The Jeon

Analyst

In-Depth Coverage

of the Icon Programming Language

October 1991
Number 8

In this issue ...

String Synthesis ... 1

An Imaginary Icon Computer ... 2
Augmented Assignment Operations ... 7
The Icon Compiler ... 8

Programming Tips ... 12

What's Coming Up ... 12

String Synthesis

In the last issue of thAnalyst, we posed the problenp
of implementing a string-synthesis facility for Icon, using t
ideas given earlier about modeling the string-scanning cor
structure.

Our solution is given below. First we need procedu
analogous to the procedure used for modeling string scan

e

result of string synthesis. There now also are two positign

ing.
In addition to a subject, there’s now an “object”, which is the

subject := OuterEnvir.subject
object := OuterEnvir.object
S_pos := OuterEnvir.s_pos
0_pos := OuterEnvir.o_pos
fail

end

procedure Eform(OuterEnvir, e2)
local InnerEnvir

InnerEnvir :=
XformEnvir(subject, s_pos, object, 0_pos)
subject := OuterEnvir.subject
object := OuterEnvir.object
S_pos := OuterEnvir.s_pos
0_pos := OuterEnvir.o_pos

he
trol

suspend InnerEnvir.object

OuterEnvir.subject := subject
OuterEnvir.object := object
OuterEnvir.s_pos :='s_pos
OuterEnvir.o_pos := 0_pos
subject := InnerEnvir.subject

S

SI

one in the subject and one in the object. The global identifiers ~ Object := InnerEnvir.object
subject, object, s_pos, ando_pos are used for these fouf S_pos = InnerEnw_r.s_pos
“state variables” in the procedures that follow. (In a real 0_pos = InnerEnvir.o_pos
implementation, these would be keywords.) fail

The string synthesis control structure is modeled ap end

exprl? expr2 - Eform(Bform(exprl),exprd

The procedureBform() andEform() are very similar
toBscan() andEscan() used in the lastissue of tReralyst
for modeling string scanning. There just are two additio
state variables to maintain. The subject gets its value ffo
exprlas before, while the object starts out as the empty stifin
Both positions start at 1.

=

record XformEnvir(subject, s_pos, object, o_pos)
global subject, object, s_pos, o_pos

procedure Bform(el)
local OuterEnvir

OuterEnvir ;=
XformEnvir(subject, s_pos, object, o_pos)
subject .= el
object :=""
S _pos:=0_pos:=1

suspend OuterEnvir

Most of the procedures specified in the last issue of the
Analyst are straightforward. Care must be taken, however,
to assure that values assigned to the positions are in range —

his is done automatically for the keywda&gos, but it must
e done explicitly fois_pos ando_pos. The procedures
amove() andomove() illustrate this:

procedure smove(i)

if s_pos +i>=1then
suspend .subject[.s_pos:s_pos <—s_pos +]

end
procedure omove(i)

if 0_pos + i < 1 then fail
suspend .object[.0_p0s:0_pos <— 0_pos + i]

end

Note thatsmove() andomove() are the same except for the
use of different variables.

@The Jeon Analyst /1

In addition, non-positive specifications for positiong
must be converted to positive ones. The procedyres()
takes care of this:

procedure cvpos(i, S)

ifi<=0theni+=0E+1
ifl1<=i<=[+1lthenreturni
else falil

end

This conversion is needed in all procedures who
arguments are position specifications:

5€

procedure spos_ (i)

return cvpos(i, subject) = s_pos
end
procedure stab(i)

suspend .subject[.s_pos:s_pos <—
cvpos(i, subject)]

end
procedure opos_ (i)
return cvpos(i, object) = 0_pos
end
procedure otab(i)

suspend .object[.0_pos:0_pos <—
cvpos(i, object)]

end

Again note the similarity of the procedures that deal with the
subject and the object.

What Next?

If you're interested in programming language design,
you may wish to try your hand at adding additional string
synthesis procedures.

Another possibility is a facility that combines analysis
and synthesis so that the subject is transformed as it's ana-
lyzed. While this kind of string transformation has conceptual
appeal, it presents the problem of keeping track of where you
are in a subject whose length may be changing. If you come
up with some ideas, you can try them out without a great
investment in time and effort by using the modeling tech-
nigues we've shown.

i

An Imaginary Icon Computer

As mentioned in the last issue of tf@enalyst, the
interpretive implementation of Icon is based on the concept of
an imaginary lcon computer that performs the operations
needed to execute an Icon program.

The instruction set of this imaginary computer is a bit
strange — it's not something you’d want to build in hardware.
Rather, this imaginary computer forms a conceptual bridge
between the semantics of Icon and the architecture of conven-
tional computers on which Icon must run. This implementa-
tion technique is an old one. The first language in which the
method was well documented was BCPL [1]. The macro
implementation of SNOBOL4 also used this technique [2].

Virtual Machine Language

The code for this Icon computer is called virtual ma-
chine code and is described in some detail in the Icon imple-

The three interesting procedures related to synthesismentation book [3]. We won't attempt to describe virtual

are:
procedure xswap()

suspend (object <—> subject) & (0_pos <-1) &
(s_pos <— 1) & &null

end
procedure odelete(i)

suspend (object[o_pos+:i] <— ") & .opos
end
procedure oplace(s)

suspend (object[o_pos:0_pos] <-s) &
.(0_pos <—0_pos + [k)

end
In all three, conjunction and reversible assignment

used to assure that the state variables are restored to
former values if a suspended procedure call is resumed.

2 / @he Jeon Analyst

e

machine code in detail here, but a few of its characteristics are
worth note.

First, the imaginary lcon computer is stack-based. That
is, the operands of an operation are pushed on to a stack. The
operation pops its operands off the stack and pushes its result
in their place.

One curious aspect of the virtual machine language is
that there is a separate instruction for every lcon operator —
not just ones for arithmetic operations. There is an instruction
for subscripting, an instruction for activating a co-expression,
and so on.

On the other hand, there is just one instruction for
invoking all functions and procedures. The difference be-
tween the handling of operators and functions is a reflection
of the fact that Icon operators are fixed and their meanings
cannot change during program execution;

i+j

always means addition. On the other hand, functions and

procedures are first-class values. They start out as the vajue
of global identifiers, but other values can be assigned to thesé
identifiers. Consequently,

write(s)

may be the invocation of the built-in function for writing, o
it may be something entirely different if another value has
been assigned torite.

The virtual machine language does not attempt to cape
with generators. There is a single virtual machine instructipn
for the element generatdk] just as there is one for the siz¢
operation (k). It's left to the instruction (that is, its executior
by the imaginary Icon computer) to handle what goes on
generation.

As with any real computer, there are lots of othe¢
instructions: instructions to push values on the stack, instryic-
tions to reference variables, and instructions to transfer cpn-
trol between places in a virtual machine program.

You can look at the virtual machine code if you wish
it's found in ucode files. As described in the article in the
precedingAnalyst, ucode is the format used in procedurg
libraries. If you have a library of ucode files (perhaps from the
Icon program library), you can print them or examine them
with a text editor — they are plain text files. You also cgn
create ucode files using the option to the Icon interpreter,
asin

in

=

icont —c sum.icn

This produces a pair of ucode filssim.ul andsum.u?2.

The .ul file contains virtual machine code for thg
program, while theu2 file contains global program informa-
tion.

An Example

Consider the following Icon program that produces the
sum of real numbers given in the standard input file. It also
removes any leading or trailing white space and ignores lines
that do not contain valid real numbers:

procedure main()

total := 0.0
every total +:= check(!&input)
write("Total =", total)

end
procedure check(s)

s ?{
tab(many(' \t))
return real(trim(tab(0), ' \t"))

}

end

If this program is in the filsum.icn and is translated

with the—c option, the filesum.ul that results is as shown in

proc main
local
local
local
con
con
declend
filen
line
mark
pnull
var
real
line
asgn
unmark
lab L1
mark
markO
pnull
var
dup
var
pnull
line
keywd
bang
invoke
plus
asgn
pop
lab L3
efail
lab L4
unmark
lab L2
mark
var
str
var
line
invoke
unmark
lab L5
pnull
line
pfail
end

proc check
local
local
local
local
local
con
con
declend
line
mark
var
line
bscan
mark
var
var
cset
line

0,000000,total

1,000000,check

2,000000,write

0,004000,0.0
1,010000,8,124,157,164,141,154,040,075,040

sum.icn

1 (3]
L1

0
0
2

L2

NbhORLNIT

@ O

0,001000,s
1,000000,tab
2,000000,many
3,000000,real
4,000000,trim
0,020000,2,040,011

1,002000,1,0
7

L1

0

8

L2

1

2

0

9

sum.ul

the box at the right.

@The Jeon Analyst / 3

There is a section of virtual machine code for ea
procedure rhain() andcheck() in this program).

@ Each procedure begins withoc, followed by infor-

mation about identifiers and constants used in the proceduire

Identifiers are indicated bipcal, followed by three
comma-separated fields. The first field associates an inte|
(starting at 0) with the identifier. The second field contair
information about the identifier, such as if it is explicitly
declared to be local (most digits in this field are unused, |
over from a time when it was not known what informatio
would be needed). The third field gives the identifier nam
Thus,total is identifier O in thamain procedure.

Next the constants used in the procedure are given. |
real number 0.0 is constant 0, while the striligtal = " is

h file, which contains global information about the program,
usually is short, as shown here:

version U8.3.000

impl local

global 2
0,000005,main,0

per
1,000005,check, 1

S
sum.u2

pft
N The version identification is provided so that the linker
€. can check that the ucode is compatible with its data.

The line

he

impl local

constant 1. ASCII codes (or EBCDIC codes on IBM maif)- stands for “implicit local” and means that an undeclared

frames) are used for string constants, since they (unl
identifiers) can contain characters like linefeeds that wou
confuse the text of the ucode file if given literally.

The virtual machine instructiateclend indicates the
end of the heading information for the procedure.

©® The instructiorfilen gives the name of the source
language file from which the ucode was compiled. Th
argument of thdine instruction is the source-program ling
number. File and line information is used in run-time err
messages and by the keywo&dde and&line. The virtual-
machine instructions for the executable code in the proced
follow.

© The mark instruction indicates the beginning of &
bounded expression. Its arguméit, is the label of the code
to which to branch in case the expression that follows fai
The expression here, a simple assignment, cannot fail, but
translator is not smart enough to account for this.

The instructiopnull pushes a null descriptor to provids
a place for the result of the upcoming operation. Vae
instruction pushes a variable descriptor corresponding to
number given in its argument, arghl pushes a real descrip-
tor corresponding to its argument. Thegn instruction
performs the assignment using the descriptors on the sté
The argument descriptors are removed, and the result of
assignment (the variable) replaces the null descriptor that
pushed earlier. The result is execution of the expression

total := 0.0

Theunmark instruction undoes the effects of thark
instruction. Virtual-machine instructions for the remainin
expressions follow. See Reference 3 if you're interested
more details of the virtual-machine instructions and what th
do.

@ The code for the procedure is terminated byetide
instruction. Note thaifail is the last instruction in the body off

ke identifier will be local unless the linker finds a global decla-
Id ration for it in another ucode file. If the program has been

compiled with the-u option, the corresponding line in the

file would have been

impl error

e Instructing the linker to issue warning messages for unde-

clared identifiers for which there are no global declarations
hr (they are still made local).

The remaining lines in theu2 file give the global
Lreidentifiers with encoding information. Here the only global
identifiers are those for the two procedures in the program.

The Linker

S.

the Although the linker is not really part of the imaginary

Icon computer, it's an essential part of the implementation.

The linker processes ucode files, perhaps from several sepa-

rate translations, resolves the scope of undeclared identifiers,

and produces a binary icode file containing the virtual-ma-
he pi i

chine code and data in a form that can be processed by an

interpreter.

Lck Anicode file is a memory image; itis read into memory
when the Icon interpreter is run and “executed”.

h
$a§ Since an icode file is in a binary format, it can't be
printed or viewed in a text editor to see easily what it contains.
The Iconlinker, however, can be configured with a debugging
option in which a text file showing the icode can be obtained.

It's necessary to have the source code for the linker and
) compile it with the debugging option. If you have the source
N code for Icon and want to try this, add

#define DeBug

|
a)
c

to src/h/define.h and recompilécont. With the linker that
results, the command line optish toicont causes a file with

the procedure, ensuring that if control flows off the end of the the suffix.ux to be produced. For example

procedure body, a call of the procedure will fail, as it does
the procedures in the example here.

n

icont —L sum.icn

Most of the content of a program — its procedu
declarations and executable code— is intiidfile. The.u2

4 / The Jeom Analyst

e produces a filssum.ux showing the contents of the icode
file.The result is shown on the next paiyete:The format of

(1]
0 3 (2] 332: 44 # bscan
336: 67 L2 # mark
000 000 000 000 000 000 000 000 344: 84 3 # global
(0.0) 352: 84 4 # global
360: 51 [+136 # cset
16: 6 (3]
44
Z+60)
0 484: 0 # record blocks
5 488: # record/field table
0 . 488: 22000000006 Z+16 # main (5]
4 S+0 #man @ 496: 22000000006 Z+272 #check
5 S+20 # total 504: 22000000006 72 # write o
512: 22000000006 —65 # tab
60: 67 L1 #mark @ 520: 22000000006 -35 # many
68: 69 # pnull 528: 22000000006 -52 # real
72: 83 0 # local 536: 22000000006 —67 # trim
80: 75 [3-88 # real
88: 1 # asgn 544: 4 S+0 # main @
92: 78 # unmark 552: 5 S+14 # check
L1: 560: 5 S+26 # write
96. 67 L2 # mark 568: 3 S+51 #tab
104: 85 # mark0 576: 4 S+55 # many
108: 69 # pnull 584: 4 S+60 # real
112: 83 0 # local 592: 4 S+65 # trim
120: 52 # dup
124: 84 1 # global 600: 060 S+041 (11)
132: 69 # pnull
136: 62 20 # keywd 608: 060 001 @
144: 2 # bang 616: 088 002
148: 61 1 # invoke 624: 136 003
156: 30 # plus 632: 212 004
160: 1 # asgn 640: 228 005
164: 70 # pop 648: 316 007
L3:) 656: 332 008
168: 53 # efall 664: 368 009
L4: 672: 428 010
172: 78 # unmark 680: 468 008
L2: 688: 480 012
176: 67 L5 # mark
184: 84 2 # global 696: 155 141 151 156 000 125 070 056 ®
192: 77 8,5+32 # str 704: 062 056 060 060 060 000 143 150
204: 83 0 #local 712: 145 143 153 000 164 157 164 141
212: 61 2 # invoke 720: 154 000 167 162 151 164 145 000
220: 78 # unmark 728: 124 157 164 141 154 040 075 040
LS: 736: 000 163 165 155 056 151 143 156
224: 69 # pnull 744: 000 163 000 164 141 142 000 155
228: 68 # pfail 752: 141 156 171 000 162 145 141 154
760: 000 164 162 151 155 000 040 011
232:3 768: 000
000 000 002 000 000 000 000 001 size: 769 (14]
trace: 0
272: 6 records: 484
44 ftab: 488
Z+316 fnames: 488
1 globals: 488
0 gnames: 544
0 statics: 600
0 strcons: 696
5 S+14 # check filenms: 600
1 S+49 #s linenums: 608
config: 18.3.000
316: 67 L1 # mark
324: 81 0 # arg
sSum.ux

@The Jeon Analyst / 5

.ux files varies somewhat, depending on the version of Ic’I:

you're using; the file you get may not be identical to the o
here. We've also adjusted white space to make it easie
read.)

The general structure of an icode file, as shown in t
text-file representation, has several components:

@ Relative memory addresses are shown at the beg
ning of most lines.

As in ucode, icode is organized on a per-procedyre

basis. Each procedure starts with data local to the proced
blocks for any real numbers and csets used in the proced
followed by a procedure block.

@ In the first procedure, there is a block for the redl

number 0.0 starting at relative address 0.

© The procedure block starts at relative address 16

See Reference 3 for information about the contents of s
blocks. The symbadZ (“zero”) is used to emphasize that al
address is relative to the beginning of the icode.

@O The symbolS (“strings”) indicates an address rela
tive to a block that contains the strings (names, string literg
and so forth) contained in the program. TI&20 is where
the string for the name of the identiftetal is located. In this
exampleSis 696. We'll explain how this is determined later

© The virtual machine instructions for a procedur
follow its data block. Compare these to the correspondi
ucode. In icode files, the numerical codes used to encq
virtual-machine instructions are given after the address
Arguments, if any, are in the next column, and the names

n @ A table of icode locations and corresponding file
e names comes next (address 600 in this example). Since there
tds only one file for this program, there is only one entry.

@ Next there's a table of icode locations and corre-
he sponding program line numbers (address 608 in this ex-
ample). File names and line numbers are used in diagnostic
_messages and I&file and&line.

@® The strings for the program come next (address 696
in this example), with each character shown by its octal value.
Jre_S'[r_ings are po_oled. That is, there_ is oqu one instance of a
Jrestrlng, even if it appears several times in the program. Note
that strings are null-terminated as is conventional for C, the

language in which the Icon interpreter is written.

@ The last part of theux file gives information about
its size (769 bytes in this example) and the relative addresses
- of global data in it. At the end is the icode version number. In
hthe actual icode file, this block of information appears first.
Space is reserved for it and the icode file is repositioned to
write this header after all the other information has been
written. We’'ll explain the reason for this in a subsequent
Is,article.

in

r

What Does This All Mean?

We've covered a lot of detail here. And there’s a lot
hg more you'll need to study if you really want to understand the
imaginary lcon computer.

de
bs. Our purpose in providing all this information is to give

ofyou an idea of the conceptual framework for the interpretive

[{]

the instructions are given in comments. For examp|e’ meimplementation of Icon: Howtheimplementation of lcon can

numerical code fomark is 67.

@ The symboldrefers to the current location in the
icode (actually, the address of the next instruction, becaus
when the location is incremented). Thids88 comes out to
0, which is the address of the real block for 0.0.

@ Data that is global to the program follows the cod

for the last procedure. Record information comes first (this

program has no records).
@ Descriptors for global identifiers are next (addres

488 in this example). The only global identifiers in thig

program are the ones for the procedures and functions re|
enced in the program. The first two, for the procedumas()
andcheck(), pointto their respective procedure blocks16
andZ+272)

© The remainder of the global descriptors are for th
functions used in the program. They have negative identifyi
values. When an icode file is loaded prior to execution, the

be accomplished in terms of an albeit unusual and non-
existent “lcon machine”, how this view is used in the actual

30f'mplementation, and how the implementation on a real com-
puter can be accomplished.

This is just one way to implement a programming
language with features that are far from those found in real
computer hardware. But it has proved effective for several
programming languages and is worth knowing if you are
interested in implementation techniques.

In afuture article, we’ll go one step further and describe
what the Icon interpreter does with an icode file and explain
a little about the interpreter itself.

[0}

S

fer

References

e 1. “The Portability of the BCPL Compiler”, Martin Richards,
Ng Software — Practice & Experienc¥ol. 1, No. 2, 1971, pp.
Se135-146.

negative values are replaced by pointers to their respective; The Macro Implementation of SNOBOL4; A Case Study of

function blocks in the run-time system. See Reference 3
details.
@ Qualifiers for the names of the global identifiers al

next (address 544 in this example). Note that they point
strings in the identifier region.

[Or Machine-Independent Software DevelopmeRalph E.
Griswold, W. H. Freeman, San Francisco, California, 1972.

€ 3.The Implementation of the Ilcon Programming Language
to Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

6/ @he Jeon Analyst

Augmented Assignment Operations

Icon provides “augmented” assignment operations fi

all its binary operations (except the assignment ones). Super

ficially, an augmented assignment operation is just an abh
viation for the common case when the value assigned t
variable is the result of an operation on that variable. T
commonest example of this situation is incrementing a count
asin

count :=count + 1

which can be written with augmented assignment as
count+:=1
Many programming languages support some form

augmented assignment, but most support it for only a f¢
operations such as addition and subtraction.

To use augmented assignment correctly and effec

tively, it's important to realize just what augmented assig
ment does. For a binary operatidn

exprll:= expr2
is equivalent to
exprl:= expriQd expr2

except thaexprlis evaluated only once.

There are two important points here: ékprlcan be
any expression that produces a variable, and (2) the a
mented form is equivalent to the non-augmented form w
exprlas its first (left) operand.

The fact thaexprlis the left operand does not matter fo|
commutative operations such as addition and intersection,
it's important for non-commutative operations such as diy
sion and concatenation. Thus, you can use augmented asg
ment with concatenation to append but not to prepend t
string-valued variable.

The fact thaéxprlis evaluated only once in augmente
assignment is not particularly significanteitprlis just an
identifier, but it can be very significant éxprlis a more
complicated expression.

One issue here is efficiency. While the amount of tin{
it takes to “evaluate” an identifier is negligible, the amount
time required for table look up can be significant. Thus, the
is a potential saving in execution time for expressions likg

wordcnt[word] +:= 1

in place of
wordcnt[word] := wordcnt[word] + 1

The other important aspect of evaluatiexprl only

once occurs for expressions that may have different vallies

when evaluated at different times. Of course, you'd not wr

wordcnt[read()] := wordcnt[read()] + 1

to increment the count of a string read in from a file — the two
instances ofead() clearly read two lines of input. If you don’t
_use augmented assignment, you need a temporary result, as in

pr

re
D a
he
e

line :=read()
wordcnt[line] := wordcnt[line] +1

r! .
but of course, augmented assignment makes that unneces-
sary:

wordcnt[read()] +:= 1

There are more subtle situations in which an expression
may produce different results at different times. For example,

bt supposedally is a list of integers. Then

bW ?tally +:=1

increments a randomly selected elemertabhy, but

- ?tally := ?tally + 1

does something quite different: It usually sets one element of
tally to one plusanother element oftally. It may even
decreasehe value of an element tlly.

It's worth remembering that the left operand of assign-
ment can be a generator. For example,

every (i|j|k):=0

setd, j, andk to 0. This kind of construction can be used to add

;Jhg'the same value to several variables, as in

every (i|j| k) +=1

] This idiom is even more useful in the case of structures.

buiFor example,
i

ign-
P 3addsi to every element dhlly. Similarly,

every ltally +:=i

f every wordcnt[key(wordcnt)] +:= 1

increments every count imordcnt.

It's natural to use augmented assignment for operations
like addition, subtraction, and string concatenation. There
€ even are cases where it's worth using augmented assignment

f for multiplication and division. For other operations, the use
re of augmented assignment may not be so obvious. For ex-
ample,

max <:= count

Back Issues

Back issues olhe Jreon Analyst are available
for $5 each. This price includes shipping in t
United States, Canada, and Mexico. Add $2

order for airmail postage to other countries.

te Der

something like

@The Jeon Analyst / 7

setsmax to count if max is less thamount. It's equivalent
to

max := max < count

noting that the comparison

max < count
produces the value obunt if max is less than count, but fails
otherwise (so thahax is not changed).

This formulationis a bit convoluted; the more conven
tional

if max < count then max := count

is easier to understand for most persons.
Another potential use of augmented assignment th
often is overlooked occurs in string scanning:
S ?:= expr
evaluategxprin the context of the subjestand assigns the
result tos.

In using augmented string scanning, it's important
remember that the value produceclapris what's assigned
tos. For example,

text ?:={
move(5)
tab(0)

}

removes the first five characterstekt, providedtext is that
long. (It doesn’t changéext if text is shorter than that.)
Similarly,

text ?:= move(5)

truncategext to no more than five characters.

This operation is so simple that you might wonder if
wouldn't be better to use

/

<\
O\,

°/

at

—

8/ @The Jeon Analyst

Well, perhaps, although string scanning is faster than
subscripting in this case (surprise?). And, once you’re used to
string scanning, it usually “feels better” than lower-level
operations such as subscripting. If you know SNOBOL4, you
might reflect on this — SNOBOL4 (in its standard form)
doesn’t have low-level string-analysis functions; everything
must be done using pattern matching.

Augmented string scanning offers a special advantage
when applying the same scanning expressing to several string-
valued variables, as in

every (textl | text2 | text3) ?:= move(5)

It's even more interesting if you have, for example, a list
of strings, all of which are to be processed in the same way, as
in

every lwordlist ?:= move(5)

Compare this to the alternative formulation that doesn’t use
augmented string scanning:

every i := 1 to Cordlist do
wordlist[i] := (wordlist[i] ? move(5))

Note that generation can’'t be used here because the
same expression must be evaluated twice if augmented string
scanning is not used — an expression such as

every !wordlist := (lwordlist ? move(5))

does not do what you want at all, since suspended generators
are resumed in a last-in, first-out fashion. Here the second
instance otwordlist generates all its results for every result
generated by the first instancelabrdlist. You might want

to figure out what happens.

i

The Icon Compiler

This is the first of a series on articles on the new
optimizing compiler for Icon [1]. We'll start by discussing
general issues. In subsequent articles, we'll have more to say
about how the compiler works, how to use the compiler, what
its advantages and limitations are, and what may be coming in
the future.

Language Features and Efficiency

Sophisticated programming language features, espe-
cially novel ones, usually are difficult to implement effi-
ciently. They often lead to poor execution performance,
especially in early implementations.

History shows, however, that implementation tech-
niques often can be found to overcome these problems.

The implementations of SNOBOL4 provide some of
the best examples of this. The first implementation of
SNOBOLA4, which is still in use, is interpretive [2]. Several

other increasingly efficient implementations followed. The ness of the types of their arguments, performing automatic

SPITBOL implementation [3], which combines compilatio
with many clever devices, runs almost 10 times faster than
original interpreter.

conversion if possible or issuing error messages if a type
fhecannot be converted to the expected one. Some operations are
polymorphous, performing different types of computations

Icon abounds with sophisticated features. The mgin depending on the types of their arguments.
features of Icon that present implementation problems gnd 2. Expression evaluation is more complex in Icon than

that impact execution speed are:

1. Type information is not declared in Icon programs,

but there is a strong run-time type system. Values have ty

in most programming languages. An expression can generate
a sequence of values or no value at all (failure). An expression
hedhat is capable of producing another value retains its state

type at run time and the type can change as program execytiofuSpended expressions to be resumed to produce other values.

continues. Structures can be heterogeneous, containing

,aiControl backtracking is inherent in this evaluation process.

ues of different types. However, operations check the corre ct-Expression evaluation also involves novel control structures

The Jeom Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

@he Jron Analygst is published six times ayear. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project

Department of Computer Science
Gould-Simpson Building

The University of Arizona
Tucson, Arizona 85721
US.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:
icon-project@cs.arizona.edu
or

...{uunet,allegra,noao}!arizonalicon-project

el

THE UNIVERSITY OF

ARIZONA

TUCSON ARIZONA

and

The Bright Forest Company
n Tucson Arizona

el

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

for managing goal-directed evaluation and the production of
sequences of values.

3. Functions and procedures are first-class data objects.
The functions and procedures that may be invoked during
program execution cannot be determined, in general, from the
program alone.

4. Strings of characters (not arrays of characters) are
central to computation in Icon. Strings are atomic and the
operations on them are applicative. Strings are created at run
time and may be arbitrarily long. There is a large repertoire of
low-level string operations in addition to string scanning.

5. Icon has several different kinds of data structures,
with sophisticated organizations and access mechanisms.
Lists can be indexed by position, and also as stacks and
gueues. Sets and tables provide associative look up for values
of any type. Structures are created at run time and can be
arbitrarily large. They also can change in size during program
execution. Structures have pointer semantics; a structure
value references the aggregate of values it contains.

6. Storage management is automatic. Data objects are
created at run time and space for them is provided automati-
cally. Such data objects vary widely in their characteristics
and sizes. Garbage collection is performed automatically to
free space occupied by objects that are no longer needed,
allowing that space to be re-used for newly created objects.

One fundamental question is whether these features are
inherently computationally expensive or whether ways be
found to implement them efficiently.

The term efficiency is elusive in this context. If sophis-
ticated features are used in ways that take full advantage of
their capabilities, computation may be faster than if conven-
tional techniques are used — simply because the operations
are performed internally and don’t have to be coded at the
source-language level. Consider, for example, writing every
position at which one string occurs as a substring of another.
Using generators and goal-directed evaluation, all that's needed
is

every write(find(s1,s2))

whereas using conventional control structures, something

like this is needed:

@The Jeon Analyst /9

i=1

while i <= 62 — 1 + 1 do {
if match(s1, s2, i) then write(i)
i+=1

}

In most programming languages, the formulation would K
even more complicated, but the point should be clear.

But what if all of the capabilities of a feature are ng
used? Is there an execution penalty for the unused capabili
anyway? For example, is the execution of

i=1

in lcon penalized for generators and goal-directed evaluatipn

even though they are not used?

It seems clear, at least, that a clever implementation
expression evaluation should be able to detect situations
which generation and goal-directed evaluation are not nee
and produce faster code than for situations in which they
needed. A similar argument applies to many of the oth
features of Icon that impact its performance. In other worg
what optimizations are possible?

These kinds of considerations are the basis for the n
optimizing compiler that has been written for Icon. Befor,
going on to discuss the compiler, it's important to understa
what it attempts to do and how it relates to the existing Ic
interpreter.

Main Implementation Issues

There are three general areas of importance in {
implementation of Icon:

« data representation
* generated code
* run-time routines

Data representation is pervasive. The way values 4
represented in Iconis influenced by its type system, the nat
of Icon values, and automatic storage management. Gener,
speaking, choices of data representation are made first

other aspects of the implementation adapt to these choices

The distinction between generated code and run-tin
routines occurs because many operations in Icon are
complexforin-line code and instead are implemented by c3
to subroutines.

The data representation used in the Icon interpreter
not changed much since Version 3 of Icon and is described
detail in Reference 4.

The Icon interpreter generates code for an imaging
computer, as described earlier in this issue ofthelust. It
hasn’t changed much either since Version 3 of Icon.

The run-time routines for the interpreter have been the

subject of much work and they have changed substantig

Id

What the Compiler Does

You can approach the design of a new implementation
from the ground up, discarding existing work and doing
everything over. In the case of a compiler for Icon, this is
impractical, at least in a non-commercial environment — it's
too big a project and there are too many complex and interact-
ing issues. In addition, many aspects of the Icon interpreter are
well done and it's not obvious how to improve on them in
t_ major ways — notthat it's impossible, just that better methods
I€3are not obvious.

The Icon compiler takes the data representation and
run-time routines of the interpreter largely intact and concen-
trates mainly on the generated code. This means that the

' optimizing compiler does not have much affect on the portion

of the time a program spends in run-time routines. For
O_f example, if a program spends most of its time in table lookup
Mor garbage collection, the Icon compiler cannot hope to
€0improve its running speed much.

On the other hand, it's somewhat of an over-simplifica-
" tionto say that the compiler just deals with the generated code.
' That makes it sound like it's just a question of what kind of
code the compiler generates. There’s more to it than that. For
EW example, the compiler generates in-line code in some situa-
E tions in which the interpreter calls run-time routines. The
nd compiler’s interface to run-time routines also is somewhat
PN different from the interpreter’s, as is the method for allocating
space for temporary results in the two systems.

Another way to view the domain of the compiler is
through the language features whose implementation it af-
he fects. These are mainly the first three listed on the preceding
page: how type information is handled, the code for expres-
sion evaluation, and the treatment of functions and proce-
dures.

e

re
e

Generated Code

:rriz In the first place, the Icon compiler generates C code,
alllynot code for an imaginary computer or for any specific real
! (fomputer. While an imaginary computer has many concep-

ual advantages, it's not a model that lends itself to optimiza-
" tions and, being fairly far from the code for any real computer,
'€ there’s an inherent inefficiency when it's converted to run on

003 real computer.

IIs

as| . .

in Downloading Icon Material

ry Most implementations of lcon are available for

downloading electronically:

BBS: (602) 621-2283
lly

over time, the most recent major change being dynanllic

hashing used for set and table look up [5].

10/ @he Jeon Analyst

FTP: cs.arizona.edu (cd Zicon)

There are several reasons for producing C code insteadexistence of an interpreter for Icon isn't much help in this
of, for example, producing code that is native to a particular regard — what's relatively easy to do with an interpreter may
computer. Portability is one reason; C compilers exist fpr be baffling in the context of compilation.
almost all real computers that have the capacity to runcor|. C Optimization is the soul of compilation. There’s no end
code also has the virtue of being close enough to most flealo what can be done, even for a conventional programming
computers that programs written in C usually are quite effi- janguage. A language like Icon provides a veritable garden of

cient. By generating code that is then processed by

compiler, the Ilcon compiler can take advantage of the addi-

tional code optimizations performed by C compilers.

Copportunity for optimization.

In subsequent articles, we'll explore these topics and
attempt to convey the basic concepts without an overwhelm-

Since the Icon compiler produces C code, two compil- jng amount of technical detalil.
tions are involved in going from an Icon source-language

program to an executable file. The complete process is shd
in the diagram at the bottom of this page.

Although the process of compiling an Icon prograr
involves several steps, this is hidden from the user. All tha
needed to compile the Icon progranog.icn is

iconc prog

More to Come

There are two major issues in code generation for Icg
(1) how to produce code for expressions and (2) optimiz
tions.

The firstissue may not be obvious. Models for produ

ing code for expressions in conventional languages li
Pascal and C are well known and compiler-writing techniqul

for such programming languages now are almost routine. for

example, anyone who has taken a good course in comp
writing should be able to write a compiler for a language IiK

Pascal or C, although it's admittedly a major project, and

producing efficient code may require more knowledge a
experience than are provided by a typical course in the subj

On the other hand, until recently there hasn’t been
model for producing code for generators, goal-directed eva

WIReferences

h, 1. The Implementation of an Optimizing Compiler for Icon
is Kenneth Walker, Technical Report TR 91-16, Department of
Computer Science, The University of Arizona, 1991.

2. The Macro Implementation of SNOBOL4; A Case Study of
Machine-Independent Software DevelopmeRalph E.
Griswold, W. H. Freeman, San Francisco, California, 1972.

n: 3. “MACRO SPITBOL — A SNOBOL4 Compiler”, Robert
a—. B. K. Dewar and Anthony P. McCanBopftware — Practice
& Experience Vol. 7 (1977), pp. 95-113.

c- 4. The Implementation of the lcon Programming Language
ke Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
es versity Press, Princeton, New Jersey, 1986.

iler5' Supplementary Information for the Implementation of
e Version 8 of IconRalph E. Griswold, Icon Project Document
IPD112, Department of Computer Science, The University of

d Arizona, 1990.

PCle. The Implementation of Generators and Goal-Directed
a Evaluation in IconJanalee O’Bagy, Technical Report TR 88-
u-31, Department of Computer Science, The University of
e Arizona, 1988.

ation, and related control structures [6]. Incidentally, th

data base C
i headers
Icon \
source —» | lcon compiler C C compiler
code code
library
object - executable
> ode > > ode
Compiling an Icon Program

@The Jeon Analyst /11

Element Generation

You probably know that.
you can read afile in two ways'
The conventional one, as in/

while s := read(f) do {

1-.‘5?‘ -"-
e

.
4

iy

}

or using a generator, as in|

! \
'Programming |
' Tips

every s ;= !f do{

| 1

}

In most cases, the for
you chose is largely.
matter of personal™™
preference. [

There is, how-
ever, one aspect of
using the generativ
form that may prove
useful in some situations. Since generation can be used
values of several types, you can use the generative forn
“read” from structures as well as from files. For example,

every s := linput do {

) :
works equally well ifinput is a file or a list.
This technigue can be used, for example, to provid

multi-line macro definition facility for input streams. Fo
example, suppose macro definitions have the form

#begdef boilerplate

#enddef

where the lines betwedihegdef and#enddef consist of text
associated with the macboilerplate and suppose

>boilerplate

in the input stream indicates an invocation of the magd
boilerplate, indicating that the text associated witme is
to be inserted in the input stream at this point.

When#begdef boilerplate is encountered, subsequer
lines up tatenddef can be placed in a list, which in turn is pJ
in a table of definitions keyed by the names of macros.

When>boilerplate is encountered, the valueiaput
(in the form suggested above) can be changed to the
associated witlboilerplate, and then changed back to th
former stream when the end of the list is encountered. T
former stream may be afile or alist (in the case of nested md

We'll leave the details to you. You'll probably want a
stack for streams, especially if nested macro invocations are
allowed. If you want nested maatefinitions,you’ll need to
do something fancier, as you will if you want arguments to
macro invocations.

You might think of other possibilities — element gen-
eration apply to sets, records, and strings also.

Perhaps more interesting is finding a way to generalize
the technique to use procedures and other expressions that
generate values. Co-expressions may prove useful here.

on
h to

What's Coming Up

As promised, we'll continue the series of articles on the
Icon compiler, dealing first with optimizations related to
types.

We'll also have an article on evaluating strings that
represent Icon expressions and an article on how Icon allo-
| “cates space for strings.

In the longer range we plan to have detailed case studies
of programs and we’ll include an occasional exercise or two
for you to check your programming skill.

Incidentally, we welcome suggestions for topics for
future issues of th@nalyst. We take suggestions seriously
and want to know what you do and don'’t like about the
Analyst. We try to stay several issues ahead in our publica-
tion schedule, however, so we can’t promise to respond
promptly to your suggestions.

D

ro .
Tell a Friend

If you know persons who you think might be interested
in the Analyst, please tell them about it. You don't have to
lend them one of your copies — we'll be glad to send them a
free sample copy. Just give us postal mailing addresses.

lis In these days of electronic information transfer, it's
N Easytoforgetthatsomethingsdon'tgowellthatway. We only
_'hedistribute theAnalyst my postal mail: Too much is lost if it

is converted to pure text, and the PostScript files from the
lcr%esktop publishing system we use are too large for electronic

— —+

invocation).

12 / The Jeon Analyst

transfer (not to mention copyright problems).

