
The Icon Analyst / 1

June 1994
Number 24

In-Depth Coverage of the Icon Programming Language

 In this issue …

Handling Images in X-Icon … 1
From the Library … 2
Turtle Graphics … 6
Programming Tips … 10
A Word of Thanks … 12
Reflections … 12
What’s Coming Up … 12

vention, XBM files are identified by the suffix
.xbm, and XPM files by .xpm. Although XPM can
be used for black-and-white images, XPM files are
larger than their XBM counterparts.

The next version of Icon will support
CompuServe Graphics Image Format (GIF). GIF is
widely used in many different computing environ-
ments, so this addition will make it much easier to
use images in Icon.

There are many other file formats for pixel-
based images in common use, such as TIFF [1].
Utility programs can be used to convert between
different formats.

An image can be loaded into a window when
it’s opened by using the image attribute and a file
name, as in

&window := open("igor", "x",
 "image=igor.xbm")

which might produce a start-up window such as
this:

Another possible use for image files is cus-
tomized entry forms, as in

Handling Images in X-Icon

Editors’ Note: This is the last of a series of articles on
graphics in Icon. Like previous articles, this one de-
scribes the facilities found in Version 8.10 of Icon. The
next version of Icon will substantially enhance Icon’s
graphics facilities and change the way some things are
done. You’ll probably first hear about these changes in
the Icon Newsletter. Later on, we plan to have a few
articles in the Analyst on some of the new graphics
features.

All or a portion of the contents of a window
can be saved in an image file. Conversely, image
files can be read into a window.

Version 8.10 of Icon supports two image for-
mats: XBM and
XPM. XBM is a
black-and-white
bitmap format
that’s supported
by X. XPM is a
color pixmap for-
mat. XPM isn’t
yet officially
supported by X,
but it’s widely
used and may be
supported in the
future. By con-

2 / The Icon Analyst

From the Library

This is the first of a series of articles that
feature the Icon program library. In this article,
we’ll start by giving a general description of the
library for those of you who may not be familiar
with it. Then we’ll give you some tips on finding
things in the library. In each of these articles, we’ll
describe a program or procedure from the library
that is particularly useful.

Background

The Icon program library has a history that is
nearly as long as Icon itself. The library started as
a way for us to keep track of useful programs and
procedures for our own use. We soon realized that
other Icon programmers would benefit from the
library, and it was first released publicly in 1983.
There have been several revisions to the library
since then and in 1990 we started a subscription
update service that allows Icon programmers to
get new library material several times a year.

At the time we started the library, we didn’t
anticipate how large it would become. What started
as a handful of programs and procedures written
by three or four local Icon programmers has grown
to 230 complete programs and 1224 procedures
designed for use in other programs — the work of
45 different persons. We’ve also added useful data,
supporting documentation, and “packages” that
are sufficiently complex they require special treat-
ment. With everything accounted for, the library
presently weighs in at nearly 5.4MB. And it’s con-
stantly growing.

We originally planned to prepare all the code
for the library in a consistent style and typographi-
cal format. To help maintain the library, each file
was given a standardized header and we estab-
lished guidelines for documentation contained in
the file. An example is shown in Figure 1 on the
next page. The original header format survived
with only minor changes, but it soon became im-
practical for us to adapt user-contributed code to a
common typographical format, much less a consis-

Alternatively, an image can be read into a
window by XReadImage(s, x, y), which reads the
image named s into &window. The upper-left
corner of the image is placed at x and y, which
default to 0. Any portion of the image that does not
fit into the window is discarded. XReadImage()
fails if the image file cannot be opened or is not in
a supported format.

The function XWriteImage(s, x, y, w, h) writes
the contents of &window to the file named s,
starting at x and y and extending by w and h. x and
y default to 0 and if w or h is omitted, the extent is
to the edge of the window in that direction. Thus,
XWriteImage(s) writes the entire contents of &win-
dow to the file named s. If s ends in .xpm, the image
file is written in XPM format. For all other file
names, the image is written in XBM format and the
color information is lost (all pixels that are not
white are written as black).

Reference

1. Graphic File Formats, David C. Kay and John R.
Levine, TAB Books, 1992.

The Icon Analyst / 3

##
#
File: post.icn
#
Subject: Program to post news
#
Author: Ronald Florence
#
Date: October 2, 1991
#
###
#
This program posts a news article to Usenet. Given an optional
argument of the name of a file containing a news article, or an
argument of "–" and a news article via stdin, post creates a
follow-up article, with an attribution and quoted text. The
newsgroups, subject, distribution, follow-up, and quote–prefix can
optionally be specified on the command line.
#
usage: post [options] [article | –]
–n newsgroups
–s subject
–d distribution
–f followup–to
–p quote–prefix (default " >")
#
See the site & system configuration options below. On systems
posting via inews, post validates newsgroups and distributions in
the "active" and "distributions" files in the news library directory.
#
##
#
Links: options
#
##
#
Bugs: Newsgroup validation assumes the "active" file is sorted.
Non-UNIX sites need hardcoded system information.
#
##

Figure 1. Typical Library File Header

tent programming style. The multitude of coding
styles currently represented in the library prob-
ably is a good idea — it allows users to see how
different persons write Icon code.

We have had several problems with main-
taining the library as it has grown besides those
associated with its sheer size. Although many Icon
programs will run on any platform, some pro-
grams inevitably require platform-specific features,
such as pipes. Since we don’t have the resources to
customize the library for a variety of different
platforms, we settled for including platform-spe-
cific programs along with the rest.

When we added graphics facilities to Icon,
this problem took on an entirely different charac-

ter. On one hand,
graphics facilities are
only supported on a
few of the platforms
on which Icon runs; at
the present time a mi-
nority of Icon pro-
grammers can used its
graphics facilities. On
the other hand, the
number of programs
and procedures that
use graphics is large
and growing. At
present, the graphics
portion of the library
comprises nearly half
its bulk and it certainly
will be in the majority
in a year.

It would be easi-
est for us to combine
the graphics and non-
graphics portions of
the library in the man-
ner we’ve done for
other platform-spe-
cific components, but
it seems unfair to bur-
den the majority of li-
brary users with a
large amount of mate-
rial they can’t use.

At present we’re
living with a some-
what unhappy com-
promise in which the

part of the library that requires graphics facilities is
segregated from the rest. This allows persons who
can’t use the graphics portion of the library to
discard it easily. So far, we’ve had no complaints
about this approach.

The Library Hierarchy

The Icon program library is organized in a
hierarchy as shown in Figure 2 on the next page.
The directory names reflect their content:

data data
docs documentation
packs packages
procs procedures
progs complete programs

4 / The Icon Analyst

There are subdirectories in packs but not in
the other directories. The x prefix on directories in
the right half of the tree identifies “X-Icon” mate-
rial that relates to graphics. We’re in the process of
“de-Xing” our terminology now that Icon’s graph-
ics facilities are no longer tied to the X Window
System. You may see the xs become gs some time
soon.

Finding Things in the Library

Suppose you need a program to count the
number of instances of each different character in
a file or a procedure to compute binomial coeffi-
cients. Programming these kinds of things in Icon
is sufficiently easy that you may decide to write
your own. But both the program and the procedure
mentioned above are in the library, tested, and
have useful features that you might not think of if
you were to write your own. We won’t bore you
with a sermon on the virtues of reusable code, but
if you’re like us, you’d prefer to use an existing
program rather than writing one your own — if
you could find an existing one. That’s the problem

— finding things in the library.
This is a long-standing problem, and one that

has become steadily worse as the library has grown
in size. In early versions of the library, when there
were only a few files, you could guess from file
names or scroll through likely code on the screen
— or even print the whole library and leaf through
it. File names are problematical. Even with the best
effort at being descriptive, it’s hard to get much
useful information with only the eight-character
base name limit that cross-platform file transfer
imposes. Even selected scrolling is impractical with
the present library, and printing it all is out of the
question for most of us, if for no other reason than
because of environmental concerns.

There are, however, ways to find things in the
library or least narrow the search. The obvious
starting point is the listing of files with brief de-
scriptions in the manual that accompanies the li-
brary. With a couple of good guesses, you prob-
ably quickly can find the program and procedure
we mentioned earlier. From there, a quick glance at
the documentation at the beginning of the two files
will tell you if they are what you want.

Keyword-in-context listings provide per-
muted indexes of the library’s content that are
easier to use than the listing in the manual. There is
a listing for programs, progs.kwc, and one for
procedures, procs.kwc. Both are in the docs direc-
tory. There are corresponding listings for the graph-
ics part of the library. See Figure 3 on the next page
for an example of the contents of a permuted index.

These permuted indexes are made up from

docs packs procs progs xdata xdocs xpacks xprocsdata xprogs

basic graphics

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

Figure 2. Icon Program Library Hierarchy

The Icon Analyst / 5

the subject lines of the file headers. As such, they
are only as good as the header lines that authors
provide. Nonetheless, these permuted indexes of-
ten let you quickly tell if the library has something
you want — or doesn’t.

What you’d really like, no doubt, is a highly
intelligent on-line help facility with an expert knowl-
edge of everything in the library. We don’t have
that, but there is an interactive browsing program
for the library.

Browsing in the Library

A program, called ibrow, written by Bob
Alexander, makes browsing in the library easy.
You’ll see Bob’s name often in these articles on the
library; he’s made some of the best-written and
most useful contributions to it.

The program ibrow requires UNIX, both for
pipes and because it is capable of
invoking UNIX utilities. The pro-
gram could, however, be adapted
to other platforms (hint, hint).

If ibrow is called without any
arguments, it processes all the Icon
files in the current directory. Al-
ternatively, the files to be pro-
cessed can be given on the com-
mand line, as in

 ibrow complex.icn rational.icn

The first thing ibrow does is
provide a numbered, alphabeti-
cal listing of all the procedures

Figure 4. Typical Browsing Session

and record declarations in the
programs. The names of pro-
cedures are followed by pa-
rentheses, while the names of
records are followed by peri-
ods. ibrow then presents the
user with options for further
processing, as shown in Fig-
ure 4.

As you’d expect, typing
q followed by a return at this
point ends the session with
ibrow. The characters nn re-
fer to the numbers given in
the declaration listing. Typ-
ing a number optionally fol-
lowed by f and then a return
shows the name of file con-
taining the declaration and

gives the first line of the declaration. Following the
number by m displays the entire declaration using
the UNIX utility more. The letters e and v invoke
the ex and vi editors, respectively, positioned at the
beginning of the declaration.

From there, you’re on your own.

Next Time

In the next article on the Icon program li-
brary, we’ll feature a procedure that produces a
very nicely formatted image of any Icon data
object. It’s especially useful for structures — lists,
sets, tables, and records. It can even handle circu-
lar references.

Not only is this program very useful, but the
code itself is instructive, so we’ll make it the sub-
ject of an article in our Program Anatomies series.

Icon Browser –– scanning files:
 complex.icn
 rational.icn

 1. addrat() 5. cpxmul() 9. mpyrat() 13. reciprat()
 2. complex. 6. cpxstr() 10. negrat() 14. str2rat()
 3. cpxadd() 7. cpxsub() 11. rat2str() 15. strcpx()
 4. cpxdiv() 8. divrat() 12. rational. 16. subrat()

q,nn,nn[fmev],<return> (? for help):

.

.

.

icalls.icn tabulate Icon calls
findstr.icn find embedded character strings
ruler.icn write a character ruler
xtable.icn show character code translations
delamc.icn delaminate file using tab characters
fileprnt.icn display characters in file
tablc.icn tabulate characters in a file
adlcheck.icn check for bad address list data
sing.icn sing The Twelve Days of Christmas

.

.

.

Figure 3. Portion of a Permuted Index

6 / The Icon Analyst

mathematical abstractions, and the insight gained
by creating a circle this way not only is educational
for children, but it also encourages them to explore
variations and other geometrical figures.

In turtle geometry, as the name suggests, a
turtle is an agent for navigation. It moves in re-
sponse to instructions like “move forward a step”.
For our purposes, the turtle is conceptual, although
robot turtles have been used in educational experi-
ments. In fact, the idea of using a turtle, which is a
captivating focus for children, originated in a very
early robot tortoise called Machina speculatrix that
was constructed by W. Grey Walter [6].

Thus, a child gives the turtle instructions and
the turtle moves as a result, perhaps tracing out an
approximation of a circle. Usually, of course, this is
done with a computer and the navigational space
is the computer screen.

Turtle graphics comes by adding a drawing
capability, whereby the turtle may draw a line as it
moves, producing figures as the result of its trav-
els.

So far, we’ve been talking about teaching
children about geometry. The ideas apply to adults
also, although they usually have so much “bag-
gage” from previous experience that the turtle
metaphor is not as captivating as it is for children.
The navigational model of turtle graphics nonethe-
less provides an easy and natural way of produc-
ing many kinds of interesting drawings. That’s
what we’ll explore in this article.

Turtle graphics originally appeared in the
programming language Logo [7], which has many
additional capabilities in addition to graphics.
Turtle graphics, however, can be implemented in
almost any imperative programming language that
has graphics capabilities. In the case of Icon, turtle
graphics have been implemented by a package of
procedures that are included in the Icon program
library.

Some aspects of turtle graphics are funda-
mental and are supported in essentially the same
way in all implementations. Other aspects can be
cast in various ways, depending on the capabilities
desired, the amount of effort invested in the imple-
mentation, and the taste of the designer. As a
result, all implementations of turtle graphics share
a common foundation, but no two are identical (as
far as we can tell).

At any time, a turtle is at a specific location on
a surface, usually a plane with limited extent. The

Turtle Graphics

Turtle geometry [1, 2] was developed as a way
of introducing children to mathematics by pre-
senting geometry in an interesting metaphor that
encourages personal involvement.

Geometry can be viewed in many ways. Tra-
ditionally, it’s taught first in the axiomatic style of
Euclid and later developed in the algebraic style of
Descartes.

Human beings have excellent spacial intu-
ition for geometry, presumably because of their
highly developed visual system and its value for
survival in evolutionary competition.

Consider something as simple as a circle [3]:

We all understand that. But what about the
algebraic relationship

x2 + y2 = r2

that describes the coordinates of a circle in terms of
its radius. If you didn’t already know what a circle
was, would this algebraic description give you an
intuitive notion of what a circle is?

The parametric equations for a circle,

x := r cos(θ) 0 ≤ θ ≤ 2π
y := r sin(θ)

suggest a way of plotting a circle, but they do not
appeal to our geometric intuition either.

Verbal descriptions of a circle don’t help that
much either. If you go to textbooks, you’ll find
definitions like these: “A circle is the locus of points
in a plane that are equidistant from a given point
called the center” [4] and “A circle is a plane
continuous curve all of whose points are equidis-
tant from a fixed coplanar point” [5] — definitions
only a mathematician could love.

Turtle geometry takes a navigational approach
to geometry. A circle can be described in terms of
actions a child can perform. To trace out a circle,
move forward a little, turn right a little, move
forward a little, turn right a little, and so on. With
this, a child can understand what a circle is all
about. Granted, there are problems with this for-
mulation. One is knowing when to stop. Another is
that a circle constructed in this way isn’t perfect,
even if all the moves and turns could be made
precisely the same . But perfect circles exist only as

The Icon Analyst / 7

turtle also has a heading — the direction it faces.
The turtle moves or changes its heading in re-
sponse to commands. When it moves, it may draw
a line, or it may not, depending on the command.
Beyond that, it’s a question of what commands are
available.

Some turtle graphics systems support mul-
tiple turtles, color drawing, and even fancy fea-
tures that have little to do with the original con-
cepts. Icon’s version of turtle graphics is compara-
tively simple and straightforward. There is only a
single turtle and there are no commands related to
color.

Turtle procedures provide the commands that
manipulate the turtle and its drawing. Icon pro-
grams that use these procedures of course have all
the rest of the capabilities of Icon available, such as
changing the color of drawing.

The next section describes the most important
aspects of Icon’s turtle graphics. There are other
facilities in addition to those described here; see
turtle.icn in the Icon program library for a com-
plete description.

Icon Turtle Graphics

The turtle always draws on &window. If
&window is null when the first turtle procedure is
called, a 500 × 500 window is opened and assigned
to &window.

The turtle, which is invisible, initially is in the
center of the window, facing toward the top.

Angles are measured in degrees. The positive
direction is clockwise. Although specific angles
rarely occur in turtle graphics programs, it may be
useful to know that 0° is in the positive x direction,
so that the turtle initially faces -90°.

Distances are measured in pixels but are mul-
tiplied by a scaling factor that defaults to 1 but can
be set to another value.

The primary turtle graphics procedures are:

TDraw(n) moves the turtle forward n units in
the direction it’s facing, drawing a line from where
it was to where it winds up. The value can be
negative to move and draw backwards. TSkip(n) is
like TDraw(n) except that the turtle does not draw
a line.

TDrawto(x, y) turns the turtle toward the loca-
tion (x,y) and moves the turtle there while drawing
a line. TGoto(x, y) moves the turtle to (x,y) without

drawing a line or changing its heading.

TLeft(d) turns the turtle left d degrees. Its loca-
tion is not changed and nothing is drawn. TRight(d)
is like TLeft(), except the turtle is turned to the
right.

TFace(x, y) turns the turtle to face toward (x,y).
Nothing is drawn.

TScale(n) multiplies the scaling factor by n. The
turtle location and heading are not changed and
nothing is drawn.

THome() returns the turtle to its original posi-
tion at the center to the window, facing upward.
Nothing is drawn.

TReset() clears the window and starts over.
TSave() saves the state of the turtle. The state

consists of the turtle’s location, its heading, and the
current scaling factor. TRestore() restores the state
of the turtle.

The last two procedures greatly increase the
power of turtle graphics. It’s worth noting, how-
ever, that these procedures go well beyond the
original framework of turtle geometry. Human
beings, much less turtles, have very limited capac-
ity for remembering and recalling levels of infor-
mation like this. A computer, of course, has no
trouble with this, and it’s trivial to implement in
Icon.

Drawing with Turtle Graphics

The capabilities of turtle graphics suggest the
kinds of drawings for which it’s best suited: Those
that can be easily cast in terms of simple move-
ments and angle changes.

Consider a “random walk” in which the di-
rection in which the turtle moves is chosen at
random:

repeat {
 TDraw(1)
 TRight(?30 + 1 – 15)
 }

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

FTP: cs.arizona.edu (cd /icon)

8 / The Icon Analyst

The turtle moves forward and draws for one unit.
It then turns right an amount in the range –15° and
+15° and repeats. This goes on until the program is
interrupted. An example of the result is shown in
Figure 1.

Figure 1. A Random Walk

The amount of movement and the angular
range used here are rather arbitrary; it’s easy to
make a more general procedure in which the
amount of movement also is chosen at random and
different parameters can be specified.

The complexity and variety of figures that can
be produced by simple rules is illustrated by these
few lines of code that draw “spirals”:

angle := 30 + ?149
incr := sqrt(4 ∗ ?0) + 0.3
side := 0

while side < 500 do {
 TDraw(side +:= incr)
 TRight(angle)
 }

Here both the angle of drawing and the increment
of movement and drawing have random compo-
nents. Some examples of the results are shown on
the next page.

The value of being able to save and restore the
state of the turtle is illustrated by the following
procedure, which draws a random “bush”:

procedure bush(n, len)

 TSave()

 TRight(?70 + 1 – 35)

 TDraw(?len)

 if n > 0 then {
 every 1 to ?4 do {
 bush(n – 1, len)
 }
 }

 TRestore()

end

This procedure might be used as follows:

TSkip(–120) # position root
bush(n := 4 + ?4, 300 / n)

An example of the results is shown in Figure 2.

Figure 2. A Bush

Conclusions

Figures of this kind can be drawn using coor-
dinate computations and Icon’s built-in drawing
functions. That is, of course, how the turtle proce-
dures are implemented. The advantages of turtle
graphics lie in its conceptual framework and navi-
gational metaphor.

In the next issue of the Analyst, we’ll de-
scribe another situation in which turtle graphics
are particularly apt.

Acknowledgment

The turtle graphics package in the Icon pro-
gram library was designed and implemented by
Gregg Townsend. The examples given in this ar-
ticles are based on ones contained in his demon-
stration package, tgdemo.icn.

The Icon Analyst / 9

“Spirals”

10 / The Icon Analyst

References

1. Mindstorms; Children, Computers, and Powerful
Ideas, Seymour Papert, Basic Books, Inc., New York,
New York, 1980.

2. Turtle Geometry; The Computer as a Medium for
Exploring Mathematics, Harold Abelson and Adrea
diSessa, The MIT Press, Cambridge, Massachu-
setts, 1980.

3. “Computer Recreations”, Brian Hayes, Scientific
American, February 1984, pp. 14-20.

4. Brief Analytic Geometry, second edition, Thomas
E. Mason and Clifton T. Hazard, Ginn and Com-
pany, Boston, Massachusetts, 1947.

5. A Handbook of Curves and Their Properties, Robert
C. Yates, J. W. Edwards, Ann Arbor, Michigan,
1947.

6. The Living Brain, W. Grey Walter, W. W. Norton
& Co., Inc., New York, New York, 1953.

7. Visual Modeling with Logo; A Structured Approach
to Seeing, James Clayson, The MIT Press, Cam-
bridge, Massachusetts, 1988.

which assignment is a statement, you may not
have thought of how useful it can be to have
assignment expressions.

Before going on, we’ll review the properties
of assignment expressions in Icon. An assignment
is just an operation with two arguments. The first
(left) argument is the variable to which the second
(right) argument value is assigned. As in all binary
operations in Icon, the left argument is evaluated
before the right one.

Both arguments can be arbitrarily complex
expressions as long as the left one produces a
variable and the right one produces a value of a
type that is appropriate for assignment to the vari-
able. Although ordinary variables can be assigned
any kind of value, keywords like &random can
only be assigned integer values. A value assigned
to &random therefore must be an integer or a value
that can be converted to an integer. Similarly,
&subject can only be assigned a string value.

The evaluation of either argument of assign-
ment can, of course, fail. If an argument fails, no
assignment is performed and the assignment ex-
pression fails.

Assignment groups from right to left (unlike
most binary operations) and produces its left argu-
ment as a variable. Consequently,

i := j := 1

groups as

i := (j := 1)

and assigns 1 to both i and j.
Such multiple assignments are fairly com-

mon in Icon programs. They seem natural and may
not even raise issues about statements versus ex-
pressions.

Augmented assignment, in which assignment
is syntactically combined with another binary op-
eration, is, of course, an expression also. Note,
however, that

i := j +:= 1

does not increment both i and j; it increments j and
assigns the resulting value to i.

It’s fairly common to see augmented assign-
ment in subscripting, as in

args[i +:= 1]

in which the value of i is incremented and the result
is used to subscript args.

Programming Tips

Assignment Expressions

In most imperative programming languages,
assignment is a statement, not an expression. Hence
assignment has no value associated with it and it
cannot be used where expressions are expected.
Icon, on the other hand, has no statements, only
expressions, and assignment is just another kind of
expression. It produces a value and can be used
where expressions are expected.

If you learned to program in a language in

The Icon Analyst / 11

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1994 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

In most cases, the use of assignment within
another expression is a convenience with minor
benefits in terms of program brevity and some loss
in readability. There are situations, however, when
the use of assignment within other expressions has
a substantial benefit.

Consider the following procedure for draw-
ing a regular polygon with n sides in a circle of
radius r, centered at xc and yc:

procedure polygon(n, r, xc, yc)

 incr := 2 ∗ &pi / n
 angle := 0
 x := r ∗ cos(angle) # just r
 y := r ∗ sin(angle) # just 0

 every 1 to n do {
 angle +:= incr
 xnew := r ∗ cos(angle)
 ynew := r ∗ sin(angle)
 XDrawLine(xc + x, yc + y,
 xc + xnew, yc + ynew)
 x := xnew
 y := ynew
 }

 return

end

Successive lines are drawn from previously
computed points to newly computed ones. The
variables x and y hold the previously computed
coordinates, while the new ones are in xnew and
ynew.

Here’s a case where the amount of code can be
substantially reduced by using assignment at the
places where new values are needed. The main
loop can be recast as:

 every 1 to n do {
 angle +:= incr
 XDrawLine(xc + x, yc + y,
 xc + (x := r ∗ cos(angle)),
 yc + (y := r ∗ sin(angle)))
 }

Not only is the code shorter, but this form elimi-
nates the need for two local variables to hold the
new values.

Incidentally, care is needed when assignment
is used to provide the values of arguments in a call.
Arguments that are variables are not dereferenced
until all argument expressions have been evalu-
ated. That’s not a problem in the example above,
since the first argument expression, xc + x, uses the

value of x before it is changed in the computation
of the third argument, and similarly for the second
and fourth arguments. If the expression had been

XDrawLine(x, y,
 x := r ∗ cos(angle), y := r ∗ sin(angle))

the new values of x and y computed in the third and
fourth arguments would have been used for the
first and second arguments also.

This problem can be avoided by dereferencing
the first and second arguments, extracting their
values before going on to evaluate the third and
fourth argument expressions:

XDrawLine(.x, .y,
 x := r ∗ cos(angle), y := r ∗ sin(angle))

12 / The Icon Analyst

A Word of Thanks

There’s more to the production of a newslet-
ter than you might realize if you haven’t done it. As
the editors, we do the writing, layout, text entry,
copyediting, program testing, and so forth.

The Department of Computer Science here
provides assistance with lots of “little” things –
things like taking subscription renewals, helping
with the mailing, and so on.

The most important help we get comes from
Gregg Townsend, who reads every issue before we
send it to be printed. He does an excellent job and
with amazing quickness. Over the years he’s caught
many errors ranging from typographic mistakes to
incorrect programs. And he’s often made valuable
suggestions for general improvements. We secretly
hope that someday we’ll produce an issue for his
approval in which he can find nothing wrong. But
that probably will never happen.

We just want to take this opportunity to ex-
press our sincere thanks to Gregg for all his help;
help that benefits not just us but all our readers.

facile vehicle for this kind of interaction between
technical work and its documentation than con-
ventional forms of academic publication. So we
benefit too.

Obviously, over a period of years, the nature
of the material in a newsletter like this changes
simply because some topics have been thoroughly
covered while new topics come up that we’d not
anticipated. For example, when we started the
Analyst, we had no idea that there would be a
major addition to Icon in the form of graphics
facilities. With this issue, we’ve concluded a series
on graphics. We’ve been somewhat concerned
about how well this material would be received,
since Icon presently supports graphics on only a
few platforms. As a result, we’ve deliberately
spaced out the articles so they wouldn’t over-
whelm readers with no capability for using graph-
ics in Icon.

We’ll continue to have articles from time to
time on graphics, and if our present implementa-
tion efforts go well, more persons may be able to
use graphics in the future. But we’ll also try to
maintain a focus on the “mainstream” of Icon
programming.

What’s Coming Up

We usually have a lot of material for the
Analyst in the “pipeline”. In fact, we sometimes
have nearly a full year of issues complete, or nearly
so, in advance. We’re not quite that far ahead at the
moment, but we have a pretty good idea of most of
the articles for the next few issues. We have not,
however, decided on order, so we can’t be as
specific about the next issue as we usually are.

But look for another article on the Icon pro-
gram library and a related program anatomy, as
well as an article on the use of turtle graphics for
rendering figures described by Lindenmayer Sys-
tems. If that doesn’t mean anything to you, stay
tuned. And renew your subscription if you haven’t
already.

Reflections
It seems appropriate, as we plan to start the

fifth year of the Analyst, to take stock and give
some thought to where we are going.

When we initiated the Analyst, we had a
general idea of things that we wanted to do and
what prospective readers might want. Our origi-
nal intention was to provide a mix of material
ranging from tutorials for persons new to Icon to
advanced material for the most experienced and
technically oriented readers.

As the Analyst has evolved, we’ve tended
toward more advanced material. This reflects, in
part, what our readers have told us. We’ve also
made an effort to put more elementary material in
the Icon Newsletter, whose readership includes a
many persons who are new to Icon. But the trend
in the Analyst also reflects our own interests and
research directions.

We’ve long known that documentation is an
integral part of the process of doing research. Writ-
ing about a technical subject tends to bring out
problems and expose gaps that are not otherwise
apparent. And writing often leads to new ideas.
The Analyst, with its relatively informal tone and
(we hope) friendly readership, is a much more

