
The Icon Analyst / 1

October 1992
Number 14

In-Depth Coverage of the Icon Programming Language

 In this issue …

Reader Feedback … 1
Arrays … 2
Idiomatic Programming … 4
Multi-Thread Icon … 8
What’s Coming Up … 12

Reader Feedback

We included a questionnaire in Issue 12 of the
Analyst to give our subscribers an opportunity to
tell us how they feel about the Analyst and to give
us more information about their interests. A sum-
mary of the responses follows.

All persons responding said they were gener-
ally satisfied with the Analyst and several said
they were very satisfied. All persons also said the
Analyst was useful, at least some of the time. Its
usefulness seems to be primarily related to pro-
gramming in Icon.

Most persons responding said the technical
level of the Analyst was about right. Only one
person said it was too low. One person commented:
“It’s often somewhat over my head, but that’s ex-
actly how I would want it.” Another person com-
mented: “All items are fascinating, high and low.
Sometimes I think everything is in Greek, but don’t
let that stop you.”

The best-liked articles were those on program
anatomies and case studies, with the programming
tips a close second. There was no consensus on
specific articles.

Most persons responding did not identify any
kind of article they liked least, although a few said
articles relating to implementation matters were of
less interest than those on programming.

Although programming tips were frequently
cited as being of interest, the specific responses

about this feature of the Analyst were more varied
and ranged from “very useful” to “potentially use-
ful”.

Our subscribers come from a wide range of
professions: programmers, engineers, systems ana-
lysts, statisticians, literary analysts, researchers in
the Humanities, computer scientists, accountants,
physicists, … . The uses of Icon cited were even
more varied than the professions and we’ll not
attempt to characterize them here.

The platforms on which subscribers use Icon
follow the pattern of those reported in Issue 39 of
the Icon Newsletter : predominantly MS-DOS, with
strong representation for the Macintosh and UNIX
workstations.

Among the general comments we received,
there were several requests for more information
about work in progress related to Icon.

Our general assessment of the responses to the
questionnaire is that we are doing about as well as
we could hope to be in providing what our readers
want. We will try to give more coverage to pro-
gramming and work in progress and less to imple-
mentation. Otherwise we’ll generally continue to
do what we’ve been doing.

By the way, we’re running out of material for
programming tips. If you have some suggestions,
we’ll be happy to consider them. And, of course,
we’ll give credit for any contributed material that
we use.

We appreciate the time and effort that our
subscribers took to respond to our questions. It isn’t
necessary to wait for another
questionnaire to tell us
what you think. Nor is it
too late to return the
questionnaire from Is-
sue 12 of the Analyst.
You can use any conve-
nient means of communi-
cation: postal mail, electronic
mail, fax, or telephone.

2 / The Icon Analyst

Arrays

One of Icon’s weaknesses is the lack of an
array data type. The closest thing Icon has is its list
data type, which is one dimensional with a lower
bound of 1. In this article, we’ll describe how you
can build arrays using lists.

The easiest way to create a two-dimensional
array in Icon is to use a list of lists, as in

A := list(n)
every !A := list(m)

which can be thought of as an array with n rows
and m columns. Such an array can be visualized as
shown below. Note that there are m+1 lists and
n∗(m+1) elements in all.

Referring to an element of such an array is
easy:

A[i][j] := x

This expression assigns x to the element in row i
and column j. Similarly, write(A[i][j]) writes the
value of the element in row i and column j.

The choice of what constitutes a row and
column is arbitrary. The choice here corresponds
to the conventional notation for subscripting an
array: A[i, j]. Unfortunately, Icon doesn’t support
multiple subscripting like this, or didn’t when we
started working on this subject. See the note at the
end of this article. Anyway, A[i][j] isn’t that bad.

You can go a step further and create a three-
dimensional array like this:

A := list(n)
every !A := list(m)
every !!A := list(k)

Generalizing this to create n-dimensional arrays is
a bit more challenging. As usual, the key is the use
of recursion. Here’s a procedure that makes good
use of variable-length argument lists and list invo-
cation — much in the style of the recursive genera-

A

 1 2 m

 1

 2

 n

tors discussed in the last issue of the Analyst [1]:

procedure create_array(ubs[])
 local A

 A := list(get(ubs)) | stop("∗∗∗ bad spec.")

 if ∗ubs > 0 then
 every !A := create_array ! ubs

 return A

end

For example,

A := create_array(5, 10, 20, 5)

creates a 5 × 10 × 20 × 5, four-dimensional array,
and A[i][j][k][n] references an element of this ar-
ray.

In the examples so far, the initial values of all
array elements are null. This isn’t convenient for,
say, an array of integers, where the initial values
might be zero and augmented by an expression
such as

 A[i][j][k][n] +:= 10

One approach to dealing with this problem is
to have the last argument of create_array() be the
initial value. For example,

A := create_array(5, 10, 20, 5, 0)

would create a four-dimensional array all of whose
elements are 0 initially. A version of create_array()
to do this is:

procedure create_array(args[])
 local ub, A

 if *args < 2 then stop("∗∗∗ bad spec.")

 ub := get(args)

 if ∗args = 1 then
 return list(ub, args[1])
 else {
 A := list(ub)
 every !A := create_array ! args
 }

 return A

end

Using the last argument for the initial value is
somewhat dangerous; if it is forgotten in a call of
create_array(), the last upper bound is taken to be
the initial value. An alternative is to specify the
array upper bounds in a list when create_array() is
called and to have the initial value be the second

The Icon Analyst / 3

complicated by these extensions, but it’s necessary
to decide how it will be called to provide the
additional information needed. We’ll use a form in
which the first argument is a list of lower bounds,
the second argument is a list of upper bounds, and
the third argument is the initial value. For ex-
ample, a three-dimensional array with lower
bounds 0, –10 and 1 with corresponding upper
bounds 5, 10, and 6 and with initial value 0, would
be created as follows:

A := create_array([0, –10, 1], [5, 10, 6], 0)

Procedures to create such arrays are:

procedure create_array(lbs, ubs, value)
 local lengths, i

 if (∗lbs ~= ∗ubs) | (∗lbs = 0) then
 stop(“∗∗∗ bad spec.”)

 lengths :=list(∗lbs)

 every i := 1 to ∗lbs do
 lengths[i] := ubs[i] – lbs[i] + 1

 return array(create_struct(lengths, value),
 lbs)

end

procedure create_struct(lengths, value)
 local A

 lengths := copy(lengths)

 A := list(get(lengths), value)

 if ∗lengths > 0 then
 every !A := create_struct(lengths, value)

 return A

end

The more difficult problem is referencing an
array element. It’s no longer possible to just sub-
script an array. Instead, a procedure is needed to
take care of accessing the record structure and to
handle the offsets:

procedure ref_array(A, subscrs[])
 local offset, i

 if ∗A.lbs ~= ∗subscrs then
 stop(“∗∗∗ bad spec.”)

 lbs := A.lbs
 A1 := A.structure

 every i := 1 to ∗subscrs – 1 do
 A1 := A1[subscrs[i] – lbs[i] + 1] | fail

 return A1[subscrs[–1] – lbs[–1] + 1]

end

argument, as in

create_array([5, 10, 20, 5], 0)

In this case, create_array() is not declared with a
variable-length argument list:

procedure create_array(ubs, value)
 local A

 A := list(get(ubs), value) |
 stop("∗∗∗ bad spec.")

 if ∗ubs > 0 then
 every !A :=
 create_array(copy(ubs), value)

 return A

end

The list ubs must be copied because of Icon’s
pointer semantics, as discussed in Reference 2.
Note that all the lists are given the initial value.
Except for the last list, which actually holds all the
values, this value is overwritten by the lists for the
subsequent dimension. Doing it this way slightly
simplifies the procedure and imposes no extra
computational cost. Note also that if the second
argument is omitted, all elements are null initially.
This fits nicely with Icon’s general handling of
omitted trailing arguments.

So far, so good. But there’s a thornier issue —
the arrays constructed so far have lower bounds of
1 for all dimensions.

A general approach is clear — provide an
offset for subscripting. However, it’s hardly ac-
ceptable to require that all references to such an
array specify the offsets, as in

A[i + i_off][j + j_off][k + k_off][n + n_off]

In fact, a procedure referencing such an array
might not even know the offsets. Instead, the lower
bounds need to be kept as part of the structure for
the array and the necessary offset arithmetic needs
to be handled automatically.

The first consideration suggests implement-
ing arrays using a record such as

record array(structure, lbs)

where the first field contains the list structure that
represents the array as described above and the
second field contains a list of the lower bounds.
Such a representation has the additional advan-
tage of providing a type that allows arrays to be
distinguished from other structures.

The procedure create_array() is only slightly

4 / The Icon Analyst

Idiomatic Programming

The late Alan Perlis, one of the designers of
Algol, allegedly said “an idiom is a trick you use
twice”. We haven’t been able to find this aphorism
in print, but in trying to verify it, we contacted
Chris Fraser, one of Perlis’ former students, who is
now at Bell Labs. He sent us a copy of an APL idiom
list that Perlis co-authored [1]. This idiom list in-
spired the material that follows.

APL is a programming language almost de-
signed for idiomatic programming, and the APL
idiom list is truly amazing. While Icon does not
provide the fertile ground for idioms that APL
does, we got to thinking about Icon idioms.

All programming languages, like all natural
ones, have idioms. A widely used idiom, unlike a
piece of tricky coding (which may yet be a budding
idiom), may serve to express a computation con-
cisely and make the nature of that computation
instantly understandable. Of course, to an un-
knowledgeable person, an idiom may appear ob-
scure, kinky, or even incomprehensible. Any per-
son learning a new natural language encounters
similar situations, yet a language cannot be mas-
tered without learning its idioms and, in fact, think-
ing in them.

As with natural languages, idioms in a pro-
gramming language develop over time. Many times
we’ve seen an Icon expression that seemed un-
natural and contorted, only later to see it instead as
an elegant idiom.

This is the first of two articles that lists some
Icon idioms — ones we use and ones we’ve found
in programs written by others. We also are includ-
ing some comments about coding style in general.

The instances of idiomatic usages are num-
bered at the right for reference and to distinguish
them from other segments of code used in the
discussion.

One thing we discovered in compiling this list
is that it’s hard to draw a line between idioms and
simply standard programming practice. We’ve
opted to include instances of expressions that are
“simply the way to do it”. We also do not have a
good scheme for classifying idioms — hence there
is a large collection of “odds and ends” at the end
of the second article. Perhaps that’s the nature of
the beasts.

We also should comment that we don’t like all
the idioms listed here. We find some to be unnec-

Note that an out-of-bounds subscript causes fail-
ure.

Now an element of the array A is referenced
as

ref_array(A, i, j, k)

For example,

ref_array(A, 3, 5, 2) +:= 2

increments the 3-5-2 element by 2. It is possible to
assign to the result returned by ref_array(), since
the result is a variable. This capability of Icon is not
used often, but when it’s needed, it’s very handy.
If it weren’t possible, it would be necessary to pass
the value as an argument of another procedure,
and operations like augmented assignment would
be much messier:

 assgn_array(A, 3, 5, 2, ref_array(A, 3, 5, 2) + 2)

Comments

For the common case of two- and three-di-
mensional arrays in which all lower bounds are 1,
simple methods suffice, although it probably is
worthwhile to encapsulate the code in procedures.
The more elaborate techniques for handling the
general n-dimensional case with arbitrary lower
bounds described at the end of this article are a bit
more awkward to use. The procedures given above
will be included in the next update to the Icon
program library.

But what about really large arrays? It clearly
is impractical to build even a two-dimensional
10,000 by 10,000 array using the techniques de-
scribed in this article. But if only a small percentage
of the 100,000,000 possible elements is ever refer-
enced, it’s quite feasible to have such an array. In a
future issue of the Analyst, we’ll have an article on
how to implement such sparse arrays.

Now, about array subscripting. When writ-
ing this article, we mentioned in our local elec-
tronic mail how nice it would be if Icon allowed
multiple subscripts for lists of lists, as in A[i, j]. The
next morning we woke up to find Clint Jeffery had
popped the feature into Icon’s grammar. It’s in
Version 8.7.

References

1. “Programming Tips”, The Icon Analyst 13,
pp. 10-12.

2. “Pointer Semantics”, The Icon Analyst 6, pp.
2-8.

The Icon Analyst / 5

More generally,

expr1 & expr2

is an alternative to

if expr1 then expr2

provided that expr1 cannot produce more than
one result.

This is sometimes seen in the form

expr & return (3)

where it does not matter if expr can produce more
than one result. Incidentally, we personally do not
like this idiom, preferring

if expr then return

on the grounds that its intent is clearer.
Alternation and conjunction often play

complementary roles, as in

(i < j) | i (4)

which produces the maximum of i and j, while

(i > j) | i (5)

produces the minimum of i and j.
These clearly are idioms. If you don’t know

what they do, you have to puzzle them out. If you
recognize them as idioms, on the other hand, their
intent is clear.

There are related idioms for selecting the first
of several values greater than or less than a speci-
fied value:

i < (j | k | m | n | …) (6)

and

i > (j | k | m | n | …) (7)

Of course, the same idea applies to different kinds
of comparisons.

An example of how such idioms can be used
is

i < (2 | 3 | 5 | 7 | …)

which produces the least prime greater than i.
The sequence of values can be produced by a

generator, as in

i < primeseq()

The same idiom works for other kinds of
generators, as in

i < find(s)

essarily opaque. This is partly a matter of taste, but
in some cases it can be argued that a non-idiomatic
usage is better simply because it is clearer.

Using the Values of Comparisons

If you want to do something only if a value is,
say, strictly between two other values, you can
write something like this:

if (i < j) & (j < k) then …

You can write this more compactly (and more
clearly) as

if i < j < k then … (1)

This works in Icon (but not in most other program-
ming languages) for three reasons:

1. Icon comparison operations, if successful,
return a value of the type compared (not a boolean
value).

2. The value returned is the value of the right
operand.

3. Comparison operations associate to the left.
Consequently,

i < j < k

groups as

(i < j) < k

and i < j returns the value of j if the comparison
succeeds, leading to the subsequent comparison
j < k.

Incidentally, the way comparison operations
work in Icon is a matter of design, not a fortuitous
accident.

There are other uses for these features of
comparison. For example,

(i < j) & i

returns i if i is less than j. The parentheses are
unnecessary and are provided only for clarity. Of
course

j > i

does the same thing, but inverting the logic of a
comparison sometimes interferes with understand-
ability. The more general

(i < j) & x (2)

can be viewed as an idiomatic alternative to

if i < j then x

6 / The Icon Analyst

It’s not hard to produce a true filter, using
Idiom 2:

type(x := !X) == "integer" & x

It might be clearer to use a procedure instead:

procedure Integer(x)

 return type(x) == "integer" & x

end

and use it as

Integer(!X)

Our preference for the body of the procedure, as
indicated earlier, is

if type(x) == "integer" then return x

There are many possible variations on these
ideas. For example,

procedure Integer(x, i)

 if type(x) == "integer" then return x
 else return i

end

could be used to replace non-integer values by i.
And, of course, it is possible to produce more

than one output value for each input value, as in

procedure Intersperse(x, y)

 suspend x | y

end

which first produces x and then y, so that

Intersperse(!X, 0)

intersperses zeroes between the elements of X.
There are so many possibilities of this kind

that it’s probably better to think of filters and
transducers as idiomatic forms, instead of thinking
in terms of specific filtering and transducing idi-
oms.

It’s worth noting that thinking of expressions
like the ones we’ve given here in terms of filters
and transducers implies their evaluation in itera-
tive contexts, such as

every write(integer(!X))

Such expressions have an even more idiom-
atic flavor when used in the context of goal-di-
rected evaluation instead of iteration. For example,

i := integer(!X) (12)

which returns the first position of s that is greater
than i.

Augmented assignment can be put to good
use in comparisons. For example,

i <:= j (8)

is equivalent to

i := (i < j)

and sets i to j if it is less than j. Used in a loop, this
is an easy way to compute the maximum of a series
of values, as in

max := 0
every max <:= !&input (9)

An elegant idiomatic combination of value
comparison and augmented assignment appears
in Anthony Hewitt’s one-liner to filter out succes-
sive duplicate lines from a file:

every write(line ~===:= !&input) (10)

Value comparison is used in place of string com-
parison so that line can be null initially and not
require special handling for the first line read in.
This particularly nice touch was suggested by Bob
Alexander.

Filters and Transducers

One of the really powerful features that was
first introduced in UNIX is the “pipe”, which al-
lows the output of one program to be fed into the
input of another. This makes it easy to, among
other things, “filter” the output of a program,
passing through only those values that have some
desired characteristic.

Icon’s concepts of generators and failure make
it easy to use the concept of filters in a program.
Consider, for example,

integer(x)

which succeeds if x is an integer (or convertible to
one) but fails otherwise. Applied to a generator,
such a function becomes a filter, as in

integer(!X) (11)

which generates only those elements of X that can
be converted to integers.

Actually, this expression is more than a filter
since it produces integers, while the elements gen-
erated may, for example, be strings that represent
integers. This motivates the term transducer used
above.

The Icon Analyst / 7

every (x | y | z) := 0

although the idiomatic usage here is hardly justi-
fied.

By the way, there are various other idiomatic
uses of iteration in combination with alternation.
For example,

every close(f1 | f2 | f3) (15)

closes files f1, f2, and f3.
It’s often necessary to assign a value, such as

zero, to a variable depending on whether or not the
value of the variable is null. A method sometimes
seen is

if type(x) == "null" then x := 0

This is unnecessarily complex and inefficient, since
Icon provides operators specifically for testing for
null and nonnull values. The expression above can
be cast more simply as

if /x then x := 0

But an even more compact and idiomatic way is

/x := 0 (16)

This works because /x returns a variable if it suc-
ceeds. Similarly,

\x := 0 (17)

assigns zero to x only if x is nonnull.
Icon programmers frequently confuse these

two operators. But, no, we don’t have a good
mnemonic device for distinguishing them. It’s
worth learning which is which, though, since these
operators are very handy.

Incidentally

\x := &null

is a silly way to assign a null value to x. It’s like
saying if x is nonnull, make it null. It winds up
being null whether or not the test succeeds. In-
stead, use

x := &null

There are numerous other idiomatic uses for the
operator that succeeds only if its argument is
nonnull. For example,

close(\f) (18)

closes f only if its value is nonnull, possibly to
protect against the possibility that f might not have
been assigned any value. This, of course, doesn’t

assigns to i the first value of X that can be converted
to an integer, leaving i unchanged if there is no
such value.

In a similar vein,

i := integer(!X) | 0 (13)

assigns to the first value of X convertible to an
integer or zero if there is no such value.

Initializing Variables and Related Matters

If you want to initialize several variables to
the same value, a compact way to do it is some-
thing like

x := y := z := 0

This works as intended because assignment asso-
ciates to the right and returns its left operand as a
variable. (These properties of assignment are by
design.) This hardly classifies as an idiom.

But if you wish to assign, say, an empty list to
each of several variables, then

x := y := z := []

probably doesn’t do what you actually want. It does
assign an empty list to all three variables — in fact,
it assigns the same empty list to all three variables.

The way to understand this is to realize that
the expression [] is evaluated only once and, of
course, before any assignment is made. This can be
seen by making the grouping explicit:

(x := (y := (z := [])))

Another way of seeing this is to create the list
before the assignments, as in

empty := []
x := y := z := empty

A straightforward way of assigning a differ-
ent empty list to each variable is, of course,

x := []
y := []
z := []

There is, however, a more compact, idiomatic
way to accomplish the same thing:

every (x | y | z) := [] (14)

Here, the expression [] is evaluated for each vari-
able generated by the alternation.

This technique can be used even when the
same value is assigned to each variable, as in

8 / The Icon Analyst

protect against f being some non-null value that is
not a file.

While we’re on the topic of assignment, there
is a little trick (oops, idiom) for rotating the values
of several variables to the right. For example,

x :=: y :=: z (19)

results in y having the former value of x, z having
the former value of y, and x having the former value
of z. And it works the same way regardless of how
many variables are involved in the exchanges.
We’ll let you work out why this is so. (Frankly, we
don’t want to have to explain it.)

This idiom works just as well for list and
record references, as in

L[1] :=: L[2] :=: L[3]

If you want to rotate all the values in a list,
however, there’s a much better way:

push(L, pull(L)) (20)

This rotates the elements on position to the right
with the same amount of computation whether the
list contains only one element or whether it con-
tains thousands of elements. There’s an obvious,
similar method for rotating elements to the right.

While we’re writing about lists, it’s worth
noting that putting several values on a list is a
common form of initialization. Again, alternation
in combination with iteration provides useful idi-
oms, as in

every put(L, x | y | z) (21)

Next Time

In the next issue of the Analyst, we’ll have the
second and concluding article on Icon idioms. We
somehow feel, however, that there’s really no end
to this.

Reference

1. A. J. Perlis and Spencer Rugaber, The APL Idiom
List, Research Report #81, Department of Com-
puter Science, Yale University, 1971.

Back Issues
Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
order for airmail postage to other countries.

Multi-Thread Icon

Multi-thread Icon, or MT Icon for short, is a
version of the Icon interpreter that allows several
programs to be loaded and run under the same
invocation of the interpreter. Such programs can
communicate with each other.

A brainchild of Clint Jeffery, MT Icon was
motivated by our research in program visualiza-
tion, in which program monitors, written in Icon,
need information about an Icon program that is
being monitored. We’ll describe the use of MT Icon
for program monitoring in subsequent articles. MT
Icon has many other potential uses, however.

MT Icon is not a concurrent programming
language, nor does it require or support multi-
processor hardware. Although several programs
can be loaded under MT Icon, only one program is
active at any time.

Transfer of control between loaded programs
is done using co-expressions — one program acti-
vates another and hence relinquishes control to the
other program.

Understanding MT Icon requires an under-
standing of co-expressions, including some fea-
tures that are not used frequently. You may wish to
review Reference 1 if you find some of the material
about co-expressions here to be unfamiliar.

An Icon program that runs under MT Icon
starts like any other program. In fact, the execution
of a single program under MT Icon is just like its
execution under the standard Icon interpreter. A
program that runs under the regular Icon inter-
preter runs under the MT Icon interpreter without
modification.

A program running under MT Icon can, how-
ever, load another MT Icon program and start its
execution by activating it as a co-expression.

In order to support the execution of several
programs under the same interpreter, MT Icon has
additional functions and keywords. Some stan-
dard Icon functions also have extended capabili-
ties under MT Icon.

Threads

As used here, the term thread means the
execution state of a program running under the
Icon interpreter. A thread consists of a set of co-
expressions that share that program state. A single
thread called the root is created when the inter-

The Icon Analyst / 9

load() to load the icode file example. The value
assigned to prog as a result is a co-expression for
the call main(["hi", "mom"]) for example. The
result of activating prog is to call main() in ex-
ample with a two-element list as its argument, as
if example had been run as

icont example –x Hi mom

The output produced is

Hi
mom

At this point, main() in example returns. Since it
was invoked by @prog in mttest, control returns
there. mttest then writes

Good–bye

before itself terminating, which ends the execu-
tion of MT Icon.

It’s worth noting that the argument to main()
that is passed to a loaded program in MT Icon can
contain values of any type. They are not limited to
strings, as in command-line invocation.

Data Spaces

Each program loaded under MT Icon has its
own state and allocated storage regions. For ex-
ample, a reference to &subject in a loaded pro-
gram refers to its own subject of string scanning
and is not affected by — nor does it affect —
subjects of string scanning in other loaded pro-
grams.

Similarly, the allocation of space for a list in
one loaded program has no affect on the storage
regions of other loaded programs.

Each loaded program also has its own ”name
space” — its own global identifiers, keywords,
and so on.

You may have noticed that the list given as
the second argument of load() is a value in the
loading program. This means that the loaded pro-
gram has access to a data structure in the loading
program. Furthermore, since the list passed as the
argument of main() can contain values of any
kind, it can contain, for example, other structures
in the loading program. Thus, it is possible, and in
fact necessary, for loaded programs to have access
to structures in other loaded programs.

This makes it possible for one program to
affect the storage regions of another program,
although normally that is not done. It also means

preter starts execution. Additional threads can be
created dynamically as needed.

Threads are created, referenced, and activated
solely in terms of their member co-expressions.
Threads are themselves implicit.

This definition of thread is related to but
different from the one commonly used in operat-
ing systems. In operating systems, threads execute
concurrently with their own stack and registers in
a single process address space. In MT Icon, threads
execute serially with their own stack, heap, and
variables in a single address space.

Loading and Activating Programs

The function load(s, L) loads the icode file
named s and returns a co-expression correspond-
ing to the invocation of main(L) in the loaded icode
file. (Recall that an icode file is the Icon interpreter’s
equivalent of an executable file that is produced by
the compilation.)

As a simple example, suppose a program
named example.icn consists of

procedure main(args)

 every write(!args)

 return

end

Then, using the MT version of the Icon interpreter,

mticont example

translates example.icn and produces an icode file
named example. (On some platforms, the icode
file is named differently. Under MS-DOS, for ex-
ample, it is named example.icx.)

Now suppose the following program is named
mttest.icn:

procedure main()

 prog := load("example", ["Hi", "mom"])

 @prog

 write("Good–bye")

end

then

mticont mttest –x

translates and executes mttest.icn. What happens?
The program mttest.icn starts like any other

Icon program. But it uses the MT Icon function

10 / The Icon Analyst

ing co-expression. This terminates the loop in
textlist. At this point, textlist activates concord to
transmit the list it built.

Of course, it’s much easier to cast this func-
tionality in terms of a procedure in concord and
not use multiple programs and co-expressions at
all. The example here is intended only to illustrate
the way that programs can communicate under
MT Icon.

MT Icon Functions

MT Icon provides several functions that al-
low one loaded program to access information in
another loaded program. For example,

globalnames(C)

generates the names of the global identifiers in the
thread that contains C. The values of identifiers in
another loaded program can be obtained by using

variable(s, C)

where the second argument is an MT Icon exten-
sion that allows the thread to be specified. Thus,
the names and values of global identifiers in the
program prog could be written by

every ident := globalnames(prog) do
 write(
 ident,
 " : ",
 image(variable(ident, prog))
)

Since the value of variable(s, C) is a variable,
it is even possible to assign to the global variables
in another program as in

variable("write", prog) := 1
variable("writes", prog) := 1

which has the effect of turning off output in prog.
Needless to say, changing the values of vari-

ables in another program is dangerous and should
be done only in unusual circumstances.

The function keyword(s, C) accesses the key-
word named s in the thread that contains C. For
example,

write(keyword("line", prog))

writes the value of &line in prog.
For keywords that are variables, keyword()

returns a variable. Consequently,

keyword("subject", prog) := text

that when a garbage collection occurs, MT Icon
must handle references between storage regions of
different programs. You may be getting the idea
that the implementation of MT Icon is anything but
trivial.

Communication Among Programs

The example in the preceding section illus-
trates a simple form of communication among
programs. mttest activates example much in the
fashion of a procedure call. The return from main()
in example causes control to return to the point of
activation in mttest.

In co-expression activation, the flow of con-
trol need not be hierarchical. Furthermore, a co-
expression can activate the co-expression that acti-
vated it, &source. In addition, a value can be trans-
mitted to a co-expression when it is activated,
using

x @ C

which activates C and transmits x to it. (@C is just
an abbreviation for transmission of the null value.)
This mechanism is the same whether a co-expres-
sion is being “called” or when a “return to it” is
being made. This is illustrated by the program
concord.icn:

procedure main()

 prog := load("textlist")

 @prog # wake up!

 while read() @ prog

 text := cofail(prog)
...

Suppose textlist.icn is:

procedure main()

 L := []

 while put(L, @&source)

 L @ &source

end

The program concord loads textlist and acti-
vates it to get it underway. textlist then activates
the program that activated it, concord, in a loop,
putting successive values on a list. Meanwhile,
concord reads lines of input, which it transmits to
textlist. When there are no more lines of input,
concord activates textlist using cofail(prog), an
MT Icon function that causes failure of the activat-

The Icon Analyst / 11

a

b

c d

The function

parent(C)

produces the parent of C but fails if C is the root of

assigns text to &subject in prog.
Standard Icon functions that have been ex-

tended in MT Icon to allow for the specification of
a program are:

display(i, f, C)
name(x, C)
proc(x, i, C)

Additional functions specific to MT Icon in-
clude:

localnames(C)
paramnames(C)
staticnames(C)

These functions generate the names of the local
variables, parameters, and static variables of the
procedure currently active in the thread that con-
tains C.

Input and Output

The function load() has three optional file
arguments in addition to the two arguments men-
tioned earlier:

load(s, L, f1, f2, f3)

If f1, f2, and f3 are given, they become &input,
&output, and &errout for the loaded program. If
an argument is omitted, it defaults to the corre-
sponding file in the loading program, and the
loaded and loading program share that file.

The Relationship Among Loaded
Programs

Any program can load another (including a
copy of itself). A parent-child relationship is in-
duced by loading. The result is a load tree. The
program originally executed under MT Icon is the
root of this tree.

For example, if a.icn is

procedure main()
 @load("b")

...

and b.icn is

procedure main()
 load("c")
 load("d")

...

then the load tree after load("d") in b can be
depicted as:

The Bright Forest Company
 Tucson Arizona

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

12 / The Icon Analyst

ing programs sometimes can be used without modi-
fication by loading and “executing” them under
the control of a master program. For example, a
master root program can load a number of utility
programs that normally run in a stand-alone fash-
ion, with the master program providing a user
interface and activating the utilities as needed.

It’s also been our experience that facilities
often are useful for purposes very different from
those originally envisioned. Sometimes it takes a
while for new uses to become apparent.

Having said all this, we also have to say that
MT Icon is still somewhat experimental. We use it
extensively in our program visualization research,
but it’s not ready for distribution yet. Given more
experience with its use and more rigorous testing,
we may include it in a future public release.

Acknowledgment

MT Icon was conceived, designed, and imple-
mented by Clint Jeffery. Some of the material in
this article was adapted from one of his reports [2].

References

1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold,
Prentice Hall, Englewood Cliffs, New Jersey, 1990,
pp. 107-119.

2. The MT Icon Interpreter, Clinton L. Jeffery, Icon
Project Document IPD169, 1992.

the load tree. The root can be found in any loaded
program by using a procedure such as

procedure root()

 prog := &main

 while prog := parent(prog)

 return prog

end

Code Sharing

As noted earlier, there are several ways that
data can be shared among loaded programs. Since
procedures are first-class values in Icon, code can
be shared by data sharing.

Suppose, for example, that several programs
that are loaded together need to access the proce-
dures gcd(), ximage(), and escape(). These proce-
dures could be included in the root program (per-
haps by linking ucode files). Then any loaded
program that needs one of these procedures can
get to it as follows:

global gcd
...

library := root()
gcd := proc("gcd", , library) |
 stop("∗∗∗ cannot get procedure")

...

Subsequently, gcd() can be used as if it were in the
loaded program. The global declaration is needed
to make the procedure available throughout the
program, since it is not otherwise declared in the
program.

Comments

MT Icon may seem esoteric to you. And it may
be difficult to imagine uses for it. As mentioned
earlier, the motivation for MT Icon came from
program monitoring. You can see how it might be
useful to have several programs running under the
same invocation of the Icon interpreter for such
purposes. We’ll describe how this works in the
next issue of the Analyst.

We’ve not yet used MT Icon for many appli-
cations other than program monitoring, but there
are all kinds of possibilities. Some are motivated by
program organization — some programs are bet-
ter thought of in terms of collections of sub-pro-
grams instead of collections of procedures. Exist-

What’s Coming Up

The next issue of the Analyst is largely a
continuation of material that started in this one:
more Icon idioms and applications of MT Icon,
this time for program monitors that provide the
foundation for program visualization.

We’ll also have some tips on efficient pro-
gramming.

