
The Icon Analyst 33 / 1

December 1995
Number 33

In-Depth Coverage of the Icon Programming Language

In this issue …

Designing a Visual Interface 1
Dynamic Analysis 3
Versum Sequence Mergers 6
What’s Coming Up 12

Designing a Visual Interface

This article discusses the design of visual
interfaces, using as an example the kaleidoscope
program described in the first article of this series
[1].

Good visual interface design is a difficult and
complicated subject that is beyond the scope of this
newsletter. In this and subsequent articles, we’ll
illustrate common usage by example and com-
ment from time to time on design considerations.
For more information on the subject, see Refer-
ences 2-4.

Planning the
Interface

It’s important
to have a good idea
of the functionality
of an application be-
fore designing an in-
terface for it. It’s not
necessary, however,
to completely imple-
ment the functional-
ity of the application
before starting to
build the interface.

The process of
building an applica-
tion with a visual

interface usually is iterative, with focus shifting
between the functionality of the interface and the
interface itself. Design of the interface may suggest
additional functionality or cause features to be cast
in ways that are easily represented in the interface.

The interface for the kaleidoscope application
is the end product of a process that involved many
changes and refinements. We won’t attempt to
recapitulate the process here. Instead we’ll sketch
how it might have been done.

Building a visual interface, especially a well-
designed and attractive one, is much easier if atten-
tion is given to planning before starting to con-
struct the interface.

The size of the application canvas is an impor-
tant consideration. Changes in the size of the appli-
cation canvas after an interface is laid out may
result in unnecessary work. Screen space often is a
limiting factor. Many personal computers have
screens that are only 640 by 480 pixels. In designing
an application that is intended to be portable to
various platforms, it’s wise to work within these
dimensions.

In many situa-
tions, the screen is
shared by several
applications, so an
application canvas
generally should not
be larger than is nec-
essary. On the other
hand, the applica-
tion canvas should
be large enough to
be visually attractive
and allow the user
easy access to inter-
face tools. An appli-
cation that displays
an image or pro-
vides user work ar-
eas generally is more
attractive and usefulThe Kaleidoscope Interface

2 / The Icon Analyst 33

with a relatively large canvas. Achieving a good
compromise may be difficult.

The image at the bottom of this page shows a
sketch of the interface we designed for the kaleido-
scope program.

It’s often worth doing of series of rough
sketches with different layouts before committing
to interface construction. Sometimes more precise
drawings done to scale, perhaps using graph pa-
per, can save work later.

Our first consideration was the display re-
gion. We decided, somewhat arbitrarily, to make
the region 400-by-400 pixels (the region needs to be
square because of the drawing symmetry). This is
large enough to provide an attractive display but
small enough so that the entire canvas would fit
within the 640-by-480 limit. We put the region at
the right side of the canvas because it’s conven-
tional to put user controls at the top and left of
visual interfaces. Following common, well-known
conventions, in the absence of compelling reasons
not to, makes learning the application easier for
users.

We put a menu bar at the top, also because
that’s conventional. The functionality we had in
mind included the ability to save snapshots of the
display. Such operations usually are put in a menu
named File. An entry for quitting the application
also typically is put in a menu named File, al-
though it has little to do with files. The point is that
experienced users expect it there. In this applica-
tion, there are no other menus; many applications
would have oth-
ers.

Allowing the
user to stop the
display tempo-
rarily and to reset
it are part of the
application de-
sign. We could
have put these op-
erations in a menu,
but buttons are
easier to use than
menus and there
is ample space on
the canvas to pro-
vide buttons. Fur-
thermore, since
pausing the dis-

play involves a change of state, using a button
rather than a menu item makes the state visible on
the interface.

Since the speed of the display, the density of
circles, and the maximum and minimum radii of
circles all are numerical quantities, we chose slid-
ers to let the user adjust these values. An alterna-
tive would have been to provide text-entry fields in
which the user could enter numbers. For an appli-
cation like the kaleidoscope there is little advan-
tage to allowing the user to specify precise values
— entering precise values is harder than moving
sliders and the user would need to know what the
numerical values mean. Sliders deprive the user of
precision, but they allow a more intuitive approach
to using the application. Because of the area avail-
able and the need to label the sliders, we oriented
the sliders horizontally.

All that remains is a way for the user to select
between discs and rings. Because there are only
two choices and there is space available, we de-
cided to use radio buttons, which make the choice
visible on the interface. If there had been more
choices for shapes or less available space on the
canvas, a menu might have been a more appropri-
ate choice.

With this layout in hand, we’re ready to build
the interface.

A Visual Interface Builder

The Icon program library contains procedures
with which you can create vidgets (interface tools),

configure them,
and position
them at specified
places on an ap-
plication canvas.
Using proce-
dures to do this,
however, is a te-
dious and often
intricate task that
requires a sub-
stantial amount
of specialized
knowledge. Icon
provides a visual
interface builder,
VIB, that auto-
mates much of
this process.A Preliminary Sketch of the Interface

The Icon Analyst 33 / 3

Addison-Wesley.

3. Laurel, Brenda, ed. 1990. The Art of
Human-Computer Interface Design.
Reading, Mass.: Addison-Wesley.

4. Open Software Foundation. 1988.
OSF/Motif Style Guide. Englewood
Cliffs, N.J.: Prentice-Hall.

The VIB Application

The VIB window for building a new interface
is shown above.

The menus at the top provide operations
needed to use VIB. The icons below the menus
represent the vidgets described in the last article.
The inner rectangle represents the canvas of the
interface being developed.

The icons below the VIB menu bar from left to
right represent buttons, radio buttons, menus, text-
entry fields, sliders, scroll bars, regions, labels, and
lines. Clicking on one of these icons creates a vidget
of the corresponding type. It then can be posi-
tioned, configured, and so on.

Next Time

In subsequent articles on building visual in-
terfaces, we’ll explain how to use VIB. We’ll walk
through the process of creating the interface for the
kaleidoscope application, taking the blank canvas
shown above to the final interface for the kaleido-
scope.

References

1. “Visual Interfaces”, Icon Analyst 31, pp. 1-4.

2. Apple Computer Inc. 1987. Human Interface Guide-
lines: The Apple Desktop Interface. Reading, Mass.:

Dynamic Analysis

This is the fourth in a series on
the dynamic analysis of Icon pro-
grams — studying what goes on dur-
ing program execution. In previous
articles [1-3], we explained how dy-
namic analysis is done and showed

some results for expression evaluation and storage
allocation. This article looks at the ways programs
use structures: records, lists, sets, and tables.

It’s been several issues since we listed the
programs we use for testing; here they are again
for reference:

program functionality

csgen.icn sentences from context-free
grammars

deal.icn randomly dealt bridge hands
fileprnt.icn character display of files
genqueen.icn solutions to the n-queens prob-

lem
iiencode.icn text encoding for files
ipxref.icn cross references for Icon pro-

grams
kwic.icn keyword-in-context listings
press.icn file compression
queens.icn solutions to the n-queens prob-

lem
rsg.icn sentences from context-free

grammars
turing.icn Turing machine simulation

Just based on these short descriptions, can you
guess what kinds of structures these programs
might use? Of course, programs with such

VIB

4 / The Icon Analyst 33

functionalities can be written in many ways, and
there often are alternatives for which structures are
used and how.

Here’s a listing of number of structures that each
of these programs create:

program records lists sets tables

csgen.icn 0 22 0 2
deal.icn 0 3502 0 2
fileprnt.icn 0 1 0 5
genqueen.icn 0 4 0 0
iiencode.icn 0 1 0 0
ipxref.icn 24 122 0 64
kwic.icn 0 205 1 1
press.icn 0 5 1 3
queens.icn 0 6 0 2
rsg.icn 18061 18996 0 3
turing.icn 10 8 0 2

total 18095 22872 2 84

The figures for list creation include lists that are
created automatically for command-line arguments
when the main procedure has a parameter, as all of
the test programs do.

What can we say about these figures? We
already know that our test programs are not neces-
sarily representative of the range of all Icon pro-
grams. We know that a different choice of test
programs might have produced significantly dif-
ferent results. Nevertheless, we find these results
interesting.

The extensive use of lists attests to their gen-
eral utility. The use of tables suggests their value in
many programs. Nor is it surprising that in most
cases, only a few tables are used in all but one
program — their most common use is for mapping
keys into values, not, for example, in representing
structural relationships [4].

We were a bit surprised at how few programs
used records, but reflecting on the functionality of
the test programs, it’s understandable.

Sets come in a distant last. That didn’t sur-
prise us. For one thing, at least two of the programs
were written before sets were added to Icon. We do
think, however, that sets are under-used by Icon
programmers. Perhaps that’s because sets came
along after many Icon programmers had devel-
oped different ways of dealing with the problems
that sets handle so well. Most programmers also

have little experience with using true sets — few
programming languages support them (SETL is a
notable exception [5]), and sometimes, as in Pascal,
the term set is used for something much less gen-
eral than Icon supports.

The figures in the left column indicate little
about how structures are used. A single structure
may be the focus of much activity during program
execution, or it may be used briefly and represent
an insignificant amount of activity.

Here’s a tabulation for how often records are
referenced in the three programs that use them:

program number R.f

ipxref.icn 24 121
rsg.icn 18061 18061
turing.icn 10 38940

total 18095 57122

Interesting?

We’ll save lists for last, and go on to sets. For
sets, the only access method used is member(S):

program number member(S)

kwic.icn 1 14136
press.icn 1 0

total 2 14136

Do these figures seem strange? Incorrect, perhaps?
Why, for example, is there no use of insert() in
kwic.icn? That’s because the set is created from a
list that provides its members, as in

S := set(L)
instead of inserting members one by one. And, yes,
press.icn creates a set, but never uses it in the way
that the program is run in our tests.

Here are the results for tables, again with only
the access methods used by at least one of the
programs:

program number T[x] !T

csgen.icn 2 2 0
deal.icn 2 6 0
fileprnt.icn 5 41585 0
ipxref.icn 64 13485 140
kwic.icn 1 38340 0
press.icn 3 27166 0

The Icon Analyst 33 / 5

queens.icn 2 5 0
rsg.icn 3 18092 0
turing.icn 2 2 0

total 84 138683 140

Not surprisingly, although there are not many
tables, they are extensively used by more than half
of the programs.

Lists are more interesting than the other kinds
of structures, because more access methods are
used:

Notes: The figures for !L are for the number of list
elements generated, a form of subscripting. get()
and pop() are equivalent. There are no uses of pop()
in the test programs. The listing of pop() in the
article on expression activity [2] was an error; it
should have been get() instead.

We were a bit surprised by the fact that pop()
was not used at all, but the uses of pull() in so many
programs seemed suspicious to us; it’s a function
that’s rarely used. The use in ipxref.icn is clear, but
pull() doesn’t even appear in any of the other pro-
grams. Then we realized that pull() is used in
options(), which is linked by most of the test pro-
grams.

It’s clear from the figures above that list
subscripting figures in a large way in many pro-
grams. It’s no surprise that ?L occurs in csgen.icn
and rsg.icn; both do random generation.

What Does it All Mean?

Several of the test programs rely heavily on
the use of lists and tables. Although there is no way
11 programs can be representative of the class of all
Icon programs, examination of many programs
suggests that the use of these structures in the test
programs is common to many programs.

It would require a much larger test suite to
draw any conclusions about records and sets. We
may attempt that later, but as we said in Reference
1, it’s hard to come by programs that are suitable

for testing, and dynamic analysis is very
computationally expensive.

What Else?

You’ll note we listed only access to structures,
not the many operations that can be performed on
them, such as ∗X, copy(X), sort(X), S1 ++ S2, and
so on. We expect to explore such things in the
future.

There are some things we’d like to know that
are hard to come by with our present monitoring
system, such as:

• How large are structures and how are their
sizes distributed? (Recall that all kinds of struc-
tures except records can change in size during
program execution, which makes such studies even
more problematical.)

• How many structures are used transiently

program number put(L) push(L) get(L) pull(L) L[i] ?L !L

csgen.icn 22 19 0 1 1 81391 47869 2642
deal.icn 3502 0 2800 3 1 12600 0 1400
fileprnt.icn 1 0 0 0 0 1 0 0
genqueen.icn 4 0 0 0 0 114132 0 0
iiencode.icn 1 0 0 0 0 2 0 0
ipxref.icn 122 7135 1 4903 50 2804 0 6692
kwic.icn 205 12780 0 405 2 1 0 202
press.icn 5 2 1 4 1 2 0 1
queens.icn 6 133 0 2 0 144535 0 352
rsg.icn 18996 0 0 42286 1 0 18061 15
turing.icn 8 5 0 1 1 22880 0 0

total 22872 20074 2802 47605 57 378348 65930 11304

6 / The Icon Analyst 33

Versum Sequence Mergers

As we showed in the last issue of the Analyst,
a simple observation and a relatively simple calcu-
lation allows the determination of all equivalent n-
digit versum sequence seeds. The result is a dra-
matic reduction in the amount of computation and
storage space that is needed to study versum se-
quences.

Another potential source of savings is in
versum sequences that start out differently but
merge to a common term. For example, the se-
quence for the seed 1 is

1: {2, 4, 8, 16, 77, 154, 605, 1111, 2222, … }

It's obvious that the seed that’s a term in this
sequence immediately merges to it. For example,
the sequence for 2 ,

2: { 4, 8, 16, 77, 154, 605, 1111, 2222, … }

is just the trailing part of the sequence for the seed
1. Of course, the sequence for 1 merges to the
sequence for 2 after one term. To keep track of
mergers, we’ll deal with seeds in numerical order
and merge the sequence for seed 2 to the sequence
for seed 1, rather than the other way around.

Sequences also merge to sequences with
smaller seeds after initial terms that do not merge
to other sequences. For example, the sequence for
104 is

104: {505, 1010, 1111, … }

Although 505 and 1010 are not terms in sequences
with smaller seeds, 1111 is the eighth term in the
sequence for seed 1. Thus 1 and 104 have sequences
with different “heads” but a common “tail”.

and hence subject to garbage collection, as op-
posed to structures that persist throughout a major
portion of program execution.

• How many structures actually are garbage
collected?

And so on. Once you get into questions like
these, there is no end. With enough effort, of course,
we can get answers to such questions. But such
investigations become more and more specialized.
We dread the possibility of a doctoral dissertation
titled something like “A Study of List Access Meth-
ods in Icon and Their Impact on the Performance of
Applications that Analyze World Wide Web
Pages”.

Disclaimer

In studying structure usage in Icon programs,
we found a few glitches in our event-monitoring
instrumentation. We’ll fix these in a future release
of Icon, but if you use the present event-monitor-
ing instrumentation, you’ll run into some prob-
lems interpreting the results.

More to Come

There’s no end to what we can do with dy-
namic analysis, even given only our present tools.
At some point such studies become tedious and of
limited interest.

We do have material on type conversion,
string operations, numerical operations, and so
forth, which we plan to present in future articles.

These articles probably will be spaced out
over a year or two. If there’s an aspect of program
execution in Icon that is of particular interest to
you, let us know and we’ll try to give it priority.

References

1. “Dynamic Analysis of Icon Programs”, Icon
Analyst 28, pp.9-12.

2. “Dynamic Analysis of Icon Programs”, Icon

Analyst 29, pp. 10-12.

3. “Dynamic Analysis”, Icon Analyst 30, pp. 6-
11.

4. Griswold, Ralph E. and Griswold, Madge T.
1990. The Icon Programming Language, Second Edi-
tion. Englewood Cliffs, N.J.: Prentice-Hall.

5. Schwartz, J. T., Dewar, R. B. K., Dubinsky, E.,
and Schonberg, E. 1986. Programming with Sets:
An Introduction to SETL. New York, N.Y.:
Springer-Verlag.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst 33 / 7

In order to perform computations on versum
sequences, it’s necessary to have the heads for all
primary seeds, but the tails only for those se-
quences that do not merge to others. We’ll call the
seeds for sequences that do not merge to others base
seeds. It’s only the sequences for base seeds, then,
that need to be carried out to the maximum num-
ber of terms needed.

You might wonder if all sequences eventually
merge to a single base sequence. Empirical evi-
dence strongly suggest that this is not the case, but
it’s unlikely that such a conjecture could be proved
or disproved. We’ll be satisfied in referring to base
sequences as those that do not merge to others after
a relatively large number of terms (like 500). We’ll
have more on this later.

Several questions concerning merging versum
sequences come to mind:

• How common are mergers?
• More specifically, what percentage of n-digit

primary sequences are base sequences?
• How far out do mergers occur?
• How much space for storing versum se-

quences can be saved by storing only the heads of
non-base sequences?

• How should we organize the data if we store
only the heads of non-base sequences?

It doesn’t take much exploration to discover
that mergers are quite common and that they usu-
ally occur after only a few terms. The image at the
right shows how far sequences go before merger
for seeds 1 through 999. Note that this image shows
versum mergers for all seeds, many of which are
equivalent.

It’s clear from the amount of white space in
this image (that is, terms after mergers), that there’s
a lot to gain in using merger information.

The information needed to represent non-
base sequences is easily encoded, as in

104: {505, 1010, 1:8 }

where 1:8 is the terminating merger term.
With this in mind, we can create versum

sequences, computing all terms for base sequences
and only the heads for sequences that merge to
others.

The approach we took to computing versum
sequences with mergers was to create versum se-
quences for primary seeds in numerical order,
keeping versum terms in a table. Then, when a new

term is computed, if it’s in the table, the sequence
for the corresponding seed merges to a previously
computed seed. By taking seeds in numerical or-
der, we assured, as mentioned earlier, that the base
seeds are the smallest members of their equiva-
lence classes.

Before going on, we need to deal with another
problem. Although the number of n-digit primary
seeds is much smaller than the number of all n-
digit seeds, as n gets large, keeping the sequences
for all primary seeds in separate files becomes a
significant problem for even modest values of n. As
shown in the article on equivalent versum se-
quences, the number of primary seeds for n=6 is
6,498, for n=7, 64,980, and for n=8, 123,426.

Some operating systems handle a large num-
ber of files better than others, but few can do much
with a large number of files in the same directory.
All kinds of things go wrong. For example, if the

Versum Mergers for Seeds 1 Through 999

8 / The Icon Analyst 33

sequences for all 6-digit
primary seeds are kept
as separate files with the
suffix .vsq in one direc-
tory, on a UNIX plat-
form, attempting to list
them by

ls ∗.vsq

is likely to produce the
message

Arguments too long.

You can imagine vari-
ous things to do about
such problems, such as
organizing files in
subdirectories, combin-
ing several sequences in
one file, and so on. All of
these lead to complexi-
ties and maintenance
problems. Without tak-
ing a Draconian ap-
proach (like recomput-
ing versum sequences as
needed), the sheer num-
ber of sequences be-
comes the limiting fac-
tor as n becomes larger.

Dealing with merg-
ers provides an oppor-
tunity to reduce the
number of files needed
for versum -sequence in-
formation. Since the
number of base seeds
appears to be small com-
pared to the number of
primary seeds, and the
number of terms in the
heads of non-base sequences appears to be small
on average, it seems reasonable to store the se-
quences for base seeds in separate files and put all
the information for non-base seeds in a single file.
It remains to be shown that this approach is prac-
tical — for example, that the file of non-base infor-
mation is not monstrously large. It seems worth
trying, in any event.

The program above uses this approach. The
file containing merger information for non-base
sequences is named vsq.mrg. The terms in a se-
quence are kept in a list until it is known whether

the sequence is a base sequence or one that merges
to one. In the first case, a new file is created and the
terms written to it. In the second case, the seed
followed by an identifying mark and its terms are
appended to vsq.mrg. Some portions of vsq.mrg
are shown in the center column of the next page.

It’s worth noting that the technique we’ve
used creates multiple merger links, as in

104: {505, 1010, 1111, 1:8}
109: {104:2}

link options
link pvseeds

procedure main(args)
 local opts, n, limit, merge_tbl, i, j, k, count, output, name
 local tlist, merge_file, merge

 opts := options(args, "n+l+")

 n := \opts["n"] | 3 # number of digits; small default
 limit := \opts["l"] | 30 # maximum number of terms

 merge_file := open("vsq.mrg", "w”) | # non–base sequences go here
 stop("∗∗∗ cannot open vsq.mrg")

 merge_tbl := table() # mergers for terms

 every i := pvseeds(1 to n, 1) do { # primary seeds through n digits
 j := i
 tlist := [] # list of terms
 output := &null # no output file yet
 every count := 1 to limit do {
 j +:= reverse(j) # next term
 if merge := \merge_tbl[j] then { # term is already in table
 put(tlist, merge) # save merge information
 output := merge_file # file for merger information
 break # terminate loop for this seed
 }
 else { # term not in table
 put(tlist, j) # add term
 merge_tbl[j] := i || ":" || count # merger information
 }
 }
 if /output then { # no file; new base sequence
 output := open(i || ".vsq", "w") |
 stop("∗∗∗ cannot open ", i, ".vsq")
 every write(output, !tlist)
 close(output)
 }
 else { # identify the seed
 write(output, i, "=")
 every write(output, !tlist)
 }
 }

end

Program to Create Versum Sequences with Merger Information

The Icon Analyst 33 / 9

Computing versum sequences and
merger information in this way is not with-
out its problems. It’s necessary to create
sequence information up to the chosen limit
for all primary seeds up to the value of n
chosen, all in one run. If n is even moder-
ately large, like 6, and a few hundred terms
are needed, the amount of memory to store
all terms in all base sequences is very large.

Using an DEC Alpha workstation with
96 MB of RAM, we’ve managed to push n
to 8 (on an Alpha with “only” 64 MB,
swapping brought the machine to its knees,
and it’s unlikely that the process for n=8
would have completed before the machine
crashed. Our patience was considerably
more limited).

Having done the computation
through n=8, we have enough information
about the number of base sequences to be
interesting:

n primary seeds base seeds ratio

1 9 5 0.55556
2 18 0 0.00000
3 139 41 0.29496
4 342 16 0.04938
5 3420 464 0.13567
6 6498 220 0.03385
7 64980 4953 0.07622
8 123462 3061 0.02479

sum 198860 8760 0.02931

Remember that the number of base
sequences given here is conjectural. It’s
certainly possible that some might merge if
taken to more terms. However, the evi-
dence strongly suggests otherwise; for n
through 8 and 500 terms, the maximum
number of steps to a merger is only 24 and
more than 93% of all mergers occur within
3 steps.

From the information above, it’s obvi-
ous that much less data is needed for stor-
ing only base sequences and merger infor-
mation. For n=1 though 8, it takes “only”
about 95 MB of disk space to store all the
information; about 5 MB for vsq.mrg and
90 MB for the base sequences. From the
ratios above, you can estimate the amount
of space that would be required for storing
sequences for all primary seeds.

Incidentally, there are suggestions of patterns
of digits in the seeds for base sequences. There are
too many of them to show for all but the most
modest values of n. Here are the ones for n=3:

100 112 118 133 184 399 739 879 999

102 113 119 135 186 459 759 919

106 114 122 137 196 539 779 939

108 116 124 138 199 659 799 959

111 117 128 166 359 679 859 979

There are fewer for n=4:
1000 1011 1022 1037 1057 1068 1088 6999

1006 1013 1033 1046 1066 1077 4999 8999

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1995 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

vsq.mrg

2=

1:2

4=

1:3
6=

3:2

8=

1:4

10=
5:2

11=

5:3

12=

3:3
13=

5:4

14=

7:2

15=
3:4

16=

1:5

17=

5:5
18=

9:2

19=

7:3

29=
7:4

39=

3:5

49=

143
7:6

59=

1:6

 …

409=
1313

1:10

509=

106:2

609=
1515

102:5

709=

100:5

809=
1717

1:11

909=

108:2

110=
7:4

115=

626

1252

3773
5:9

219=

1131

2442

3:9
719=

1636

7997

15994

65945
120901

229922

459844

908798

1806607
7:15

 …

10 / The Icon Analyst 33

There are more striking patterns for larger
values of n, but there are too many to show here.
Here’s a curiosity for you to ponder, however: At
least for n=1 through 8, all base seeds that start with
a digit greater than 1 end in the digit 9. Can you
prove or disprove this?

Treating base sequences the way we have has
complicated one aspect of using versum sequences.
The procedure vsterm(i), which generates the terms
in the sequence for seed i, now must deal with
vsq.mrg and the way information in it is stored.

As with all the things we’re considering, there
are various approaches. We chose to have vsterm()
read vsq.mrg the first time it is called, putting the
information it contains in a table. We chose to have
table keyed by non-base seeds whose correspond-
ing values are lists of the terms in the head of the
sequence, ending with the merger term.

The code is a bit lengthy and complicated, but
it’s not that difficult to write:

link vprimary

procedure vsterm(i)
 local term, merge_file, tlist, j, k, line
 static input, merge_tbl

 initial {
 merge_tbl := table()

 terms := 0

 merge_file := open("vsq.mrg") | {
 write(&errout, "∗∗∗ cannot open vsq.mrg")
 fail
 }

 while line := read(merge_file) do {
 line ? {
 j := integer(tab(upto('=')))
 merge_tbl[j] := tlist := []
 while term := read(merge_file) do {
 if term := integer(term) then put(tlist, term)
 else {
 put(tlist, term)
 break
 }
 }
 }
 }
 close(merge_file)
 write(&errout, "\ninitialization done")
 }

 close(\input)

 k := 0
 i := vprimary(i)

 if tlist := \merge_tbl[i] then {
 k := 1
 repeat {
 term := tlist[k]
 if term := integer(term) then suspend term
 else {
 term ? {
 i := integer(tab(upto(':')))
 move(1)
 k := integer(tab(0)) |
 if tlist := \merge_tbl[i] then next
 else break
 }
 }
 k +:= 1
 }
 }

 input := open(i || ".vsq") | {
 write(&errout, "∗∗∗ cannot find sequence for ", i)
 fail
 }

 every 1 to k – 1 do read(input)

 while term := read(input) do
 suspend integer(term)

 close(input)

end

The functionality of vsterm() is the same as it
was before, and programs that use it need not be
changed for the new way of recording versum
sequences.

The Icon Analyst 33 / 11

 insert(\seed_sets[x.tail], \seed_sets[x.head])

 # Output trees for every base name.

 every i := integer(!base) do
 write(tree(\seed_sets[i]))

end

Construct strings for merge trees.

procedure tree(node)
 local children, node_names

 children := ""
 node_names := []
 every put(node_names, seed_names[!node])
 every children ||:=
 tree(seed_sets[!sort(node_names)])

 return seed_names[node] || "[" || children || "]"

end

These trees gave us a chance to try out a
visualization tool that is designed to provide a
variety of ways of viewing trees. Here’s a visual-
ization of the merger tree leading to the base seed
9 for n=1 through 6.

This visualization uses rings to allow “wide”
trees to be represented in an understandable way.
Labels are omitted to allow the structure to be
understood more easily.

Merger Trees

One thing we began to wonder about when
working with versum sequence mergers was the
structure of mergers. Clearly, they’re trees. And, of
course, the nature of the trees depends on the
particular way we’ve cast mergers and computed
them.

Here’s the program we used to produce string
encodings of trees from vsq.mrg:

record arc(head, tail)

global seed_sets
global seed_names

procedure main(args)
 local n, seeds, arcs, i, x
 local merge_file, base, line, head, tail, node

 n := (0 < integer(args[1])) |
 stop("∗∗∗ invalid command-line argument")

 merge_file := open("vsq.mrg") |
 stop("∗∗∗ cannot open vsq.mrg")
 base := open("base." || n) |
 stop("∗∗∗ cannot open base.", n)

 seeds := set()
 arcs := []
 seed_names := table()
 seed_sets := table()

 # Process the merger information.

 every line := !merge_file do
 line ? {
 if head := integer(tab(upto('='))) then {
 if ∗head > n then break
 insert(seeds, head)
 }
 else if tail := integer(tab(upto(':'))) then {
 insert(seeds, tail)
 put(arcs, arc(head, tail))
 }
 }

 # Create a set for each seed and build
 # cross reference.

 every name := !seeds do {
 node := set() # create new node
 seed_sets[name] := node # name to node
 seed_names[node] := name # node to name
 }

 # Insert the arcs.

 every x := !arcs do

12 / The Icon Analyst 33

Next Time

The observations and techniques described in
the last two articles on versum sequences have
made it possible to study their properties for much
larger values of n than otherwise would have been
possible.

Now it’s time to use this capability to explore
at greater length the original motivation for the
study of versum sequences: palindromes. We’ll
tell you in advance that we haven’t cracked the
“big question”: whether all versum sequences con-
tain palindromes. But we do have some interesting
results about the location of palindromes in versum
sequences and the nature of their structure.

The conventional tree diagram superimposed
on the rings can be omitted, giving a simpler over-
all view of the tree:

We can easily see that merge links are at most
6 levels deep, but the tree has considerable breadth.
The merger tree for seed 9 is larger than for most
base seeds, but its shape is similar to that of most
others.

We don’t know what the nature of merger
trees might say about versum sequences, but we
find them interesting, nonetheless.

Acknowledgment

The tree visualization program was written
as an honors project by Michael Shipman, a Com-
puter Science senior. You’ve seen his name before;
his project in the recent graphics programming
course was one of the best and was featured in a
recent Icon Newsletter. What’s Coming Up

Next time we’ll continue our series on build-
ing visual interfaces for Icon programs, working
through the kaleidoscope application in VIB.

As indicated above, there’s also another ar-
ticle on versum sequences in the works.

We also expect to have an article on another of
the most useful programs in the Icon program
library and perhaps a programming tip or two.

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/www/

 34

Analyst

