
The Icon Analyst / 1

June 1992
Number 12

In-Depth Coverage of the Icon Programming Language

 In this issue …

Exercises … 1

Anatomy of a Program … 2

Inside the Icon Compiler … 4

Programming Tips … 9

Looking Ahead … 11

Reader Feedback … 12

7. An infinite sequence consisting of the digit 1: 1, 1, 1,
1, … .

8. An infinite sequence of randomly distributed strings
"H" and "T".

9. An infinite sequence consisting of randomly selected
digits.

10. An infinite sequence consisting of randomly se-
lected characters.

11. An infinite sequence consisting of the squares of the
positive integers: 1, 4, 9, 16, … .

12. An infinite sequence consisting of the Fibonacci
numbers: 1, 2, 3, 5, 8, 13, 21, 34, … .

13. An infinite sequence consisting of the factorials of
the positive integers: 1, 2, 6, 24, 120, 720, … .

14. An infinite sequence consisting of the “triangular
numbers”: 1, 3, 6, 10, 15, 21, … .

15. An infinite sequence consisting of the prime num-
bers: 2, 3, 5, 7, 11, 13 … .

16. An infinite sequence consisting of n copies of each
positive integer n: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, … .

To make these exercises a little more fun, try to write the
most concise solutions you can. Having done so, you might
think about whether the most concise solutions really are the
best. Are they faster than longer solutions? Are they easier to
understand? Are they aesthetically more pleasing?

Incidentally, there’s a fascinating book on integer se-
quences [2]. If you are interested in this kind of thing, check
your local library. The book may even still be in print.

References

1. “Result Sequences”, The Icon Analyst 7, pp. 5-8.

2. A Handbook of Integer Sequences, N. J. A. Sloane, Aca-
demic Press, 1973.

Exercises

We’re starting this occasional feature of the Analyst to
pose some programming problems on which you can try your
Icon programming skills. We’ll provide our solutions in the
next issue of the Analyst.

In an earlier article on result sequences [1], we suggested
using sequences of values as a conceptual tool and program-
ming technique. If you’re going to use sequences, you’ll need
skill in writing them. Otherwise you’ll be distracted from the
concept of sequences by having to figure out how to produce
them.

Here are some sequences for which you should write
generating expressions. To make these a bit more interesting,
you’re not allowed to use procedures or co-expressions in your
formulations. You may use variables; in fact, you’ll have to use
variables in some cases.

1. A sequence consisting of the names of the months of
the year: "January", "February", … "December".

2. A sequence consisting of the lowercase letters in
increasing alphabetical order.

3. A sequence consisting of the lowercase letters in
decreasing alphabetical order.

4. An infinite sequence consisting of the lowercase let-
ters in increasing alphabetical order, repeatedly.

5. An infinite sequence consisting of the lowercase let-
ters in decreasing alphabetical order, repeatedly.

6. A sequence consisting of strings representing the
times in minutes in the 24-hour day, starting midnight and
ending at the minute before midnight: "00:00", "00:01", …
"00:59", "01:00", … "23.59".

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
order for airmail postage to other countries.

2 / The Icon Analyst

Anatomy of a Program — A Suffix
Calculator

This is our second adventure in describing in some
detail the workings of a complete Icon program. As in our first
such article [1], we started with a program that we thought was
in good shape. And wound up revising it several times before
this article was finished.

The program here, a simple suffix calculator for Icon
expressions, illustrates the use of stacks, error conversion, and
some fine points of string invocation.

The Specification

The suffix calculator is designed to accept lines of input
as values: integers, real numbers, csets and strings, all in the
style of Icon literals, with an empty line standing for the null
value. Lines of input that do not satisfy this syntax are either
Icon operators, Icon functions, or calculator commands. For
example, the lines of input

"abc"
3
repl
write

cause abcabcabc to be written and that value left on the top
of the stack.

Icon operator symbols can be given also, so that

4
2
+

leaves 6 on the top of the stack.

Icon has unary (prefix) and binary (infix) operations
that use the same symbol. The calculator takes such a symbol
as representing the binary operator and the unary operator is
not available. For functions like write() that can take an
arbitrary number of arguments, the calculator assumes they
take one argument. See the exercises at the end of this article
for extensions to generalize the handling of these kinds of
situations.

There are three calculator commands:

• dump print all the values on the stack

• clear remove all values from the stack

• quit exit from the calculator program

In order to make the calculator robust, errors are con-
verted to failure. Both ordinary expression failure and failure
as a result of errors produce diagnostic messages and leave the
stack unchanged.

The Program

The program for this suffix calculator is quite short and
is shown in on the next page.

1 The main procedure starts by creating a stack in the
form of an empty list. The rest is just a read-and-process loop.

2 As noted above, there are three possibilities, de-
pending on what a line of input is: values, operations (includ-
ing functions), and commands. Anything else is an error.

In many programming languages, the processing would
be cast in an if … else if… else if … else construction. While
that can be done in Icon, alternation is more natural, with the
evaluation of procedures proceeding until one succeeds:

value(line) | operation(line) | command(line) |
 Error("erroneous input", image(line))

Recalling that procedures applied to a common argu-
ment can be factored out [2], this can be cast more concisely
as

(value | operation | command)(line) |
 Error("erroneous input", image(line))

The first three procedures could be given in any order,
since the syntax they require is mutually exclusive. It’s most
likely that values and operations will be used more frequently
than commands, so command() is placed last for reasons of
efficiency. It’s hard to chose between values and operations;
either could come first without much likely difference in
efficiency.

3 Continuing alphabetically with the procedures, the
implementation of command() is straightforward.

The command clear just creates a new, empty stack —
one of the advantages of having run-time creation of struc-
tures in Icon. Note that stack is a global variable so that all the
procedures can access it.

The command dump also is simple. Note the use of
image() to allow, for example, the integer 4 to be distin-
guished from the string 4.

The command quit causes program execution to termi-
nate with a normal completion code. Note that as discussed in
Reference 3, the use of stop() would be inappropriate here.
Note also that while the user could enter exit as a function,
exit() expects an integer argument that the user would have to
enter first.

4 Note that command(line) must fail if line is not a
command — this drives the alternation in the main processing
loop.

5 Operations are a bit more challenging. String invo-
cation can be used to invoke a function or operator by its string
name as it is input to the program. proc() converts a string to
the corresponding function or operator, if the string represents
the name of one, but fails otherwise. However, in the case of
the string name of an operator, proc() requires a second
argument that specifies whether the operator is unary, binary,
or ternary (to-by, whose name for the purposes of string
invocation is "..." is one of the two ternary operators — we’ll
let you identify the other one).

The Icon Analyst / 3

The expression

proc(line, 2 | 1 | 3)

succeeds for the first value (2, 1, or 3)
for which line is the name of an
operation. 2 is tried before 1 to select
the binary operator when there also is
a unary one with the same name. 3 is
last simply because it is least likely.
You may be wondering what hap-
pens if line is the name of a function.
If its first argument is the name of a
function, proc() ignores its second
argument; handy here.

If proc() succeeds, it assigns
the corresponding function or opera-
tor (a value of type procedure, not
string) to p, from which the number
of arguments can be obtained using
args(). There’s still a wrinkle —
args() produces –1 for functions like
write() that can take an arbitrary num-
ber of arguments. Hence the use of
abs().

6 Now we’re ready to apply
the operation to its arguments. The
stack is split into two parts for this.
Although we’ve not gotten that far,
note that for this to be done conve-
niently, the top of the stack needs to
be at the right end of the list.

7 Before invoking the opera-
tion, &error is set to 1 so that an error
will not cause the calculator to termi-
nate.

8 Now everything is ready to
do the actual invocation. This is just
what list invocation is designed to do
easily [4]. If the invocation succeeds,
the resulting value is put on the stack.
Normally, we’d use push(), not put()
for stack manipulation. But as noted
above, it’s convenient for the argu-
ments to be in left-to-right order on
the stack and hence to have the top of
the stack at the right end of the list.
Although we don’t need it here, pull()
in combination with put() provides
the same stack functionality as pop()
in combination with push().

9 If the invocation fails, it
could be because of failure of the
evaluation of the expression, or it
could be because an error occurred.
The two cases can be distinguished
by checking the value of &error, since

1

2

3

4

5

6

7
8

K

L

M

N

9

O

J

P

link escape, usage

global stack

procedure main()
 local line

 stack := []

 while line := read() do
 (value | operation | command)(line) |
 Error("erroneous input ", image(line))

end

procedure command(line)

 case line of {
 "clear": stack := []
 "dump": every write(image(!stack))
 "quit": exit()
 default: fail
 }

 return

end

procedure operation(line)
 local p, n, arglist

 if p := proc(line, 2 | 1 | 3) then { # function or operation?
 n := abs(args(p))
 arglist := stack[–n : ∗stack + 1] | {
 Error("too few arguments")
 fail
 }
 stack := stack[1 : –n]
 &error := 1 # anticipate possible error
 put(stack, p ! arglist) | { # invoke
 if &error = 0 then
 Error("error ", &errornumber, " evaluating ", image(line))
 else
 Error("failure evaluating ", image(line))
 stack |||:= arglist # restore unused arguments
 }
 &error := 0
 return
 }
 else fail

end

procedure value(line)

 put(stack,
 2(line == "", &null) |
 numeric(line) | {
 line ? {
 2(="\"", escape(tab(–1)), "\"") |
 2(="'", cset(escape(tab(–1))), ="'")
 }
 }
) | fail

 return

end

4 / The Icon Analyst

it is automatically decremented in case an error is converted
to failure.

J If the invocation failed (for whichever reason), the
arguments are restored to the stack by concatenation.

K Finally, &error is reset to 0 to avoid its masking
some other error in the program.

L If proc() fails at the beginning of the procedure, then
operation() also fails.

M The final procedure, value(), has three basic cases to
consider: an empty line, indicating the null value, a number,
or a quoted literal.

N The second argument to put() is cast as an alterna-
tion for these three cases. In the case where an expression can
fail, mutual evaluation is useful, since if any expression in it
(such as line == "") fails, the entire mutual evaluation fails and
the next alternative is tried.

O The function numeric() handles both integers and
real numbers, returning the correct type.

P Quoted literals are analyzed using string scanning as
you’d expect. Basically, it’s a matter of checking the first and
last characters to see if they are quotes of the same kind. If so,
the characters between them give the desired value. The
procedure escape(), linked from escape.icn in the Icon
program library, takes care of escape sequences. This allows
the user of the calculator to enter characters in string and cset
literals that can’t be keyboarded directly, such as "\n".

The procedure escape() is rather involved because of
the several kinds of escape conventions that Icon supports in
quoted literals. It also has to take into account differences
between ASCII and EBCDIC in some escape conventions. If
you’re interested in the gory details, see the Icon program
library.

This program uses another procedure from the Icon
program library, Error(). It shows an interesting wrinkle in the
use of list invocation. Error() is designed to accept an arbitrary
number of arguments, which it writes in order to standard
error output. It’s declared with a single list argument:

procedure Error(L[])
 push(L, "∗∗∗ ")
 push(L, &errout)
 write ! L
end

The interesting point is the way that a string of asterisks and
&errout are pushed to add two arguments to the list passed in
the call of Error() prior to the invocation of write().

Retrospective

As we said earlier, writing this article led to several
improvements to the program. If you have an old version of
the Icon program library, compare calc.icn to the version
given here to see how much we changed. In fact, writing a
detailed description like this seems to be a guaranteed way to
improve a program.

There are some enhancements we didn’t make that you
might want to try as exercises:

• Provide a way of supporting both the unary and binary
operations that have the same operator symbol.

• Provide a way of specifying how many arguments a
function like write() should take.

• The calculator, as it stands, ignores generators, using
only the first value produced even if the operation could
produce many. Modify the program so that all the values
produced by a generator are put onto the stack. Rethink the
handling of expression failure in this context.

• If all the values a generator can produce are put on the
stack, there’s the possibility of an infinite number, or even an
inconveniently large finite number. Provide a way for the user
to limit the number of results that are put on the stack as the
result of generation.

• Provide a way to prevent a user from specifying a
procedure (as opposed to a function). While you may imagine
uses for procedures, they inevitably are part of the calculator
itself, and they probably should not be accessible to a user; or
at least to a casual user.

Reference

1. “Anatomy of a Program — A Recognizer Generator”, The
Icon Analyst 10, pp. 4-9.

2. “Result Sequences”, The Icon Analyst 7, p. 7.

3. “Program Termination”, The Icon Analyst 6, p. 11.

4. “A String Evaluator”, The Icon Analyst 9, p. 3.

Inside the Icon Compiler

Now that there’s an optimizing compiler for Icon, we
have lots of things to write about: how it works, what it does,
how to use it, and so forth.

We won’t attempt to get deeply into the compiler in
these articles in the Analyst — the compiler is a sophisti-
cated and complex beast and it takes quite a bit of background
and study to even become generally familiar with how it
works. Hitting the high spots here and there may, however,
prove both interesting and useful.

Most of the material here is adapted from Ken Walker’s
doctoral dissertation [1].

Components of the Compiler

The diagram at the bottom of the opposite page shows
what goes on when the Icon compiler is used. The four
components that constitute the Icon compiler system are
shaded:

The Icon Analyst / 5

• The compiler itself.

• A data base that contains information about Icon that
the compiler needs in order to perform optimizations and
generate code.

• C header files that are needed by the C code that the
Icon compiler produces.

• A library of object code that is linked with the object
code produced for the program being compiled.

The Icon compiler is simply (!) a program written in C.
More on it in a moment. But what about the data base and
object library? They are produced when the Icon compiler
system is built, as shown in the diagram on the next page.

The key to this part of the compiler system is the run-
time source code. This code consists of the routines and data
that make up Icon’s run-time system: code for its functions,
operations, keywords, and things like storage management.
Most of the semantics of Icon reside in this run-time source
code. (The major exceptions are the semantics of control
structures, which are embodied in the compiler itself.) The
compiler relies on information in a data base derived from the
run-time source code for the properties of functions, opera-
tions, and keywords.

Prior to the development of the Icon compiler, the run-
time system for the Icon interpreter was written in C. The
compiler, however, needs information about functions, op-
erations, and keywords that is not easily extracted from C
code. To accommodate this need, a special run-time language,
RTL, was designed for the compiler’s run-time system.

RTL is a superset of C and provides constructs for
describing the semantics of Icon as well as ways for express-
ing operations like type checking and conversion in a more
convenient way than is possible in C alone. We’ll have more
to say about RTL in a subsequent article, but you can get a hint
of what it’s like by looking at the box at the right.

Components of the Icon Compiler

Icon
source
code

Icon compiler C
code

C compiler

data base C
headers

library

object
code linker

executable
code

An Example of RTL Code

"numeric(x) – produces an integer or real "
"number resulting from the type conversion of x, "
"but fails if the conversion is not possible."

function{0,1} numeric(n)

 if cnv:(exact)integer(n) then {
 abstract {
 return integer
 }
 inline {
 return n;
 }
 }
 else if cnv:real(n) then {
 abstract {
 return real
 }
 inline {
 return n;
 }
 }
 else {
 abstract {
 return empty_type
 }
 inline {
 fail;
 }
 }
end

6 / The Icon Analyst

The run-time translator processes RTL code and pro-
duces two things: corresponding C code and the data base
mentioned above.

The C code produced by the run-time translator is then
compiled along with support routines written in C to produce
object code, which in turn is processed by a librarian to
produce the object-code library. This object code library is
linked with the object code that results from compiling an Icon
program.

All this sounds simple, and it is, at least conceptually. In
practice, building the data base and the library is a compli-
cated and time-consuming process. Once they are built, how-
ever, they become part of the Icon compiler system and there’s
no need to rebuild them unless Icon’s run-time system is
changed (as, for example, the result of adding a new function
or keyword to Icon).

The Compiler Itself

As shown in the diagram on page 5, there are two
sources of input to the Icon compiler: the Icon source program
it compiles and the data base mentioned above. There are
several phases in the compilation process:

• initialization

• source-code analysis

• symbol resolution

• naive optimization

• type inference

• code generation

• invocation of the C compiler

The control and data flow among these phases are
shown on the next page. External files are shown at the left:
The data base and the Icon program being compiled are input;
the C program and header files for it are output. Data stored in
memory is shown at the right.

The initialization phase reads the data base into memory.
The source-analysis phase consists of a lexical analyzer and
parser similar to the ones used in the Icon interpreter. The
parser generates abstract syntax trees and symbol tables for all
the procedures in the source program. See the diagram on page
8.

The symbol resolution phase determines the scope of
undeclared identifiers much in the manner of the linker for the
Icon interpreter [2].

Construction of the Icon Compiler System

run-time
source
code

run-time
translator

C
code C compiler

C
support
routines

data base

C
headers

object
code librarian library

C
code C compiler Icon compiler

C
code C compiler run-time translator

The Icon Analyst / 7

external files internal dataIcon compiler

initialization

source analysis

symbol resolution

naive optimization

type inference

output:

C main function

globals

constants

output:

C functions for

each procedure

output:

record constructors

invoke C compiler

data base

symbol tables

and annotated

syntax trees

prog.icn

data base

prog.h

prog.c

fragmentary
C code

data flow

data flow and update

control flow

internal links

Control and Data Flow in the Icon Compiler

8 / The Icon Analyst

Naive optimizations related to invocation and assign-
ment are performed next. As described in Reference 2, func-
tions and procedures are the initial values of global variables.
Unless assignments are made to these variables, function and
procedure invocations “are what they seem to be”. The Icon
compiler checks for possible assignments to these variables.
If there are none, it binds their invocations to the actual
functions and procedures.

The naive optimization for assignment deals with the
common case where an unconditional assignment is made to
a named variable. By identifying such assignments, subse-
quent optimizations are easier to perform and are more effec-
tive.

Type inference is the “biggy”. We hinted at the kinds of
things it does and why they are important in Reference 3.

Actual code is produced on a per-procedure basis. It
involves several sub-phases as shown in the diagram on the
next page:

• liveness analysis

• code generation

• fix-up and peephole optimization

• output

Liveness analysis involves determination of the life
times of intermediate computations so that temporary memory
locations can be assigned to them. This process is more
complex in Icon than in most other programming languages
because goal-directed evaluation can cause backtracking and
the re-use of previously computed results. See Reference 4 for
a discussion of this problem.

Before any output is actually done, fragmentary C code
is constructed in memory. Portions of the code are easier to

complete after other parts are produced. If this code were
written out as-is, it would contain many unnecessary instruc-
tions because code segments produced for separate portions
of a program usually do not fit together well. These problems
are handled by fix-up routines and a peephole optimizer.

Finally, the actual code is written. For convenience,
there are two output files, one that includes the other as a
header file.

Conclusion

We’ve glossed over many aspects of the compiler and
deliberately over-simplified some issues to try to give a
general feeling of what goes on inside the compiler.

If you’re interested in knowing more, there are two
sources of detailed information: Ken Walker’s dissertation
[1] and the source code itself, which, as always, is the “final
authority”.

References

1. The Implementation of an Optimizing Compiler for Icon,
Kenneth Walker, Technical Report TR 91-16, Department of
Computer Science, The University of Arizona, 1991.

2. “An Imaginary Icon Computer”, The Icon Analyst 8,
p. 4.

3. “Type Inference in the Icon Compiler”, The Icon Ana-
lyst 9, pp. 7-11.

4. The Implementation of Generators and Goal-Directed
Evaluation in Icon, Janalee O’Bagy, Technical Report TR 88-
31, Department of Computer Science, The University of
Arizona. 1988.

The Analysis Phase

data base

symbol tables

and annotated

syntax trees

prog.icn

internal linksparsing

lexical analysis

external files internal data

The Icon Analyst / 9

fix-up and peephole

optimization

prog.h

prog.c

fragmentary
C code

code generation for
a procedure

output

external files internal data

symbol tables

and annotated

syntax trees

liveness analysis

Code Generation

Programming
 Tips

Buffering Input and Output

Reading and
writing files are pretty
much irreversible ac-
tions. Yes, you can
close and reopen a file
to read it again and
use random-access
input and output to
get to a specific place
in a file, but these are
awkward and compli-
cated operations
compared to just
reading and writing.

There are some
situations, however,
in which the natural
thing to do is to write

several lines, but not until some condition is satisfied. Simi-
larly, sometimes when you read a line, you aren’t ready to
process it, although you may not know that until you’ve read
it.

You can contrive ways of handling these situations,
storing data in variables or lists until you are ready to look at
it or write it out. A more general and flexible method is to
provide input and output buffering and procedures for manag-
ing the buffered data. Since Icon lists can be accessed as stacks
and queues and because they grow and shrink automatically,
it’s very easy to provide such buffering facilities.

Here are some simple procedures that illustrate useful
techniques. We’ll assume only standard input and standard
output; you can generalize these procedures to handle other
streams.

We’ll start with a procedure Read() that acts much like
read(), expect that it keeps lines in a buffer. It starts out by
creating a list with one line of input. Subsequently it reads
another line into the buffer before returning the previous line:

10 / The Icon Analyst

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

global buffer_in, Eof

procedure Read()

 initial {
 /buffer_in := []
 put(buffer_in, read()) | (Eof := 1)
 }

 put(buffer_in, read()) | (Eof := 1)

 return get(buffer_in)

end

A couple of things are worth noting here. When the end of the
input stream is encountered, read() fails. That simply means
no line gets added to the buffer. Eof is set so that an actual end-
of-file condition can be checked. The next call empties the
buffer, and when the buffer is empty, Read() fails. Note that
it’s safe in Icon to attempt to read from a stream after its end.
If this were not true, this procedure would be considerably
more complicated.

By having a buffer, it’s possible to “look ahead” at the
next line without removing it from the buffer:

procedure LookAhead()

 return buffer_in[1]

end

Note that this procedure fails if the buffer is empty.

It’s also possible to “put back” lines to be “read”
subsequently.

procedure PutBack(s)

 push(buffer_in, s)

 return

end

 Of course, these lines need not be ones that have actually been
read.

Note that PutBack() increases the number of lines in
the buffer. You might want to modify Read() so that it only
does actual input when the buffer is empty. Or you might not
— see the example at the end of this article.

Output buffering is somewhat different, depending on
the functionality you want. For example, if you don’t want any
lines to be actually output until you explicitly request it, the
following procedure might be useful:

global buffer_out

procedure Write(s)

 initial buffer_out := []

 push(buffer_out, s)

 return s

end

We’ll leave it to you to extend Write() to handle an arbitrary
number of arguments. You might also want to think about type
checking.

To write out the lines in the buffer, all that’s needed is:

procedure Flush()

 while write(pull(buffer_out))

 return

end

And you can get back lines that haven’t actually been written:

procedure GetBack()

 return get(buffer_out)

end

Or you just might want to clear out what’s in the buffer:

procedure ClearOut()

 buffer_out := []

 return

end

You no doubt can think of other useful procedures. For
example, there are situations in which you might want to have
a minimum number of lines in the input buffer. This can be
done with

procedure ReadAhead(i)

 initial /buffer_in := []

 while ∗buffer_in < i do
 put(buffer_in, read()) | {
 Eof := 1
 fail
 }

 return

end

Here’s a program that uses this feature. It writes only the
last few lines of the input file:

The Icon Analyst / 11

procedure main(arg)

 ReadAhead(integer(arg[1] | 10))

 while /Eof do
 Read()

 while write(Read())

end

As we suggested earlier, a good buffering facility should
be able to handle streams other than standard input and output.
Here’s a hint for how you might handle multiple streams:

record buffer(name, in, out)

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...uunet!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Looking Ahead

With the next issue, the Analyst begins its third year
of publication. This anniversary provides an occasion to take
stock, to reflect, and to plan.

There’s a questionnaire on the next page that we hope
you will complete and send to us so that we’ll have an idea of
how we’re doing and what changes we should make.

One thing we have in mind is to place more emphasis on
what’s new and what’s in the works. Many of the articles in
past issues of the Analyst describe the end results of re-
search. Icon itself is not just the result of an effort to design a
new programming language. Instead, Icon is a by-product of
research, embodying the results of investigations into new
ways to express nonnumerical computation.

Of course, by the time Icon grew out of these origins,
was made into a complete language, implemented, and pack-
aged for general consumption, the research behind it was
largely obscured.

In upcoming issues of the Analyst, we’re going to try
to get a little closer to recent research and research in progress.
This will mean material about some things that may not work
out or that may work out differently from what we expect.
Some of the things we plan to write about may not be available
for public consumption for some time, if ever.

Despite the resulting lack of “present reality”, we hope
you’ll find some of the things we’re doing to be interesting.
And maybe you’ll have some ideas for us.

12 / The Icon Analyst

Reader Feedback

Some of you have commented from time to time on the
content of the Analyst, but we’d like to hear from more of
you and get your opinions on specific issues.

Please take some time to fill out the questionnaire that
follows. Send it to the Icon Project at the address given in the
publication box on page 11. You can fax it if you prefer — or
even send electronic mail if that’s easier for you. Although
we’d like to get as many completed questionnaires as pos-
sible, any other form of feedback is welcome also.

We’ve tried to design the questionnaire so that you can
respond in the manner you think best — we’re interested in
general reactions and nuances, not numerical scores. Please
be as informative as you can, but don’t get frustrated and give
up because it takes too much effort to answer a question; we’d
rather have a partially completed questionnaire than none.

We’ll summarize the responses we receive in a future
Analyst. Individual responses will be kept in confidence, of
course. (If you want to be quoted, let us know — and be sure
to add your name.)

What specific articles did you like most?

What kinds of articles do you like least?

Are the Programming Tips useful to you?

What is your profession?

For what do you use Icon?

On what platform(s) do you run Icon?

Is there any thing else you’d like to pass on? (Use additional
sheets as needed.)

Are you generally satisified with the content of the Analyst?

Do you find the Analyst useful?

If so, in what ways?

Is the general technical level of the material about right for
you, or is it too high or low?

What kinds of articles do you like best?

