
The Icon Analyst / 1

December 1993
Number 21

In-Depth Coverage of the Icon Programming Language

 In this issue …

Returning Multiple Values … 1
Graphic Contexts in X-Icon … 5
Procedures with Memory … 8
What’s Coming Up … 12

procedure p(ref:x, ref:y, ref:z)

… # perform computation

 x := result1
 y := result2
 z := result3

 return

end

Icon supports neither the direct return of mul-
tiple values nor call-by-reference, which raises the
issue of how multiple values can be returned from
a procedure in Icon. There are several ways, which
we’ll discuss here.

Generation: Obviously an Icon procedure can gener-
ate multiple values. In fact, this capability is one of
the most powerful features of Icon. When values
are needed one after another, nothing could be
more natural than

procedure p()

… # perform computation

 suspend result1
 suspend result2
 suspend result3

end

Returning Multiple Values

Sometimes it’s useful and convenient to pro-
duce several values as the result of one computa-
tion. For example, the maximum, minimum, and
average of a set of numerical values can be com-
puted in the same loop. This leads to the idea of a
procedure that can return more than one value.

Some programming languages provide such a
facility directly. It typically looks like this:

procedure p()

… # perform computation

 return result1, result2, result3

end

where result1, result2, and result3 are assigned
values in the computation above. Some provision is
needed for obtaining multiple values returned from
such a procedure. One syntactic notation is

x, y, z := p()

which assigns result1 to x, result2 to y, and result3
to z. There are, of course, endless variations on this;
we’ll stick with this example for concreteness in the
discussion that follows.

In some programming languages, call-by-ref-
erence can be used as a substitute for returning
multiple values. In such languages, references to
the variables to which the values are to be assigned
are passed to the procedure, as in

2 / The Icon Analyst

This also can be written as

procedure p()

… # perform computation

 suspend (result1 | result2 | result3)

end

since when p() is resumed, the argument of sus-
pend is resumed.

The trouble with generating multiple values
is that it’s not always convenient to use values
produced one after another. For the example above,
where the values are to be assigned to different
variables, generation is anything but convenient.
You might try

(x | y | z) := p()

but this only assigns a value to x; there’s nothing
that resumes p() to produce another value. If you
try

every (x | y | z) := p()

the result is even worse. Since generators are re-
sumed in a last-in, first-out fashion, p() is repeat-
edly resumed to assign values to x, the first vari-
able in the alternation. The final value assigned to
x is the third value generated by p(). The same
thing then happens for y and z — p() is called three
times and generates nine values! The result is
hardly what’s wanted.

There’s no good way around this problem,
although we’ll say more about it at the end of this
article.

Global Variables: One solution to the multiple-value
problem is to use global variables in place of call-
by-reference:

global x, y, z

procedure p()

… # perform computation

 x := result1
 y := result2
 z := result3

 return

end

This is not an attractive solution. The procedure
and the code that calls it both must know which
global variables are used and the same ones must
be used everywhere. This is, in fact, one of the
worst kinds of usages of global variables and illus-

trates why they are disparaged. There are appro-
priate uses for global variables, as when there
really is a global program state that many proce-
dures need to access. But that’s not the case here.

Multiple Calls: While we’re dispensing bad solu-
tions to this problem, here’s another unattractive
one that sometimes is used to produce the effect of
coroutines in programming languages that do not
support them directly.

The idea is to keep state information in the
procedure so that the first time it is called, it com-
putes all the values needed but returns only the
first. The second time it is called, it returns the
second value, and so on. This approach looks like
this

procedure p()
 static state, result1, result2, result3
 initial state := 1

 case state of {
 1: {

 … # perform computation

 state := 2
 return result1
 }
 2: {
 state := 3
 return result2
 }
 3: {
 state := 1
 return result3
 }
 }

end

Thus,

x := p()
y := p()
z := p()

assigns the three values to the desired variables.
Aside from the complicated form of the pro-

cedure and the opaque nature of the calls to it
(which could be made clearer by providing the
state as an argument), this approach clearly is
dangerous, since an incorrect number of calls re-
sults in a disaster.

Co-Expressions: One straightforward solution to
the multiple-value problem is to return a co-ex-
pression:

The Icon Analyst / 3

procedure p()

… # perform computation

 return create (result1 | result2 | result3)

end

Then the co-expression can be activated to produce
the results as needed:

results := p()
x := @results
y := @results
z := @results

A less obvious but more “Icon-ish” way is:

every (x | y | z) := @p()

Not many Icon programmers would use co-
expressions to solve the multiple-value problem.
Many Icon programmers are wary of co-expres-
sions for reasons that are both valid and invalid.
Co-expressions generally are not well understood.
To many Icon programmers, co-expressions seem
unnatural and not in the spirit of the rest of the
language. Some worry that co-expressions may
not function properly (a concern that has some
foundation). Others worry about how much space
and time co-expressions use. And it’s certainly true
that the use of co-expressions limits the portability
of a program, since co-expressions are not sup-
ported by all implementations of Icon. We won’t
go into these matters here, although we plan to
discuss them in a future article.

Structures: We’ve deliberately presented the least
attractive ways of handling the multiple-value
problem first, leaving the best solution to last.

In most cases, returning a structure that con-
tains all the values computed by a procedure is the
best solution. A list is the easiest and more general
structure to use:

procedure p()

… # perform computation

 return [result1, result2, result3]

end

The elements of the list that is returned then can be
accessed by position:

results := p()
x := results[1]
y := results[2]
z := results[3]

In some situations, records may be more natu-
ral than lists:

record stats(max, min, aver)

procedure p()

… # perform computation

 return stats(result1, result2, result3)

end

with

results := p()
x := results.max
y := results.min
z := results.aver

One concern with structures is the amount of
storage that they use. In the examples above, a list
or record is created every time p() returns. In most
situations the space that is allocated is transient
and is reclaimed, if necessary, by garbage collec-
tion. Normally this does not cause a problem in
program performance. However, if program ex-
ecution speed is critical, a single structure can be
reused repeatedly:

procedure p()
 static results

 initial results := list(3)

… # perform computation

 results[1] := result1 # or assign above
 results[2] := result2
 results[3] := result3

 return results

end

This technique works when callers of the pro-
cedure expect to extract the results the list that is
returned by p() but do not save the list for later use
or modify it. For example,

results := p()
x := get(results)
y := get(results)
z := get(results)

has disastrous consequences for the next call of p().
Since the caller of the procedure can wreak

havoc with the procedure, this technique should
be used only in time-critical applications and even
then it should be clearly identified.

Incidentally, a record is somewhat smaller
than a list with the same number of values [1]. In

4 / The Icon Analyst

critical applications in which the overhead of stor-
age allocation and garbage collection is a problem,
performance can be improved somewhat by using
records in place of lists. Since records can be
subscripted by position, the caller of the procedure
need not know that a record is returned. For the
previous example of records,

results[1]

and

results.max

produce the same value.

Generators Versus Non-Generators: As mentioned
above, values produced in sequence by a generator
sometimes are awkward to handle. There is no
good solution to this problem, but there are several
methods for working around it that parallel the
solutions given above to the multiple-value prob-
lem.

One approach is to put the results produced
by a generator in a list:

results := []
every put(results, p())

and access the resulting list elements as shown
previously. Of course, this approach is applicable
only to generators that produce a finite number of
values and even then it is appropriate only for
generators that produce a modest number of val-
ues.

Co-expressions also can be used:

results := create p()

and the values obtained by successive activations
of results. This technique is applicable even for
generators that can produce an infinite number of
values.

We’ve saved the most awkward approach to
handling generators to last. It parallels the mul-
tiple-call solution to the multiple-value problem:

count := 0

every result := p() do {
 count +:= 1
 case count of {
 1: x := result
 2: y := result
 3: z := result
 default: … # out of bounds
 }
 }

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1993 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

We say “most awkward” on the basis of structure
and complexity. This method, however, doesn’t
allocate any storage and it’s portable.

Reference

1. ”Memory Utilization”, Icon Analyst 4, pp. 7-
10.

The Icon Analyst / 5

binding

fg=blue
font=fixed
linewidth=2
drawop=reverse
 .
 .
 .

canvas

context

width=250
height=100
 .
 .
 .

Figure 1. A Binding

Graphic Contexts in X-Icon

In previous articles we’ve presented a some-
what superficial view of what an X-Icon window
is: a rectangular array of pixels together with vari-
ous attributes that determine, for example, the
color in which drawing is done and the font in
which text is written.

An X-Icon window (an object of type win-
dow) actually consists of a binding between two
other objects: a canvas, which is what you see on-
screen, and a graphic context.

Some attributes, like the window dimensions,
its label, and whether it’s iconified or not, are
associated with the canvas. Other attributes, such
as the foreground color, background color, and
font, are associated with the graphic context.

When you create a window with open(), the
result is a binding of a new canvas with a new
graphic context. This situation is shown in Figure
1.

For many purposes, you don’t need to know
that what X-Icon calls a window is a binding of a
canvas and a graphic context. For example,
XAttrib() works with any attribute, querying it or
setting it in the canvas or the graphic context,
depending on where the particular attribute re-
sides. The reason that the underlying structure is

important is that other graphic contexts can be
created and bound with canvases in different ways.
Figure 2 illustrates a possibility.

Since graphic contexts contain the attributes,
like colors and fonts, that determine the appear-
ance of drawing and text, different effects can be
produced in the same canvas by performing opera-
tions on different bindings with the canvas. For the
bindings shown in Figure 2 on the next page,

write(level1, "Here are some choices:")
every write(level2, " ", !choices)

write a heading in red followed by a list of items in
blue.

Of course, the same effect could be obtained
by changing attributes in a single graphic context.
Graphic contexts offer several advantages over
changing attributes: (1) a particular set of attributes
can be established and encapsulated in a graphic
context, (2) once graphic contexts are established,
less code is required to change the effects of opera-
tions on windows, and (3) there is less likelihood of
programming errors (such as failing to restore the
value of an attribute after it has been changed).

It’s also possible to bind the same graphic
context with several different canvases, as shown
in Figure 3. There are, of course, many other pos-
sible ways that canvases and graphic contexts can
be bound.

6 / The Icon Analyst

fg=blue
font=fixed
linewidth=2
drawop=reverse
 .
 .
 .

select instruct

fg=red
font=fixed
linewidth=2
drawop=reverse
 .
 .
 .

fg=blue
font=fixed
linewidth=2
drawop=reverse
 .
 .
 .

level1 level2

Figure 2. Two Bindings to the Same Canvas

Figure 3. Two Bindings to the Same Graphic Context

The Icon Analyst / 7

As mentioned above, open() creates a canvas
and a graphic context and returns a binding be-
tween them. The function XBind() can be used to
create other bindings and new graphic contexts.

XBind(w1, w2) creates a new binding consist-
ing of the canvas associated with w1 and the graphic
context associated with w2. The value produced
by XBind(w1, w2) is this binding — a value of type
window.

XBind(w), with no second argument, creates
a new graphic context bound to the canvas for w.
The initial values of the attributes for this new
graphic context are the same as those for the graphic
context for w (note that w is a binding). Although
a canvas may be bound to several different graphic
contexts, a binding always has a single graphic
context.

If both window arguments to XBind() are
omitted, a binding is produced between a new, but
invisible, canvas and a new graphic context. This
invisible canvas is called a pixmap. A pixmap be-
haves in all respects like a visible canvas except
that it has no on-screen manifestation. You can
draw on a pixmap or write text to it, but nothing
changes on the screen.

Despite the fact that pixmaps are invisible,
they are very useful; in fact, they are indispensable
for some operations. Images can be built up in
pixmaps and then copied to visible canvases using
XCopyArea(). This technique can be used to “pan”
over a portion of a large pixmap as if portions of it
were seen through a window, to scroll, and so on.
Similarly, an image in a visible canvas can be
copied to a pixmap to save it for possible later
display.

In X, pixmaps, like visible windows, reside in
the memory of the server, so the extent to which
they can be used is limited by amount of memory
on the server. While this is true for visible canvases
also, it’s just more tempting to create a huge pixmap
that may be larger than the entire screen.

The first two arguments of XBind() are inter-
preted as windows with default behavior as men-
tioned above. &window is not a default for this
function and must be given explicitly. Additional
arguments can be used to establish the values for
attributes for the graphic context related to the new
binding. For example,

alert := XBind(&window, "fg=red")

creates a new binding to the canvas for &window

whose graphic context has the same attributes as
the graphic context for &window, except with a
red foreground.

Coordinate Translation

A graphic context contains two attributes, dx
and dy, that are used to translate the position at
which output is placed in a window in the x and y
directions, respectively. For example, as a result of

XAttrib("dx=10", "dy=20")

output to &window is offset by 10 pixels in the x
direction and 20 pixels in the y direction.

Coordinate translation only applies to output
to the window. It does not affect input values such
as &x and &y, which are set by events.

Clipping

The function XClip(x, y, w, h) clips output to
the specified rectangular area. The defaults are the
same as those for other such functions. Thus,

XClip(20, 200)

clips the output to &window so that any output to
the left of the x position 20 and above the y position
200 is not drawn.

The extent of clipping also can be queried or
set using the attributes clipx, clipy, clipw, and
cliph.

Attributes Associated with Graphic
Contexts

So far, we’ve just mentioned that some at-
tributes are associated with canvases and some are
associated with graphic contexts. Here are the
attributes that reside in ga raphic context:

colors: fg, bg, reverse, drawop
text: font, fheight, fwidth, ascent, descent,
 leading
drawing: fillstyle, linestyle, linewidth,
 pattern
clipping: clipx, clipy, clipw, cliph
translation: dx, dy

All other attributes are associated with the canvas.

Next Time

In the next issue of the Analyst, we’ll start
dealing with a large and difficult subject: color.

8 / The Icon Analyst

Procedures with Memory

There are situations in which a procedure is
called many times with the same argument values
and always returns the same value for those argu-
ments. Obviously, re-computation is expensive in
terms of time and in some cases in terms of space.
In some cases, which we will describe later, the
amount of such redundant computation is so great
that it limits what is possible to compute.

This matter is discussed briefly in the Icon
language book [1], where the problem is dealt with
by adding “memory” to procedures so that com-
puted values are saved and not re-computed on
subsequent calls with the same arguments. We will
look at this problem more closely here and de-
scribe ways of handling the technical problems
that arise.

The Problem

The problem with redundant computation is
particularly serious when a computation is de-
fined recursively, so that one call may lead to many
other calls. The examples of this situation that are
easy to understand are somewhat artificial in the
sense that they aren’t likely to occur in “real”
programs. Nevertheless, the basic problem is real
and can occur when searching databases, travers-
ing structures, and so forth.

The Fibonacci numbers provide a particu-
larly nice, if somewhat artificial, example. They
occur in so many contexts that it seems they must
be part of the fabric of the (mathematical) universe.
Although you’re not likely to have to compute the
Fibonacci numbers, they are fascinating in their
own right.

The Fibonacci numbers are defined by the
recurrence relation:

f (i) = 1 i = 1, 2
f (i) = f (i – 1) + f (i – 2) i > 2

The sequence therefore is 1, 1, 2, 3, 5, 8, 13, 21,
34, … . This looks innocuous enough, but the
numbers start to get large quickly. For example,
f (35) is 9227465.

A straightforward procedure for computing
the i th Fibonacci number follows from the recur-
rence:

procedure f(i)

 if i = (1 | 2) then return 1

 else return f(i – 1) + f(i – 2)

end

The problem with this kind of a formulation is
not that any one call is expensive. The problem is
that one call leads to another, and many of the calls
have the same argument and hence result in re-
peated computation. For example, f(8) calls f(7)
and f(6), f(7) calls f(6) and f(5), and so on. The way
the calls add up is illustrated by the computation of
f(10), where the numbers of calls are

f(10) 1
f(9) 1
f(8) 2
f(7) 3
f(6) 5
f(5) 8
f(4) 13
f(3) 21
f(2) 34
f(1) 21

total 109

Note that except for f(1), the number of calls itself
forms the Fibonacci sequence. This isn’t a coinci-
dence, and you can see where it leads, considering
how rapidly the Fibonacci numbers grow.

You might well argue that computing the
Fibonacci numbers recursively is simply the wrong
approach. An efficient iterative method is easy to
formulate and there’s even a closed form from
which the i th Fibonacci number can be computed
directly [2].

However, you don’t have to go far to find a
recurrence relation that doesn’t lend itself to such
approaches. Ackermann’s function is the most fa-
mous example:

a (i, j) = j + 1 i = 0, j ≥ 0
a (i, j) = a (i – 1, 1) i > 0, j = 0
a (i, j) = a (i – 1, a (i, j – 1)) i > 0, j > 0

A corresponding procedure is:

procedure a(i, j)

 if i = 0 then return j + 1
 else if j = 0 then return a(i – 1, 1)
 else return a(i – 1, a(i, j – 1))

end

The Icon Analyst / 9

procedure a(i, j)

 if i = 0 then return j + 1

 value := list(i + 1)
 place := list(i + 1)

 value[1] := 1
 place[1] := 0

 repeat { # new value[1]
 value[1] +:= 1
 place[1] +:= 1
 every k := 1 to i do { # propagate value
 if place[k] = 1 then { # initiate new level
 value[k + 1] := value[1]
 place[k + 1] := 0
 if k ~= i then break next
 }
 else {
 if place[k] = value[k + 1] then {
 value[k + 1] := value[1]
 place[k + 1] +:= 1
 }
 else break next
 }
 }
 if place[i + 1] = j then return value[1] # check for end
 }

end

Figure 1. Computing Ackermann’s Function Iteratively

Note that this recurrence is “nested”. That is,
the recurrence is defined not only in terms of
previous values but also in terms of the recurrence
applied to previous values.

The value of a (i, j) grows astronomically as i
gets larger:

a (0, j) = j + 1
a (1, j) = j + 2
a (2, j) = 2j + 3
a (3, j) = 2 j + 3 – 3

while for i = 4, the value cannot even be repre-
sented with ordinary mathematical operations:

a (4, j) = 2
2 2

. . 2







j + 3 times
– 3

For example, a(4, 1) is 2 2 2 2

– 3, or 65,533. We’re
talking about really big
numbers as j grows. And
we don’t even know of a
formulation of i > 4.

Ackermann’s func-
tion is famous as an ex-
ample of a general recur-
sive function that is not
primitive recursive. Get-
ting into recursive func-
tion theory and explain-
ing what this means
would take us far afield
from the topic of this ar-
ticle. But if you need a
topic of conversation dur-
ing a dull baseball game,
you can mention this fact.
If you’re asked what it
means (and don’t know),
you can just say that the
value of Ackermann’s
function grows faster in
the values of its argu-
ments than any primitive
recursive function could.

One point in men-
tioning Ackermann’s
function here is to dispel a
common misunderstand-
ing about recursive func-

tions. It is sometimes said that it’s impossible to
compute some recursive functions by iterative
means. That’s not true. Kleene, in fact, gives a
general method of converting any recursive func-
tion to an iterative one [3]. Although his construc-
tion is wildly impractical, just knowing that itera-
tive methods exist gives some hope in finding
practical ones. For Ackermann’s function, there is
a comparatively short iterative method [4]. Figure
1 shows an Icon version (the original was written in
FORTRAN).

Don’t ask us to explain how this works. The
published version was presented without expla-
nation except for a few comments in the program
that we’ve carried over. You’ll probably agree, in
any event, that this approach is not obvious.

Note that this iterative method requires a
small amount of storage in the form of two lists.
(We can say small, since for i > 6, the value of
Ackermann’s function is so huge as to be imprac-
tical to compute.) The amount of space used by the

10 / The Icon Analyst

iterative method certainly is tiny compared to the
amount of stack space needed for the recursive
version.

It isn’t necessary for a recurrence to have
more than one argument to be interesting; it’s
really the nesting that adds richness to the a recur-
rence. Here’s a particularly interesting nested re-
currence that produces the “chaotic sequence” [5]:

q(i) = 1 i = 1, 2
q (i) = q (i – q (i – 1)) + q (i – q (i – 2)) i > 2

The sequence for this recurrence is chaotic in
the sense that values don’t just get progressively
larger. Instead, a value sometimes is less than the
preceding one, although on the average the values
increase. Here’s how the sequence starts: 1, 1, 2, 3,
3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, 12, 12, 16,
14, 14, 16, … . The underscores show values that are
less than their predecessors.

Such a sequence seems to offer no hope for a
closed form, as there is for the Fibonacci sequence,
or even an explicit representation, as there is for the
first few values of j for Ackermann’s function. In
fact, it’s not even clear how to get an idea of what
the sequence does. Does it ever produce a negative
value? Is it, in fact, well-defined? (That is, does the
recurrence ever require trying to compute q(i) for i
less than one?)

Analytic attacks on such a beast are hard [6, 7]
and beyond most of us. But if we can compute a lot
of values in the sequence, we might see suggestive
patterns.

A recursive procedure based on the recur-
rence above is trivial to formulate:

procedure q(i)

 if i = (1 | 2) then return 1
 else return q(i – q(i – 1)) + q(i – q(i – 2))

end
Trying to use this procedure brings us squarely

back to the topic of this article. Although redun-
dant computation is clearly a problem in the recur-
sive computation of the Fibonacci sequence, it’s a
much more serious problem here. We can get a hint
of the problem by looking at the calls for q(10):

q(10) 1
q(9) 1
q(8) 2
q(7) 3
q(6) 5

q(5) 9
q(4) 22
q(3) 77
q(2) 284
q(1) 77

total 481

For q(11), q(12), and q(13) this way, the total
numbers of calls are 813, 1,393, and 2,325, respec-
tively. In fact, if you try to compute the chaotic
sequence using the recursive procedure given
above, you’ll quickly discover you’re in trouble.
For example, it takes nearly 9 hours to compute
q(36) using Icon on a Sparc IPX. Looking at the way
the time increases for each successive value, q(37)
probably will take about 14.5 hours. We decided
not to bother. (The computation time appears to
increase in the “Fibonacci manner”; computing
any one value takes about as long as computing the
preceding two.)

Of course, the time would be considerably
less if the computation were done in C or (heaven
forbid) in assembly language and run on a Cray-2.
No matter what language or computer you use,
however, you can’t hope to get a great many values
in the sequence, and that’s just what you need to
see patterns. 1,000 or even 10,000 values might be
needed. This is what we meant when we said
earlier that redundant computation can limit what
it’s possible to compute. You might think we really
meant practical to compute, assuming it would take
longer than we’d want to wait. In fact, there are
many problems, including this one, where you
won’t get far with the theoretically fastest com-
puter in the expected lifetime of the universe [8].

Perhaps at this point you’re actually inter-
ested in seeing what patterns may exist in the
chaotic sequence. The question is how to get enough
values in the sequence to see such patterns.

Adding Memory to Procedures

It’s clear that redundant computation must be
avoided if there’s to be any hope of computing
many values in such a sequence. The obvious way
to avoid duplicate procedure calls is to keep track
of calls and record their values. Then, when a call
occurs that has occurred before, its value can be
produced without performing the computation
again. In other words, add memory to the proce-
dure. This idea is not new [9], and it’s an important
component of dynamic programming [10].

The Icon Analyst / 11

500

600

400

300

200

100

100 200 300 400 500 600 700 800 900 1000
i

q(i)

The basic idea is simple: Provide memory in
form of a data structure that is subscripted by
argument value. When a procedure is called, the
memory is checked. If there’s a value for the argu-
ment in the memory, the value is returned. If there
isn’t, the computation is performed as before and
the resulting value is added to the memory before
the procedure returns.

For Icon, tables provide a particularly conve-
nient form of memory. They can be subscripted by
any value, it’s not necessary to worry about out-of-
range references, and they grow in size automati-
cally as information is added to them.

Here’s how the procedure for computing the
chaotic sequence looks with memory added:

procedure q(i)
 static memory

 initial {
 memory := table()
 memory[1] := memory[2] := 1
 }

 if value := \memory[i] then return value
 else return memory[i] :=
 q(i – q(i – 1)) + q(i – q(i – 2))

end

The use of a static variable allows all calls of
q() to access the memory but prevents other proce-
dures from accessing it — after all, it’s q()’s memory.

The first time q() is called, memory is set up

and the two initial values in the sequence are
placed in it so that it’s not necessary to check for
them in subsequent calls. Since the default value
for the table is null, it’s easy to check if an argument
is in memory. If it isn’t, the computed value is
added to memory before returning. That’s all there
is to it.

The main part of the procedure can be written
more concisely as

/memory[i] := q(i – q(i – 1)) + q(i – q(i – 2))
return memory[i]

This formulation also eliminates the local variable
used in the previous version of this procedure.

Another possible formulation is

return \memory[i] |
 (memory[i] := q(i – q(i – 1)) + q(i – q(i – 2)))

Incidentally, don’t try something like

return /memory[i] :=
 q(i – q(i – 1)) + q(i – q(i – 2))

This returns whether or not the null test fails. If the
value for i has been computed before, the proce-
dure call fails.

The question remains as to how effective the
addition of memory to q() is. The improvement in
performance is startling. As mentioned earlier, it
takes about 9 hours to compute q(36) on a Sparc
IPX using the straight recursive method. Using the
version with memory, it takes about 12 millisec-

onds to compute
q(36). In fact, us-
ing memory, the
time to compute
values in sequence
is nearly linear;
q(1000) takes only
333 milliseconds.
Calling q(i) for a
specific value of i
requires the com-
putation of all
smaller values that
have not already
been computed.
Computing the
first 1,000 values in
the chaotic se-
quence takes about
400 milliseconds.

Figure 2. The Chaotic Sequence

12 / The Icon Analyst

Who needs a faster language or platform?
A thousand values are more than enough to

reveal some startling properties in the chaotic se-
quence. See Figure 2. While such a plot doesn’t
prove anything, it certainly looks like the average
value of q(i) is close to i / 2. Bursts of oscillation
around this apparent average also are evident, and
they seem approximately to double in maximum
magnitude and duration as i increases. Perhaps
most intriguing are the self-similarities that are
associated with fractals. It’s also clear that none of
these properties of the chaotic sequence could be
discovered from only a few values. Up to q(36),
which is where we gave up with the purely recur-
sive computation, it was evident that the sequence
was unusual, but there was not hint of just how
unusual.

There’s no question that memory is very ef-
fective in this kind of computation. But there are
technical questions. Memory takes space. Tables
are convenient, but they require more space than
the obvious alternative, lists. And what about add-
ing memory to procedures that have more than
one argument? Another interesting question is
adding memory to recursive generators. We’ll con-
sider these matters in the next issue of the Analyst.

References

1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, pp. 97-
98.

2. “Solutions to Exercises”, The Icon Analyst 13,
p. 3.

3. Introduction to Metamathematics, Stephen C.
Kleene, D. Van Nostrand Company, Inc., Princeton,
New Jersey, 1952.

4. “Recursion and Iteration”, H. Gordon Rice, Com-
munications of the ACM, Vol. 8, No. 2 (February,
1965), pp. 114-115.

What’s Coming Up

We’ll wrap up the subject of procedures with
memory in the next issue of the Analyst. In that
issue, we’ll also present the first of two articles on
programmer-defined control operations, one of
the more arcane features of Icon.

And we’ll continue the series on X-Icon with
the first of two articles on color.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

5. Gödel, Escher, Bach: an Eternal Golden Braid, Dou-
glas R. Hofstadter, Basic Books, New York, 1979,
pp. 137-138.

6. Fractals, Chaos, Power Laws, Manfred Schroeder,
W. H. Freeman and Company, New York, 1991, p.
59.

7. “Conway’s Challenging Sequence”, Colin Mal-
lows, American Mathematical Monthly, Vol. 98, No.
1, January, 1991, pp. 5-20.

8. “Complexity and Transcomputability”, Hans J.
Bremermann, in The Encyclopaedia of Ignorance,
Pergamon Press, New York, 1977.

9. Memo Functions: A Language Feature with Rote
Learning Properties, D. Mitchie, DMIP Memoran-
dum MIP-R-29, Edinburgh, 1967.
10. Fundamentals of Computer Algorithms, Ellis
Horowitz and Sartaj Sahni, Computer Science Press,
Potamac, Maryland, 1978, pp. 198-247.

