That or an empty argu-
ment ends the recursion. One, two, and three-digit
numbers are handled as special cases. Longer num-
bers are handled differently according to their first
digit.

The procedure vpred_0() handles cases with
an initial 0, which may occur during the recursive
process.

The procedure vpred_1() is the ugly one, be-
cause the number may or may not have been
produced by a carry on reverse addition. Various
possible cases are tried, distinguishing predeces-
sors that do and not result in a carry.

The procedure vpred_in(), which handles
numbers with initial digits 2 through 9, is fairly
straightforward, since no carry on reverse addition
is possible.

As we mentioned earlier, this package of pro-
cedures seems larger and uglier than it should be.
However, every case included in these procedures
is needed to produce all versum predecessors, at
least within the framework we used.

The correctness of these procedures is, of
course, conjectural, but we’ve tested them success-
fully for a very large number of cases.

Incidentally, we tried putting a “guard” pro-
cedure around the code for the individual cases,
hoping to improve performance by pruning parts
of the search tree that were not producing valid
versum predecessors. This didn’t help at all for
numbers with even a moderately large number of
digits; the tests were taking as much time as they
were saving — and they made the code much
uglier than it already was. Presumably, for very
large numbers, pruning would offer a substantial
improvement in performance.

The Icon Analyst 35 / 11

bounded expression: an expression that is limited
to at most one result because of the syntactic
context in which it appears. See also limita-
tion.

compilation: the process of converting an Icon
source program into directly executable code.
Compilation is an alternative to translation
and linking.

control backtracking: returning control to previ-
ously evaluated but suspended generators.
Control backtracking is the underlying mecha-
nism for accomplishing goal-directed evalua-
tion.

data backtracking: restoring previous values to
variables during control backtracking. Data
backtracking occurs only for a few specific
operations.

data structure: a collection of values. Different
kinds of data structures are organized and
accessed in different ways. See also records,
lists, sets, and tables.

dereferencing: producing the value of a variable.
Dereferencing is done automatically when the
value of a variable is needed in a computation.
Dereferencing also may be done explicitly us-
ing an operator.

element: a value in a record, list, or set; or a key/
value pair in a table.

execution: the process of running an Icon program
that results from translation and linking or
from compilation.

failure: the lack of a result; expression evaluation
that does not produce a result. Failure is the
opposite of success.

generation: the production of more than one re-
sult in sequence.

generator: an expression that is capable of produc-
ing more than one result.

goal-directed evaluation: the attempt to produce
a successful outcome by resuming suspended
generators to get alternative values when an
expression otherwise would fail. Goal-directed
evaluation is implicit in expression evaluation.
See also iteration and control backtracking.

icode: the result of linking ucode files. icode files
are in a binary format.

identifier: a string of characters that names a vari-
able.

interpretation: processing an icode file to effect

Icon Glossary

Icon documentation uses some terms in a
technical way. This article is the beginning of a
glossary of such terms. This is just a start; there’s
more to come. The part here also is not closed —
there are references to terms that are not yet in-
cluded.

Icon terminology developed over time. Some
terms have been used differently in different docu-
ments. What follows reflects current usage.

This glossary assumes familiarity with com-
puter terminology. Words in boldface within en-
tries refer to glossary terms, although word forms
are different in some cases.

assignment: associating a value with a variable.

backtracking: control backtracking or data back-
tracking; usually used as a synonym for the
former.

Next Time

Every time we think we’re at the end of the
articles on versum numbers, the “last” article pro-
duces material for another.

In working on the article here, we looked at
versum numbers with more than one distinct pre-
decessor. So that’s next. (Questions: What’s the
largest number of distinct predecessors a versum
number can have? How frequently is it more than
one?)

We do, however, think we’re getting near the
end.

References

1. “The Versum Problem”, Icon Analyst 30, pp. 1-
4.

2. “The Versum Problem”, Icon Analyst 31, pp. 5-
12.

3. “Equivalent Versum Sequences”, Icon Analyst
32, p. 1-6.

4. “Versum Sequence Mergers”, Icon Analyst 33,
pp. 6-12.

5. “Versum Base Seeds”, Icon Analyst 34, p. 6.

6. “Versum Palindromes”, Icon Analyst 34, p. 6-
9.

12 / The Icon Analyst 35

What’s Coming Up

Don’t let the crocodile alarm you; we don’t
plan anything sinister or vicious for the next issue
of the Analyst. Surprises, however, always are
possible.

We’re working on additional articles on build-
ing visual interfaces, versum numbers, and the
glossary. As usual, we have other things in the
works, including dynamic analysis, programming
tips, and articles on material in the Icon program
library.

Subscription Renewal

For many of you, the next issue is the last in
your present subscription to the Analyst and
you’ll find a subscription renewal form in the
center of this issue. Renew now so that you won’t
miss an issue.

Your prompt renewal also helps us in plan-
ning and by reducing the number of follow-up
notices we have to send.

the execution of an Icon program. See also
compilation.

interpreter: the program that processes icode files.

iteration: producing all the results of a generator.
Iteration can be accomplished by a control
structure or by conjunction with an expres-
sion that always fails. See also goal-directed
evaluation.

limitation: restricting the number of times a gen-
erator is resumed. Limitation can be specified
by a control structure or because of the syntac-
tic context in which the generator appears. See
also bounded expression.

linker: the program that converts ucode to icode.
linking: the process of converting one or more

pairs of ucode files into an icode file suitable
for interpretation.

list: a data structure that consists of a sequence of
values called elements. Lists can be accessed
by position (subscripted) and as stacks and
queues. Positional accesses produce variables.

member: a value in a set; also called element.
outcome: a result or failure resulting from the

evaluation of an expression.
record: a data structure consisting of a fixed num-

ber of values that are referenced by field names.
The fields of a record are variables.

reserved word: a string of letters that has syntactic
meaning and cannot be used as an identifier.

result: a value or a variable as a consequence of
evaluating an expression.

result sequence: the sequence of results that a
generator is capable of producing. This is an
abstract concept used for characterizing gen-
erators, not a program construct.

run-time: the time during program execution.
resumption: continuing the evaluation of a sus-

pended generator. See also suspension.
set: a data structure consisting of distinct values

upon which set operations can be performed.
A value in a set is called a member and some-
times by the more general term element.

success: evaluation of an expression that produces
a result; the opposite of failure.

suspension: stopping the evaluation of a genera-
tor when a result is produced. See also re-
sumption.

table: a data structure composed of key/value

pairs, in which keys are distinct. Tables can be
subscripted by keys to assign corresponding
values. Table subscripting produces variables.

termination: the end of execution.

translation: the process of converting Icon source
code to code for an imaginary machine (vir-
tual machine). The result of translation of a
source code file is a pair of ucode files. See also
compilation.

translator: the program that translates Icon source
code into ucode.

ucode: the result of translating Icon source code
into code for a virtual machine. Ucode files are
readable text.

variable: a reference to a value and to which
assignment can be made. There are several
kinds of variables, including identifiers, some
keywords, and the elements of records, lists,
and table subscripts. See also dereferencing.

