
The Icon Analyst / 1

October 1991
Number 8

In-Depth Coverage of the Icon Programming Language

String Synthesis

In the last issue of the Analyst, we posed the problem
of implementing a string-synthesis facility for Icon, using the
ideas given earlier about modeling the string-scanning control
structure.

Our solution is given below. First we need procedures
analogous to the procedure used for modeling string scanning.
In addition to a subject, there’s now an “object”, which is the
result of string synthesis. There now also are two positions,
one in the subject and one in the object. The global identifiers
subject, object, s_pos, and o_pos are used for these four
“state variables” in the procedures that follow. (In a real
implementation, these would be keywords.)

The string synthesis control structure is modeled as

expr1 ? expr2 → Eform(Bform(expr1),expr2)

The procedures Bform() and Eform() are very similar
to Bscan() and Escan() used in the last issue of the Analyst
for modeling string scanning. There just are two additional
state variables to maintain. The subject gets its value from
expr1 as before, while the object starts out as the empty string.
Both positions start at 1.

record XformEnvir(subject, s_pos, object, o_pos)

global subject, object, s_pos, o_pos

procedure Bform(e1)
 local OuterEnvir

 OuterEnvir :=
 XformEnvir(subject, s_pos, object, o_pos)
 subject := e1
 object := ""
 s_pos := o_pos := 1

 suspend OuterEnvir

 subject := OuterEnvir.subject
 object := OuterEnvir.object
 s_pos := OuterEnvir.s_pos
 o_pos := OuterEnvir.o_pos
 fail

end

procedure Eform(OuterEnvir, e2)
 local InnerEnvir

 InnerEnvir :=
 XformEnvir(subject, s_pos, object, o_pos)
 subject := OuterEnvir.subject
 object := OuterEnvir.object
 s_pos := OuterEnvir.s_pos
 o_pos := OuterEnvir.o_pos

 suspend InnerEnvir.object

 OuterEnvir.subject := subject
 OuterEnvir.object := object
 OuterEnvir.s_pos := s_pos
 OuterEnvir.o_pos := o_pos
 subject := InnerEnvir.subject
 object := InnerEnvir.object
 s_pos := InnerEnvir.s_pos
 o_pos := InnerEnvir.o_pos
 fail

end

Most of the procedures specified in the last issue of the
Analyst are straightforward. Care must be taken, however,
to assure that values assigned to the positions are in range —
this is done automatically for the keyword &pos, but it must
be done explicitly for s_pos and o_pos. The procedures
smove() and omove() illustrate this:

procedure smove(i)

 if s_pos + i >= 1 then
 suspend .subject[.s_pos:s_pos <– s_pos + i]

end

procedure omove(i)

 if o_pos + i < 1 then fail
 suspend .object[.o_pos:o_pos <– o_pos + i]

end

Note that smove() and omove() are the same except for the
use of different variables.

 In this issue …

String Synthesis … 1
An Imaginary Icon Computer … 2
Augmented Assignment Operations … 7
The Icon Compiler … 8
Programming Tips … 12
What’s Coming Up … 12

2 / The Icon Analyst

What Next?

If you’re interested in programming language design,
you may wish to try your hand at adding additional string
synthesis procedures.

Another possibility is a facility that combines analysis
and synthesis so that the subject is transformed as it’s ana-
lyzed. While this kind of string transformation has conceptual
appeal, it presents the problem of keeping track of where you
are in a subject whose length may be changing. If you come
up with some ideas, you can try them out without a great
investment in time and effort by using the modeling tech-
niques we’ve shown.

An Imaginary Icon Computer

As mentioned in the last issue of the Analyst, the
interpretive implementation of Icon is based on the concept of
an imaginary Icon computer that performs the operations
needed to execute an Icon program.

The instruction set of this imaginary computer is a bit
strange — it’s not something you’d want to build in hardware.
Rather, this imaginary computer forms a conceptual bridge
between the semantics of Icon and the architecture of conven-
tional computers on which Icon must run. This implementa-
tion technique is an old one. The first language in which the
method was well documented was BCPL [1]. The macro
implementation of SNOBOL4 also used this technique [2].

Virtual Machine Language

The code for this Icon computer is called virtual ma-
chine code and is described in some detail in the Icon imple-
mentation book [3]. We won’t attempt to describe virtual
machine code in detail here, but a few of its characteristics are
worth note.

First, the imaginary Icon computer is stack-based. That
is, the operands of an operation are pushed on to a stack. The
operation pops its operands off the stack and pushes its result
in their place.

One curious aspect of the virtual machine language is
that there is a separate instruction for every Icon operator —
not just ones for arithmetic operations. There is an instruction
for subscripting, an instruction for activating a co-expression,
and so on.

On the other hand, there is just one instruction for
invoking all functions and procedures. The difference be-
tween the handling of operators and functions is a reflection
of the fact that Icon operators are fixed and their meanings
cannot change during program execution:

i + j

always means addition. On the other hand, functions and

 In addition, non-positive specifications for positions
must be converted to positive ones. The procedure cvpos()
takes care of this:

procedure cvpos(i, s)

 if i <= 0 then i +:= ∗s + 1
 if 1 <= i <= ∗s + 1 then return i
 else fail

end

This conversion is needed in all procedures whose
arguments are position specifications:

procedure spos_(i)

 return cvpos(i, subject) = s_pos

end

procedure stab(i)

 suspend .subject[.s_pos:s_pos <–
 cvpos(i, subject)]

end

procedure opos_(i)

 return cvpos(i, object) = o_pos

end

procedure otab(i)

 suspend .object[.o_pos:o_pos <–
 cvpos(i, object)]

end

Again note the similarity of the procedures that deal with the
subject and the object.

The three interesting procedures related to synthesis
are:

procedure xswap()

 suspend (object <–> subject) & (o_pos <– 1) &
 (s_pos <– 1) & &null

end

procedure odelete(i)

 suspend (object[o_pos+:i] <– "") & .opos

end

procedure oplace(s)

 suspend (object[o_pos:o_pos] <– s) &
 .(o_pos <– o_pos + ∗s)

end

In all three, conjunction and reversible assignment are
used to assure that the state variables are restored to their
former values if a suspended procedure call is resumed.

The Icon Analyst / 3

sum.u1

1

3

2

4

1

procedures are first-class values. They start out as the values
of global identifiers, but other values can be assigned to these
identifiers. Consequently,

write(s)

may be the invocation of the built-in function for writing, or
it may be something entirely different if another value has
been assigned to write.

The virtual machine language does not attempt to cope
with generators. There is a single virtual machine instruction
for the element generator (!x) just as there is one for the size
operation (∗x). It’s left to the instruction (that is, its execution
by the imaginary Icon computer) to handle what goes on in
generation.

As with any real computer, there are lots of other
instructions: instructions to push values on the stack, instruc-
tions to reference variables, and instructions to transfer con-
trol between places in a virtual machine program.

You can look at the virtual machine code if you wish —
it’s found in ucode files. As described in the article in the
preceding Analyst, ucode is the format used in procedure
libraries. If you have a library of ucode files (perhaps from the
Icon program library), you can print them or examine them
with a text editor — they are plain text files. You also can
create ucode files using the –c option to the Icon interpreter,
as in

icont –c sum.icn

This produces a pair of ucode files, sum.u1 and sum.u2.

The .u1 file contains virtual machine code for the
program, while the .u2 file contains global program informa-
tion.

An Example

Consider the following Icon program that produces the
sum of real numbers given in the standard input file. It also
removes any leading or trailing white space and ignores lines
that do not contain valid real numbers:

procedure main()

 total := 0.0
 every total +:= check(!&input)
 write("Total = ", total)

end

procedure check(s)

 s ? {
 tab(many(' \t'))
 return real(trim(tab(0), ' \t'))
 }

end

If this program is in the file sum.icn and is translated
with the –c option, the file sum.u1 that results is as shown in
the box at the right.

proc main
local 0,000000,total
local 1,000000,check
local 2,000000,write
con 0,004000,0.0
con 1,010000,8,124,157,164,141,154,040,075,040
declend
filen sum.icn
line 1
mark L1
pnull
var 0
real 0
line 2
asgn
unmark

lab L1
mark L2
mark0
pnull
var 0
dup
var 1
pnull
line 3
keywd 18
bang
invoke 1
plus
asgn
pop

lab L3
efail

lab L4
unmark

lab L2
mark L5
var 2
str 1
var 0
line 4
invoke 2
unmark

lab L5
pnull
line 5
pfail
end

proc check
local 0,001000,s
local 1,000000,tab
local 2,000000,many
local 3,000000,real
local 4,000000,trim
con 0,020000,2,040,011
con 1,002000,1,0
declend
line 7
mark L1
var 0
line 8
bscan
mark L2
var 1
var 2
cset 0
line 9

.

.

.

4 / The Icon Analyst

There is a section of virtual machine code for each
procedure (main() and check() in this program).

1 Each procedure begins with proc, followed by infor-
mation about identifiers and constants used in the procedure.

Identifiers are indicated by local, followed by three
comma-separated fields. The first field associates an integer
(starting at 0) with the identifier. The second field contains
information about the identifier, such as if it is explicitly
declared to be local (most digits in this field are unused, left
over from a time when it was not known what information
would be needed). The third field gives the identifier name.
Thus, total is identifier 0 in the main procedure.

Next the constants used in the procedure are given. The
real number 0.0 is constant 0, while the string "Total = " is
constant 1. ASCII codes (or EBCDIC codes on IBM main-
frames) are used for string constants, since they (unlike
identifiers) can contain characters like linefeeds that would
confuse the text of the ucode file if given literally.

The virtual machine instruction declend indicates the
end of the heading information for the procedure.

2 The instruction filen gives the name of the source-
language file from which the ucode was compiled. The
argument of the line instruction is the source-program line
number. File and line information is used in run-time error
messages and by the keywords &file and &line. The virtual-
machine instructions for the executable code in the procedure
follow.

3 The mark instruction indicates the beginning of a
bounded expression. Its argument, L1, is the label of the code
to which to branch in case the expression that follows fails.
The expression here, a simple assignment, cannot fail, but the
translator is not smart enough to account for this.

The instruction pnull pushes a null descriptor to provide
a place for the result of the upcoming operation. The var
instruction pushes a variable descriptor corresponding to the
number given in its argument, and real pushes a real descrip-
tor corresponding to its argument. The asgn instruction
performs the assignment using the descriptors on the stack.
The argument descriptors are removed, and the result of the
assignment (the variable) replaces the null descriptor that was
pushed earlier. The result is execution of the expression

total := 0.0

The unmark instruction undoes the effects of the mark
instruction. Virtual-machine instructions for the remaining
expressions follow. See Reference 3 if you’re interested in
more details of the virtual-machine instructions and what they
do.

4 The code for the procedure is terminated by the end
instruction. Note that pfail is the last instruction in the body of
the procedure, ensuring that if control flows off the end of the
procedure body, a call of the procedure will fail, as it does in
the procedures in the example here.

Most of the content of a program — its procedure
declarations and executable code— is in the .u1 file. The .u2

file, which contains global information about the program,
usually is short, as shown here:

The version identification is provided so that the linker
can check that the ucode is compatible with its data.

The line

impl local

stands for “implicit local” and means that an undeclared
identifier will be local unless the linker finds a global decla-
ration for it in another ucode file. If the program has been
compiled with the –u option, the corresponding line in the .u2
file would have been

impl error

instructing the linker to issue warning messages for unde-
clared identifiers for which there are no global declarations
(they are still made local).

The remaining lines in the .u2 file give the global
identifiers with encoding information. Here the only global
identifiers are those for the two procedures in the program.

The Linker

Although the linker is not really part of the imaginary
Icon computer, it’s an essential part of the implementation.
The linker processes ucode files, perhaps from several sepa-
rate translations, resolves the scope of undeclared identifiers,
and produces a binary icode file containing the virtual-ma-
chine code and data in a form that can be processed by an
interpreter.

An icode file is a memory image; it is read into memory
when the Icon interpreter is run and “executed”.

Since an icode file is in a binary format, it can’t be
printed or viewed in a text editor to see easily what it contains.
The Icon linker, however, can be configured with a debugging
option in which a text file showing the icode can be obtained.

It’s necessary to have the source code for the linker and
compile it with the debugging option. If you have the source
code for Icon and want to try this, add

#define DeBug

to src/h/define.h and recompile icont. With the linker that
results, the command line option –L to icont causes a file with
the suffix .ux to be produced. For example

icont –L sum.icn

produces a file sum.ux showing the contents of the icode
file.The result is shown on the next page. Note: The format of

version U8.3.000
impl local
global 2

0,000005,main,0
1,000005,check,1

sum.u2

The Icon Analyst / 5

332: 44 # bscan
336: 67 L2 # mark
344: 84 3 # global
352: 84 4 # global
360: 51 ∗–136 # cset

.

.

.
484: 0 # record blocks
488: # record/field table

488: 22000000006 Z+16 # main
496: 22000000006 Z+272 # check
504: 22000000006 –72 # write
512: 22000000006 –65 # tab
520: 22000000006 –35 # many
528: 22000000006 –52 # real
536: 22000000006 –67 # trim

544: 4 S+0 # main
552: 5 S+14 # check
560: 5 S+26 # write
568: 3 S+51 # tab
576: 4 S+55 # many
584: 4 S+60 # real
592: 4 S+65 # trim

600: 060 S+041

608: 060 001
616: 088 002
624: 136 003
632: 212 004
640: 228 005
648: 316 007
656: 332 008
664: 368 009
672: 428 010
680: 468 008
688: 480 012

696: 155 141 151 156 000 125 070 056
704: 062 056 060 060 060 000 143 150
712: 145 143 153 000 164 157 164 141
720: 154 000 167 162 151 164 145 000
728: 124 157 164 141 154 040 075 040
736: 000 163 165 155 056 151 143 156
744: 000 163 000 164 141 142 000 155
752: 141 156 171 000 162 145 141 154
760: 000 164 162 151 155 000 040 011
768: 000

size: 769
trace: 0
records: 484
ftab: 488
fnames: 488
globals: 488
gnames: 544
statics: 600
strcons: 696
filenms: 600
linenums: 608
config: I8.3.000

0: 3

 000 000 000 000 000 000 000 000
(0.0)

16: 6
44
Z+60
0
1
0
0
4 S+0 # main
5 S+20 # total

60: 67 L1 # mark
68: 69 # pnull
72: 83 0 # local
80: 75 ∗–88 # real
88: 1 # asgn
92: 78 # unmark
L1:
96: 67 L2 # mark
104: 85 # mark0
108: 69 # pnull
112: 83 0 # local
120: 52 # dup
124: 84 1 # global
132: 69 # pnull
136: 62 20 # keywd
144: 2 # bang
148: 61 1 # invoke
156: 30 # plus
160: 1 # asgn
164: 70 # pop
L3:
168: 53 # efail
L4:
172: 78 # unmark
L2:
176: 67 L5 # mark
184: 84 2 # global
192: 77 8,S+32 # str
204: 83 0 # local
212: 61 2 # invoke
220: 78 # unmark
L5:
224: 69 # pnull
228: 68 # pfail

232: 4
2
000 000 002 000 000 000 000 001

272: 6
44
Z+316
1
0
0
0
5 S+14 # check
1 S+49 # s

316: 67 L1 # mark
324: 81 0 # arg

sum.ux

1

4

3

5

2

6

8
9

J

K

L

M

N

7

6 / The Icon Analyst

.ux files varies somewhat, depending on the version of Icon
you’re using; the file you get may not be identical to the one
here. We’ve also adjusted white space to make it easier to
read.)

The general structure of an icode file, as shown in the
text-file representation, has several components:

1 Relative memory addresses are shown at the begin-
ning of most lines.

As in ucode, icode is organized on a per-procedure
basis. Each procedure starts with data local to the procedure:
blocks for any real numbers and csets used in the procedure,
followed by a procedure block.

2 In the first procedure, there is a block for the real
number 0.0 starting at relative address 0.

3 The procedure block starts at relative address 16.
See Reference 3 for information about the contents of such
blocks. The symbol Z (“zero”) is used to emphasize that an
address is relative to the beginning of the icode.

4 The symbol S (“strings”) indicates an address rela-
tive to a block that contains the strings (names, string literals,
and so forth) contained in the program. Thus, S+20 is where
the string for the name of the identifier total is located. In this
example, S is 696. We’ll explain how this is determined later.

5 The virtual machine instructions for a procedure
follow its data block. Compare these to the corresponding
ucode. In icode files, the numerical codes used to encode
virtual-machine instructions are given after the addresses.
Arguments, if any, are in the next column, and the names of
the instructions are given in comments. For example, the
numerical code for mark is 67.

6 The symbol ∗ refers to the current location in the
icode (actually, the address of the next instruction, because of
when the location is incremented). Thus, ∗–88 comes out to
0, which is the address of the real block for 0.0.

7 Data that is global to the program follows the code
for the last procedure. Record information comes first (this
program has no records).

8 Descriptors for global identifiers are next (address
488 in this example). The only global identifiers in this
program are the ones for the procedures and functions refer-
enced in the program. The first two, for the procedures main()
and check(), point to their respective procedure blocks (Z+16
and Z+272)

9 The remainder of the global descriptors are for the
functions used in the program. They have negative identifying
values. When an icode file is loaded prior to execution, these
negative values are replaced by pointers to their respective
function blocks in the run-time system. See Reference 3 for
details.

J Qualifiers for the names of the global identifiers are
next (address 544 in this example). Note that they point to
strings in the identifier region.

K A table of icode locations and corresponding file
names comes next (address 600 in this example). Since there
is only one file for this program, there is only one entry.

L Next there’s a table of icode locations and corre-
sponding program line numbers (address 608 in this ex-
ample). File names and line numbers are used in diagnostic
messages and by &file and &line.

M The strings for the program come next (address 696
in this example), with each character shown by its octal value.
Strings are pooled. That is, there is only one instance of a
string, even if it appears several times in the program. Note
that strings are null-terminated as is conventional for C, the
language in which the Icon interpreter is written.

N The last part of the .ux file gives information about
its size (769 bytes in this example) and the relative addresses
of global data in it. At the end is the icode version number. In
the actual icode file, this block of information appears first.
Space is reserved for it and the icode file is repositioned to
write this header after all the other information has been
written. We’ll explain the reason for this in a subsequent
article.

What Does This All Mean?

We’ve covered a lot of detail here. And there’s a lot
more you’ll need to study if you really want to understand the
imaginary Icon computer.

Our purpose in providing all this information is to give
you an idea of the conceptual framework for the interpretive
implementation of Icon: How the implementation of Icon can
be accomplished in terms of an albeit unusual and non-
existent “Icon machine”, how this view is used in the actual
implementation, and how the implementation on a real com-
puter can be accomplished.

This is just one way to implement a programming
language with features that are far from those found in real
computer hardware. But it has proved effective for several
programming languages and is worth knowing if you are
interested in implementation techniques.

In a future article, we’ll go one step further and describe
what the Icon interpreter does with an icode file and explain
a little about the interpreter itself.

References

1. “The Portability of the BCPL Compiler”, Martin Richards,
Software — Practice & Experience, Vol. 1, No. 2, 1971, pp.
135-146.

2. The Macro Implementation of SNOBOL4; A Case Study of
Machine-Independent Software Development, Ralph E.
Griswold, W. H. Freeman, San Francisco, California, 1972.

3. The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

The Icon Analyst / 7

Augmented Assignment Operations

Icon provides “augmented” assignment operations for
all its binary operations (except the assignment ones). Super-
ficially, an augmented assignment operation is just an abbre-
viation for the common case when the value assigned to a
variable is the result of an operation on that variable. The
commonest example of this situation is incrementing a counter,
as in

count := count + 1

which can be written with augmented assignment as

count +:= 1

Many programming languages support some form of
augmented assignment, but most support it for only a few
operations such as addition and subtraction.

To use augmented assignment correctly and effec-
tively, it’s important to realize just what augmented assign-
ment does. For a binary operation ⊗,

expr1 ⊗:= expr2

is equivalent to

expr1 := expr1 ⊗ expr2

except that expr1 is evaluated only once.

There are two important points here: (1) expr1 can be
any expression that produces a variable, and (2) the aug-
mented form is equivalent to the non-augmented form with
expr1 as its first (left) operand.

The fact that expr1 is the left operand does not matter for
commutative operations such as addition and intersection, but
it’s important for non-commutative operations such as divi-
sion and concatenation. Thus, you can use augmented assign-
ment with concatenation to append but not to prepend to a
string-valued variable.

The fact that expr1 is evaluated only once in augmented
assignment is not particularly significant if expr1 is just an
identifier, but it can be very significant if expr1 is a more
complicated expression.

One issue here is efficiency. While the amount of time
it takes to “evaluate” an identifier is negligible, the amount of
time required for table look up can be significant. Thus, there
is a potential saving in execution time for expressions like

wordcnt[word] +:= 1

in place of

wordcnt[word] := wordcnt[word] + 1

The other important aspect of evaluating expr1 only
once occurs for expressions that may have different values
when evaluated at different times. Of course, you’d not write
something like

wordcnt[read()] := wordcnt[read()] + 1

to increment the count of a string read in from a file — the two
instances of read() clearly read two lines of input. If you don’t
use augmented assignment, you need a temporary result, as in

line := read()
wordcnt[line] := wordcnt[line] +1

but of course, augmented assignment makes that unneces-
sary:

wordcnt[read()] +:= 1

There are more subtle situations in which an expression
may produce different results at different times. For example,
suppose tally is a list of integers. Then

?tally +:= 1

increments a randomly selected element of tally, but

?tally := ?tally + 1

does something quite different: It usually sets one element of
tally to one plus another element of tally. It may even
decrease the value of an element of tally.

It’s worth remembering that the left operand of assign-
ment can be a generator. For example,

every (i | j | k) := 0

sets i, j, and k to 0. This kind of construction can be used to add
the same value to several variables, as in

every (i | j | k) +:= 1

This idiom is even more useful in the case of structures.
For example,

every !tally +:= i

adds i to every element of tally. Similarly,

every wordcnt[key(wordcnt)] +:= 1

increments every count in wordcnt.

It’s natural to use augmented assignment for operations
like addition, subtraction, and string concatenation. There
even are cases where it’s worth using augmented assignment
for multiplication and division. For other operations, the use
of augmented assignment may not be so obvious. For ex-
ample,

max <:= count

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
order for airmail postage to other countries.

8 / The Icon Analyst

sets max to count if max is less than count. It’s equivalent
to

max := max < count

noting that the comparison

max < count

produces the value of count if max is less than count, but fails
otherwise (so that max is not changed).

This formulation is a bit convoluted; the more conven-
tional

if max < count then max := count

is easier to understand for most persons.

Another potential use of augmented assignment that
often is overlooked occurs in string scanning:

s ?:= expr

evaluates expr in the context of the subject s and assigns the
result to s.

In using augmented string scanning, it’s important to
remember that the value produced by expr is what’s assigned
to s. For example,

text ?:= {
 move(5)
 tab(0)
 }

removes the first five characters of text, provided text is that
long. (It doesn’t change text if text is shorter than that.)
Similarly,

text ?:= move(5)

truncates text to no more than five characters.

This operation is so simple that you might wonder if it
wouldn’t be better to use

text := text[1+:5]

Well, perhaps, although string scanning is faster than
subscripting in this case (surprise?). And, once you’re used to
string scanning, it usually “feels better” than lower-level
operations such as subscripting. If you know SNOBOL4, you
might reflect on this — SNOBOL4 (in its standard form)
doesn’t have low-level string-analysis functions; everything
must be done using pattern matching.

Augmented string scanning offers a special advantage
when applying the same scanning expressing to several string-
valued variables, as in

every (text1 | text2 | text3) ?:= move(5)

It’s even more interesting if you have, for example, a list
of strings, all of which are to be processed in the same way, as
in

every !wordlist ?:= move(5)

Compare this to the alternative formulation that doesn’t use
augmented string scanning:

every i := 1 to ∗wordlist do
 wordlist[i] := (wordlist[i] ? move(5))

Note that generation can’t be used here because the
same expression must be evaluated twice if augmented string
scanning is not used — an expression such as

every !wordlist := (!wordlist ? move(5))

does not do what you want at all, since suspended generators
are resumed in a last-in, first-out fashion. Here the second
instance of !wordlist generates all its results for every result
generated by the first instance of !wordlist. You might want
to figure out what happens.

The Icon Compiler

This is the first of a series on articles on the new
optimizing compiler for Icon [1]. We’ll start by discussing
general issues. In subsequent articles, we'll have more to say
about how the compiler works, how to use the compiler, what
its advantages and limitations are, and what may be coming in
the future.

Language Features and Efficiency

Sophisticated programming language features, espe-
cially novel ones, usually are difficult to implement effi-
ciently. They often lead to poor execution performance,
especially in early implementations.

History shows, however, that implementation tech-
niques often can be found to overcome these problems.

The implementations of SNOBOL4 provide some of
the best examples of this. The first implementation of
SNOBOL4, which is still in use, is interpretive [2]. Several

The Icon Analyst / 9

ness of the types of their arguments, performing automatic
conversion if possible or issuing error messages if a type
cannot be converted to the expected one. Some operations are
polymorphous, performing different types of computations
depending on the types of their arguments.

2. Expression evaluation is more complex in Icon than
in most programming languages. An expression can generate
a sequence of values or no value at all (failure). An expression
that is capable of producing another value retains its state
information by suspending. Goal-directed evaluation causes
suspended expressions to be resumed to produce other values.
Control backtracking is inherent in this evaluation process.
Expression evaluation also involves novel control structures
for managing goal-directed evaluation and the production of
sequences of values.

3. Functions and procedures are first-class data objects.
The functions and procedures that may be invoked during
program execution cannot be determined, in general, from the
program alone.

4. Strings of characters (not arrays of characters) are
central to computation in Icon. Strings are atomic and the
operations on them are applicative. Strings are created at run
time and may be arbitrarily long. There is a large repertoire of
low-level string operations in addition to string scanning.

5. Icon has several different kinds of data structures,
with sophisticated organizations and access mechanisms.
Lists can be indexed by position, and also as stacks and
queues. Sets and tables provide associative look up for values
of any type. Structures are created at run time and can be
arbitrarily large. They also can change in size during program
execution. Structures have pointer semantics; a structure
value references the aggregate of values it contains.

6. Storage management is automatic. Data objects are
created at run time and space for them is provided automati-
cally. Such data objects vary widely in their characteristics
and sizes. Garbage collection is performed automatically to
free space occupied by objects that are no longer needed,
allowing that space to be re-used for newly created objects.

One fundamental question is whether these features are
inherently computationally expensive or whether ways be
found to implement them efficiently.

The term efficiency is elusive in this context. If sophis-
ticated features are used in ways that take full advantage of
their capabilities, computation may be faster than if conven-
tional techniques are used — simply because the operations
are performed internally and don’t have to be coded at the
source-language level. Consider, for example, writing every
position at which one string occurs as a substring of another.
Using generators and goal-directed evaluation, all that’s needed
is

every write(find(s1,s2))

whereas using conventional control structures, something
like this is needed:

other increasingly efficient implementations followed. The
SPITBOL implementation [3], which combines compilation
with many clever devices, runs almost 10 times faster than the
original interpreter.

Icon abounds with sophisticated features. The main
features of Icon that present implementation problems and
that impact execution speed are:

 1. Type information is not declared in Icon programs,
but there is a strong run-time type system. Values have types
but variables do not. Any variable can take on a value of any
type at run time and the type can change as program execution
continues. Structures can be heterogeneous, containing val-
ues of different types. However, operations check the correct-

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1991 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

10 / The Icon Analyst

i := 1
while i <= ∗s2 – ∗s1 + 1 do {
 if match(s1, s2, i) then write(i)
 i +:= 1
 }

In most programming languages, the formulation would be
even more complicated, but the point should be clear.

But what if all of the capabilities of a feature are not
used? Is there an execution penalty for the unused capabilities
anyway? For example, is the execution of

i := 1

in Icon penalized for generators and goal-directed evaluation,
even though they are not used?

It seems clear, at least, that a clever implementation of
expression evaluation should be able to detect situations in
which generation and goal-directed evaluation are not needed
and produce faster code than for situations in which they are
needed. A similar argument applies to many of the other
features of Icon that impact its performance. In other words,
what optimizations are possible?

These kinds of considerations are the basis for the new
optimizing compiler that has been written for Icon. Before
going on to discuss the compiler, it’s important to understand
what it attempts to do and how it relates to the existing Icon
interpreter.

Main Implementation Issues

There are three general areas of importance in the
implementation of Icon:

• data representation

• generated code

• run-time routines

Data representation is pervasive. The way values are
represented in Icon is influenced by its type system, the nature
of Icon values, and automatic storage management. Generally
speaking, choices of data representation are made first and
other aspects of the implementation adapt to these choices.

The distinction between generated code and run-time
routines occurs because many operations in Icon are too
complex for in-line code and instead are implemented by calls
to subroutines.

The data representation used in the Icon interpreter has
not changed much since Version 3 of Icon and is described in
detail in Reference 4.

The Icon interpreter generates code for an imaginary
computer, as described earlier in this issue of the Analyst. It
hasn’t changed much either since Version 3 of Icon.

The run-time routines for the interpreter have been the
subject of much work and they have changed substantially
over time, the most recent major change being dynamic
hashing used for set and table look up [5].

What the Compiler Does

You can approach the design of a new implementation
from the ground up, discarding existing work and doing
everything over. In the case of a compiler for Icon, this is
impractical, at least in a non-commercial environment — it’s
too big a project and there are too many complex and interact-
ing issues. In addition, many aspects of the Icon interpreter are
well done and it’s not obvious how to improve on them in
major ways — not that it’s impossible, just that better methods
are not obvious.

The Icon compiler takes the data representation and
run-time routines of the interpreter largely intact and concen-
trates mainly on the generated code. This means that the
optimizing compiler does not have much affect on the portion
of the time a program spends in run-time routines. For
example, if a program spends most of its time in table lookup
or garbage collection, the Icon compiler cannot hope to
improve its running speed much.

On the other hand, it’s somewhat of an over-simplifica-
tion to say that the compiler just deals with the generated code.
That makes it sound like it’s just a question of what kind of
code the compiler generates. There’s more to it than that. For
example, the compiler generates in-line code in some situa-
tions in which the interpreter calls run-time routines. The
compiler’s interface to run-time routines also is somewhat
different from the interpreter’s, as is the method for allocating
space for temporary results in the two systems.

Another way to view the domain of the compiler is
through the language features whose implementation it af-
fects. These are mainly the first three listed on the preceding
page: how type information is handled, the code for expres-
sion evaluation, and the treatment of functions and proce-
dures.

Generated Code

In the first place, the Icon compiler generates C code,
not code for an imaginary computer or for any specific real
computer. While an imaginary computer has many concep-
tual advantages, it’s not a model that lends itself to optimiza-
tions and, being fairly far from the code for any real computer,
there’s an inherent inefficiency when it’s converted to run on
a real computer.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

The Icon Analyst / 11

There are several reasons for producing C code instead
of, for example, producing code that is native to a particular
computer. Portability is one reason; C compilers exist for
almost all real computers that have the capacity to run Icon. C
code also has the virtue of being close enough to most real
computers that programs written in C usually are quite effi-
cient. By generating code that is then processed by a C
compiler, the Icon compiler can take advantage of the addi-
tional code optimizations performed by C compilers.

Since the Icon compiler produces C code, two compila-
tions are involved in going from an Icon source-language
program to an executable file. The complete process is shown
in the diagram at the bottom of this page.

Although the process of compiling an Icon program
involves several steps, this is hidden from the user. All that is
needed to compile the Icon program prog.icn is

iconc prog

More to Come

There are two major issues in code generation for Icon:
(1) how to produce code for expressions and (2) optimiza-
tions.

The first issue may not be obvious. Models for produc-
ing code for expressions in conventional languages like
Pascal and C are well known and compiler-writing techniques
for such programming languages now are almost routine. For
example, anyone who has taken a good course in compiler
writing should be able to write a compiler for a language like
Pascal or C, although it’s admittedly a major project, and
producing efficient code may require more knowledge and
experience than are provided by a typical course in the subject.

On the other hand, until recently there hasn’t been a
model for producing code for generators, goal-directed evalu-
ation, and related control structures [6]. Incidentally, the

existence of an interpreter for Icon isn’t much help in this
regard — what’s relatively easy to do with an interpreter may
be baffling in the context of compilation.

Optimization is the soul of compilation. There’s no end
to what can be done, even for a conventional programming
language. A language like Icon provides a veritable garden of
opportunity for optimization.

In subsequent articles, we’ll explore these topics and
attempt to convey the basic concepts without an overwhelm-
ing amount of technical detail.

References

1. The Implementation of an Optimizing Compiler for Icon,
Kenneth Walker, Technical Report TR 91-16, Department of
Computer Science, The University of Arizona, 1991.

2. The Macro Implementation of SNOBOL4; A Case Study of
Machine-Independent Software Development, Ralph E.
Griswold, W. H. Freeman, San Francisco, California, 1972.

3. “MACRO SPITBOL — A SNOBOL4 Compiler”, Robert
B. K. Dewar and Anthony P. McCann, Software — Practice
& Experience, Vol. 7 (1977), pp. 95-113.

4. The Implementation of the Icon Programming Language,
Ralph E. Griswold and Madge T. Griswold, Princeton Uni-
versity Press, Princeton, New Jersey, 1986.

5. Supplementary Information for the Implementation of
Version 8 of Icon, Ralph E. Griswold, Icon Project Document
IPD112, Department of Computer Science, The University of
Arizona, 1990.

6. The Implementation of Generators and Goal-Directed
Evaluation in Icon, Janalee O’Bagy, Technical Report TR 88-
31, Department of Computer Science, The University of
Arizona, 1988.

Icon
source
code

Icon compiler C

code

C compiler

data base C

headers

library

object

code linker

executable
code

Compiling an Icon Program

12 / The Icon Analyst

Element Generation

You probably know that
you can read a file in two ways.
The conventional one, as in

 while s := read(f) do {
.
.
.

 }

or using a generator, as in

 every s := !f do {
.
.
.

 }

In most cases, the form
you chose is largely a
matter of personal
preference.

There is, how-
ever, one aspect of
using the generative
form that may prove
useful in some situations. Since generation can be used on
values of several types, you can use the generative form to
“read” from structures as well as from files. For example,

every s := !input do {
.
.
.

 }

works equally well if input is a file or a list.

This technique can be used, for example, to provide a
multi-line macro definition facility for input streams. For
example, suppose macro definitions have the form

#begdef boilerplate
.
.
.

#enddef

where the lines between #begdef and #enddef consist of text
associated with the macro boilerplate and suppose

>boilerplate

in the input stream indicates an invocation of the macro
boilerplate, indicating that the text associated with name is
to be inserted in the input stream at this point.

When #begdef boilerplate is encountered, subsequent
lines up to #enddef can be placed in a list, which in turn is put
in a table of definitions keyed by the names of macros.

When >boilerplate is encountered, the value of input
(in the form suggested above) can be changed to the list
associated with boilerplate, and then changed back to the
former stream when the end of the list is encountered. The
former stream may be a file or a list (in the case of nested macro
invocation).

We’ll leave the details to you. You’ll probably want a
stack for streams, especially if nested macro invocations are
allowed. If you want nested macro definitions, you’ll need to
do something fancier, as you will if you want arguments to
macro invocations.

You might think of other possibilities — element gen-
eration apply to sets, records, and strings also.

Perhaps more interesting is finding a way to generalize
the technique to use procedures and other expressions that
generate values. Co-expressions may prove useful here.

What’s Coming Up

As promised, we’ll continue the series of articles on the
Icon compiler, dealing first with optimizations related to
types.

We’ll also have an article on evaluating strings that
represent Icon expressions and an article on how Icon allo-
cates space for strings.

In the longer range we plan to have detailed case studies
of programs and we’ll include an occasional exercise or two
for you to check your programming skill.

Incidentally, we welcome suggestions for topics for
future issues of the Analyst. We take suggestions seriously
and want to know what you do and don’t like about the
Analyst. We try to stay several issues ahead in our publica-
tion schedule, however, so we can’t promise to respond
promptly to your suggestions.

Tell a Friend

If you know persons who you think might be interested
in the Analyst, please tell them about it. You don’t have to
lend them one of your copies — we’ll be glad to send them a
free sample copy. Just give us postal mailing addresses.

In these days of electronic information transfer, it’s
easy to forget that some things don’t go well that way. We only
distribute the Analyst my postal mail: Too much is lost if it
is converted to pure text, and the PostScript files from the
desktop publishing system we use are too large for electronic
transfer (not to mention copyright problems).

Programming
Tips

