
The Icon Analyst / 1

February 1994
Number 22

In-Depth Coverage of the Icon Programming Language

the important consideration for large tables and
lists. A table element requires about 3.5 times the
amount of space as a list element (the exact amount
depends on the size of the table and how it is
constructed).

There are several reasons for this. One is that in
tables, keys must be stored along with the values.
For lists, on the other hand, keys are just positions
and are implicit. Another reason tables are larger
than lists is that information is stored in tables to
provide rapid look-up.

Whether or not a factor of 3.5 is important
depends on the amount of memory a procedure
needs and on the platform on which the program
runs. On modern workstations, the amount of
memory needed for the kinds of procedures we’ve
described usually is not a significant consideration.
For a personal computer with limited RAM, the
amount of memory needed may be the limiting
factor in what can be done.

We’ll therefore consider how lists can be used
in place of tables. The procedure to compute values
in the chaotic sequence provides a good case to
study. A version that uses tables is:

procedure q(i)
 static memory

 initial {
 memory := table()
 memory[1] := memory[2] := 1
 }

 return \memory[i] |
 (memory[i] := q(i – q(i – 1)) + q(i – q(i – 2)))

end

 In this issue …

Procedures with Memory … 1
Color in X-Icon … 5
Programmer-Defined Control
 Operations … 8
What’s Coming Up … 12

Procedures with Memory
(continued)

In the last issue of the Analyst, we described
how memory can be added to procedures to avoid
unnecessary recomputation. As illustrated in that
article, the savings in time can be dramatic. In this
article, we’ll consider the space requirements for
procedures with memory and look at alternate for-
mulations.

Space Requirements

It obviously takes space to provide the memory
that saves redundant computations. Trade-offs be-
tween speed and space are common in computing.
In the situation described here, the trade-offs are
much in the favor of speed, but space is nonetheless
a significant consideration.

The examples in the previous article used tables
for memory. Tables provide the great advantage of
flexibility. They can be subscripted with any kind of
value, they grow automatically, and there’s no worry
about out-of-bounds subscripts.

As easy as tables are to use, however, they take
more storage than the obvious alternative, lists. The
exact amount of storage that tables and lists re-
quires is complicated to determine and depends to
some extent on the history of their use [1]. In both
cases, however, the amount of space is dominated
by the space for the elements they contain, so this is

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

2 / The Icon Analyst

are appended to the list to provide for i as well as
some “breathing room”.

You might wonder about the relative speed of
the table and list approaches to providing proce-
dural memory. List look-up certainly is faster than
table look-up, but by how much? And what’s the
penalty for having to check the list bound every
time the procedure is called?

Here are timings on a Sparc IPX for comput-
ing q(1) through q(1000) for three cases: using a
table, using a list without bounds checking, and
using a list with bounds checking.

tables: 400 ms.
list without check: 366 ms.
list with check: 483 ms.

You may be surprised that table look-up is not
much slower than list look-up. That’s part of what
you get in return for the larger size of table ele-
ments. And with bounds checking, using a list
actually is slower than using a table. Actually, for
the case timed here, the list is not increased in size.
Presumably, the overall time to do that is small in
any case, since it occurs infrequently.

Generators with Memory

In developing a procedure like this, it’s easy
to overlook a better approach. In the case of a
sequence, values are most likely to be wanted in
order. For this, a generator that is called once and
repeatedly resumed is more natural formulation
than a procedure that is called many times.

In the case off a generator, the amount of
memory needed can be determined from an argu-
ment that limits the generation. Here’s a version of
the chaotic sequence:

procedure qgen(limit)
 local memory, i

 memory := list(limit, 1)

 suspend 1 | 1 | {
 memory[i := 3 to limit] :=
 memory[i – memory[i – 1]] +
 memory[i – memory[i – 2]])
 }

end

The correctness of this procedure relies on the fact
that q(i) always depends on previously computed
values in the sequence.

It’s relatively easy to substitute a list for the
table; nothing needs to be changed except the
initialization:

 initial {
 memory := list(1000)
 memory[1] := memory[2] := 1
 }

The problem with this is, of course, that the
size of the list limits the values that can be com-
puted. The size of 1,000 used in the example above,
is, of course, somewhat arbitrary. If the size of the
list is exceeded, \memory[i] fails because memory[i]
fails, and the procedure calls fails. That may not be
so bad; it even could be called a design decision.
However, if the size of the list is not big enough for
the intended use, the procedure must be modified
to handle the problem, or the size of the list must be
specified as an argument to the procedure.

Making the list as large as possible is not a
good solution, since a list requires space for all its
elements, even if they never are used. An obvious
solution to these problems is to start with a list of
modest size and increase its size if needed. It might
seem like Icon’s ability to add an element to a list
would be the easiest thing to do, but there’s no way
to predict the argument with which the procedure
is called — many additional elements might be
required for any call, and putting them on the list
one at a time is inefficient. And, if the list needs to
be increased in size, it’s probably worth making a
substantial increase. An unimaginative but work-
able approach to list-expansion is:

procedure q(i)
 static memory, size, delta

 initial {
 size := 1000
 delta := 1000
 memory := list(size)
 memory[1] := memory[2] := 1
 }

 if i > size then {
 memory |||:= list(i – size + delta)
 size := ∗memory
 }

 return \memory[i] |
 (memory[i] := q(i – q(i – 1)) + q(i – q(i – 2)))

end

If i is greater than the current size, enough elements

The Icon Analyst / 3

procedure a(i, j)
 static memory

 initial {
 memory := list(6)
 every !memory := table()
 }

 if i = 0 then return j + 1

 if j = 0 then
 return \memory[i][j] |
 (memory[i][j] := a(i – 1, 1))
 else
 return \memory[i][j] |
 (memory[i][j] := a(i – 1, a(i, j – 1)))

end

As with the alternative approaches to the
implementation of sparse arrays, one option is to
use a single table with a composite key composed
from the two arguments:

procedure a(i, j)
 static memory
 local key

 initial memory := table()

 if i = 0 then return j + 1

 key := … # function of i and j

 if j = 0 then
 return \memory[key] |
 (memory[key] := a(i – 1, 1))
 else
 return \memory[key] |
 (memory[key] := a(i – 1, a(i, j – 1)))

end

A key, of course, must be a unique function of
the arguments; every different pair of arguments
must produce a different key. Some care is needed
here.

Since it’s impractical to compute a(i, j) for i >
6, i and j can be packed into a single integer, as in:

key := 8 ∗ j + i

To be safe, the value of i should be checked to
be sure it’s not too large. Of course, j might be so
large that multiplying it by 8 would cause integer
overflow for implementations of Icon that don’t
support arbitrarily large integers.

A more general approach that does not de-
pend on restrictions on the size of the values is
concatenation, as in

Thus, qgen(1000) generates the first 1,000
values in the chaotic sequence using a list with only
one element more than the number actually needed.
(Saving that one element is hardly worth the effort
and computational time.)

The interesting thing about this formulation
is how fast it is: Generating 1,000 values takes only
163 ms.

Procedures with Several Arguments

Adding memory to procedures that have more
than one argument presents different problems.
Consider the procedure for computing
Ackermann’s function as given in the previous
article:

procedure a(i, j)

 if i = 0 then return j + 1
 else if j = 0 then return a(i – 1, 1)
 else return a(i – 1, a(i, j – 1))

end
If we really wanted to compute values

Ackermann’s function for values of i < 5, we could
use the formulas given in the last article. We’ll
ignore that possibility here, since we want to illus-
trate how to add memory to procedures that we
may not know to how compute more directly.

One way to add memory to such a procedure
is to use a table of tables in the fashion that can be
used to implement sparse arrays [2]:

procedure a(i, j)
 static memory

 initial memory := table()

 if i = 0 then return j + 1

 /memory[i] := table()

 if j = 0 then
 return \memory[i][j] |
 (memory[i][j] := a(i – 1, 1))
 else
 return \memory[i][j] |
 (memory[i][j] := a(i – 1, a(i, j – 1)))

end

A list of lists would require less space, but
performing bounds checking and doing list expan-
sion for such an approach would be time-consum-
ing and messy. Since it’s known that computing
Ackermann’s function for anything but small ar-
gument values of i is intractable, a list of tables can
be used with little risk:

4 / The Icon Analyst

key := i || "," || j

The separator can be any nonnull string that is not
a digit.

This approach has the advantage of being
very general. It can be used for many cases where
arguments are not integers and for cases in which
there are many arguments. An even more general
approach can be used for cases where the argu-
ments are strings that might contain the separator
character, as in

key := image(s1) || "," || image(s2)

This works for many other types of arguments,
such as lists, because image(x) produces a unique
identification for x in almost all cases (do you know
when it may not?)

Here are timings on a Sparc IPX for a(3, 7) for
the methods described above:

no memory: 51400 ms.
table of tables: 516 ms.
list of tables: 466 ms.
integer keys: 500 ms.
concatenated keys: 533 ms.

The advantage of using memory is obvious.
It’s not so obvious which of the memory methods
is best. Using a table of tables is simple, and only a
little speed is gained by using a list of tables. It
should not be surprising that integer keys are
faster than concatenated keys, but the difference is
less than you might expect.

Another factor that needs to be considered is
the amount of storage allocated for the different
forms of memory:

table of tables: 88284 bytes
list of tables: 88504 bytes
integer keys: 88408 bytes
concatenated keys: 98409 bytes

Except in the case of concatenated keys, all
the storage allocated is for structures. The larger
amount for concatenated keys is for string alloca-
tion. By the way, the timings given earlier do not
include time for garbage collection; we set the
region sizes large enough to avoid garbage collec-
tion. Nonetheless, that factor needs to be kept in
mind.

Incidentally, there’s an extra benefit in using

memory for procedures like this: a(3, 7) goes to a
depth of 355 in recursion without memory but only
260 with it.

Conclusions

As we mentioned at the beginning of the first
article, the examples we’ve given, however inter-
esting they may be, are not the kinds of things
you’re likely to encounter in your day-to-day pro-
gramming.

You may, however, find situations in which a
procedure is called repeatedly with the same argu-
ments. These situations usually occur when a defi-
nition is recursive. Look particularly for cases where
strings are defined recursively, as in a grammar, or
where structures are defined recursively, as for
trees.

You also may want to look at a related use of
memory in procedures to assure that structures are
built only once [3].

So as not to leave you hanging with the ques-
tion about image(), it doesn’t give a unique identi-
fication for files if two by the same name are open.

References

1. “Memory Utilization”, Icon Analyst 4, pp. 7-
10.

2. “Sparse Arrays”, Icon Analyst 16, pp. 9-12.

3. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, pp. 193-
195.

The Icon Analyst / 5

Color in X-Icon

Color is one of the most important and poten-
tially rewarding components of computer graph-
ics — and one of the most difficult. Color often is
used just to make an application visually attrac-
tive. But color has many important uses beyond
purely decorative ones: to attract attention to im-
portant events or situations, to distinguish be-
tween different kinds of objects, and so on.

Using color effectively requires much more
than just a technical mastery of rendering color.
There are difficult issues related to color vision, the
human cognitive system, the psychology of color,
and even artistic taste. We won’t attempt to discuss
these issues here, but if you’re interested in dig-
ging deeper into such topics, see References 1-6.

In what follows we’re assuming hardware
that supports a color display of at least a few colors;
otherwise what follows is purely academic.

Specifying Colors

There are two ways you can specify colors in
X-Icon: by name or by numerical specification.
Color Names: Icon supports a color naming system
for the most commonly used colors. These names
consists of simple English phrases that specify hue,
lightness, and saturation values of the desired
colors. Hue distinguishes among different colors,
such as red, cyan, and purple. Lightness measures
the perceived intensity of a color. Saturation is a
measure of the purity of a color — how far it is from
a gray of equal intensity. Bright red is highly satu-
rated, while pink is comparatively unsaturated.

The syntax of a color name is

hue

very light

light

medium

dark

very dark

weak

moderate

strong

vivid

hue[ish]

where choices enclosed in brackets are optional
and hue can be one of black, gray, white, pink, violet,
brown, red, orange, yellow, green, cyan, blue, purple,
or magenta. A single hyphen or space separates
each word from its neighbor.

 Conventional English spelling is used. When
adding ish to a hue ending in e, the e is dropped.

For example, purple becomes purplish. The ish
form of red is reddish. Some examples are

"dark–blue"
"very light greenish–blue"
"very dark purplish blue"
"vivid orange"

When two hues are supplied and the first hue
has no ish suffix, the resulting hue is halfway
between the two named hues. When a hue with an
ish suffix precedes a hue, the resulting hue is three-
fourths of the way from the ish hue to the main hue.
The default lightness is medium and the default
saturation is vivid.

Mixing radically different hues such as yel-
low and purple usually does not produce the ex-
pected result. It’s also worth noting that the human
perception of color varies widely, as do the actual
colors produced by these names on different moni-
tors. The program colrbook allows you to see what
different color names produce. See Figure 1 on the
next page.

If a color name does not conform to the nam-
ing system described above, the name is passed to
the underlying window system, which may recog-
nize other names.

Our X servers support many other color
names, some of which are ones in common use, like
chartreuse, pink, and maroon. Other names strike
us as fanciful, not ones we’d think of on our own —
names like papaya whip and gainsboro. (Note
that color names can contain blanks.) There are a
large number of grays — 115 distinct ones on our
X server. These presumably are useful for gray-
scale monitors.

You might think that with all those names,
you could easily find a color you want. Don’t count
on it. You may not find a name you’d expect. For
example, our X server doesn’t have a name for teal
blue, which is one of our favorite colors. Perhaps
more disturbing is the fact that the color you get for
a color name may not be what you expect, or even
close to it. There are numerous reasons for this,
including differences in hardware and calibration.

If you’re running X, you can experiment with
its range of color names using the program
colrname in the Icon program library. See Figure 2
on the next page. If you click on a color name, the
background of the window turns to the corre-
sponding color and the color name appears in the
title of the window. (If you pick a color that’s dark,
you may not be able to read the names; if this

6 / The Icon Analyst

happens, just click here and there until you get a
light color background.)

Numerical Specifications: Numerical specifications
are given in terms of the red, green, and blue (RGB)
components of light that are used to produce color
on most modern monitors. Red, green, and blue in
this context are primary additive colors. The inten-

Figure 2. X Color Names

sity of the red, green, and blue components
determines the color. At zero intensity for
all components, the color produced is black
— at least in theory; most monitor screens
don’t appear to be completely black in the
absence of any illumination. At maximum
intensity for all components, the color pro-
duced is white — again, in theory; the
screens of most monitors appear to be light
gray when fully illuminated. And, in gen-
eral, equal intensities of all components
produce a shade of gray.

Unequal intensities of the primaries
produce other colors. For example, red and
blue in the absence of green produce ma-
genta, while red and green produce yellow,
and blue and green produce cyan. All other

colors are produced by combinations of the prima-
ries in various intensities.

The advantage of the RGB color-specification
system is that it corresponds directly to the hard-
ware that produces the color. The RGB system has
several disadvantages, however.

One disadvantage is that most persons learn

Figure 1. Standard Color Names

The Icon Analyst / 7

colors with a subtractive model in which a combi-
nation of pigments produces a darker color, not a
lighter one. Persons used to thinking in terms of
subtractive colors usually are surprised to learn
that additive primaries red and green produce
yellow. Another problem with the RGB system is
that it isn’t particularly intuitive. Unless you have
experience with the RGB system, it may not be
obvious to you how to get an orange color by
combining red, green, and blue light. And how
would you get teal blue?

In Icon, the intensities of red, green, and blue
can be specified in several ways. Strings of the form
"#rgb" , "#rrggbb" , "#rrrgggbbb" , and
"#rrrrggggbbbb" specify intensities in which r, g
and b are hexadecimal digits. The more digits
used, the more precisely a color can be specified.
The specification "#DDD" might suffice for a light
gray, but to get pink, something like "#FFC0CB" is
needed.

Intensities also can be specified by comma-
separated decimal values in the range from 0 to
65535. For example, "32000,0,0" specifies a dark
red (less than half the maximum intensity for red,
and no other primary).

As these ranges suggest, Icon maintains 16
bits of information for color intensities. The human
visual system doesn’t approach this degree of pre-
cision in discriminating among colors, so small
variations in numerical specifications usually are
unnoticeable.

There are other color models that are more
intuitive and that can be translated to RGB. One
model that works well for most artistically trained

persons is the hue-saturation-value (HSV) model.
Hue distinguishes among different colors, such as
red, cyan, and purple. Hue usually is measured in
degrees around a color circle; red is at 0°, green at
120°, and blue at 240°. Saturation is a measure of
how far a color is from a gray of equal intensity.
Bright red is highly saturated, while pink is com-
paratively unsaturated. Value measures the per-
ceived intensity of a color. Saturation and value
are measured on a scale of 0 to 100.

The program hsvpick provides an interactive
method for selecting colors by experimentation. It
has sliders with which you can adjust the RGB or
HSV values. As you drag a slider, the color in the
square changes accordingly. See Figure 3.

One problem with using window-specific
color names in an Icon program is that they aren’t
portable. For this reason, programs that need to be
portable among different window systems should
use Icon color names or numerical specifications.
The function XColorValue(s) produces the comma-
separated decimal form for the color s. Once a
numerical specification is determined for a name
that is supported on one platform, this numerical
specification then can be used in place of the name
to make the use of the color more portable.

Next Time

We’ll continue with color in the next issue of
the Analyst, describing how to use colors and
discussing some of the problems involved with
color.

References

1. Colour; Why the World Isn’t Grey, Hazel Rosotti,
Princeton University Press, 1983.
2. Color, Light, Sight, Sense, Moritz Zwimpfer,
Schiffer Publishing Ltd., 1988.

3. The Color Compendium, Augustine Hope and
Margaret Walch, Van Nostrand Reinhold, 1990.

4. Color in the 21st Century, Helene W. Eckstein,
Watson-Guptill, 1991.

5. Principles of Color Design, Wucius Wong, Van
Nostrand Reinhold, 1987.

6. Theory and Use of Color, Luigina De Grandis,
Abrahams, Inc., 1986.

Figure 3. hsvpick

8 / The Icon Analyst

Programmer-Defined Control
Operations

Computational Repertoires

Every programming language has a reper-
toire of built-in operations that provides the
languages’s basic computational capabilities. Rep-
ertoires vary in their functionality and may be cast
in different ways, but the underlying idea always
is the same. Almost every programming language
has some mechanism for extending its built-in
repertoire so that programmer can compose larger
computational units. Usually such extensions can
be used in the same way as the built-in operations
are used. Icon, for example, has a repertoire of
built-in functions and a way for declaring proce-
dures. (These are Icon’s terms; some other pro-
gramming languages use different terms.) The use
of functions and procedures in Icon is indistin-
guishable.

There’s a tension between the built-in reper-
toire and the capabilities that are left to program-
mer-defined extensions. Operations may be in-
cluded in the built-in repertoire for several rea-
sons. Some operations are so fundamental that
they can’t be defined but must be built in. Basic
input and output are examples of this. Some opera-
tions that could be defined in terms of others are
built in for efficiency. Other operations are built in
for the convenience of programmers. Still other
built-in operations contribute to the “character” of
the language — what it emphasizes as important.

A large computational repertoire in a pro-
gramming language provides many capabilities
that are readily available and don’t have to be
defined. But a large computational repertoire im-
poses a burden on a language: the amount that
must be mastered by programmers, the size of the
implementation, its maintenance, and its docu-
mentation.

Individuals have different opinions about
computational repertoires. Different kinds of op-
erations are viewed as important or unimportant,
depending on individual needs. Philosophical
views differ from “minimalist” to “the more the
better”. Not long ago, there was a lively discussion
in the Icon news group about whether entab() and
detab() should have been built in to Icon or left to
procedures in the program library.

There also are syntactic issues. Icon uses op-
erator notation for a relatively small set of opera-
tions that are used frequently or that correspond to
conventional mathematical notation. The rest of
the repertoire is cast in a functional syntax, which
has the virtue of being open-ended and readily
extendable. But again there are tensions. Opera-
tors are concise and quickly keyboarded. Operator
precedence and associativity rules reduce the need
for parentheses. But if there are too many opera-
tors, it’s easy to get them confused and there is
more likelihood that expressions will group in
unintended ways because of precedence and asso-
ciativity.

All of these issues must be dealt with by
programming language designers. The result al-
most always is a compromise, and sometimes an
unhappy one. And it’s easy enough to make unfor-
tunate decisions. Why, for example, should Icon’s
rarely used operation for producing a refreshed
copy of a co-expression be dignified by an operator
instead of being a function?

Extensibility in Programming Languages

The basic issue of extensibility in program-
ming languages has been of varying interest to
programming language designers [1]. Extensibil-
ity of the computational repertoire generally is
taken for granted and work has focused on issues
like the extensibility of types and even control
structures. Some rather bizarre ideas have been
suggested, such as the ability to change the syntax
of a programming language dynamically during
program execution.

Icon’s capabilities for extending its built-in
type repertoire are limited to record declarations,
which add new type names that can be checked
during program execution. Icon does not, how-
ever, provide any way for connecting record types
to type-specific operations or extending the built-
in repertoire to these types.

Control Structures

Although some proposals have been made
for providing ways to extend the built-in reper-
toire of control structures in programming lan-
guages, little has been done about it. By control
structures we mean constructions such as loops
(while-do) and expression selection (if-then-else).
In Icon, a control structure is any expression that

The Icon Analyst / 9

Icon was designed. New control structures for
dealing with them had to be invented. Iteration
and alternation are fairly obvious. It’s not clear,
however, that Icon has all the useful control struc-
tures related to generators that it might, or that the
ones it has are cast in the best way. A historical note
in this regard may help to put this matter in per-
spective. Repeated alternation and limitation were
added to Icon after it was a mature and established
language. They were motivated more by consider-
ations of the abstract properties of sequences of
results than by any evident need. Indeed, they
originally were viewed as questionable curiosities.
Yet once they became familiar in use, they substan-
tially increased the ease of some kinds of program-
ming .

Other control structures related to generators
have been suggested for Icon [2]. Perhaps they
would be useful, but it’s hard to know when they
can’t be used. And adding control structures to the
implementation of Icon is harder than adding them
to most other programming languages

Limitations of Goal-Directed Evaluation

There is one problem with expression evalu-
ation in Icon that a new control structure could
solve, at least in principle: the inability to get the
results from generators in parallel. Because of goal-
directed evaluation, suspended generators are re-
sumed in a last-in, first-out fashion. That is, the last
generator to suspend always is the first one to be
resumed if an alternative value is needed. There is
no way to get alternative values for other sus-
pended generators until all the ones for the last
suspended generator are produced. Thus, in

every write(!&lcase, “ “, !&ucase)

the lines written are

a A
a B
a C
 …

allows departure from the ordinary flow of con-
trol. Most but not all control structures in Icon are
distinguished by reserved words. Alternation, re-
peated alternation, limitation, and string scanning
are control structures that are represented with
special characters.

Control structures are very fundamental to
imperative programming languages. While it’s easy
enough to add to the computational repertoire of a
programming language, either by increasing its
vocabulary of built-in functions or by defining
new ones, control structures are, almost by defini-
tion, idiosyncratic and problematical. Since con-
trol structures are so basic, their performance is
important and hence they are “hardwired” into the
implementation for efficiency, making extensibil-
ity much harder.

Control structures differ from the computa-
tional repertoire of a programming language in
another way. While there are needs for all kinds of
computational capabilities, a few control struc-
tures usually suffice. Granted, individuals who
become used to the control structures in one pro-
gramming language expect them in another. For
example, we occasionally get requests for a do-
while control structure to complement Icon’s while-
do. Nevertheless, the concern about control struc-
tures is insignificant compared to the concern about
the computational repertoire. This doesn’t neces-
sarily mean that Icon could not benefit from new
control structures, even novel ones. Instead, the
problem is more that it’s hard to conceive of novel
control structures that would be useful. Increasing
vocabulary is far easier than developing new con-
cepts.

The issue of control structures actually is more
interesting in Icon than in most imperative pro-
gramming languages. Because of generators and
expressions that can fail, there’s a larger range of
possible control structures in Icon than in impera-
tive programming languages that have a “flat”
from of expression evaluation that always pro-
duces one result. Icon’s iteration (every-do), alter-
nation, repeated alternation, and limitation con-
trol structures would be meaningless in a pro-
gramming language like Pascal of C. What pos-
sible meaning could expr1 | expr2 have in such a
language? In some sense, control structures are
more interesting in Icon than in most other impera-
tive programming languages.

Generators, in the uniform and general way
that they are supported in Icon, were novel when

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

10 / The Icon Analyst

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1994 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

a Z
b A
b B
 …

not

a A
b B
c C
 …
z Z

If you want the latter output, you can, of
course, obtain it by indexing in a loop, as in:

every i := 1 to ∗&lcase do
 write(&lcase[i], “ “, &ucase[i])

Although it’s possible to work around this aspect
of expression evaluation, it can’t be done with
parallel generation. Yet generators are certainly
the most powerful feature of Icon, and it is frustrat-
ing that they cannot be used in such situations.

Co-Expressions

This problem, and related ones, motivated
the introduction of co-expressions in Icon. A co-
expression “captures” an expression without evalu-
ating it and produces a data object that can be
activated as needed to produce the results of the
expression. For the example above, co-expressions
can be used as follows:

lower := create !&lcase
upper := create !&ucase

while write(@lower, “ “, @upper)

which produces

a A
b B
c C
 …
z Z

The loop terminates when there is not another
value for !&lcase and @lower fails.

A procedure can be used to encapsulate this
operation:

procedure parawrite(C1, C2)

 while write(@C1, “ “, @c2)

end

For the example above, this procedure would be
called as

parawrite(create !&lcase, create !&ucase)

In the general case, the loop terminates when either
co-expression runs out of results.

With co-expressions, many things can be done
with generators that otherwise are not possible.
(But not everything; there’s no general way, for
example, to produce the results of a generator out
of sequence.)

Although co-expressions are very powerful,
they are somewhat awkward to use. Procedures
such as parawrite() help, but calling them is awk-

The Bright Forest Company
 Tucson Arizona

The Icon Analyst / 11

use of a list is a historical consequence of the fact
that the programmer-defined control operation
form of procedure call predated the facility for
defining procedures with an arbitrary number of
arguments.

The procedure for writing the results of gen-
erators in parallel now can be cast as:

procedure parawrite(args)

 while write(@args[1], “ “, @args[2])

end

That’s all there is to the mechanism — just a
little “syntactic sugar”. The rest comes from writ-
ing procedures to activate co-expressions in vari-
ous ways.

Examples

We’ll start by modeling some of the existing
control structures of Icon. Alternation is a “natu-
ral”, since it shows how the order in which the
results of generators can be controlled:

procedure Alt(args)
 local x

 while x := @args[1] do suspend x
 while x := @args[2] do suspend x

end

In other words, alternation produces all the results
from its first expression followed by all the results
from the second. We can write this procedure in a
more concise way, but we’ll save that for later.

Earlier in this article, we mentioned modeling
every-do and while-do. Here they are:

procedure Every(args)

 repeat {
 @args[1] | fail
 @^args[2]
 }

 fail

end

procedure While(args)

 repeat {
 @^args[1] | fail
 @^args[2]
 }

 fail

end

ward because of the need to supply co-expressions
as arguments.

Programmer-Defined Control Operations

Programmer-defined control operations are
designed to overcome this problem by providing a
way to extend the built-in repertoire of control
structures in Icon. It should not surprise you that
programmer-defined control operations use co-
expressions. They don’t go as far as allowing a
special syntax for a new control structure, but they
do make it possible to write procedures that con-
trol program flow in many ways that aren’t other-
wise possible.

Programmer-defined control operations also
serve a pedagogical purpose. Just as you can learn
a lot about a built-in function by writing it as a
procedure [3], you can learn a lot about Icon’s built-
in control structures by writing them as program-
mer-defined control operations. For example, if
you’re still a bit perplexed by the difference be-
tween while-do and every-do, writing them as
programmer-defined control operations most likely
will give you that “aha!” experience of real insight.

Writing programmer-defined control opera-
tions requires some knowledge of co-expressions
and, like most unfamiliar areas of programming, a
little experience coupled with a shift in thinking is
necessary to make effective use of them. We’ll
describe the mechanism and then present some
examples on which you can build.

Programmer-defined control operations de-
pend on an alternative form of procedure invoca-
tion in which braces rather than parentheses are
used, as in

parawrite{expr1, expr2}

When a procedure is called in this way, the
arguments given are not evaluated. Instead a list of
co-expressions for the expressions is passed to the
procedure. Thus,

parawrite{!&lcase, !&ucase}

is equivalent to

parawrite([create !&lcase, create !&ucase])

Consequently, the user of parawrite{ } does
not have to provide the creates; the use of co-
expressions is hidden. Because co-expressions are
provided, the arguments are not evaluated before
the procedure is called. The use of the list allows an
arbitrary number of arguments to be passed. The

12 / The Icon Analyst

The control clause in Every{ } succeeds as long
as @args[1] produces a result. The do clause de-
serves note: ̂ args[2] produces a refreshed version
of args[2] so that every time it is activated, it
produces the first result of the expression. That is,
the expression in the do clause is re-evaluated each
time through the every-do loop and it does not
matter whether it succeeds or fails. If we didn’t
refresh the co-expression, we’d get a form of paral-
lel evaluation in which the next result of args[2]
was generated for every iteration of the loop.

The difference between every-do and while-
do is shown in the refreshing of the expression in
the control clause of while-do — the control ex-
pression is re-evaluated each time though the loop
instead of being resumed. Note that the bodies of
Every{ } and While{ } differ in only one character.

As an example of adding a control operation
for a control structure that Icon does not have,
consider the C for statement:

for (expr1; expr2; expr3) statement

When a for statement is executed, expr1 is evalu-
ated and its result is ignored (expr1 typically is
used for initialization). Next, expr2 is evaluated in
a loop. If its value is zero, the execution of the for
statement is complete. If its value is not zero,
statement is evaluated (since it is a statement, it
has no value in C). Next expr3 is evaluated and its
result is ignored (expr3 typically is used to incre-
ment a counter or pointer). All of the expressions
can be omitted; we’ll skip that aspect of for in our
example.

Here’s a programmer-defined control opera-
tion that implements C’s for statement:

procedure For(args)

 @args[1]

 repeat {
 if @^args[2] then @^args[4] else fail
 @^args[3]
 }

 fail

end

Note that the co-expressions for the expressions
that may be evaluated more than once are re-
freshed before activating them. Since Icon has no
statements, the statement in the C for loop is
treated as an expression but its value is ignored.

Finally, For{} fails when expr2 fails. Since it’s an
expression in Icon, and the built-in looping control
structures in Icon fail, this seems like the best
choice.

Next Time

Perhaps now you can see some of the possi-
bilities for programmer-defined control operations.
We’ll continue this subject in the next issue of the
Analyst with more examples. We’ll also point out
some of the limitations of programmer-defined
control operations.

References

1. Proceedings of the International Symposium on
Extensible Languages, Grenoble, France, SIGPLAN
Notices, Vol. 6, No. 12, December, 1971.

2. Control Mechanisms for Generators in Icon, Stephen
B. Wampler, doctoral dissertation, Department of
Computer Science, The University of Arizona, 1981.

3. “Modeling Icon Functions”, Icon Analyst 11,
pp. 5-7.
4. “Modeling String Scanning”, Icon Analyst 6,
pp. 1-2.

What’s Coming Up

In the next issue of the Analyst, we’ll have
follow-up articles on color and programmer-de-
fined control operations.

In Issue 7 of the Analyst, we described vari-
ant translators, C-based processors that can be
used to translate Icon programs into various for-
mats. In the next issue we’ll go one step further
with meta-variant translators, which allow much
of the translation to be specified in Icon instead of
C.

